CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for May 24

Exercise 1. Let R = k[x, y] with k a field.

- (a) Consider the maximal ideal $\mathfrak{m} = (x, y) \subset R$ and the *R*-module $M = R/\mathfrak{m}$. Calculate $\operatorname{Ext}^i_R(M, M)$ for all *i*.
- (b) Calculate $\operatorname{Ext}_{R}^{i}(R/(x), R/(y))$ for all *i*.

Exercise 2. Let $R = \mathbb{Z}/4\mathbb{Z}$ and consider $M = R/2R \cong \mathbb{Z}/2\mathbb{Z}$. Calculate $\operatorname{Ext}_{R}^{i}(M, M)$ for all *i*. [Use Exercise 1(b) from last week.]

Exercise 3. Let R be a ring and let

$$0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

be a short exact sequence of R-modules. Let

$$P'_{\bullet} \xrightarrow{\alpha'} M'$$
 and $P''_{\bullet} \xrightarrow{\alpha''} M''$

be projective resolutions of M' and M'', respectively. For $i \ge 0$ define $P_i = P'_i \oplus P''_i$, and let $j: P'_i \to P_i$ and $\pi: P_i \to P''_i$ be the inclusion and projection homomorphisms.

(a) Show that there is a homomorphism $\alpha \colon P_0 = P'_0 \oplus P''_0 \to M$ that makes the diagram

commutative.

(b) Show that the sequence

$$0 \longrightarrow \operatorname{Ker}(\alpha') \longrightarrow \operatorname{Ker}(\alpha) \longrightarrow \operatorname{Ker}(\alpha'') \longrightarrow 0$$

is exact.

(c) Show that there exists a homomorphism $\delta_1 \colon P_1 \to P_0$ that gives a commutative diagram

(d) Iterating the previous step, show that there exist homomorphisms $\delta_i \colon P_i \to P_{i-1}$ that make P_{\bullet} into a complex such that

is a commutative diagram with exact rows.

Exercise 4. Recall that if G is a group we write $\mathbb{Z}[G]$ for its group ring. The elements of G form a basis of $\mathbb{Z}[G]$ as a \mathbb{Z} -module, so that every element of $\mathbb{Z}[G]$ can be written in a unique way as $\sum_{g \in G} n_g \cdot g$ with $n_g \in \mathbb{Z}$ and $n_g = 0$ for almost all g.

If $f: G \to H$ is a homomorphism of groups, we have an induced homomorphism of rings $f: \mathbb{Z}[G] \to \mathbb{Z}[H]$, given by

$$\sum_{g \in G} n_g \cdot g \mapsto \sum_{g \in G} n_g \cdot f(g) = \sum_{h \in H} \left(\sum_{g \in f^{-1}\{h\}} n_g \right) \cdot h \,.$$

In particular, this allows to view $\mathbb{Z}[H]$ as a module over $\mathbb{Z}[G]$.

- (a) For $i \ge 0$, view $F_i := \mathbb{Z}[G^{i+1}]$ as a module over $\mathbb{Z}[G]$ via the diagonal homomorphism $G \to G^{i+1}$ given by $g \mapsto (g, g, \ldots, g)$. Prove that F_i is a free $\mathbb{Z}[G]$ -module.
- (b) For $i \ge 0$, show that the map $d_i \colon \mathbb{Z}[G^{i+1}] \to \mathbb{Z}[G^i]$ given by

$$d_i(g_0,\ldots,g_i) = \sum_{j=0}^i (-1)^j \cdot (g_0,\ldots,g_{j-1},\hat{g}_j,g_{j+1},\ldots,g_i)$$

is a homomorphism of $\mathbb{Z}[G]$ -modules, and that $d_{i-1} \circ d_i = 0$. (Note: \hat{g}_j indicates that we are omitting the element in position j.)

In the rest of the exercise we write $F_{\bullet}^{\#}$ for the complex

$$\cdots \longrightarrow F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} \mathbb{Z} \longrightarrow 0.$$

(Note that $\mathbb{Z}[G^0]$ is simply \mathbb{Z} with trivial action of G.)

(c) Define $h_{-1}: \mathbb{Z} \to F_0 = \mathbb{Z}[G]$ by $h_{-1}(n) = n$, and for $i \geq 0$ define $h_i: F_i \to F_{i+1}$ by $h_i(g_0, \ldots, g_i) = (1, g_0, \ldots, g_i)$, where $1 \in G$ is the identity element. Show that the maps h_i define a homotopy from the zero map $0: F_{\bullet}^{\#} \to F_{\bullet}^{\#}$ to the identity map id: $F_{\bullet}^{\#} \to F_{\bullet}^{\#}$.

(d) Show that $F_{\bullet}^{\#}$ is exact, and conclude that the complex

$$F_{\bullet}: \longrightarrow F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \longrightarrow 0$$

together with the homomorphism $d_0: F_{\bullet} \to \mathbb{Z}$ is a free resolution of \mathbb{Z} as a $\mathbb{Z}[G]$ -module. (This resolution will play an important role in our later discussion of group (co)homology.)

Exercise 5. Let R be a ring. Suppose we have a commutative diagram

in the category C(R-Mod) such that the rows are exact. (Recall that a sequence $0 \longrightarrow M'_{\bullet} \longrightarrow M_{\bullet} \longrightarrow M''_{\bullet} \longrightarrow 0$ of complexes is exact if it is exact in each degree.) Show that if two out of $\{\phi', \phi, \phi''\}$ are quasi-isomorphisms, so is the third. [*Hint:* Use Exercise 4 from last week.]