
CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for February 22

Names for some categories:

Category Objects Morphisms

Set Sets Maps

Grp Groups Group homomorphisms

Ring Rings Ring homomorphisms

CRing Commutative rings Ring homomorphisms

CG {∗} Hom(∗, ∗) = G

Exercise 1. Let F : C → D be a functor. Let A ⊂ Mor(D) be the image of F : Mor(C) →
Mor(D), i.e., the collection of all morphisms in D that are of the form F (f) for some mor-

phism f in C. Give an example that shows that the collection A is in general not closed under

composition. (Therefore, the “image” of F is in general not a subcategory of D.)

Exercise 2.

(a) Let (X,≤) and (Y,≤) be two posets; we view them as categories. Show that to give a

functor F : (X,≤)→ (Y,≤) is the same as giving an order-preserving map X → Y .

(b) Let G and H be groups, and consider the associated 1-object categories CG and CH .

Show that to give a functor CG → CH is the same as giving a homomorphism of groups

G→ H.

(c) With (X,≤) a poset and G a group, describe all functors CG → (X,≤).

Exercise 3. Fix an integer n ≥ 1. If R is a commutative ring, we may consider the group

GLn(R) of invertible n × n matrices with coefficients in R. Note that if A ∈ Mn(R) then A

is invertible if and only if det(A) ∈ R×. (It is not sufficient to require that det(A) 6= 0 !)

(a) Show that R 7→ GLn(R) gives a functor GLn : CRing→ Gr.

Recall that there is a functor U : CRing → Gr that sends a ring R to its group of units

U(R) = R×.
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(b) For R a commutative ring, let Φ(R) : GLn(R) → R× be the map that sends a matrix

A ∈ GLn(R) to its determinant det(A) ∈ R×. Show that this defines a morphism of

functors Φ: GLn → U .

Exercise 4. Let R be a commutative ring.

(a) If M and N are R-modules, show that HomR(M,N) naturally has the structure of an

R-module, obtained by the rule (r · f)
(
m
)

= r · f(m). (Make sure that you understand

the meaning of this formula!)

(b) Show that EndR(M) has the structure of an R-algebra, with composition of endo-

morphisms as the product. Also show, by means of a concrete example, that this

endomorphism ring is not commutative, in general.

Exercise 5. Let R be a ring.

(a) If M is a left R-module that is generated by a single element, show that there exists a

left ideal I ⊂ R such that M ∼= R/I as R-modules.

(b) Prove that an R-module M is simple (meaning: M 6= 0 and M has no submodules other

than (0) and M itself) if and only if M ∼= R/I for a maximal left ideal I ⊂ R.

We may ask if the statements in the previous exercise have an analogue for modules over a

non-commutative ring. As an example, let k be a field, and take R = M2(k), the ring of 2× 2

matrices with coefficients in k. Let M = k2, viewed as a left R-module by the usual rule:(
a b

c d

)
·

(
x

y

)
=

(
ax + by

cx + dy

)
.

(c) Prove that M is a simple M2(k)-module and that EndR(M) ∼= k.

(d) Taking k = Fp, prove that EndR(M) = Fp does not admit any structure of a left R-

module. [Hint: Suppose Fp does have the structure of a module over R = M2(Fp).

By (a) it is isomorphic to R/I for some left ideal I, and in fact I =
{
A ∈ R

∣∣ A ·1 = 0
}

.

Now take B = ( 0 1
0 0 ) and C = ( 0 0

1 0 ), and suppose

B · 1 = m = 1 + · · ·+ 1︸ ︷︷ ︸
m terms

C · 1 = n = 1 + · · ·+ 1︸ ︷︷ ︸
n terms

,

where of course m and n are determined modulo p. By looking at B2 · 1 and at C2 · 1,

show that m = n = 0, so that B, C ∈ I. Conclude that I = M2(Fp); contradiction.]
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