CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for March 15

Names for some categories:

Category	Objects	Morphisms
Set	Sets	Maps
Top	Topological spaces	Continuous maps

Exercise 1. Let k be a field. Let $f \in k[t]$ be a non-constant monic polynomial, and let

$$
f=g_{1}^{m_{1}} \cdot g_{2}^{m_{2}} \cdots g_{r}^{m_{r}}
$$

be its factorization into irreducibles; with this we mean that g_{1}, \ldots, g_{r} are distinct monic irreducible polynomials in $k[t]$ and m_{1}, \ldots, m_{r} are positive integers.
(a) Prove that $k[t] /(f) \cong k[t] /\left(g_{1}^{m_{1}}\right) \oplus \cdots \oplus k[t] /\left(g_{r}^{m_{r}}\right)$ as $k[t]$-modules.
(b) Let $\lambda \in k$ and $m \geq 1$, and let $I \subset k[t]$ be the ideal generated by $(t-\lambda)^{m}$. Multiplication by t gives an endomorphism ϕ of the k-vector space $V=k[t] / I$. Give the matrix of ϕ with respect to the basis $1,(t-\lambda), \ldots,(t-\lambda)^{m-1}$ for V.

If V is a finite dimensional k-vector space and $\phi: V \rightarrow V$ is an endomorphism, we say that ϕ can be put in Jordan normal form if there exists a basis for V such that the matrix of ϕ with respect to this basis is of the form

$$
\left(\begin{array}{cccc}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{n}
\end{array}\right)
$$

where each A_{i} is a block matrix that is either of size 1×1 or is of the form

$$
\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & 1 & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right)
$$

for some $\lambda \in k$.
(c) Prove that ϕ can be put in Jordan normal form if and only if its characteristic polynomial $P_{\phi}^{\text {char }} \in k[t]$ can be written as a product of linear polynomials. (In particular, this proves that over an algebraically closed field every endomorphism of a finite dimensional vector space can be put in Jordan normal form.)

An endomorphism $\phi: V \rightarrow V$ is said to be nilpotent if there exists a positive integer n such that $\phi^{n}=0$.
(d) Prove that any nilpotent endomorphism can be put in Jordan normal form.

Exercise 2. Write down an explicit contravariant functor F : Top \rightarrow Set that is not representable. Prove that the F in your example is indeed not representable!

Exercise 3. Let pt be a set with 1 element. Let C be a category. Consider the functor $F: C \rightarrow$ Set that sends every object in C to pt and sends every morphism in C to $\mathrm{id}_{\mathrm{pt}}$. Note that F may be viewed both as a covariant and as a contravariant functor!
(a) If we view F as a contravariant functor, show that F is representable if and only if C has a final object.
(b) Formulate and prove a similar statement for F when viewed as a covariant functor.

Exercise 4. Let R be a commutative ring. In what follows, letters like M and N denote R-modules.
(a) Prove that $M_{1} \otimes_{R} M_{2} \cong M_{2} \otimes_{R} M_{1}$.
(b) If $f: M \rightarrow N$ is a homomorphism, show that the map $b: R \times M \rightarrow N$ given by $b(r, m)=r \cdot f(m)$ is R-bilinear. Show that $f \mapsto b$ gives an isomorphism of R-modules

$$
\begin{equation*}
\operatorname{Hom}_{R}(M, N) \xrightarrow{\sim} \operatorname{Bilin}(R \times M, N) . \tag{1}
\end{equation*}
$$

(c) If $g: N_{1} \rightarrow N_{2}$ is a homomorphism, show that the isomorphisms found in (b) fit in a commutative diagram

in which the vertical arrows are given by composing with g. In this situation we say that the isomorphisms (1) are functorial in N, because what we have proven means that we have isomorphisms of functors $\operatorname{Hom}_{R}(M,-) \xrightarrow{\sim} \operatorname{Bilin}(R \times M,-)$.
(d) Now prove that $R \otimes_{R} M \cong M$.

Exercise 5. Let I be an ideal of a commutative ring R. Let M and N be R-modules.
(a) Suppose $b:(R / I) \times M \rightarrow N$ is a bilinear form. Define $\tilde{f}: M \rightarrow N$ by $\tilde{f}(m)=b(\overline{1}, m)$. Show that \tilde{f} is a homomorphism of R-modules and that $\tilde{f}=0$ on the submodule $I M \subset M$. Conclude that \tilde{f} induces a homomorphism $f: M / I M \rightarrow N$.
(b) Prove that the map $b \mapsto f$ gives an isomorphism of R-modules

$$
\operatorname{Bilin}((R / I) \times M, N) \xrightarrow{\sim} \operatorname{Hom}_{R}(M / I M, N)
$$

which is functorial in N. Conclude that $(R / I) \otimes_{R} M \cong M / I M$.
(c) If m and n are positive integers, prove that $(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}) \cong(\mathbb{Z} / q \mathbb{Z})$, where $q=$ $\operatorname{gcd}(m, n)$.

