CATEGORIES AND HOMOLOGICAL ALGEBRA

Exercises for April 19

Exercise 1. Let R be a ring and let

$$
\begin{equation*}
0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0 \tag{*}
\end{equation*}
$$

be a short exact sequence of (left) R-modules. A homomorphism $s: M^{\prime \prime} \rightarrow M$ with $g \circ s=$ $\mathrm{id}_{M^{\prime \prime}}$ is called a section of g. A homomorphism $r: M \rightarrow M^{\prime}$ with $r \circ f=\mathrm{id}_{M^{\prime}}$ is called a retraction of f.
(a) If $s: M^{\prime \prime} \rightarrow M$ is a section of g, prove that for $m \in M$ there is a unique $m^{\prime} \in M^{\prime}$ with $f\left(m^{\prime}\right)=m-s g(m)$. Show that the map $m \mapsto m^{\prime}$ defines a retraction of f.
(b) If $r: M \rightarrow M^{\prime}$ is a retraction of f, show that $m-f r(m) \in \operatorname{Ker}(r)$ for all $m \in M$. Using this, show that g induces an isomorphism $\operatorname{Ker}(r) \xrightarrow{\sim} M^{\prime \prime}$ and that the inverse of this isomorphism gives a section of g.
(c) Prove that the following properties are equivalent:
(1) There exists a section of g.
(2) There exists a retraction of f.
(3) There exists an isomorphism $\phi: M \xrightarrow{\sim} M^{\prime} \oplus M^{\prime \prime}$ such that $\phi \circ f: M^{\prime} \rightarrow M^{\prime} \oplus M^{\prime \prime}$ is the inclusion map and $g \circ \phi^{-1}: M^{\prime} \oplus M^{\prime \prime} \rightarrow M^{\prime \prime}$ is the projection map.

The short exact sequence $(*)$ is said to be split exact if the equivalent properties in (c) hold.

Exercise 2. Let G be the group \mathbb{Z}, and consider the group ring $R=\mathbb{Z}[G]$ (which is isomorphic to $\left.\mathbb{Z}\left[t, t^{-1}\right]\right)$. Let $M=\mathbb{Z} \oplus \mathbb{Z}$ with $n \in G$ acting on M by $(a, b) \mapsto(a+n b, b)$.
(a) Verify that this defines an action of G on M, making M into a left R-module.
(b) Let $M^{\prime}=(\mathbb{Z} \oplus 0) \subset M$. Show that M^{\prime} is an R-submodule of M.
(c) Let $M^{\prime \prime}=M / M^{\prime}$, and consider the exact sequence

$$
0 \longrightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{p} M^{\prime \prime} \longrightarrow 0
$$

where i is the inclusion map and p is the projection map. Show that this sequence is split exact as a sequence of abelian groups, but that it is not split as a sequence of R-modules.

Exercise 3. Let $\cdots \rightarrow M_{i-1} \xrightarrow{f_{i-1}} M_{i} \xrightarrow{f_{i}} M_{i+1} \rightarrow \cdots$ be an exact sequence of R-modules. Show that there exists a commutative diagram

such that all diagonal sequences are short exact.

Exercise 4. Give examples of short exact sequences of abelian groups

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0
$$

such that:
(a) $M^{\prime} \cong N^{\prime}$ and $M \cong N$ but $M^{\prime \prime} \not \equiv N^{\prime \prime}$;
(b) $M^{\prime} \cong N^{\prime}$ and $M^{\prime \prime} \cong N^{\prime \prime}$ but $M \nsubseteq N$;
(c) $M \cong N$ and $M^{\prime \prime} \cong N^{\prime \prime}$ but $M^{\prime} \not \not N^{\prime}$.

Exercise 5. Let R be a ring, and let

be a commutative diagram of R-modules with β injective. Show that this gives rise to an exact sequence

$$
\operatorname{Ker}\left(f_{1}\right) \xrightarrow{\bar{\alpha}} \operatorname{Ker}\left(f_{2}\right) \longrightarrow L \longrightarrow \operatorname{Coker}\left(f_{1}\right) \xrightarrow{\bar{\beta}} \operatorname{Coker}\left(f_{2}\right),
$$

where L is some R-module (that you need to construct) and $\bar{\alpha}$ and $\bar{\beta}$ are the maps induced by α and β, respectively.

Exercise 6. Let R be a ring.
(a) If $0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0$ is a short exact sequence of R-modules with P a projective module, show that the sequence is split exact. [Hint: $\operatorname{Apply}^{\operatorname{Hom}_{R}(P,-)}$ to the sequence.]
(b) If M and N are R-modules show that $(M \oplus N)$ is projective if and only if both M and N are projective.
(c) Show that every free R-module is projective.
(d) Let P be an R-module. Prove that P is projective if and only if it is a direct summand of a free R-module (i.e., there is an R-module P^{\prime} such that $P \oplus P^{\prime}$ is a free R-module). [Hint: For "if" use the previous two items; for "only if" choose a free module N and a surjective homomorphism $N \rightarrow P$ and then apply (a).]

