CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for May 31

Exercise 1. Let $R=\mathbb{Z}[x]$, and let I be the ideal $(6, x) \subset R$. Let M be the module I / I^{2}.
(a) Give a projective resolution of M.
(b) Let N be another R-module. Determine $\operatorname{Ext}_{R}^{2}(M, N)$, and give a concrete example of an N such that $\operatorname{Ext}_{R}^{2}(M, N) \neq 0$.
(c) Give an example of a module N such that $\operatorname{Ext}_{R}^{1}(M, N) \neq 0$. (Do this by thinking and not by calculation!)

Exercise 2. Let R be a ring and N a (left-) R-module. Let $n \geq 1$, and suppose $\operatorname{Ext}_{R}^{n}(M, N)=$ 0 for all R-modules M.
(a) Show that also $\operatorname{Ext}_{R}^{n+1}(M, N)=0$ for all M. [Hint: Consider a short exact sequence $0 \longrightarrow M^{\prime} \longrightarrow F \longrightarrow M \longrightarrow 0$ with F a free R-module.]
(b) Show that the functor $\operatorname{Ext}_{R}^{n-1}(-, N): R$ - Mod $^{\mathrm{op}} \rightarrow \mathrm{Ab}$ is right exact.

Remark: The injective dimension $\operatorname{inj} \cdot \operatorname{dim}_{R}(N) \in \mathbb{N} \cup\{\infty\}$ of the module N is defined to be the smallest integer i (possibly $i=\infty$) such that $\operatorname{Ext}_{R}^{n}(M, N)=0$ for all $n>i$ and all M. This is one of the many homological invariants that one may associate with a module and that attempt to capture meaningful properties of it.

Exercise 3. Let

$$
\mathscr{E}: \quad 0 \longrightarrow N \xrightarrow{\alpha} E \xrightarrow{\beta} M \longrightarrow 0
$$

be an extension of R-modules. Prove that the extension

$$
\mathscr{E}^{\prime}: \quad 0 \longrightarrow N \xrightarrow{-\alpha} E \xrightarrow{\beta} M \longrightarrow 0
$$

is the inverse of \mathscr{E} for the Baer sum and that the split extension

$$
0 \longrightarrow N \xrightarrow{i} M \oplus N \xrightarrow{\mathrm{pr}} M \longrightarrow 0
$$

is the neutral element for the Baer sum.

Exercise 4. Let $f: R \rightarrow S$ be a homomorphism of rings. If M is a (left-) S-module, we may view M as an R-module via the homomorphism f; we denote this R-module by $f^{*}(M)$. (The notation ${ }_{R} M$ is also sometimes used for this.)
(a) Show that $f^{*}: S$-Mod $\rightarrow R$-Mod is a faithful exact functor. Is f^{*} always full?
(b) Let $\alpha: P_{\bullet} \rightarrow M$ be a projective resolution of M. Show that $\alpha: f^{*}\left(P_{\bullet}\right) \rightarrow f^{*}(M)$ is a resolution of $f^{*}(M)$ by R-modules. Show, by means of a concrete example, that the $f^{*}\left(P_{i}\right)$ need not be projective R-modules.
(c) Let $\beta: Q \bullet \rightarrow f^{*}(M)$ be a projective resolution of $f^{*}(M)$. Show (with P_{\bullet} as in (b)) that there is a morphism of complexes $g: Q_{\bullet} \rightarrow f^{*}(P)$ such that $\alpha \circ g=\beta$, and that g is unique up to homotopy.

We can now define a homomorphism

$$
f^{*}: \operatorname{Ext}_{S}^{i}(M, N) \rightarrow \operatorname{Ext}_{R}^{i}\left(f^{*}(M), f^{*}(N)\right)
$$

by considering (with notation as above) the morphism of cochain complexes

$$
\operatorname{Hom}_{R}\left(P_{\bullet}, N\right) \rightarrow \operatorname{Hom}_{S}\left(Q_{\bullet}, f^{*}(N)\right)
$$

given by $h \mapsto f^{*}(h) \circ g$, and then applying \mathscr{H}^{i}.
(d) Let k be a field, and take $f: R \rightarrow S$ to be the homomorphism $k \rightarrow k[x]$. Show that $f^{*}: \operatorname{Ext}_{k[x]}^{1}(M, N) \rightarrow \operatorname{Ext}_{k}^{1}\left(f^{*}(M), f^{*}(N)\right)$ is the zero map, and conclude that f^{*} is in general not injective.
(e) Take $f: R \rightarrow S$ to be the canonical homomorphism $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. Show that again $f^{*}: \operatorname{Ext}_{\mathbb{Z} / 2 \mathbb{Z}}^{1}(M, N) \rightarrow \operatorname{Ext}_{\mathbb{Z} / 4 \mathbb{Z}}^{1}\left(f^{*}(M), f^{*}(N)\right)$ is the zero map, and conclude that f^{*} is in general not surjective.

Exercise 5. Let k be a field, let G be a finite group, and let $k[G]$ be the group ring of G over k. Recall that the category of $k[G]$-modules is isomorphic to the category of k-linear representations of G. A representation $\rho: G \rightarrow \mathrm{GL}(V)$, with V a k-vector space, is said to be irreducible if $V \neq 0$ and if V does not have any G-stable subspaces other than 0 and V itself. This is of course equivalent to V being a simple R-module (i.e., $V \neq 0$ and V has no non-trivial $k[G]$-submodules). A representation is said to be semisimple, or completely reducible, if it is isomorphic to a direct sum of irreducible representations.

A famous theorem of Maschke says that when the characteristic of k does not divide the order of the group G, every finite-dimensional representation of G is semisimple. This result plays a very important role in representation theory. The goal of this exercise is to show that this result is false if $\operatorname{char}(k)$ divides $\# G$. In that case the characteristic of k of course needs to be positive; so from now on we assume $\operatorname{char}(k)=p>0$ and $p \mid \# G$.
(a) As a first example, show that for $G=\mathbb{Z} / p \mathbb{Z}$ we have $k[G] \cong k[t] /\left(t^{p}\right)$, and use this to give an explicit example of a $k[G]$-module E that is not semisimple. [For the first assertion see the exercises of 1 March.]
(b) Still with $G=\mathbb{Z} / p \mathbb{Z}$, show that there exists $k[G]$-modules M and N such that the module E that you have found in (a) is an extension

$$
0 \longrightarrow N \longrightarrow E \longrightarrow M \longrightarrow 0
$$

that corresponds to a non-zero class in $\operatorname{Ext}_{k[G]}^{1}(M, N)$.
We now turn to the general case of a group G with $p \mid \# G$. Let $\epsilon: k[G] \rightarrow k$ be the homomorphism given by $\sum_{g \in G} c_{g} \cdot g \mapsto \sum_{g \in G} c_{g}$. The kernel $I=\operatorname{Ker}(\epsilon)$ is called the augmentation ideal of $k[G]$.
(c) Show that I is a $k[G]$-submodule of $k[G]$.

Let $V \subset k[G]$ be any other $k[G]$-submodule with $V \neq I$. We are going to show that $I \cap V \neq 0$. Define

$$
\gamma=\sum_{g \in G} 1 \cdot g \quad \in k[G] .
$$

(d) Let $v=\sum_{g \in G} c_{g} \cdot g$ be an element of V that is not in I. Show that $\gamma \cdot v$ is a non-zero element of $V \cap I$.
(e) Conclude that for any $k[G]$-submodule $V \subset k[G]$ we have $V \cap I \neq(0)$, and use this to conclude that the $k[G]$-module $k[G]$ is not semisimple.

