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THE PRO-ÉTALE TOPOLOGY FOR SCHEMES

by

Bhargav Bhatt & Peter Scholze

To Gérard Laumon, with respect and admiration

Abstract. — We give a new definition of the derived category of constructible

Qℓ-sheaves on a scheme, which is as simple as the geometric intuition behind them.

Moreover, we define a refined fundamental group of schemes, which is large enough

to see all lisse Qℓ-sheaves, even on non-normal schemes. To accomplish these tasks,

we define and study the pro-étale topology, which is a Grothendieck topology on

schemes that is closely related to the étale topology, and yet better suited for infinite

constructions typically encountered in ℓ-adic cohomology. An essential foundational

result is that this site is locally contractible in a well-defined sense.

Résumé (La topologie pro-étale sur les schémas). — On donne une nouvelle définition

de la catégorie dérivée des Qℓ-faisceaux constructibles sur un schéma, qui est aussi

simple que l’intuition géométrique sous-jacente. De plus, on définit sur les schémas

un groupe fondamental raffiné qui est assez grand pour voir tous les Qℓ-faisceaux

lisses, même sur les schémas qui ne sont pas normaux. Pour obtenir cela, on définit et

étudie la topologie pro-étale, qui est une topologie de Grothendieck sur les schémas

étroitement liée à la topologie étale mais mieux adaptée aux constructions infinies

typiques de la cohomologie ℓ-adique. Un résultat de base essentiel est que ce site est

localement contractile en un sens bien défini.

1. Introduction

Let X be a variety over an algebraically closed field k. The étale cohomology
groups Hi(Xét,Qℓ), where ℓ is a prime different from the characteristic of k, are of
fundamental importance in algebraic geometry. Unfortunately, the standard definition
of these groups is somewhat indirect. Indeed, contrary to what the notation suggests,
these groups are not obtained as the cohomology of a sheaf Qℓ on the étale site Xét.
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c⃝ Astérisque 369, SMF 2015



100 B. BHATT & P. SCHOLZE

The étale site gives the correct answer only with torsion coefficients, so the correct
definition is

Hi(Xét,Qℓ) :=
(
lim
←−
n

Hi(Xét,Z/ℓ
nZ)

)
⊗Zℓ Qℓ .

In this simple situation, this technical point is often unproblematic (1). However, even
here, it takes effort to construct a natural commutative differential graded Qℓ-algebra
giving rise to these cohomology groups. This so-called Qℓ-homotopy type was con-
structed by Deligne in [Del80], using certain subtle integral aspects of homotopy
theory due independently to Miller [Mil78] and Grothendieck.

For more sophisticated applications, however, it is important to work in a relative
setup (i.e., study constructible sheaves), and keep track of the objects in the de-
rived category, instead of merely the cohomology groups. In other words, one wants
a well-behaved derived category Db

c(X,Qℓ) of constructible Qℓ-sheaves. Deligne,
[Del80], and in greater generality Ekedahl, [Eke90], showed that it is possible to
define such a category along the lines of the definition of Hi(Xét,Qℓ). Essentially,
one replacesHi(Xét,Z/ℓ

nZ) with the derived categoryDb
c(X,Z/ℓnZ) of constructible

Z/ℓnZ-sheaves, and then performs all operations on the level of categories (2):

Db
c(X,Qℓ) :=

(
lim
←−
n

Db
c(X,Z/ℓnZ)

)
⊗Zℓ Qℓ .

Needless to say, this presentation is oversimplified, and veils substantial technical
difficulties.

Nonetheless, in daily life, one pretends (without getting into much trouble) that
Db

c(X,Qℓ) is simply the full subcategory of some hypothetical derived category
D(X,Qℓ) of all Qℓ-sheaves spanned by those bounded complexes whose cohomology
sheaves are locally constant along a stratification. Our goal in this paper to justify
this intuition, by showing that the following definitions recover the classical notions.
To state them, we need the pro-étale site Xproét, which is introduced below. For
any topological space T , one has a ‘constant’ sheaf on Xproét associated with T ;
in particular, there is a sheaf of (abstract) rings Qℓ on Xproét associated with the
topological ring Qℓ.

Definition 1.1. — Let X be a scheme whose underlying topological space is noetherian.

1. A sheaf L of Qℓ-modules on Xproét is lisse if it is locally free of finite rank.

2. A sheaf C of Qℓ-modules on Xproét is constructible if there is a finite stratifi-

cation {Xi → X} into locally closed subsets Xi ⊂ X such that C|Xi is lisse.

1. It becomes a problem as soon as one relaxes the assumptions on k, though. For example, even

for k = Q, this definition is not correct: there is no Hochschild-Serre spectral sequence linking these

naively defined cohomology groups of X with those of Xk. One must account for the higher derived

functors of inverse limits to get a theory linked to the geometry of Xk, see [Jan88].

2. In fact, Ekedahl only defines the derived category of constructible Zℓ-sheaves, not performing

the final ⊗Zℓ
Qℓ-step.
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3. An object K ∈ D(Xproét,Qℓ) is constructible if it is bounded, and all cohomology

sheaves are constructible. Let Db
c(X,Qℓ) ⊂ D(Xproét,Qℓ) be the corresponding

full triangulated subcategory.

The formalism of the six functors is easily described in this setup. In particular,
in the setup above, with the naive interpretation of the right-hand side, one has

Hi(Xét,Qℓ) = Hi(Xproét,Qℓ) ;

for general X , one recovers Jannsen’s continuous étale cohomology, [Jan88]. Simi-
larly, the complex RΓ(Xproét,Qℓ) is obtained by literally applying the derived functor
RΓ(Xproét,−) to a sheaf ofQ-algebras, and hence naturally has the structure of a com-
mutative differential graded algebra by general nonsense (see [Ols11, §2] for example);
this gives a direct construction of the Qℓ-homotopy type in complete generality.

A version of the pro-étale site was defined in [Sch13] in the context of adic spaces.
The definition given there was somewhat artificial, mostly because non-noetherian
adic spaces are not in general well-behaved. This is not a concern in the world of
schemes, so one can give a very simple and natural definition of Xproét. Until further
notice, X is allowed to be an arbitrary scheme.

Definition 1.2

1. A map f : Y → X of schemes is weakly étale if f is flat and ∆f : Y → Y ×X Y

is flat.

2. The pro-étale site Xproét is the site of weakly étale X-schemes, with covers given

by fpqc covers.

Any map between weakly étale X-schemes is itself weakly étale, and the resulting
topos has good categorical properties, like coherence (if X is qcqs) and (hence) exis-
tence of enough points. For this definition to be useful, however, we need to control
the class of weakly étale morphisms. In this regard, we prove the following theorem.

Theorem 1.3. — Let f : A→ B be a map of rings.

1. f is étale if and only if f is weakly étale and finitely presented.

2. If f is ind-étale, i.e., B is a filtered colimit of étale A-algebras, then f is weakly

étale.

3. If f is weakly étale, then there exists a faithfully flat ind-étale g : B → C such

that g ◦ f is ind-étale.

In other words, for a ring A, the sites defined by weakly étale A-algebras and by
ind-étale A-algebras are equivalent, which justifies the name pro-étale site for the site
Xproét defined above. We prefer using weakly étale morphisms to define Xproét as the
property of being weakly étale is clearly étale local on the source and target, while
that of being ind-étale is not even Zariski local on the target.
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102 B. BHATT & P. SCHOLZE

One might worry that the pro-étale site is huge in an uncontrolled way (e.g., cov-
ers might be too large, introducing set-theoretic problems). However, this does not
happen. To see this, we need a definition:

Definition 1.4. — An affine scheme U is w-contractible if any faithfully flat weakly

étale map V → U admits a section.

A w-contractible object U ∈ Xproét is somewhat analogous to a point in the topos
theoretic sense: the functor Γ(U,−) is exact and commutes with all limits, rather than
colimits. In fact, a geometric point of X defines a w-contractible object in Xproét via

the strict henselisation. However, there are many more w-contractible objects, which
is the key to the control alluded to above:

Theorem 1.5. — Any scheme X admits a cover in Xproét by w-contractible affine

schemes.

Despite the analogy between w-contractible objects and points, Theorem 1.5 has
stronger consequences than the mere existence of points. For example, the inverse
limit functor on systems

. . . −→ Fn → Fn−1 −→ . . . −→ F1 −→ F0

of sheaves on Xproét is well-behaved, the derived category of abelian sheaves on Xproét

is left-complete and compactly generated, unbounded cohomological descent holds in
the derived category, and Postnikov towers converge in the hypercomplete ∞-topos
associated with Xproét. This shows that the pro-étale site is useful even when work-
ing with torsion coefficients, as the derived category of Xét is left-complete (and
unbounded cohomological descent holds) only under finiteness assumptions on the
cohomological dimension of X , cf. [LO08].

We note that one can ‘cut off’ Xproét by only allowing weakly étale X-schemes Y
of cardinality < κ for some uncountable strong limit cardinal κ > |X |, and all results
above, especially the existence of w-contractible covers, remain true. In particular,
the resulting truncated site Xproét forms a set, rather than a proper class, so we can
avoid universes in this paper.

Let us explain the local structure of a scheme in the pro-étale site.

Definition 1.6

1. A ring A is w-local if the subset (SpecA)c ⊂ SpecA of closed points is closed,

and any connected component of SpecA has a unique closed point.

2. A map f : A → B of w-local rings is w-local if Specf : SpecB → SpecA maps

closed points to closed points.

The next result shows that every scheme is covered by w-local affines in the pro-
Zariski topology, and hence in the pro-étale topology. In particular, as noetherian
schemes have finitely many connected components, this shows that non-noetherian
schemes are unavoidable when studying Xproét, even for X noetherian.
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THE PRO-ÉTALE TOPOLOGY FOR SCHEMES 103

Theorem 1.7. — The inclusion of the category of w-local rings with w-local maps in

the category of all rings admits a left adjoint A *→ AZ . The unit A → AZ of the

adjunction is faithfully flat and an ind-(Zariski localisation), so SpecAZ → SpecA is

a cover in Spec(A)proét. Moreover, the subset (SpecAZ)c ⊂ SpecAZ of closed points

maps homeomorphically to SpecA, equipped with its constructible topology.

In other words, SpecAZ is roughly the disjoint union of the local rings of A.
However, the union is not exactly disjoint; rather, the set of connected components
π0(SpecAZ) is naturally a profinite set, which is SpecA with its constructible topology.
Thus, the study of w-local rings splits into the study of its local rings at closed points,
and the study of profinite sets. It turns out in practice that these two aspects inter-
act little. In particular, this leads to the following characterization of w-contractible
schemes.

Theorem 1.8. — An affine scheme X = SpecA is w-contractible if and only if A is

w-local, all local rings at closed points are strictly henselian, and π0(X) is extremally

disconnected.

Recall that a profinite set S is extremally disconnected if the closure of any open
subset U ⊂ S is still open. By a theorem of Gleason, S is extremally disconnected if
and only if S is projective in the category of compact Hausdorff spaces, i.e., any sur-
jective map T → S from a compact Hausdorff space T admits a section. In particular,
the Stone-Cech compactification of any discrete set is extremally disconnected, which
proves the existence of enough such spaces. Using this construction, if A is w-local, it
is relatively easy to construct a faithfully flat ind-étale A-algebra B satisfying the con-
ditions of the theorem, which proves the existence of enough w-contractible schemes.

As a final topic, we study the fundamental group. In SGA1, a profinite group
πét
1 (X,x) is defined for any connected scheme X with a geometric point x. It has

the property that the category of lisse Zℓ-sheaves on X is equivalent to the category
of continuous representations of πét

1 (X,x) on finite free Zℓ-modules. However, the
analogue for lisse Qℓ-sheaves fails (unless X is geometrically unibranch) as Qℓ-local
systems admit Zℓ-lattices only étale locally. For example, if X is P1 with 0 and ∞
identified (over an algebraically closed field), then X admits a cover f : Y → X where
Y is an infinite chain of P1’s. One can descend the trivial Qℓ-local system on Y to
X by identifying the fibres at 0 and ∞ using any unit in Qℓ, e.g., ℓ ∈ Q×ℓ . However,

representations of πét
1 (X,x) = Ẑ with values in GL1(Qℓ) will have image in GL1(Zℓ)

by compactness. This suggests that the ’true’ π1 of X should be Z ⊂ Ẑ = πét
1 (X,x).

In fact, in SGA3 X6, a prodiscrete group πSGA3
1 (X,x) is defined, which gives the

desired answer in this example. Its defining property is that Hom(πSGA3
1 (X,x),Γ)

is in bijection with Γ-torsors trivialized at x, for any discrete group Γ. However, in
general, πSGA3

1 (X,x) is still too small to detect all Qℓ-local systems through its finite
dimensional continuous Qℓ-representations: the failure is visible already for X a high-
genus curve with two points identified (this example is due to Deligne, and recalled
in Example 7.4.9).
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104 B. BHATT & P. SCHOLZE

We circumvent the issues raised above by working with a larger category of “cover-
ings”than the ones used in constructing πét

1 (X,x) and πSGA3
1 (X,x). To recover groups

from such categories, we study some general infinite Galois theory. The formalism
leads to the following kind of groups.

Definition 1.9. — A topological group G is called a Noohi group if G is complete, and

admits a basis of open neighborhoods of 1 given by open subgroups.

The word “complete” above refers to the two-sided uniform structure on G deter-
mined by its open subgroups. For example, locally profinite groups, such as GLn(Qℓ),
are Noohi groups. Somewhat more surprisingly, GLn(Qℓ) is also a Noohi group. The
main result is:

Theorem 1.10. — Let X be a connected scheme whose underlying topological space is

locally noetherian. The following categories are equivalent.

1. The category LocX of sheaves on Xproét which are locally constant.

2. The category CovX of étale X-schemes Y which satisfy the valuative criterion

of properness.

For any geometric point x of X, the infinite Galois theory formalism applies to LocX
equipped with the fibre functor at x, giving rise to a Noohi group πproét

1 (X,x). The

pro-finite completion of πproét
1 (X,x) is πét

1 (X,x), and the pro-discrete completion of

πproét
1 (X,x) is πSGA3

1 (X,x). Moreover, Qℓ-local systems on X are equivalent to con-

tinuous representations of πproét
1 (X,x) on finite-dimensional Qℓ-vector spaces, and

similarly for Qℓ replaced by Qℓ.

Informally, the difference between πproét
1 (X,x) and the classical fundamental groups

stems from the existence of pro-étale locally constant sheaves that are not étale lo-
cally constant. This difference manifests itself mathematically in the lack of enough
Galois objects, i.e., πproét

1 (X,x) does not have enough open normal subgroups (and
thus is not prodiscrete). It is important to note that the construction of πproét

1 (X,x)
is not completely formal. Indeed, as with πSGA3

1 (X,x), it is not clear a priori that
πproét
1 (X,x) contains even a single non-identity element: a cofiltered limit of discrete

groups along surjective transition maps can be the trivial group. Thus, one must di-
rectly construct elements to show πproét

1 (X,x) is big enough. This is done by choosing
actual paths on X , thus reuniting the classical point of view from topology with the
abstract approach of SGA1.

Finally, let us give a short summary of the different sections. In Section 2, we study
w-local rings and the like. In Section 3, we study a general topos-theoretic notion
(namely, repleteness) which implies left-completeness of the derived category etc. We
also include some discussions on complete sheaves, which are again well-behaved under
the assumption of repleteness. In Section 4, we introduce the pro-étale site, and study
its basic properties. The relation with the étale site is studied in detail in Section 5.
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THE PRO-ÉTALE TOPOLOGY FOR SCHEMES 105

In Section 6, we introduce constructible sheaves (recalling first the theory for torsion
coefficients on the étale site), showing that for schemes whose underlying topological
space is noetherian, one gets the very simple definition stated above. Finally, in
Section 7, we define the pro-étale fundamental group.

Acknowledgments. — The vague idea that such a formalism should exist was
in the air since the paper [Sch13], and the second-named author received constant
encouragement from Michael Rapoport, Luc Illusie and many others to work this out.
Martin Olsson’s question on the direct construction of the Qℓ-homotopy type led
to the birth of this collaboration, which soon led to much finer results than initially
expected. Ofer Gabber suggested that weakly étale morphisms could be related to ind-
étale morphisms. Johan de Jong lectured on some parts of this paper in Stockholm,
and provided numerous useful and enlightening comments. Conversations with Brian
Conrad also clarified some arguments.

Hélène Esnault urged us to think about fundamental groups of non-normal schemes
from the perspective of the pro-étale topology, which led to §7. Moreover, Pierre
Deligne generously shared his notes on fundamental groups, which had an important
influence on the material in §7, especially in relation to Noohi groups and abstract
infinite Galois theory. Deligne’s results were slightly weaker: in the language intro-
duced in §7.2, he first proves that any countably generated (in a suitable sense) infinite
Galois category is automatically tame, and then specializes this result to schemes to
obtain, using purely abstract arguments, a pro-(Noohi group) from a certain cate-
gory of “coverings” that turns out to be equivalent to CovX ; here the pro-structure is
dual to the ind-structure describing this category of coverings as a filtered colimit of
countably generated infinite Galois categories. After we realized that this pro-group
is realized by its limit by using geometric paths, Gabber explained to us his different
perspective on fundamental groups, which we explain in Remark 7.4.12 below.

This work was done while Bhargav Bhatt was supported by NSF grants
DMS 1340424 and DMS 1128155, and Peter Scholze was a Clay Research Fellow.

2. Local structure

The goal of this section is to study some algebra relevant to the pro-étale topol-
ogy. Specifically, we show: (a) weakly étale and pro-étale maps define the same
Grothendieck topology on rings in §2.3, and (b) this Grothendieck topology has
enough “weakly contractible” objects in §2.4.

2.1. Spectral spaces. — Let S be the category of spectral spaces with spectral
maps, and let Sf ⊂ S be the full subcategory of finite spectral spaces (= finite T0

spaces), so S = Pro(Sf ), cf. [Hoc69]. Our main goal is to show that each X ∈ S

admits a pro-(open cover) XZ → X such that XZ admits no further non-split open
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covers. This goal is eventually realized in Lemma 2.1.10. Before constructing XZ ,
however, we introduce and study the subcategory of S where spaces of the form XZ

live:

Definition 2.1.1. — A spectral space X is w-local if it satisfies:

1. All open covers split, i.e., for every open cover {Ui ↪→ X}, the map +iUi → X

has a section.

2. The subspace Xc ⊂ X of closed points is closed.

A map f : X → Y of w-local spaces is w-local if f is spectral and f(Xc) ⊂ Y c. Let

i : Swl ↪→ S be the subcategory of w-local spaces with w-local maps.

The first condition in Definition 2.1.1 is obviously necessary for the promised appli-
cation. The second condition turns out to be particularly convenient for applications.

Example 2.1.2. — Any profinite set is a w-local space. Any local scheme has a w-
local topological space. The collection of w-local spaces is closed under finite disjoint
unions.

The property of w-locality passes to closed subspaces:

Lemma 2.1.3. — If X ∈ Swl, and Z ⊂ X is closed, then Z ∈ Swl.

Proof. — Open covers of Z split as any open cover of Z extends to one of X (by
extending opens and adding X − Z). Moreover, it is clear that Zc = Xc ∩ Z, so the
claim follows.

Recall that the inclusion Pro(Setf ) ⊂ Pro(Sf ) = S has a left-adjoint X *→ π0(X),
i.e., the counit X → π0(X) is the universal spectral map from X to a profinite
set. Given a cofiltered presentation X = limiXi with Xi ∈ Sf , we have π0(X) =
limi π0(Xi). We use this to give an intrinsic description of w-local spaces:

Lemma 2.1.4. — A spectral space X is w-local if and only if Xc ⊂ X is closed, and ev-

ery connected component of X has a unique closed point. For such X, the composition

Xc → X → π0(X) is a homeomorphism.

Proof. — The second part follows immediately from the first as Xc is profinite when
X is w-local. For the first, assume that X is w-local; it suffices to show that each
connected component has a unique closed point. Then Lemma 2.1.3 shows that any
connected component is also w-local, so we may assume X is connected. If X has two
distinct closed points x1, x2 ∈ Xc, then the open cover (X − {x1})+ (X − {x2})→ X

has no section, which contradicts w-locality.
Conversely, assume Xc ⊂ X is closed, and that each connected component has

a unique closed point. Then Xc is profinite, and hence Xc → π0(X) is a homeo-
morphism. Now fix a finite open cover {Ui ↪→ X} with Ui quasicompact. We must
show that π : Y := +iUi → X has a section. As Xc is profinite, there is a map
s : Xc → Y lifting the inclusion Xc ↪→ X . Let Z ⊂ π0(Y ) be the image of the
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composite Xc s
→ Y → π0(Y ). Then Z is a closed subset of π0(Y ), and the canonical

maps Xc → Z → π0(X) are all homeomorphisms. In particular Z ↪→ π0(Y ) is a
pro-(open immersion). Let Y ′ := Y ×π0(Y ) Z ↪→ Y be the inverse image. Then Y ′ is
a spectral space with π0(Y ′) = Z. The map Y ′ → Y is pro-(open immersion), so the
map φ : Y ′ → X is pro-open. One checks from the construction φ induces a home-
omorphism π0(Y ′) → π0(X). Moreover, the fibres of Y ′ → π0(Y ′) identify with the
fibres of Y → π0(Y ). As the image of π0(Y ′)→ π0(Y ) only contains connected com-
ponents of Y that contain a point lifting a closed point of X , it follows that the fibres
of Y ′ → π0(Y ′) map homeomorphically onto the fibres of X → π0(X). Thus φ is a
continuous pro-open bijection of spectral spaces. Any such map is a homeomorphism
by a compactness argument. Indeed, if U ⊂ Y ′ is a quasicompact open, then φ(U)
is pro-(quasi-compact open), so φ(U) = ∩iVi, where the intersection is indexed by all
quasi-compact opens containing φ(U). Pulling back to Y ′ shows U = ∩iφ−1(Vi). As
Y ′ −U is compact in the constructible topology and each φ−1(Vi) is constructible, it
follows that U = φ−1(Vi) for some i, and hence φ(U) = Vi.

Remark 2.1.5. — Lemma 2.1.4 shows that each w-local space X comes equipped with
a canonical “specialization” map s : X → Xc, defined as the composition X →

π0(X) ≃ Xc. Concretely, any x ∈ X admits a unique closed specialization s(x) ∈
Xc ⊂ X ; in fact, the connected component spanned by x has s(x) as its unique
closed point. Any map in Swl preserves specializations and closed points, and is thus
compatible with the specialization maps.

Definition 2.1.6. — Given a closed subspace Z ⊂ X of a spectral space X, we say X

is local along Z if Xc ⊂ Z, or equivalently, if every x ∈ X specializes to a point of Z.

The (pro-open) subspace of X comprising all points that specialize to a point of Z is

called the localization of X along Z.

Lemma 2.1.7. — A spectral space X that is local along a w-local closed subspace Z ⊂ X

with π0(Z) ∼= π0(X) is also w-local.

Proof. — It suffices to show that Xc ⊂ X is closed, and that the composition Xc →

X → π0(X) is a homeomorphism. Since Xc = Zc, the first claim is clear. The second
follows from the w-locality of Z: one has Xc = Zc as before, and π0(X) = π0(Z) by
assumption.

We recall the structure of limits in S:

Lemma 2.1.8. — S admits all small limits, and the forgetful functor S→ Set preserves
these limits.

Proof. — Since S = Pro(Sf ), it suffices to show that Sf admits fibre products. Given
maps X → Z ← Y in Sf , one simply checks that a fibre product X ×Z Y in Sf is
computed by the usual fibre product X ×Z Y in Setf with the topology induced from
the product topology onX×Y under the inclusionX×ZY ⊂ X×Y . The second claim

is then clear. Alternatively, observe that there is a factorization S
a
→ Pro(Setf )

b
→ Set,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015
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where a(X) is X with the constructible topology, and b(Y ) = Y . Both functors a

and b admit left adjoints α and β respectively: β is the Stone-Cech compactification
functor, while α is the natural inclusion Pro(Setf ) ⊂ Pro(Sf ) = S. In particular, the
forgetful functor S→ Set preserves limits.

The category of w-local spaces also admits small limits:

Lemma 2.1.9. — Swl admits all small limits, and the inclusion i : Swl → S preserves

these limits.

Proof. — We first check Swl admits fibre products. Given maps X → Z ← Y in Swl,
the fibre product X×Z Y in S is local along the (profinite) closed subset Xc×Zc Y c ⊂

X ×Z Y : a point (x, y) ∈ X ×Z Y specializes to the point (s(x), s(y)) ∈ Xc ×Zc

Y c, where s is the specialization map from Remark 2.1.5. Then X ×Z Y ∈ Swl by
Lemma 2.1.7. Moreover, this also shows (X ×Z Y )c = Xc ×Zc Y c, and that the
projection maps X ← X×Z Y → Y preserve closed points, which proves that X×Z Y

is a fibre product on Swl. For cofiltered limits, fix a cofiltered diagram {Xi} in Swl.
Let X := limi Xi be the limit (computed in S). We claim that X ∈ Swl, and the
maps X → Xi are w-local. As any open cover of X can be refined by one pulled back
from some Xi, one checks that all open covers of X split. For the rest, it suffices to
show Xc = limi X

c
i ; note that {Xc

i } is a well-defined diagram as all transition maps
Xi → Xj are w-local. It is clear that limi X

c
i ⊂ Xc. Conversely, choose x ∈ Xc ⊂ X

with image xi ∈ Xi. Let Yi = {xi} ⊂ Xi. Then {Yi} forms a cofiltered diagram in Swl

with limi Yi ⊂ X by Lemma 2.1.3. Moreover, one has limi Yi = {x} = {x} ⊂ X by the
compatibility of closures and cofiltered limits. Now consider the cofiltered diagram
{Y c

i }. As each Y c
i ⊂ Yi is a subset, we get limi Y

c
i ⊂ limi Yi = {x}. Then either

x ∈ limi Y
c
i or limi Y

c
i = ∅; the latter possibility does not occur as a cofiltered limit

of non-empty compact Hausdorff spaces is non-empty, so x ∈ limi Y
c
i ⊂ limi X

c
i .

The adjoint functor theorem and Lemma 2.1.9 show that i : Swl → S admits a left
adjoint; this adjoint is characterized as the unique functor that preserves cofiltered
limits and finite disjoint unions, and carries a connected finite T0 space X to X +{∗},
where ∗ is declared to be a specialization of all points of X . This adjoint is not used
in the sequel since it does not lift to the world of schemes. However, it turns out that
i : Swl ↪→ S also has a right adjoint which can be described via open covers, passes to
the world of schemes, and will be quite useful:

Lemma 2.1.10. — The inclusion i : Swl → S admits a right adjoint X *→ XZ . The

counit XZ → X is a pro-(open cover) for all X, and the composite (XZ)c → X is a

homeomorphism for the constructible topology on X.

Proof. — We first construct the functor X *→ XZ and the counit map XZ → X .
As the notions of w-local spaces and w-local maps are well-behaved under cofiltered
limits by Lemma 2.1.9, it suffices to construct, for each X ∈ Sf , a functorial open
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cover XZ → X with XZ w-local such that: (a) the functor X *→ XZ carries maps to
w-local maps, (b) (XZ)c → X is a bijection, and (c) (XZ)c ⊂ XZ is discrete.

Let X be a finite T0 space. We define

XZ =
⊔

x∈X

Xx ,

where Xx ⊂ X is the subset of generalizations of x, which is an open subset of X .
Then XZ ∈ Sf . Moreover, each Xx is w-local as the only open of Xx containing x is
Xx itself. Stability of w-locality under finite disjoint unions shows that XZ is w-local.
If f : X → Y is a map of finite T0 spaces, one gets an induced map

fZ : XZ =
⊔

x∈X

Xx −→ Y Z =
⊔

y∈Y

Yy ,

by mapping Xx into Yf(x). In particular, this sends the closed point x ∈ Xx to the
closed point f(x) ∈ Yf(x), so that this map is w-local. Moreover, there is a natural
map XZ → X for any X , by embedding each Xx into X . Clearly, this is an open
cover of X . The definition also shows (XZ)c = X with the discrete topology (which
is the also the constructible topology for finite T0 spaces).

To show this defines an adjoint, we must check: given X ∈ S, Y ∈ Swl, and a
spectral map h : Y → X , there exists a unique w-local map h′ : Y → XZ factoring h.
We may assume X ∈ Sf as before. As Y c → Y is closed, the composite g : Y c ↪→ Y →

X is a spectral map from a profinite set to a finite T0 space. One then checks that
g−1(x) is clopen in Y c for all x ∈ X (the preimage of any open of X is a quasicompact
open, and thus clopen, in the Hausdorff space Y c; one deduces the claim by induction
on #X by excising one closed point at a time). Picking an x ∈ X with g−1(x) ̸= ∅

and replacing Y with the clopen subset s−1(g−1(x)) where s : Y → π0(Y ) ≃ Y c is
the specialization map from Remark 2.1.5, we may assume that h(Y c) = {x} ⊂ X ;
here we use Lemma 2.1.3 to ensure Y remains w-local. As each point of Y specialises
to a point of Y c, the map h factors through Xx ⊂ X , which gives the desired w-local
lift h′ : Y → Xx ⊂ XZ ; the w-locality requirement forces uniqueness of h′.

Remark 2.1.11. — The space XZ can be alternatively described as:

XZ = lim
{Xi↪→X}

+iX̃i,

where the limit is indexed by the cofiltered category of constructible stratifications
{Xi ↪→ X}, and X̃i denotes the set of all points of X specializing to a point of Xi.
One then has a corresponding description of closed subspaces

(XZ)c = lim
{Xi↪→X}

+iXi ⊂ XZ ,

so it is clear that (XZ)c → X is a homeomorphism for the constructible topology
on the target. This description and the cofinality of affine stratifications inside
all constructible stratifications show that if X is an affine scheme, then the maps

(XZ)c
a
↪→ XZ b

→ X lift to maps of affine schemes, with a a closed immersion, and b

a pro-(open cover).
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Definition 2.1.12. — A map f : W → V of spectral spaces is a Zariski localization if

W = +iUi with Ui → V a quasicompact open immersion. A pro-(Zariski localization)
is a cofiltered limit of such maps.

Both these notions are stable under base change. A key example is:

Lemma 2.1.13. — Any map f : S → T of profinite sets is a pro-(Zariski localization).

In fact, we can write S = limi Si as a cofiltered limit of maps Si → T , each of which

is the base change to T of a map from a profinite set to a finite set.

Proof. — Choose a profinite presentation T = limi Ti, and set Si = S ×Ti T . Then
Si → T is the base change of S → Ti, and S ≃ limi Si, which proves the claim.

We use this notion to split a w-local map into a pro-(Zariski localization), and one
that is entirely “local:”

Lemma 2.1.14. — Any map f : X → Y in Swl admits a canonical factorization X →

Z → Y in Swl with Z → Y a pro-(Zariski localization) and X → Z inducing a

homeomorphism Xc ≃ Zc.

Proof. — We have a diagram

Xc !!

fc

""

X !!

f

""

π0(X) =: S

π0(f)

""

Y c !! Y !! π0(Y ) =: T.

Set Z = Y ×T S. Then by Lemma 2.1.9, Z is w-local and Zc = Y c ×T S ≃ Xc.
Moreover, the map S → T is a pro-(Zariski localization), and hence so is Z → Y .
The induced map X → Z sends Xc to Y c×T S = Zc, and is thus w-local; as Xc → Zc

is a homeomorphism, this proves the claim.

2.2. Rings. — We now adapt the notions of §2.1 to the world of rings via the
Zariski topology, and also discuss variants for the étale topology:

Definition 2.2.1. — Fix a ring A.

1. A is w-local if Spec(A) is w-local.

2. A is w-strictly local if A is w-local, and every faithfully flat étale map A → B

has a section.

3. A map f : A→ B of w-local rings is w-local if Spec(f) is w-local.

4. A map f : A → B is called a Zariski localization if B =
∏n

i=1 A[
1
fi
] for some

f1, . . . , fn ∈ A. An ind-(Zariski localization) is a filtered colimit of Zariski

localizations.

5. A map f : A→ B is called ind-étale if it is a filtered colimit of étale A-algebras.
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Example 2.2.2. — For any ring A, there is an ind-(Zariski localization) A→ AZ such
that Spec(AZ) = Spec(A)Z , see Lemma 2.2.4. In particular, AZ is w-local. Any
strictly henselian local ring A is w-strictly local. Moreover, any cofiltered limit of
w-strictly local rings along w-local maps is w-strictly local.

Our goal in this section is to explain why every ring admits an ind-étale faithfully
flat w-strictly local algebra. The construction of this extension, very roughly, mirrors
the classical construction of the strict henselisations at a geometric point: first one
Zariski localizes at the point, and then one passes up along all étale neighbourhoods
of the point. The first step is accomplished using the functor A *→ AZ ; the next
lemma describes the structure of the resulting ring.

Lemma 2.2.3. — If A is w-local, then the Jacobson radical IA cuts out Spec(A)c ⊂
Spec(A) with its reduced structure. The quotient A/IA is an absolutely flat ring.

Recall that a ring B is called absolutely flat if B is reduced with Krull dimension 0
(or, equivalently, that B is reduced with Spec(B) Hausdorff).

Proof. — Let J ⊂ A be the (radical) ideal cutting out Spec(A)c ⊂ Spec(A) with
the reduced structure. Then J ⊂ m for each m ∈ Spec(A)c, so J ⊂ IA. Hence,
Spec(A/IA) ⊂ Spec(A)c is a closed subspace; we want the two spaces to coincide. If
they are not equal, then there exists a maximal ideal m such that IA ̸⊂ m, which is
impossible.

The study of w-local spectral spaces has a direct bearing on w-local rings:

Lemma 2.2.4. — The inclusion of the category w-local rings and maps inside all rings

admits a left adjoint A *→ AZ . The unit A → AZ is a faithfully flat ind-(Zariski

localization), and Spec(A)Z = Spec(AZ) over Spec(A).

Proof. — This follows from Remark 2.1.11. In more details, let X = SpecA, and
define a ringed space XZ → X by equipping (SpecA)Z with the pullback of the
structure sheaf from X . Then Remark 2.1.11 presents XZ as an inverse limit of affine
schemes, so that XZ = Spec(AZ) is itself affine.

Example 2.2.5. — For a ring A, the map A → AZ/IAZ is the universal map from A

to an absolutely flat ring. Indeed, this follows by the universal property of AZ , the
w-locality of absolutely flat rings, and the observation that any w-local map AZ → B

with B absolutely flat factors through a map AZ/IAZ → B.

Lemma 2.2.6. — Any w-local map f : A → B of w-local rings admits a canonical

factorization A
a
→ C

b
→ B with C w-local, a a w-local ind-(Zariski localization), and

b a w-local map inducing π0(Spec(B)) ≃ π0(Spec(C)).

Proof. — This follows from Lemma 2.1.14 and the observation that any map S →

π0(Spec(A)) of profinite sets is induced by an ind-(Zariski localization) A → C by
applying π0(Spec(−)) thanks to Lemma 2.1.13.
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Due to the w-locality of AZ and Lemma 2.2.3, absolutely flat rings play an impor-
tant role in this section. The next lemma explains the construction of w-strictly local
ind-étale covers of absolutely flat rings.

Lemma 2.2.7. — For any absolutely flat ring A, there is an ind-étale faithfully flat map

A → A with A w-strictly local and absolutely flat. For a map A → B of absolutely

flat rings, we can choose such maps A→ A and B → B together with a map A→ B

of A-algebras.

Proof. — The following fact is used without further comment below: any ind-étale al-
gebra over an absolutely flat ring is also absolutely flat. Choose a set I of isomorphism
classes of faithfully flat étale A-algebras Bi, and set A1 to be their tensor product, i.e.,
A1 := colimJ⊂I ⊗j∈JBj , where the (filtered) colimit is indexed by the poset of finite
subsets of I. There is an obvious ind-étale faithfully flat map A→ A1, and it is clear
from the construction that any étale faithfully flat A-algebra B admits a map to A1,
i.e., the map A→ B splits after base change to A1. Iterating the construction with A1

replacing A and proceeding inductively defines a tower A→ A1 → A2 → . . . An → . . .

of A-algebras with faithfully flat ind-étale transition maps. Set A = colimAn. As
étale morphisms of rings are finitely presented, one checks that A is absolutely flat,
and that any faithfully flat étale A-algebra has a section, so A is w-strictly local
as Spec(A) is profinite. For the second part, simply set B to be a w-strictly local
faithfully flat ind-étale algebra over A⊗A B.

To decouple topological problems from algebraic ones, we consistently use:

Lemma 2.2.8. — For any ring A and a map T → π0(Spec(A)) of profinite sets, there

is an ind-(Zariski localization) A→ B such that Spec(B)→ Spec(A) gives rise to the

given map T → π0(Spec(A)) on applying π0. Moreover, the association T *→ Spec(B)
is a limit-preserving functor.

One may make the following more precise statement: for any affine scheme X , the
functor Y *→ π0(Y ) from affine X-schemes to profinite π0(X)-sets has a fully faithful
right adjoint S *→ S ×π0(X) X , the fibre product in the category of topological spaces
ringed using the pullback of the structure sheaf on X . Moreover, the natural map
S ×π0(X) X → X is a pro-(Zariski localisation) and pro-finite.

Proof. — Given T as in the lemma, one may write T = limTi as a cofiltered limit
of profinite π0(Spec(A))-sets Ti with Ti → π0(Spec(A)) being the base change of
a map of finite sets, see Lemma 2.1.13. For each Ti, there is an obvious ring Bi

that satisfies the required properties. We then set B := colimBi, and observe that
π0(Spec(B)) = limπ0(Spec(Bi)) = limTi = T as a π0(Spec(A))-set.

One can characterize w-strictly local rings in terms of their topology and local
algebra:

Lemma 2.2.9. — A w-local ring A is w-strictly local if and only if all local rings of A

at closed points are strictly henselian.
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Proof. — For the forward direction, fix a w-strictly local ring A and choose a closed
point x ∈ Spec(A)c. Any faithfully flat étale map Ax → B′ is the localization at x

of a faithfully flat étale map A[ 1
f
] → B for some f invertible at x. As x is a closed

point, we may find f1, . . . , fn ∈ A vanishing at x such that C = B×
∏n

i=1 A[f
−1
i ] is a

faithfully flat étale A-algebra. This implies that there is a section C → A, and hence
C ⊗A Ax → Ax. As fi vanishes at x, one has C ⊗A Ax = Bx × A′, where A′ has no
point above x. The (algebra) section Bx ×A′ → Ax then necessarily factors through
the projection on the first factor, which gives us the desired section. For the converse
direction, assume A is a w-strictly local ring whose local rings at closed points are
strictly henselian. Fix a faithfully flat étale A-algebra B. Then A→ B has a section
over each closed point of Spec(A) by the assumption on the local rings. Spreading
out, which is possible by finite presentation constraints, there is a Zariski cover of
Spec(A) over which Spec(B)→ Spec(A) has a section; by w-locality of Spec(A), one
finds the desired section B → A.

To pass from w-strictly local covers of absolutely flat rings to arbitrary rings, we
use henselizations:

Definition 2.2.10. — Given a map of rings A → B, let HensA(−) : Ind(Bét) →
Ind(Aét) be the functor right adjoint to the base change functor Ind(Aét)→ Ind(Bét).
Explicitly, for B0 ∈ Ind(Bét), we have HensA(B0) = colimA′, where the colimit is

indexed by diagrams A→ A′ → B0 of A-algebras with A→ A′ étale.

Remark 2.2.11. — The notation of Definition 2.2.10 is not ambiguous, i.e., for any
map A→ B and C ∈ Ind(Bét), the ring HensA(C) depends only on the A-algebra C,
and not on B. It follows that if A→ A′ → C is a factorization with A→ A′ ind-étale,
then HensA(C) ≃ HensA′(C).

Henselization is particularly well-behaved for quotient maps:

Lemma 2.2.12. — For surjective maps A→ A/I, the functor HensA(−) is fully faith-

ful, so HensA(−)⊗A A/I ≃ id as functors on Ind((A/I)ét).

Proof. — Fix someB0 ∈ Ind((A/I)ét) and setB = HensA(B0). By adjointness, it suf-
fices to check B/IB ≃ B0. As any étale A/I-algebra C0 lifts to some étale A-algebra
C, one immediately checks that B → B0 is surjective. Choose f ∈ ker(B → B0).
Then f lifts to some étale A-algebra C along some map C → B. If f ∈ IC, we
are done. If not, f gives an element of the kernel of C/IC → B0. Hence, there is
some diagram C/IC → D0 → B0 in Ind((A/I)ét) with C/IC → D0 étale such that
f maps to 0 in D0. Choose an étale C-algebra D lifting D0, so f ∈ ID. The map
D → D/ID = D0 → B0 of A-algebras then gives a factorization C → D → B, which
shows that f ∈ IB.

The étale analogue of Lemmas 2.1.3 and 2.1.7 is:

Lemma 2.2.13. — Let A be a ring henselian along an ideal I. Then A is w-strictly

local if and only if A/I is so.
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Proof. — First assume A/I is w-strictly local. As A is henselian along I, the space
Spec(A) is local along Spec(A/I), so A is w-local by Lemma 2.1.7. Pick a faith-
fully flat étale A-algebra B. Then A/I → B/IB has a section. By the adjunction
HomA(B,HensA(A/I)) ≃ HomA(B/IB,A/I) and the identification HensA(A/I) =A,
one finds the desired section B → A. Conversely, assume A is w-strictly local. Then
Spec(A/I)c = Spec(A)c by the henselian property, so Spec(A/I)c ⊂ Spec(A/I) is
closed. Moreover, any faithfully flat étale A/I-algebra B0 is the reduction modulo
of I of a faithfully flat étale A-algebra B, so the w-strict locality of A immediately
implies that for A/I.

Henselizing along w-strictly local covers of absolutely flat rings gives w-strictly local
covers in general:

Corollary 2.2.14. — Any ring A admits an ind-étale faithfully flat map A → A′ with

A′ w-strictly local.

Proof. — Set A′ := HensAZ (AZ/IAZ ), where AZ/IAZ is a w-strictly local
ind-étale faithfully flat AZ/IAZ -algebra; then A′ satisfies the required property
by Lemma 2.2.13.

We end by noting that the property of w-strictly locality passes to quotients:

Lemma 2.2.15. — Let A be a ring with an ideal I. If A is w-strictly local, so is A/I.

Proof. — The space Spec(A/I) is w-local by Lemma 2.1.3. The local rings of A/I at
maximal ideals are quotients of those of A, and hence strictly henselian. The claim
follows from Lemma 2.2.9.

2.3. Weakly étale versus pro-étale. — In this section, we study the following
notion:

Definition 2.3.1. — A morphism A → B of commutative rings is called weakly étale
if both A→ B and the multiplication morphism B ⊗A B → B are flat.

Remark 2.3.2. — Weakly étale morphisms have been studied previously in the liter-
ature under the name of absolutely flat morphisms, see [Oli72]. Here, we follow the
terminology introduced in [GR03, Definition 3.1.1].

Our goal in this section is to show that weakly étale maps and ind-étale maps
generate the same Grothendieck topology, see Theorem 2.3.4 below. We begin by
recording basic properties of weakly étale maps.

Proposition 2.3.3. — Fix maps f : A→ B, g : B → C, and h : A→ D of rings.

1. If f is ind-étale, then f is weakly étale.

2. If f is weakly étale, then the cotangent complex LB/A vanishes. In particular,

f is formally étale.

3. If f is weakly étale and finitely presented, then f is étale.
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4. If f and g are weakly étale (resp. ind-étale), then g ◦ f is weakly étale (resp.

ind-étale). If g ◦f and f are weakly étale (resp. ind-étale), then g is weakly étale

(resp. ind-étale).

5. If h is faithfully flat, then f is weakly étale if and only if f ⊗AD : D → B⊗AD

is weakly étale.

Proof. — These are well-known, so we mostly give references.

1. As flatness and tensor products are preserved under filtered colimits, one re-
duces to the case of étale morphisms. Clearly, f is flat in that case; moreover,
B ⊗A B → B is an open immersion on spectra, and in particular flat.

2. See [GR03, Theorem 2.5.36] and [GR03, Proposition 3.2.16].

3. Since f is weakly étale and finitely presented, it is formally étale and finitely
presented by (2), hence étale.

4. The first part is clear. For the second part in the weakly étale case, see [GR03,
Lemma 3.1.2 (iv)]. For the ind-étale case, observe that the category of ind-étale
algebras is equivalent to the ind-category of étale algebras by finite presentation
constraints.

5. This is clear, as flatness can be checked after a faithfully flat base change.

The analogue of (5) fails for ind-étale morphisms. Our main result in this section
is:

Theorem 2.3.4. — Let f : A → B be weakly étale. Then there exists a faithfully flat

ind-étale morphism g : B → C such that g ◦ f : A→ C is ind-étale.

The local version of Theorem 2.3.4 follows from the following result of Olivier,
[Oli72]:

Theorem 2.3.5 (Olivier). — Let A be a strictly henselian local ring, and let B be a

weakly étale local A-algebra. Then f : A→ B is an isomorphism.

Remark 2.3.6. — One might hope to use Theorem 2.3.5 for a direct proof of Theo-
rem 2.3.4: Assume that f : A → B is weakly étale. Let C =

∏
x Af∗x, where x runs

over a set of representatives for the geometric points of Spec(B), and Af∗x denotes
the strict henselization of A at f∗x. Then Theorem 2.3.5 gives maps B → Bx ≃ Af∗x

for each x, which combine to give a map B → C inducing a section of C → B ⊗A C.
However, although each Ax is ind-étale over A, C is not even weakly étale over A, as
infinite products do not preserve flatness. In order to make the argument work, one
would have to replace the infinite product by a finite product; however, such a C will
not be faithfully flat. If one could make the sections B → Ax factor over a finitely
presented A-subalgebra of Ax, one could also make the argument work. However, in
the absence of any finiteness conditions, this is not possible.
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Our proof of Theorem 2.3.4 circumvents the problem raised in Remark 2.3.6 using
the construction of w-strictly local extensions given in §2.2 to eventually reduce to
Olivier’s result. We begin by recording the following relative version of the construc-
tion of such extensions:

Lemma 2.3.7. — Let f : A→ B be a map of rings. Then there exists a diagram

A !!

f

""

A′

f ′

""

B !! B′

with A→ A′ and B → B′ faithfully flat and ind-étale, A′ and B′ w-strictly local, and

A′ → B′ w-local.

Proof. — Choose compatible w-strictly local covers to get a diagram

AZ/IAZ !!

""

AZ/IAZ =: A0

""

BZ/IBZ !! BZ/IBZ =: B0

of absolutely flat rings with horizontal maps being faithfully flat and ind-étale, and
A0 and B0 being w-strictly local. Henselizing then gives a diagram

A !!

f

""

AZ

fZ

""

!! HensAZ (A0) =: A′

f ′

""

B !! BZ !! HensBZ (B0) =: B′

Then all horizontal maps are ind-étale faithfully flat. Moreover, both A′ and B′ are
w-strictly local by Lemma 2.2.13. The map f ′ is w-local since Spec(A′)c = Spec(A0),
and Spec(B′)c = Spec(B0), so the claim follows.

We now explain how to prove an analogue of Olivier’s theorem for w-strictly local
rings:

Lemma 2.3.8. — Let f : A→ B be a w-local weakly étale map of w-local rings with A

w-strictly local. Then f is a ind-(Zariski localization).

Proof. — First consider the canonical factorization A → A′ → B provided by
Lemma 2.2.6. As A → A′ is w-local with A′ w-local, Lemma 2.2.9 shows that A′ is
w-strictly local. Replacing A with A′, we may assume f induces a homeomorphism
Spec(B)c ≃ Spec(A)c. Then for each maximal ideal m ⊂ A, the ring B/mB has a
unique maximal ideal and is absolutely flat (as it is weakly étale over the field A/m).
Then B/mB must be a field, so mB is a maximal ideal. The map Am → BmB is an
isomorphism by Theorem 2.3.5 as Am is strictly henselian, so A ≃ B.
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The promised proof is:

Proof of Theorem 2.3.4. — Lemma 2.3.7 gives a diagram

A !!

f

""

A′

f ′

""

B !! B′

with f ′ a w-local map of w-strictly local rings, and both horizontal maps being ind-
étale and faithfully flat. The map f ′ is also weakly étale since all other maps in the
square are so. Lemma 2.3.8 shows that f ′ is a ind-(Zariski localization). Setting
C = B′ then proves the claim.

2.4. Local contractibility. — In this section, we study the following notion:

Definition 2.4.1. — A ring A is w-contractible if every faithfully flat ind-étale map

A→ B has a section.

The name “w-contractible” is inspired by the connection with the pro-étale topol-
ogy: if A is w-contractible, then Spec(A) admits no non-split pro-étale covers, and is
hence a “weakly contractible” object of the corresponding topos. Our goal is to prove
that every ring admits a w-contractible ind-étale faithfully flat cover. We begin by
observing that w-contractible rings are already w-local:

Lemma 2.4.2. — A w-contractible ring A is w-local (and thus w-strictly local).

Proof. — The map π : Spec(AZ)→ Spec(A) has a section s by the assumption on A.
The section s is a closed immersion since π is separated, and Spec(AZ) = Spec(A)Z

is w-local, so we are done by Lemma 2.1.3.

The notion of w-contractibility is local along a henselian ideal:

Lemma 2.4.3. — Let A be a ring henselian along an ideal I. Then A is w-contractible

if and only if A/I is so.

Proof. — This is proven exactly like Lemma 2.2.13 using that Ind(Aét) →
Ind((A/I)ét) is essentially surjective, and preserves and reflects faithfully flat
maps.

The main difference between w-contractible and w-strictly local rings lies in the
topology. To give meaning to this phrase, recall the following definition:

Definition 2.4.4. — A compact Hausdorff space is extremally disconnected if the clo-

sure of every open is open.
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One has the following result characterizing such spaces, see [Gle58]:

Theorem 2.4.5 (Gleason). — Extremally disconnected spaces are exactly the projective

objects in the category of all compact Hausdorff spaces, i.e., those X for which every

continuous surjection Y → X splits.

It is fairly easy to prove the existence of “enough” extremally disconnected spaces:

Example 2.4.6. — For any set X , given the discrete topology, the Stone-Cech com-
pactification β(X) is extremally disconnected: the universal property shows that β(X)
is a projective object in the category of compact Hausdorff spaces. If X itself comes
from a compact Hausdorff space, then the counit map β(X) → X is a continuous
surjection, which shows that all compact Hausdorff spaces can be covered by ex-
tremally disconnected spaces. In fact, the same argument shows that any extremally
disconnected space is a retract of β(X) for some set X .

Extremally disconnected spaces tend to be quite large, as the next example shows:

Example 2.4.7. — An elementary argument due to Gleason shows that any convergent
sequence in an extremally disconnected space is eventually constant. It follows that
standard profinite sets, such as Zp (or the Cantor set) are not extremally disconnected.

The relevance of extremally disconnected spaces for us is:

Lemma 2.4.8. — A w-strictly local ring A is w-contractible if and only if π0(Spec(A))
is extremally disconnected.

Proof. — As Spec(A)c → Spec(A) gives a section of Spec(A) → π0(Spec(A)), if A
is w-contractible, then every continuous surjection T → π0(Spec(A)) of profinite sets
has a section, so π0(Spec(A)) is extremally disconnected. Conversely, assume A is
w-strictly local and π0(Spec(A)) is extremally disconnected. By Lemma 2.4.3, we
may assume A = A/IA. Thus, we must show: if A is an absolutely flat ring whose
local rings are separably closed fields, and Spec(A) is extremally disconnected, then A

is w-contractible. Pick an ind-étale faithfully flat A-algebra B. Then A→ B induces
an isomorphism on local rings. Lemma 2.2.6 gives a factorization A → C → B with
A→ C a ind-(Zariski localization) induced by a map of profinite sets T → Spec(A),
and B → C a w-local map inducing an isomorphism on spectra. Then C ≃ B

as the local rings of C and B coincide with those of A. As Spec(A) is extremally
disconnected, the map T → Spec(A) of profinite sets has a section s. The closed
subscheme Spec(C′) ⊂ Spec(C) realizing s(Spec(A)) ⊂ T maps isomorphically to
Spec(A), which gives the desired section.

We now show the promised covers exist:

Lemma 2.4.9. — For any ring A, there is an ind-étale faithfully flat A-algebra A′ with

A′ w-contractible.
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Proof. — Choose an ind-étale faithfully flat AZ/IAZ -algebra A0 with A0 w-strictly
local and Spec(A0) an extremally disconnected profinite set; this is possible by Ex-
ample 2.4.6, Lemma 2.2.7, and Lemma 2.2.8. Let A′ = HensAZ (A0). Then A′ is
w-contractible by Lemma 2.4.3 and Lemma 2.4.8, and the map A → A′ is faithfully
flat and ind-étale since both A→ AZ and AZ → A′ are so individually.

Lemma 2.4.10. — Let A be a w-contractible ring, and let f : A → B be a finite ring

map of finite presentation. Then B is w-contractible.

Proof. — We can write A = colimiAi as a filtered colimit of finite type Z-algebras
such that A → B is the base change of a finite ring map A0 → B0 of some index 0,
assumed to be initial; set Bi = B0 ⊗A0 Ai, so B = colimiBi. Then Spec(A) =
limi Spec(Ai) and Spec(B) = limi Spec(Bi) as affine schemes and as spectral spaces,
so π0(Spec(B)) = π0(Spec(B0)) ×π0(Spec(A0)) π0(Spec(A)). As π0(Spec(A0)) and
π0(Spec(B0)) are both finite sets, it follows that π0(Spec(B)) is extremally discon-
nected as π0(Spec(A)) is such. Moreover, the local rings of B are strictly henselian as
they are finite over those of A. It remains to check Spec(B) is w-local. By finiteness,
the subspace Spec(B)c ⊂ Spec(B) is exactly the inverse image of Spec(A)c ⊂ Spec(A),
and hence closed. Now pick a connected component Z ⊂ Spec(B). The image of Z in
Spec(A) lies in some connected component W ⊂ Spec(A). The structure of A shows
that W = Spec(Ax) for some closed point x ∈ Spec(A)c, so W is a strictly henselian
local scheme. Then Z →W is a finite map of schemes with Z connected, so Z is also
a strictly henselian local scheme, and hence must have a unique closed point, which
proves w-locality of Spec(B).

Remark 2.4.11. — The finite presentation assumption is necessary. Indeed, there are
extremally disconnected spaces X with a closed subset Z ⊂ X such that Z is not
extremally disconnected. As an example, let X be the Stone-Cech compactification
of N, and let Z = X \ N. As any element of N is an open and closed point of X ,
Z ⊂ X is closed. Consider the following open subset Ũ of X :

Ũ =
⋃

n!1

{x ∈ X | x ̸≡ 0 mod 2n} .

Here, we use that the map N → Z/nZ extends to a unique continuous map X →

Z/nZ. Let U = Ũ ∩ Z, which is an open subset of Z. We claim that the closure U

of U in Z is not open. If not, then Z admits a disconnection with one of the terms
being U . It is not hard to see that any disconnection of Z extends to a disconnection
of X , and all of these are given by M + (X \M) for some subset M ⊂ N. It follows
that U = M ∩ Z for some subset M ⊂ N. Thus, U ⊂ M , which implies that for all
n ! 0, almost all integers not divisible by 2n are in M . In particular, there is a subset
A ⊂M such that A = {a0, a1, . . .} with 2i|ai. Take any point x ∈ A \N ⊂ Z. Thus,
x ∈ M ∩ Z = U . On the other hand, x lies in the open subset V = A ∩ Z ⊂ Z, and
V ∩ U = ∅: Indeed, for any n ! 0,

A ∩ {x ∈ X | x ̸≡ 0 mod 2n} ⊂ {a0, . . . , an−1} ⊂ N .

This contradicts x ∈ U , finally showing that U is not open.
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3. On replete topoi

A topos is the category of sheaves on a site, up to equivalence, as in [SGA72a]. We
will study in §3.1 a general property of topoi that implies good behaviour for the lim
and R lim functors, as well as unbounded cohomological descent, as discussed in §3.3.
A special subclass of such topoi with even better completeness properties is isolated
in §3.2; this class is large enough for all applications later in the paper. In §3.4 and
§3.5, with a view towards studying complexes of ℓ-adic sheaves on the pro-étale site,
we study derived completions of rings and modules in a replete topos; the repleteness
ensures no interference from higher derived limits while performing completions, so
the resulting theory is as good as in the punctual case.

3.1. Definition and first consequences. — The key definition is:

Definition 3.1.1. — A topos X is replete if surjections in X are closed under sequential

limits, i.e., if F : Nop → X is a diagram with Fn+1 → Fn surjective for all n, then

limF → Fn is surjective for each n.

Before giving examples, we mention two recognition mechanisms for replete topoi:

Lemma 3.1.2. — If X is a replete topos and X ∈ X, then X/X is replete.

Proof. — This follows from the fact that the forgetful functor X/X → X commutes
with connected limits and preserves surjections.

Lemma 3.1.3. — A topos X is replete if and only if there exists a surjection X → 1
and X/X is replete.

Proof. — This follows from two facts: (a) limits commute with limits, and (b) a map
F → G in X is a surjection if and only if it is so after base changing to X .

Example 3.1.4. — The topos of sets is replete, and hence so is the topos of presheaves
on a small category. As a special case, the classifying topos of a finite group G (which
is simply the category of presheaves on B(G)) is replete.

Example 3.1.5. — Let k be a field with a fixed separable closure k. Then X =
Shv(Spec(k)ét) is replete if and only if k is a finite extension of k (3). One direction is
clear: if k/k is finite, then Spec(k) covers the final object of X and X/Spec(k) ≃ Set, so

X is replete by Lemma 3.1.3. Conversely, assume that X is replete with k/k infinite.
Then there is a tower k = k0 ↪→ k1 ↪→ k2 ↪→ . . . of strictly increasing finite separable
extensions of k. The associated diagram · · · → Spec(k2) → Spec(k1) → Spec(k0) of
surjections has an empty limit in X, contradicting repleteness.

3. Recall that this happens only if k is algebraically closed or real closed; in the latter case,

k(
√
−1) is an algebraic closure of k.
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Remark 3.1.6. — Replacing Nop with an arbitrary small cofiltered category in the
definition of replete topoi leads to an empty theory: there are cofiltered diagrams of
sets with surjective transition maps and empty limits. For example, consider the poset
I of finite subsets of an uncountable set T ordered by inclusion, and F : Iop → Set
defined by

F (S) = {f ∈ Hom(S,Z) | f injective}.

Then F is a cofiltered diagram of sets with surjective transition maps, and limF = ∅.

Example 3.1.5 shows more generally that the Zariski (or étale, Nisnevich, smooth,
fppf) topoi of most schemes fail repleteness due to “finite presentation” constraints.
Nevertheless, there is an interesting geometric source of examples:

Example 3.1.7. — The topos X of fpqc sheaves on the category of schemes (4) is re-
plete. Given a diagram · · · → Fn+1 → Fn → · · · → F1 → F0 of fpqc sheaves with
Fn → Fn−1 surjective, we want limFn → F0 to be surjective. For any affine Spec(A)
and a section s0 ∈ F0(Spec(A)), there is a faithfully flat map A → B1 such that s0
lifts to an s1 ∈ F1(Spec(B1)). Inductively, for each n ! 0, there exist faithfully flat
maps A → Bn compatible in n and sections sn ∈ Fn(Spec(Bn)) such that sn lifts
sn−1. Then B = colimn Bn is a faithfully flat A-algebra with s0 ∈ F0(Spec(A)) lifting
to an s ∈ limFn(Spec(B)), which proves repleteness as Spec(B)→ Spec(A) is an fpqc
cover.

The next lemma records a closure property enjoyed by surjections in a replete
topos.

Lemma 3.1.8. — Let X be a replete topos, and let F → G be a map in Fun(Nop,X).
Assume that the induced maps Fi → Gi and Fi+1 → Fi ×Gi Gi+1 are surjective for

each i. Then limF → limG is surjective.

Proof. — Fix an X ∈ X and a map s : X → limG determined by a compatible
sequence {sn : X → Gn} of maps. By induction, one can show that there exists a
tower of surjections · · ·→ Xn → Xn−1 → · · ·→ X1 → X0 → X and maps tn : Xn →

Fn compatible in n such that tn lifts sn. In fact, one may take X0 = X ×G0 F0, and

Xn+1 = Xn ×Fn×GnGn+1 Fn+1.

The map X ′ := limi Xi → X is surjective by repleteness of X. Moreover, the com-
patibility of the tn’s gives a map t : X ′ → limF lifting s, which proves the claim.

We now see some of the benefits of working in a replete topos. First, products
behave well:

Proposition 3.1.9. — Countable products are exact in a replete topos.

4. To avoid set-theoretic problems, one may work with countably generated affine schemes over

a fixed affine base scheme.
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Proof. — Given surjective maps fn : Fn → Gn in X for each n ∈ N, we want f :∏
n Fn →

∏
n Gn to be surjective. This follows from Lemma 3.1.8 as f = lim

∏
i<n fi;

the condition from the lemma is trivial to check in this case.

In a similar vein, inverse limits behave like in sets:

Proposition 3.1.10. — If X is a replete topos and F : Nop → Ab(X) is a diagram with

Fn+1 → Fn surjective for all n, then limFn ≃ R limFn.

Proof. — By Proposition 3.1.9, the product
∏

n Fn ∈ X computes the derived product
in D(X). This gives an exact triangle

R limFn −→
∏

n

Fn
t−id
−−−→

∏

n

Fn,

where t : Fn+1 → Fn is the transition map. It thus suffices to show that s := t − id
is surjective. Set Gn =

∏
i"n Fn, Hn = Gn+1, and let sn : Hn → Gn be the map

induced by t − id. The surjectivity of t shows that sn is surjective. Moreover, the
surjectivity of t also shows that Hn+1 → Gn+1 ×Gn Hn is surjective, where the fibre
product is computed using sn : Hn → Gn and the projection Gn+1 → Gn. In fact,
the fibre product is Hn × Fn+1 and Hn+1 → Hn × Fn+1 is (pr, t − id). By Lemma
3.1.8, it follows that s = lim sn is also surjective.

Proposition 3.1.11. — If X is a replete topos, then the functor of Nop-indexed limits

has cohomological dimension 1.

Proof. — For a diagram F : Nop → Ab(X), we want R limFn ∈ D[0,1](X). By
definition, there is an exact triangle

R limFn −→
∏

n

Fn −→
∏

n

Fn

with the last map being the difference of the identity and transition maps, and the
products being derived. By Proposition 3.1.9, we can work with naive products in-
stead, whence the claim is clear by long exact sequences.

Question 3.1.12. — Do Postnikov towers converge in the hypercomplete ∞-topos of
sheaves of spaces (as in [Lur09, §6.5]) on a replete topos?

3.2. Locally weakly contractible topoi. — We briefly study an exceptionally
well-behaved subclass of replete topoi:

Definition 3.2.1. — An object F of a topos X is called weakly contractible if every

surjection G → F has a section. We say that X is locally weakly contractible if it

has enough weakly contractible coherent objects, i.e., each X ∈ X admits a surjection

∪iYi → X with Yi a coherent weakly contractible object.
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The pro-étale topology will give rise to such topoi. A more elementary example is:

Example 3.2.2. — The topos X = Set is locally weakly contractible: the singleton set
S is weakly contractible coherent, and every set is covered by a disjoint union of copies
of S.

The main completeness and finiteness properties of such topoi are:

Proposition 3.2.3. — Let X be a locally weakly contractible topos. Then

1. X is replete.

2. The derived category D(X) = D(X,Z) is compactly generated.

3. Postnikov towers converge in the associated hypercomplete ∞-topos.

(Cf. [Lur09].)

Proof. — For (1), note that a map F → G in X is surjective if and only if F (Y ) →
G(Y ) is so for each weakly contractible Y ; the repleteness condition is then immedi-
ately deduced. For (2), given j : Y → 1X in X with Y weakly contractible coherent,
one checks that Hom(j!Z,−) = H0(Y,−) commutes with arbitrary direct sums in
D(X), so j!Z is compact; as Y varies, this gives a generating set of D(X) by assump-
tion on X, proving the claim. For (3), first note that the functor F *→ F (Y ) is exact
on sheaves of spaces whenever Y is weakly contractible. Hence, given such an F

and point ∗ ∈ F (Y ) with Y weakly contractible, one has πi(F (Y ), ∗) = πi(F, ∗)(Y ).
This shows that F ≃ limn τ"nF on X, which proves hypercompleteness. (Cf. [Lur09,
Proposition 7.2.1.10].)

3.3. Derived categories, Postnikov towers, and cohomological descent

We first recall the following definition:

Definition 3.3.1. — Given a topos X, we define the left-completion D̂(X) of D(X) as

the full subcategory of D(XN) spanned by projective systems {Kn} satisfying:

1. Kn ∈ D!−n(X).

2. The map τ!−nKn+1 → Kn induced by the transition map Kn+1 → Kn and (1)

is an equivalence.

We say that D(X) is left-complete if the map τ : D(X) → D̂(X) defined by K *→

{τ!−nK} is an equivalence.

Left-completeness is extremely useful in accessing an unbounded derived category
as Postnikov towers converge:

Lemma 3.3.2. — The functor R lim : D̂(X) ↪→ D(XN) → D(X) provides a right ad-

joint to τ . In particular, if D(X) is left-complete, then K ≃ R lim τ!−nK for any

K ∈ D(X).
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Proof. — Fix K ∈ D(X) and {Ln} ∈ D̂(X). Then we claim that

RHomD(X)(K,R limLn) ≃ R limRHomD(X)(K,Ln) ≃ R limRHomD(X)(τ
!−nK,Ln)

≃ RHom
D̂(X)(τ(K), {Ln}).

This clearly suffices to prove the lemma. Moreover, the first two equalities are formal.
For the last one, recall that if F,G ∈ Ab(XN), then there is an exact sequence

1 −→ Hom(F,G) −→
∏

n

Hom(Fn, Gn) −→
∏

n

Hom(Fn+1, Gn),

where the first map is the obvious one, while the second map is the difference of
the two maps Fn+1 → Fn → Gn and Fn+1 → Gn+1 → Gn. One can check that if
F,G ∈ Ch(XN), and G is chosen to be K-injective, then the above sequence gives an
exact triangle

RHom(F,G) −→
∏

n

RHom(Fn, Gn) −→
∏

n

RHom(Fn+1, Gn).

In the special case where F,G ∈ D̂(X), one has RHom(Fn+1, Gn) = RHom(Fn, Gn)
by adjointness of truncations, which gives the desired equality.

Classically studied topoi have left-complete derived categories only under (local)
finite cohomological dimension constraints; see Proposition 3.3.7 for a criterion, and
Example 3.3.5 for a typical example of the failure of left-completeness for the simplest
infinite-dimensional objects. The situation for replete topoi is much better:

Proposition 3.3.3. — If X is a replete topos, then D(X) is left-complete.

Proof. — We repeatedly use the following fact: limits and colimits in the abelian
category Ch(Ab(X)) are computed termwise. First, we show that τ : D(X) → D̂(X)
is fully faithful. By the adjunction from Lemma 3.3.2, it suffices to show that K ≃

R lim τ!−nK for any K ∈ D(X). Choose a complex I ∈ Ch(Ab(X)) lifting K ∈ D(X).
Then

∏
n τ

!−nI ∈ Ch(Ab(X)) lifts the derived product
∏

n τ
!−nK ∈ D(X) by Propo-

sition 3.1.9. Since I ≃ lim τ!−nI ∈ Ch(Ab(X)), it suffices as in Proposition 3.1.10 to
show that ∏

n

τ!−nI
t−id
−−−→

∏

n

τ!−nI

is surjective in Ch(Ab(X)), where we write t for the transition maps. Since surjectivity
in Ch(Ab(X)) can be checked termwise, this follows from the proof of Proposition

3.1.10 as τ!−nI
t−id
→ τ!−(n−1)I is termwise surjective.

For essential surjectivity of τ , it suffices to show: given {Kn} ∈ D̂(X), one has
Kn ≃ τ

!−nR limKn. Choose aK-injective complex {In} ∈ Ch(Ab(XN)) representing
{Kn}. Then

∏
n In ∈ Ch(Ab(X)) lifts

∏
n Kn (the derived product). Moreover, by

K-injectivity, the transition maps In+1 → In are (termwise) surjective. Hence, the
map ∏

n

In
t−id
−−−→

∏

n

In
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in Ch(Ab(X)) is surjective by the argument in the proof of Proposition 3.1.10, and its
kernel complex K computes R limKn. We must show that Hi(K) ≃ Hi(Ki) for each
i ∈ N. Calculating cohomology and using the assumption {Kn} ∈ D̂(X) ⊂ D(XN)
shows that

Hi
(∏

n

In

)
=
∏

n

Hi(In) =
∏

n!i

Hi(In) =
∏

n!i

Hi(Ki)

for each i ∈ N; here we crucially use Proposition 3.1.9 to distribute Hi over
∏
. The

map Hi(t − id) is then easily seen to be split surjective with kernel limHi(Kn) ≃
limHi(Ki) ≃ Hi(Ki), which proves the claim.

If repleteness is dropped, it is easy to give examples whereD(X) is not left-complete.

Example 3.3.4. — LetG =
∏

n!1 Zp, and let X be the topos associated to the category
B(G) of finite G-sets (topologized in the usual way). We will show that D(X) is not
left-complete. More precisely, we will show that K → K̂ := R lim τ!−nK does not
have a section for K = ⊕n!1Z/p

n[n] ∈ D(X); here Z/pn is given the trivial G-action.
For each open subgroup H ⊂ G, we write XH ∈ B(G) for the G-set G/H

given the left G-action, and let Iop ⊂ B(G) be the (cofiltered) full subcategory
spanned by the XH ’s. The functor p∗(F) = colimI F(XH) commutes with finite
limits and all small colimits, and hence comes from a point p : ∗ → X. Deriving gives
p∗L = colimI RΓ(XH , L) for any L ∈ D(X), and so H0(p∗L) = colimI H

0(XH , L). In
particular, if L1 → L2 has a section, so does

colim
I

H0(XH , L1) −→ colim
I

H0(XH , L2).

If π : X→ Set denotes the constant map, then K = π∗K ′ where K ′ = ⊕n!1Z/p
n[n] ∈

D(Ab), so

colim
I

H0(XH ,K) = H0(p∗K) = H0(p∗π∗K ′) = H0(K ′) = 0.

Since τ!−nK ≃ ⊕i"nZ/p
i[i] ≃

∏
i"n Z/p

i[i], commuting limits shows that

K̂ ≃
∏

n!1 Z/p
n[n] (where the product is derived), and so RΓ(XH , K̂) ≃∏

n!1 RΓ(XH ,Z/pn[n]). In particular, it suffices to show that

H0(p∗K̂) = colim
I

∏

n!1

Hn(XH ,Z/pn)

is not 0. Let αn ∈ Hn(XG,Z/p
n) = Hn(X,Z/pn) be the pullback of a gen-

erator of Hn(B(
∏n

i=1 Zp),Z/pn) ≃ ⊗n
i=1H

1(B(Zp),Z/pn) under the projection
fn : G →

∏n
i=1 Zp. Then αn has exact order pn as fn has a section, so

α := (αn) ∈
∏

n!1 H
n(X,Z/pn) has infinite order. Its image α′ in H0(p∗K̂) is

0 if and only if there exists an open normal subgroup H ⊂ G such that α restricts
to 0 in

∏
n H

n(XH ,Z/pn). Since XH → XG is a finite cover of degree [G : H ], a
transfer argument then implies that α is annihilated by [G : H ], which is impossible,
whence α′ ̸= 0.
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Remark 3.3.5. — The argument of Example 3.3.4 is fairly robust: it also applies to the
étale topos of X = Spec(k) with k a field provided there exist Mn ∈ Ab(Xét) for in-
finitely many n ! 1 such that Hn(X,Mn) admits a class αn with lim ord(αn) =∞. In
particular, this shows that D(Spec(k)ét) is not left-complete for k = C(x1, x2, x3, . . . ).

Thanks to left-completeness, cohomological descent in a replete topos is particularly
straightforward:

Proposition 3.3.6. — Let f : X• → X be a hypercover in a replete topos X. Then

1. The adjunction id→ f∗f
∗ is an equivalence on D(X).

2. The adjunction f!f
∗ → id is an equivalence on D(X).

3. f∗ induces an equivalence D(X) ≃ Dcart(X•).

Here we write D(Y ) = D(Ab(X/Y )) for any Y ∈ X. Then D(X•) is the derived
category of the simplicial topos defined by X•, and Dcart(X•) is the full subcategory
spanned by complexes K which are Cartesian, i.e., for any map s : [n] → [m] in ∆,
the transition maps s∗(K|Xn)→ K|Xm are equivalences. The usual pushforward then
gives f∗ : D(X•) → D(X) right adjoint to the pullback f∗ : D(X) → D(X•) given
informally via (f∗K)|Xn = K|Xn . By the adjoint functor theorem, there is a left
adjoint f! : D(X•)→ D(X) as well. When restricted to Dcart(X•), one may describe
f! informally as follows. For each Cartesian K and any map s : [n] → [m] in ∆,
the equivalence s∗(K|Xn) ≃ K|Xm has an adjoint map K|Xm → s!(K|Xn). Applying
!-pushforward along each Xn → X then defines a simplicial object in D(X) whose
homotopy-colimit computes f!K.

Proof. — We freely use that homotopy-limits and homotopy-colimits in D(X•) are
computed “termwise.” Moreover, for any map g : Y → X in X, the pullback g∗ is
exact and commutes with such limits and colimits (as it has a left adjoint g! and a
right adjoint g∗). Hence f∗ : D(X) → D(X•) also commutes with such limits and
colimits.

1. For any K ∈ Ab(X), one has K ≃ f∗f
∗K by the hypercover condition. Passing

to filtered colimits shows the same for K ∈ D+(X). For general K ∈ D(X),
we have K ≃ R lim τ!−nK by repleteness. By exactness of f∗ and repleteness
of each Xn, one has f∗K ≃ R lim f∗τ!−nK. Pushing forward then proves the
claim.

2. This follows formally from (1) by adjunction.

3. The functor f∗ : D(X) → Dcart(X•) is fully faithful by (1) and adjunction.
Hence, it suffices to show that any K ∈ Dcart(X•) comes from D(X). The
claim is well-known for K ∈ D+

cart(X•) (without assuming repleteness). For
general K, by repleteness, we have K ≃ R lim τ!−nK. Since the condition
of being Cartesian on a complex is a condition on cohomology sheaves, the
truncations τ!−nK are Cartesian, and hence come from D(X). The claim
follows as D(X) ⊂ D(X•) is closed under homotopy-limits.
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We end by recording a finite dimensionality criterion for left-completeness:

Proposition 3.3.7. — Let X be a topos, and fix K ∈ D(X).

1. Given U ∈ X with Γ(U,−) exact, one has RΓ(U,K) ≃ R limRΓ(U, τ!−nK).

2. If there exists d ∈ N such that Hi(K) has cohomological dimension " d locally

on X for all i, then D(X) is left-complete.

Proof. — For (1), by exactness, RΓ(U,K) is computed by I(U) where I ∈ Ch(X)
is any chain complex representing K. Now D(Ab) is left-complete, so I(U) ≃
R lim τ!−nI(U). As Γ(U,−) is exact, it commutes with truncations, so the claim
follows. (2) follows from [Sta, Tag 0719].

3.4. Derived completions of f-adic rings in a replete topos. — In this section,
we fix a replete topos X, and a ring R ∈ X with an ideal I ⊂ R that is locally finitely
generated, i.e., there exists a cover {Ui → 1X} such that I|Ui is generated by finitely
many sections of I(Ui). Given U ∈ X, x ∈ R(U) and K ∈ D(X/U , R), we write

T (K,x) := R lim(. . .
x
→ K

x
→ K

x
→ K) ∈ D(X/U , R).

Definition 3.4.1. — We say that M ∈ ModR is classically I-complete if M ≃

limM/InM ; write ModR,comp ⊂ ModR for the full subcategory of such M . We say

that K ∈ D(X, R) is derived I-complete if for each U ∈ X and x ∈ I(U), we have

T (K|U , x) = 0; write Dcomp(X, R) ⊂ D(X, R) for the full subcategory of such K.

It is easy to see that Dcomp(X, R) is a triangulated subcategory of D(X, R). More-
over, for any U ∈ X, the restriction D(X, R)→ D(X/U , R) commutes with homotopy-
limits, and likewise for R-modules. Hence, both the above notions of completeness
localise on X. Our goal is to compare these completeness conditions for modules, and
relate completeness of a complex to that of its cohomology groups. The main result
for modules is:

Proposition 3.4.2. — An R-module M ∈ModR is classically I-complete if and only if

it is I-adically separated and derived I-complete.

Remark 3.4.3. — The conditions of Proposition 3.4.2 are not redundant: there exist
derived I-complete R-modules M which are not I-adically separated, and hence not
classically complete. In fact, there exists a ring R with principal ideals I and J such
that R is classically I-complete while the quotient R/J is not I-adically separated;
note that R/J = cok(R→ R) is derived I-complete by Lemma 3.4.14.

The result for complexes is:

Proposition 3.4.4. — An R-complex K ∈ D(X, R) is derived I-complete if and only if

each Hi(K) is so.

Remark 3.4.5. — For X = Set, one can find Proposition 3.4.4 in [Lur11].
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Lemma 3.4.6. — Given x, y ∈ R(X), the sequence

0 −→ R
[ 1

x+ y

]
−→ R

[ 1

x · (x+ y)

]
⊕R

[ 1

y · (x+ y)

]
−→ R

[ 1

x · y · (x+ y)

]
−→ 0

is exact.

Proof. — Using the Mayer-Vietoris sequence for Spec(R(U)[ 1
x+y

]) for each U ∈ X,
one finds that the corresponding sequence of presheaves is exact, as (x, y) = (1) ∈
R(U)[ 1

x+y
]; the claim follows by exactness of sheafification.

The main relevant consequence is that R[ 1
x+y

] ∈ D(X, R) is represented by a finite

complex whose terms are direct sums of filtered colimits of free R[ 1
x
]-modules and

R[ 1
y
]-modules.

Lemma 3.4.7. — Fix K ∈ D(X, R) and x ∈ R(X). Then T (K,x) = 0 if and only if

RHomR(M,K) = 0 for M ∈ D(X, R[ 1
x
]).

Proof. — The backwards direction follows by setting M = R[ 1
x
] and using R[ 1

x
] =

colim(R
x
→R

x
→R→ . . . ). For the forward direction, let C ⊂ D(X, R[ 1

x
]) be the triangu-

lated subcategory of all M for which RHomR(M,K) = 0. Then C is closed under ar-
bitrary direct sums, and R[ 1

x
] ∈ C by assumption. Since T (K|U , x) = T (K,x)|U = 0,

one also has j!(R[ 1
x
]|U ) ∈ C for any j : U → 1X. The claim now follows: for any ringed

topos (X, A), the smallest triangulated subcategory of D(X, A) closed under arbitrary
direct sums and containing j!(A|U ) for j : U → 1X variable is D(X, A) itself.

Lemma 3.4.8. — Fix K ∈ D(X, R) and x ∈ I(X). Then T (K,x) lies in the essential

image of D(X, R[ 1
x
])→ D(X, R).

Proof. — We may represent K by a K-injective complex of R-modules. Then
T (K,x) ≃ RHomR(R[ 1

x
],K) ≃ HomR(R[ 1

x
],K) is a complex of R[ 1

x
]-modules, which

proves the claim.

Lemma 3.4.9. — The inclusion Dcomp(X, R) ↪→D(X, R) admits a left adjoint K *→ K̂.

The natural map K̂ → ̂̂K is an equivalence.

Proof. — The second part is a formal consequence of the first part as the inclusion
Dcomp(X, R) ⊂ D(X, R) is fully faithful. For the first part, we first assume I is
generated by global sections x1, . . . , xr ∈ I(X). For 0 " i " r, define functors
Fi : D(X, R)→ D(X, R) with maps Fi → Fi+1 as follows: set F0 = id, and

Fi+1(K) := cok
(
T (Fi(K), xi+1)→ Fi(K)

)
≃ R lim

(
Fi(K)

xn
i+1
−−→ Fi(K)

)

≃ R lim
(
Fi(K)⊗L

Z[xi+1]
Z[xi+1]/(x

n
i+1)

)
,
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where the transition maps
(
Fi(K)

xi+1
n+1

→ Fi(K)
)
→
(
Fi(K)

xi+1
n

→ Fi(K)
)
are given by

xi+1 on the source, and the identity on the target. One then checks using induction
and lemmas 3.4.7 and 3.4.8 that Fi(K) is derived (x1, . . . , xi)-complete, and that

RHom(Fi+1(K), L) = RHom(Fi(K), L)

if L is (x1, . . . , xi+1)-complete. It follows thatK → Fr(K) provides the desired left ad-
joint; we rewrite K̂ := Fr(K) and call it the completion ofK. The construction shows
that completion commutes with restriction. In general, this argument shows that there
is a hypercover f : X• → 1X such that the inclusion Dcomp(Xn, R) → D(Xn, R)
admits a left adjoint, also called completion. As completion commutes with restric-
tion, the inclusion Dcart,comp(X•, R) ⊂ Dcart(X•, R) of derived I-complete carte-
sian complexes inside all cartesian complexes admits a left-adjoint Dcart(X•, R) →
Dcart,comp(X•, R). The cohomological descent equivalence f∗ : D(X, R)→ D(X•, R)
restricts to an equivalenceDcomp(X, R)→ Dcart,comp(X•, R), so the claim follows.

Lemma 3.4.9 leads to a tensor structure on Dcomp(X, R):

Definition 3.4.10. — For K,L ∈ D(X, R), we define the completed tensor product

via K⊗̂RL := K̂ ⊗L
R L ∈ Dcomp(X, R).

The completed tensor product satisfies the expected adjointness:

Lemma 3.4.11. — For K ∈ D(X, R) and L ∈ Dcomp(X, R), we have RHomR(K,L) ∈
Dcomp(X, R). Moreover, there is an adjunction

Hom(K ′,RHomR(K,L)) ≃ Hom(K ′⊗̂RK,L)

for any K ′ ∈ Dcomp(X, R).

Proof. — For any x ∈ I(X), we have T (RHomR(K,L), x) ≃ RHomR(K,T (L, x)) ≃ 0.
Repeating this argument for a slice topos X/U then proves the first part. The second
part is a formal consequence of the adjunction between ⊗ and RHom in D(X, R),
together with the completeness of L.

Lemma 3.4.12. — Fix K ∈ D(X, R). The following are equivalent

1. For each U ∈ X and x ∈ I(U), the natural map K → R lim
(
K

xn

→ K
)
is an

isomorphism.

2. K is derived I-complete.

3. There exists a cover {Ui → 1X} and generators x1, . . . , xr ∈ I(Ui) such that

T (K|Ui, xi) = 0.

4. There exists a cover {Ui → 1X} and generators x1, . . . , xr ∈ I(Ui) such that

K|Ui ≃ R lim
(
K|Ui ⊗

L
Z[x1,...,xr]

Z[x1, . . . , xr]/(x
n
1 , . . . , x

n
r )
)

via the natural map.
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Proof. — The equivalence of (1) and (2) follows from the observation that the tran-
sition map (

K
xn+1

−−→ K
)
−→

(
K

xn

−−→ K
)

is given by x on the first factor, and the identity on the second factor. Also, (2) clearly
implies (3). For the converse, fix a U ∈ X and x ∈ I(U). To show T (K|U , x) = 0,
we are free to replace U with a cover. Hence, we may assume x =

∑
i aixi with

T (K|U , xi) = 0. Lemma 3.4.7 shows T (K|U , aixi) = 0, and Lemma 3.4.6 does the rest.
Finally, since each xj acts nilpotently on K|Ui

⊗L
Z[x1,...,xr]

Z[x1, . . . , xr]/(xn
1 , . . . , x

n
r ),

it is clear that (4) implies (3). Conversely, assume (3) holds. Replacing X with a
suitable Ui, we may assume I is generated by global sections x1, . . . , xr ∈ I(X).
Consider the sequence of functors F0, . . . , Fr : D(X, R) → D(X, R) defined in the
proof of Lemma 3.4.9. As each Z[xi]/(xn

i ) is a perfect Z[xi]-module, the functor
−⊗L

Z[xi]
Z[xi]/(xn

i ) commutes with homotopy-limits. Hence, we can write

K ≃ Fr(K) ≃ R lim
(
K ⊗L

Z[x1]
Z[x1]/(x

n
1 )⊗

L
Z[x2]

Z[x2]/(x
n
2 )⊗ · · ·⊗L

Z[xr]
Z[xr ]/(x

n
r )
)
,

which implies (4).

Lemma 3.4.13. — If M ∈ ModR is classically I-complete, then M is derived

I-complete.

Proof. — Commuting limits shows that the collection of all derived I-complete
objects K ∈ D(X, R) is closed under homotopy-limits. Hence, writing M =
limM/InM ≃ R limM/InM (where the second isomorphism uses repleteness), it
suffices to show that M is derived I-complete if InM = 0. For such M , any local
section x ∈ I(U) for some U ∈ X acts nilpotently on M |U , so T (M |U , x) = 0.

The cokernel of a map of classically I-complete R-modules need not be I-complete,
and one can even show that ModR,comp is not an abelian category in general. In
contrast, derived I-complete modules behave much better:

Lemma 3.4.14. — The collection of all derived I-complete M ∈ ModR is an abelian

Serre subcategory of ModR.

Proof. — Fix a map f : M → N of derived I-complete R-modules. Then there is an
exact triangle

ker(f)[1] −→
(
M −→ N

)
−→ cok(f)

For any x ∈ I(X), there is an exact triangle

T (ker(f)[1], x) −→ 0 −→ T (cok(f), x)

where we use the assumption on M and N to get the middle term to be 0. The right
hand side lies in D!0(X, R), while the left hand side lies in D"0(X, R) as R lim has
cohomological dimension " 1 (as X is replete). Chasing sequences shows that the
left and right terms are also 0. Repeating the argument for a slice topos X/U (and
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varying x ∈ I(U)) proves that ker(f) and cok(f) are derived I-complete. It is then
immediate that im(f) = M/ker(f) is also derived I-complete. Since closure of derived
I-completeness under extensions is clear, the claim follows.

Proof of Proposition 3.4.4. — Assume first that each Hi(K) is derived I-complete.
Then each finite truncation τ"nτ!mK is derived I-complete. Hence, τ"mK ≃

R lim τ!−nτ"mK is also derived I-complete for each m; here we use that D(X) is
left-complete since X is replete. For any x ∈ I(X), applying T (−, x) to

τ"mK −→ K −→ τ!m+1(K).

shows that T (K,x) ≃ T (τ!m+1K,x) ∈ D!m+1(X, R). Since this is true for all m,
one has T (K,x) = 0. Repeating the argument for x ∈ I(U) for U ∈ X then proves
the claim.

Conversely, assume that K is derived I-complete. By shifting, it suffices to show
that H0(K) is derived I-complete. Assume first that K ∈ D"0(X, R). Then there is
an exact triangle

τ"−1K −→ K −→ H0(K).

Fixing an x ∈ I(X) and applying T (−, x) gives

T (τ"−1K,x) −→ T (K,x) −→ T (H0(K), x).

The left term lives in D"0(X, R), the middle term vanishes by assumption on K, and
the right term lives in D!0(X, R), so the claim follows by chasing sequences (and
replacing X with X/U ). Now applying the same argument to the triangle

τ"0K −→ K −→ τ!1K

shows that each τ"0K and τ!1K are derived I-complete. Replacing K by τ"0K then
proves the claim.

Proof of Proposition 3.4.2. — The forward direction follows from Lemma 3.4.13.
Conversely, assume M is derived I-complete and I-adically separated. To show M is
classically I-complete, we may pass to slice topoi and assume that I is generated by
global sections x1, . . . , xr ∈ I(X). Then derived I-completeness of M gives

M ≃ R lim
(
M ⊗L

Z[x1,...,xr]
Z[x1, . . . , xr]/(x

n
i )
)
.

Calculating H0(M) ≃M via the Milnor exact sequence (which exists by repleteness)
gives

1 −→ R1 limH−1(M ⊗L
Z[x1,...,xr]

Z[x1 . . . , xr]/(x
n
i ))

−→M −→ limM/(xn
1 , . . . , x

n
r )M −→ 1.

By I-adic separatedness, the last map is injective, and hence an isomorphism.
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3.5. Derived completions of noetherian rings in a replete topos. — In this
section, we specialize the discussion of §3.4 to the noetherian constant case. More
precisely, we fix a replete topos X, a noetherian ring R, and an ideal m ⊂ R. We also
write m ⊂ R for the corresponding constant sheaves on X. Our goal is to understand
m-adic completeness for R-complexes on X.

Proposition 3.5.1. — Fix K ∈ D(X, R). Then

1. K is derived m-complete if and only if K ≃ R lim(K ⊗L
R R/mn) via the natural

map.

2. R lim(K ⊗L
R R/mn) is derived m-complete.

3. The functor K *→ R lim(K ⊗L
R R/mn) defines a left adjoint D(X, R) →

Dcomp(X, R) to the inclusion.

Proof. — (2) is clear as each K ⊗L
R R/mn is derived m-complete. For the rest, fix

generators f1, .., fr ⊂ m. Set P = Z[x1, . . . , xr], and J = (x1, . . . , xr) ⊂ P . Consider
the map P → R defined via xi *→ fi (both in Set and X). By Lemma 3.4.12, K
is derived m-complete precisely when K ≃ R lim(K ⊗L

P P/Jn) via the natural map.
For (1), it thus suffices to check that

a : {P/Jn ⊗L
P R} −→ {R/mn}

is a strict pro-isomorphism. There is an evident identification

{P/Jn ⊗L
P R} =

{
P/Jn ⊗L

P (P ⊗Z R)⊗L
P⊗ZR R

}
,

where P ⊗Z R is viewed as a P -algebra via the first factor. As P/Jn and P ⊗Z R are
Tor-independent over P , we reduce to checking that

{
R[x1, . . . , xr]/(x1, . . . , xr)

n ⊗L
R[x1,...,xr]

R
}
→ {R/mn}

is a strict pro-isomorphism. This follows from the Artin-Rees lemma. Finally, (3)
follows from a being a pro-isomorphism as the construction of Lemma 3.4.9 realises
the m-adic completion of K as R lim(K ⊗L

P P/Jn).

Proposition 3.5.1 gives a good description of the category Dcomp(X, R) of derived
m-complete complexes. Using this description, one can check that R itself is not

derived m-complete in X in general. To rectify this, we study the m-adic completion
R̂ of R on X, and some related categories.

Definition 3.5.2. — Define R̂ := limR/mn ∈ X. In particular, R̂ is an R-algebra

equipped with R-algebra maps R̂ → R/mn. An object K ∈ D(X, R̂) is called

m-adically complete if the natural map K → R lim(K ⊗L

R̂
R/mn) is an equivalence.

Let i : Dcomp(X, R̂) ↪→ D(X, R̂) be the full subcategory of such complexes.

Our immediate goal is to describe m-adically complete complexes in terms of their
truncations. To this end, we introduce the following category of compatible systems:
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Definition 3.5.3. — Let C = Fun(Nop,X) be the topos of Nop-indexed projective sys-

tems {Fn} in X. Let R• = {R/mn} ∈ C be the displayed sheaf of rings, and let

Dcomp(C, R•) ⊂ D(C, R•) be the full subcategory spanned by complexes {Kn} such

that the induced maps Kn ⊗
L
R/mn R/mn−1 → Kn−1 are equivalences for all n.

Lemma 3.5.4. — For {Kn} ∈ D−(C, R•), one has an identification of pro-objects

{Kn ⊗
L
R R/m} ≃ {Kn ⊗

L
R/mn R/m}, and hence a limiting isomorphism R lim(Kn ⊗

L
R

R/m) ≃ R lim(Kn⊗
L
R/mn R/m). If m is regular, this extends to unbounded complexes.

Proof. — Change of rings gives {Kn ⊗
L
R R/m} ≃ {Kn ⊗

L
R/mn R/mn ⊗L

R R/m}. The
Artin-Rees lemma shows that {R/mn ⊗L

R R/m}→ {R/m} is a pro-isomorphism.
Since {Kn} is bounded above, the spectral sequence for Tor has only finitely many
contributing terms to a given E∞-term, and hence

{Kn ⊗
L
R R/m} ≃ {Kn ⊗

L
R/mn R/mn ⊗L

R R/m} −→ {Kn ⊗
L
R/mn R/m}

is also a pro-isomorphism. Applying R lim and using repleteness then gives the
claim. Finally, if m is generated by a regular sequence (f1, . . . , fr), then {R/mn}

is pro-isomorphic to {R/(fn
1 , . . . , f

n
r )}. Each quotient R/(fn

1 , . . . , f
n
r ) is R-perfect,

and hence the Tor-spectral sequence calculating Hi(K ⊗L
R R/(fn

1 , . . . , f
n
r )) has only

finitely many non-zero terms even when K is unbounded, so the preceding argument
applies.

Lemma 3.5.5. — For {Kn} ∈ D−comp(C, R•), the natural map gives (R limKn) ⊗L
R

R/mk ≃ Kk for k ! 0. If m is regular, this extends to unbounded complexes.

Proof. — By devissage and the completeness of {Kn}, we may assume k = 1. By
shifting, we can also assume {Kn} ∈ D"0(C), i.e., Kn ∈ D"0(X) for all n. Fix an
integer i ! 0, and an R-perfect complex Pi with a map Pi → R/m whose cone lies in
D"−i(R). Then there is a commutative diagram

(R limKn)⊗L
R Pi

a !!

b

""

R lim(Kn ⊗R Pi)

d

""

(R limKn)⊗L
R R/m

c !! R lim(Kn ⊗R R/m) ≃ K1.

The isomorphism on the bottom right is due to Lemma 3.5.4. As Pi is perfect, a is an
isomorphism. Moreover, cok(b) ∈ D"−i+1(X) as R limKn ∈ D"1(X) by repleteness.
A similar argument also shows cok(d) ∈ D"−i+1(X). Hence, cok(c) ∈ D"−i+1(X).
Then c must be an isomorphism as this is true for all i.

We can now show that the two notions of completeness coincide:

Lemma 3.5.6. — For each m, the natural map induces R̂ ⊗L
R R/mm ≃ R/mm. In

particular, Dcomp(X, R̂) ≃ Dcomp(X, R).

Proof. — The first part follows from Lemma 3.5.5. The second part follows formally
from this and Proposition 3.5.1.
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We now show that an m-adically complete complex is determined by its reductions
modulo powers of m; this will be used later to compare complexes on the pro-étale
site to Ekedahl’s category of adic complexes.

Lemma 3.5.7. — With notation as above, we have:

1. There is a map π : (C, R•)→ (X, R̂) of ringed topoi given by π∗({Fn}) = limFn

with π−1R̂→ R• the natural map.

2. Pullback under π induces a fully faithful functor π∗ : Dcomp(X, R̂) →
Dcomp(C, R•).

3. Pushforward under π induces a fully faithful functor π∗ : D−comp(C, R•) →

D−comp(X, R̂).

4. π induces an equivalence D−comp(X, R̂) ≃ D−comp(C, R•).

5. If m is regular, then (3) and (4) extend to the unbounded case.

Proof. — (1) is clear. The functor π∗ : D(X, R̂) → D(C, R•) is given by K *→

{K ⊗
R̂
R/mn}, while π∗ : D(C, R•)→ D(X, R̂) is given by π∗({Kn}) ≃ R limKn. It

is then clear that π∗ carries complete complexes to complete ones. Given {Kn} ∈

Dcomp(C, R•), each Kn ∈ D(X, R/mn) is derived m-complete, and hence π∗ preserves
completeness as well (since π∗{Kn} := R limKn is m-adically complete). For (2), it
then suffices to check that K ≃ R lim(K ⊗L

R̂
R/mn) for any K ∈ Dcomp(X, R̂), which

is true by Proposition 3.5.1. Lemma 3.5.5 and (2) immediately give (3), and hence
(4). Finally, (5) follows by the same argument as (3) as all the ingredients in the
proof of the latter extend to the unbounded setting if m is regular.

4. The pro-étale topology

We define the pro-étale site of a scheme in §4.1, and study the associated topos
in §4.2. In §4.3, we use these ideas to construct a variant of Tate’s continuous coho-
mology of profinite groups that behaves better in some functorial respects.

4.1. The site

Definition 4.1.1. — A map f : Y → X of schemes is called weakly étale if f is flat and

∆f : Y → Y ×X Y is flat. Write Xproét for the category of weakly étale X-schemes,

which we give the structure of a site by declaring a cover to be one that is a cover in

the fpqc topology, i.e., a family {Yi → Y } of maps in Xproét is a covering family if

any open affine in Y is mapped onto by an open affine in +iYi.

Remark 4.1.2. — To avoid set-theoretic issues, it suffices for our purposes to define
the site Xproét using weakly étale maps Y → X with |Y | < κ, where κ is a fixed
uncountable strong limit cardinal larger than |X | (5). The choice of κ is dictated by

5. Recall that a cardinal κ is a strong limit cardinal if for any γ < κ, 2γ < κ.
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the desire to have Shv(Xproét) be locally weakly contractible. Increasing κ results
in a different topos, but cohomology remains the same, as it can be calculated by a
simplicial covering with w-contractible schemes.

Remark 4.1.3. — We do not directly work with pro-étale morphisms of schemes to
define Xproét as the property of being pro-étale is not geometric: Example 4.1.12
shows its failure to localise on the target. Nonetheless, we call Xproét the pro-étale
site, as by Theorem 2.3.4 any weakly étale map f : Y → X is Zariski locally on X

and locally in Yproét of the form SpecB → SpecA with A→ B ind-étale.

Some elementary examples of weakly étale maps:

Example 4.1.4. — For a field k, a map Spec(R)→ Spec(k) is weakly étale if and only
if k → R is ind-étale. Indeed, R embeds into some ind-étale k-algebra S; but one
checks easily that as k is a field, any subalgebra of an ind-étale k-algebra is again
ind-étale.

Example 4.1.5. — For a schemeX and a geometric point x, the map Spec(Osh
X,x)→ X

from the strict henselization is weakly étale; similarly, the henselization and Zariski
localizations are also weakly étale.

We begin by recording some basic generalities on pro-étale maps.

Lemma 4.1.6. — Compositions and base changes of weakly étale maps are weakly

étale.

Proof. — Clear.

Lemma 4.1.7. — Any map in Xproét is weakly étale.

Proof. — This follows from Proposition 2.3.3 (iv).

The previous observations give good categorical properties for Xproét:

Lemma 4.1.8. — The category Xproét has finite limits, while the full subcategory

spanned by affine weakly étale maps Y → X has all small limits. All limits in

question agree with those in Sch/X .

Proof. — For the first part, it suffices to show that Xproét has a final object and
arbitrary fibre products. Clearly X is a final object. Moreover, if Y1 → Y2 ← Y3 is
a diagram in Xproét, then both maps in the composition Y1 ×Y2 Y3 → Yi → X are
weakly étale for any i ∈ {1, 2, 3} by the previous lemmas, proving the claim. For the
second part, the same argument as above shows finite limits exist. Hence, it suffices
to check that small cofiltered limits exist, but this is clear: the limit of a cofiltered
diagram of affine weakly étale X-schemes is an affine X-scheme that is weakly étale
over X as flatness is preserved under filtered colimits of rings.
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We record an example of a typical “new” object in Xproét:

Example 4.1.9. — The category Xproét is “tensored over” profinite sets, i.e., given a
profinite set S and Y ∈ Xproét, one can define Y ⊗ S ∈ Xproét as follows. Given
S = limi Si as a cofiltered limit of finite sets, we obtain constant X-schemes Si ∈

Xét ⊂ Xproét with value Si. Set S = limi Si, and Y ⊗S := Y ×X S. If X is qcqs, then
for any finitely presented X-scheme U , one has HomX(Y ⊗S,U) = colimiHomX(Y ⊗
Si, U) = colimi

∏
Si

HomX(Y, U). The association S *→ S defines a limit preserving
functor from profinite sets to Xproét.

Using these objects, we can describe the pro-étale site of a field explicitly:

Example 4.1.10. — Fix a field k. If k is a separable closure, then the qcqs objects
in Spec(k)proét identify with the category of profinite sets via the functor Y *→ Y (k)
with inverse S *→ S (in the notation of Example 4.1.9). The map Spec(k)→ Spec(k)
is a weakly étale G-torsor, so the qcqs objects in Spec(k)proét identify with pro-objects
in the category of finite discrete G-sets, i.e., with the category of profinite continuous
G-sets. Under this identification, a family {Si → S} of continuous G-equivariant map
of such sets is a covering family if there exists a finite subset J of the indices such
that +j∈JSj → S is surjective. To see this, we may assume k = k. Given such a
family {Si → S}, the corresponding map +j∈JSj → S is a surjective weakly étale

map of affines, so {Si → S} is a covering family in Spec(k)proét; the converse is clear.
Evaluation on S is exact precisely when S is extremally disconnected; note that this
functor is not a topos-theoretic point as it does not commute with finite coproducts
(though it does commute with filtered colimits and all limits).

Remark 4.1.11. — The site Xproét introduced in this paper differs from the one in
[Sch13], temporarily denoted X ′proét. More precisely, there is a natural map µX :
Shv(Xproét) → Shv(X ′proét) of topoi, but µX is not an equivalence: µX,∗ is fully
faithful, but there are more objects in Shv(X ′proét). This is evident from the definition,
and can be seen directly in Example 4.1.10 when X = Spec(k) with k an algebraically
closed field. Indeed, both the categories Xproét and X ′proét are identified with the
category of profinite sets, but Xproét has more covers than X ′proét: all objects of X

′

proét

are weakly contractible, while the weakly contractible ones in Xproét are exactly the
ones corresponding to extremally disconnected profinite sets.

The following example (due to de Jong) shows that the property of being pro-étale
is not Zariski local on the target, and hence explains why weakly étale maps give a
more geometric notion:

Example 4.1.12. — Let S′ be an infinite set with an automorphism T ′ : S′ → S′

which does not stabilize any finite subset; for example, S′ = Z, and T ′(n) = n + 1.
Write (S, 0) for the one point compactification of S′ and T : S → S for the induced
automorphism (which has a unique fixed point at 0); note that S is profinite, and the
unique non-empty clopen subset of S stable under T is S itself. Let X ⊂ A2

C
be the
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THE PRO-ÉTALE TOPOLOGY FOR SCHEMES 137

union of two irreducible smooth curves X1 and X2 meeting transversely at points p

and q; note that X is connected. Glueing S⊗X1 ∈ X1,proét to S⊗X2 ∈ X2,proét using
the identity at p and T at q gives Y ∈ Xproét. We claim that Y is not pro-étale over
X . Assume otherwise that Y = limi Yi → X with fi : Yi → X étale. Let 0 : X → Y

be the zero section, defined using 0 ∈ S. Then the assumption on Y shows that
0(X) = ∩Ui with Ui ⊂ Y a clopen subset (pulled back from a clopen of Yi). Now any
clopen subset U ⊂ Y defines a clopen subset Up ⊂ S that is stable under T , so Up = S

is the only possibility by choice of S and T ; this gives {0} = 0(X)p = ∩iS = S, which
is absurd.

We end by giving examples of covers in Xproét.

Example 4.1.13. — Given a scheme X and closed geometric points x1, . . . , xn, the
map (

+i Spec(O
sh
X,xi

)
)
+
(
X − {x1, . . . , xn}

)
−→ X

is a weakly étale cover. However, one cannot add infinitely points. For example, the
map

+pSpec(Z
sh
(p)) −→ Spec(Z)

is not a weakly étale cover as the target is not covered by a quasicompact open in the
source.

4.2. The topos. — To effectively study Shv(Xproét), we single out a special class
of weakly étale morphisms to serve as generators:

Definition 4.2.1. — Fix a scheme X. An object U ∈ Xproét is called a pro-étale affine
if we can write U = limi Ui for a small cofiltered diagram i *→ Ui of affine schemes in

Xét; the expression U = limi Ui is called a presentation for U , and we often implicitly

assume that the indexing category has a final object 0. The full subcategory of Xproét

spanned by pro-étale affines is denoted Xaff
proét.

We remark that each U ∈ Xaff
proét is, in particular, an affine scheme pro-étale

over X .

Lemma 4.2.2. — Any map in Xaff
proét is pro-(affine étale).

Proof. — Fix a map h : U → V in Xaff
proét, and presentations U = limi Ui and V =

limj Vj as pro-étale affines. Then, after changing the presentation for U , we may
assume that X = V0 is an affine scheme Spec(A). The claim now follows from the
observation that a map between ind-étale A-algebras is also ind-étale.

Remark 4.2.3. — By Lemma 4.2.2, the category Xaff
proét admits limits indexed by a

connected diagram, and these agree with those in Sch/X . However, this category
does not have a final object (unless X is affine) or non-empty finite products (unless
X has an affine diagonal).
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The reason to introduce pro-étale affines is:

Lemma 4.2.4. — The site Xproét is subcanonical, and the topos Shv(Xproét) is gener-

ated by Xaff
proét.

Proof. — The first part comes from fpqc descent. The second assertion means that
any Y ∈ Xproét admits a surjection +iUi → Y in Xproét with Ui ∈ Xaff

proét, which
follows from Theorem 2.3.4.

We record some consequences of the above observations on pro-étale maps for the
pro-étale site:

Remark 4.2.5. — Assume X is an affine scheme. Then Xaff
proét is simply the category

of all affine schemes pro-étale over X ; this category admits all small limits, and
becomes a site with covers defined to be fpqc covers. Lemma 4.2.4 then shows that
Shv(Xproét) ≃ Shv(Xaff

proét).

Lemma 4.2.6. — A presheaf F on Xproét is a sheaf if and only if:

1. For any surjection V →U in Xaff
proét, the sequence F (U)→ F (V ) !!!! F (V ×U V )

is exact.

2. The presheaf F is a Zariski sheaf.

Proof. — The forward direction is clear. Conversely, assume F is a presheaf satisfying
(1) and (2), and fix a cover Z → Y in Xproét. Using (1) and (2), one readily checks the
sheaf axiom in the special case where Y ∈ Xaff

proét, and Z = +iWi with Wi ∈ Xaff
proét.

In the case of a general cover, Lemma 4.2.4 shows that we can find a diagram

+j∈JUj
a !!

b

""

Z

c

""

+i∈IVi
d !! Y

where d is a Zariski cover, a and b are covers in Xproét, and Uj , Vi ∈ Xaff
proét with

b determined by a map h : J → I of index sets together with maps Uj → Vh(j) in
Xaff

proét. The previous reduction and (2) give the sheaf axiom for b and d, and hence
d ◦ b as well. It formally follows that F (Y ) → F (Z) is injective, and hence that
F (Z)→

∏
i F (Ui) is also injective by (2) as a is a cover. A diagram chase then shows

that the sheaf axiom for c follows from that for c ◦ a.

Lemma 4.2.7. — For any Y ∈Xproét, pullback induces an identification Shv(Xproét)/Y
≃ Shv(Yproét).

Proof. — A composition of weakly étale maps is weakly étale, and any map between
weakly étale maps is weakly étale.

The pro-étale topos is locally weakly contractible in the sense of Definition 3.2.1.
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Proposition 4.2.8. — For any scheme X, the topos Shv(Xproét) is locally weakly con-

tractible.

Proof. — This follows immediately from Lemma 2.4.9 since any affine U ∈ Xproét is
coherent.

Remark 4.2.9. — Proposition 4.2.8 gives a recipe for calculating the pro-étale homo-
topy type |X | of a qcqs scheme X . Namely, if f : X• → X is a hypercover in Xproét

with each Xn being w-contractible, then |X | = |π0(X•)|; any two such choices of f
are homotopic, and hence |X | is well-defined in the category of simplicial profinite
sets up to continuous homotopy.

We give an example illustrating the behaviour of constant sheaves on the pro-étale
site:

Example 4.2.10. — Fix a connected affine scheme X , and a profinite set S = limi Si

with Si finite. By the formula in Example 4.1.9, the constant sheaf A ∈ Shv(Xproét)
associated to a set A satisfies

A(X ⊗ S) = colim
i

(
ASi

)
.

In particular, the functor A *→ A is not compatible with inverse limits.

The following example shows classical points do not detect non-triviality in
Shv(Xproét).

Example 4.2.11. — Fix an algebraically closed field k, and set X = Spec(k). Then
Shv(Xproét) identifies with the topos of sheaves on the category of profinite sets S

as explained in Example 4.1.10. Consider the presheaf G (resp. F ) which associates
to such an S the group of all locally constant (resp. all) functions S → Λ for some
abelian group Λ. Then both F and G are sheaves: this is obvious for G, and follows
from the compatibility of limits in profinite sets and sets for F . Moreover, G ⊂ F ,
and Q := F/G ∈ Ab(Xproét) satisfies Q(X) = 0, but Q(S) ̸= 0 for S not discrete.

In fact, more generally, one can define ’constant sheaves’ associated with topological
spaces. Indeed, let X be any scheme, and let T be some topological space.

Lemma 4.2.12. — The association mapping any U ∈ Xproét to Mapcont(U, T ) is a

sheaf FT on Xproét. If T is totally disconnected and U is qcqs, then FT (U) =
Mapcont(π0(U), T ). In particular, if T is discrete, then FT is the constant sheaf

associated with T .

Proof. — To show that FT is a sheaf, one reduces to proving that if f : A → B

is a faithfully flat ind-étale morphism of rings, then M ⊂ SpecA is open if and
only if (Specf)−1(M) ⊂ SpecB is open. Only the converse is nontrivial, so assume
(Specf)−1(M) ⊂ SpecB is open. First, we claim that M is open in the constructible
topology. Indeed, the map Specf : SpecB → SpecA is a continuous map of compact
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Hausdorff spaces when considering the constructible topologies. In particular, it is
closed, so

SpecA \M = (Specf)(SpecB \ (Specf)−1(M))

is closed, and thus M is open (in the constructible topology). To check that M is
actually open, it is enough to verify that M is closed under generalizations. This
is clear, as Specf is generalizing, and (Specf)−1(M) is open (and thus closed under
generalizations).

If T is totally disconnected and U is qcqs, then any continuous map U → T

will necessarily factor through the projection U → π0(U), so that FT (U) =
Mapcont(π0(U), T ).

We relate sheaves on X with sheaves on its space π0(X) of connected compo-
nents. Recall that if X is a qcqs scheme, then π0(X) is a profinite set. If π0(X)proét
denotes the site of profinite π0(X)-sets as in Example 4.1.10, then the construction of
Lemma 2.2.8 defines a limit-preserving functor π−1 : π0(X)proét → Xproét which re-
spects coverings. Hence, one has an induced map π : Shv(Xproét)→ Shv(π0(X)proét)
of topoi. This map satisfies:

Lemma 4.2.13. — Assume X is qcqs, and let π : Shv(Xproét) → Shv(π0(X)proét) be

as above. Then

1. π∗F (U) = F (π0(U)) for any qcqs U ∈ Xproét and F ∈ Shv(π0(X)proét).

2. π∗ commutes with limits.

3. π∗ is fully faithful, so π∗π
∗ ≃ id.

4. π∗ identifies Shv(π0(X)proét) with the full subcategory of those G ∈ Shv(Xproét)
such that G(U) = G(V ) for any map U → V of qcqs objects in Xproét inducing

an isomorphism on π0.

Proof. — All schemes appearing in this proof are assumed qcqs. (2) is automatic
from (1). For (1), fix some F ∈ Shv(π0(X)proét). As any continuous π0(X)-map
U → S with U ∈ Xproét and S ∈ π0(X)proét factors canonically through π0(U), the
sheaf π∗F is the sheafification of the presheaf U *→ F (π0(U)) on U ∈ Xproét. As F is
itself a sheaf on π0(X)proét, it is enough to check: for a surjection U → V in Xproét,
the map π0(U) → π0(V ) is the coequalizer of the two maps π0(U ×V U) → π0(U)
in the category of profinite sets (induced by the two projection maps U ×V U → U).
For any profinite set S, one has (S ⊗X)(U) = Mapcont(π0(U), S) with notation as in
Example 4.1.9, so the claim follows from the representability of S⊗X and fpqc descent.
For (3), it suffices to check that π∗π∗F ≃ F for any F ∈ Shv(π0(X)proét), which is
immediate from Lemma 2.2.8 and (2). For (4), by (2), it remains to check that any G

with the property of (4) satisfies G ≃ π∗π∗G. Given U ∈ Xproét, we have a canonical
factorization U → π−1(π0(U)) → X , where π−1(π0(U)) → X is a pro-(finite étale)
map inducing π0(U) → π0(X) on connected components, while U → π−1(π0(U)) is
an isomorphism on π0. Then G(U) = G(π−1(π0(U))) by assumption on G, which
proves G = π∗π∗G by (2).
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Remark 4.2.14. — The conclusion of Lemma 4.2.13 fails for π : Shv(Xét) →
Shv(π0(X)ét). Indeed, if X is connected, then Shv(π0(X)ét) = Set, and π∗ coincides
with the “constant sheaf” functor, which is not always limit-preserving.

4.3. The case of a point. — Fix a profinite group G. We indicate how the
definition of the pro-étale site can be adapted to give a site BGproét of profinite
G-sets. In particular, each topological G-module M defines a sheaf FM on BGproét,
and the resulting functor from topological G-modules to abelian sheaves on BGproét

is an embedding with dense image (in the sense of colimits). We use this construction
to study the cohomology theory M *→ RΓ(BGproét,FM ) on G-modules: this theory
is equal to continuous cohomology in many cases of interest, and yet better behaved
in some functorial respects. The definition is:

Definition 4.3.1. — Let BGproét be the pro-étale site of G, defined as the site of profi-

nite continuous G-sets with covers given by continuous surjections.

For S ∈ BGproét, we use hS ∈ Shv(BGproét) to denote the associated sheaf. Let
G-Spc be the category of topological spaces with a continuous G-action; recall that
G-Spc admits limits and colimits, and the formation of these commutes with passage
to the underlying spaces (and thus the underlying sets). Let G-Spccg ⊂ G-Spc be
the full subcategory of X ∈ G-Spc whose underlying space may be written as a quo-
tient of a disjoint union of compact Hausdorff spaces; we call these spaces compactly
generated. There is a tight connection between these categories and Shv(BGproét):

Lemma 4.3.2. — Let notation be as above.

1. The association X *→ Mapcont,G(−, X) gives a functor F(−) : G-Spc →
Shv(BGproét).

2. The functor F(−) is limit-preserving and faithful.

3. F(−) admits left adjoint L.

4. F(−) is fully faithful on G-Spccg.

5. The essential image of G-Spccg generates Shv(BGproét) under colimits.

Proof. — The argument of Lemma 4.2.12 shows that any continuous surjection of
profinite sets is a quotient map, which gives the sheaf property required in (1). It
is clear that the resulting functor F(−) is limit-preserving. For any X ∈ G-Spc,
one has FX(G) = X where G ∈ BGproét is the group itself, viewed as a left G-set
via translation; this immediately gives (2). The adjoint functor theorem gives the
existence of L as in (3), but one can also construct it explicitly: the functor hS *→

S extends to a unique colimit preserving functor Shv(BGproét) → G-Spc by the
universal property of the presheaf category (as a free cocompletion of BGproét) and
the fact that covers in BGproét give quotient maps. In particular, if F ∈ Shv(BGproét),
then F = colimIF hS, where IF is the category of pairs (S, s) with S ∈ BGproét

and s ∈ F (S), which gives L(F ) = colimIF S. For (4), it is enough to show that
L(FX) ≃ X for any compactly generated X . By the previous construction, one has
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L(FX) = colimIFX
S, so we must check that there exists a set I of spaces Si ∈ BGproét

and G-maps si : Si → X such that +iSi → X is a quotient map. Choose a set I

of compact Hausdorff spaces Ti and a quotient map +iTi → X . Then the map
+iTi × G → X induced by the G-action is also a quotient, so we reduce to the case
where X is a compact Hausdorff G-space. Now consider Y := G × β(X) ∈ BGproét,
where the G-action is defined via g · (h, η) = (gh, η). There is an induced continuous
map f : Y → X via G × β(X) → G × X → X , where the last map is the action.
One checks that f is G-equivariant and surjective. As Y is profinite, this proves (4).
Lastly, (5) is formal as FS = hS for S ∈ BGproét.

Let G-Mod denote the category of continuous G-modules, i.e., topological abelian
groups equipped with a continuous G-action, and let G-Modcg ⊂ G-Mod be the full
subcategory of topological G-modules whose underlying space is compactly gener-
ated. The functor F(−) restricts to a functor F(−) : G-Mod → Ab(BGproét), and
Lemma 4.3.2 (1)–(4) apply formally to this functor as well. The main non-formal
statement is:

Proposition 4.3.3. — With notation as above, one has:

1. The essential image of F(−) : G-Modcg → Ab(BGproét) generates the target

under colimits.

2. Every N ∈ Ab(BGproét) has a resolution whose terms come from G-Modcg.

To prove Proposition 4.3.3, we review some topological group theory. For a topo-
logical space X , write AX for the free topological abelian group on X , defined by
the obvious universal property. One may show that AX is abstractly isomorphic to
the free abelian group on the set X , see [AT08, Theorem 7.1.7]. In particular, one
has a reduced length associated to each f ∈ AX , defined as the sum of the absolute
values of the coefficients. Let A"NX ⊂ AX be the subset of words of length " N ;
one checks that this is a closed subspace, see [AT08, Theorem 7.1.13]. Moreover:

Theorem 4.3.4 (Graev). — If X is a compact topological space, then AX =
colimA"NX as spaces.

Proof. — See Theorem [AT08, Theorem 7.4.1].

We use this to prove.

Lemma 4.3.5. — Fix a compact Hausdorff space S, an extremally disconnected profi-

nite set T , and a continuous map f : T → AS. Then there exists a clopen decompo-

sition T = +iTi such that f |Ti is a Z-linear combination of continuous maps Ti → S.

Proof. — Lemma 4.3.7 and Theorem 4.3.4 imply that f factors through some A"NS.
Now consider the profinite set S̃ = S + {0} + S and the induced map φ : S̃N → A"N

defined by viewing S̃ as the subspace (1 · S) + {0} + (−1 · S) ⊂ AS and using the
group law. This map is continuous and surjective, and all spaces in sight are compact
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Hausdorff. By extremal disconnectedness, there is a lift T → S̃N ; one checks that
this implies the desired claim.

We can now identify the free abelian sheaf ZhS for any S ∈ BGproét:

Lemma 4.3.6. — If S ∈ BGproét, then ZhS ≃ FAS.

Proof. — One clearly has FS = hS , so there is a natural map ψ : ZhS → FAS of
abelian sheaves induced by FS → FAS . We will check ψ(T ) is an isomorphism for T
covering BGproét. Let F : ∗proét → BGproét be a left adjoint to the forgetful functor
BGproét → ∗proét. Then it is enough to check ψ(F (T )) is an isomorphism for T

extremally disconnected. Unwinding definitions, this is exactly Lemma 4.3.5.

Proposition 4.3.3 falls out quickly:

Proof of Proposition 4.3.3. — Theorem 4.3.4 shows that AS is compactly generated
for any S ∈ BGproét. Now Lemma 4.3.6 gives (1) as the collection {ZhS} generates
Ab(BGproét) under colimits. Finally, (2) is formal from (1).

The next lemma was used above, and will be useful later.

Lemma 4.3.7. — Fix a countable tower X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ . . . of closed immer-

sions of Hausdorff topological spaces, and let X = colimiXi. Then Mapcont(S,X) =
colimMapcont(S,Xi).

Proof. — We must show each f : S → X factors through some Xi. Towards con-
tradiction, assume there exists a map f : S → X with f(S) ̸⊂ Xi for all i. After
reindexing, we may assume that there exist xi ∈ S such that f(xi) ∈ Xi − Xi−1.
These points give a map π : βN → S via i *→ xi. After replacing f with f ◦ π,
we may assume S = βN; set T = {f(i)|i ∈ N}. Now pick any x ∈ X − T . Then
x ∈ Xj for some j. For i > j, we may inductively construct open neighourhoods
x ∈ Ui ⊂ Xi such that Ui ∩ T = ∅, and Ui+1 ∩ Xi = Ui; here we use that Xi ∩ T

is finite. The union U = ∪iUi ⊂ X is an open neighbourhood of x ∈ X that misses
T . Hence, f−1(U) ∩N = ∅, so f−1(U) = ∅ by density of N ⊂ S. Varying over all
x ∈ X − T then shows that f(S) = T . Now one checks that T ⊂ X is discrete: any
open neighbourhood 1 ∈ U1 ⊂ X1 can be inductively extended to open neighbour-
hoods x1 ∈ Ui ⊂ Xi such that Ui+1 ∩Xi = Ui and xi /∈ Ui. Then T must be finite as
S is compact, which is a contradiction.

We now study the cohomology theory M *→ RΓ(BGproét,FM ) on G-Mod. There
is a natural transformation connecting it to continuous cohomology:

Lemma 4.3.8. — For any M ∈ G-Mod, there is a natural map ΦM : RΓcont(G,M)→
RΓ(BGproét,FM ).

Proof. — By [Sch13, Proposition 3.7], one has RΓcont(G,M) = RΓ(BG′proét, µ∗FM ),
where BG′proét is defined as in Remark 4.1.11, and µ : Shv(BGproét)→ Shv(BG′proét)
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the natural map; one then defines φM via pullback as µ∗µ∗ ≃ id on D(BGproét)
(simply because BGproét is finer topology than BG′proét on the same category).

The map ΦM is an isomorphism for a fairly large collection of modules:

Lemma 4.3.9. — Let C ⊂ G-Mod be the full subcategory of all M ∈ G-Mod for which

Riµ∗FM = 0 for all i > 0, where µ : Shv(BGproét) → Shv(BG′proét) is the natural

map.

1. For all M ∈ C, the map ΦM : RΓcont(G,M)→ RΓ(BGproét,FM ) is an isomor-

phism.

2. If M ∈ G-Mod is discrete, then M ∈ C.

3. If M = colimMi is a sequential colimit of Hausdorff Mi ∈ C along closed

immersions, then M ∈ C.

4. If M = limMi is a sequential limit of Mi ∈ C along profinitely split Mi+1 →Mi,

then M ∈ C.

5. If M = limMi is a sequential limit of Mi ∈ C along β-epimorphisms Mi+1 →Mi

with kernel Ki = ker(Mi+1 →Mi) ∈ C, then M ∈ C.

Here a quotient map M → N of topological spaces is said to be profinitely split

if it admits sections over any map K → N with K profinite. It is said to be a
β-epimorphism if for every map g : K → N with K compact Hausdorff, there is a
surjection K ′ → K with K ′ compact Hausdorff, and a lift K ′ →M ; equivalently, for
any map β(X)→ N where X is discrete, there is a lift β(X)→M . This property is
automatic if M → N is a quotient map, and the kernel is compact Hausdorff.

Proof. — Parts (1) and (2) are clear. For (3), note that FM = colimFMi by Lemma
4.3.7, so the result follows as Rµ∗ commutes with filtered colimits. For parts (4) and
(5), note that if Mi+1 → Mi is a β-epimorphism, then FMi+1 → FMi is surjective on
BGproét. By repleteness, we get FM = limFMi = R limFMi . Applying Rµ∗ and using
repleteness of BG′proét, we have to show that R1 lim(µ∗FMi) = 0. If all Mi+1 → Mi

are profinitely split, then all µ∗FMi+1 → µ∗FMi are surjective, so the result follows
from repleteness of BG′proét. If Ki = ker(Mi+1 → Mi) ∈ C, then on applying Rµ∗ to
the sequence

0 −→ FKi −→ FMi+1 −→ FMi −→ 0,

we find that µ∗FMi+1 → µ∗FMi is surjective, so again the result follows from replete-
ness of BG′proét.

Remark 4.3.10. — The category C of Lemma 4.3.9 includes many standard Galois
modules occurring in arithmetic geometry obtained by iterations of completions and
localisations applied to discrete modules. For example, when G = Gal(Qp/Qp), the
G-module BdR is such an object.

We now indicate one respect in which RΓ(BGproét,F(−)) behaves better than con-
tinuous cohomology: one gets long exact sequences in cohomology with fewer con-
straints.
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Lemma 4.3.11. — Fix an algebraically short exact sequence 0→M ′
a
→M

b
→M ′′ → 0

in G-Mod. Assume b is a β-epimorphism, and a realises M ′ as a subspace of M . Then

there is an induced long exact sequence on applying H∗(BGproét,F(−)).

Proof. — It is enough to show that

0 −→ FM ′ −→ FM −→ FM ′′ −→ 0

is exact. Exactness on the right results from the assumption on b, exactness on the
left is obvious from the injectivity of M ′ ↪→ M , and exactness in the middle comes
from the assumption on a.

Remark 4.3.12. — Considerations of the discrete topology show that some hypothesis
must be imposed in Lemma 4.3.11. The assumption used above is fairly weak: it is
automatic if M ′ is compact Hausdorff. In contrast, in continuous cohomology, one
demands existence of sections after base change to all profinite sets over M ′′.

5. Relations with the étale topology

Fix a scheme X . Since an étale map is also a weakly étale map, we obtain a
morphism of topoi

ν : Shv(Xproét) −→ Shv(Xét).

The main goal of this section is to describe its behaviour at the level of derived cate-
gories. The pullback and pushforward along ν, together with the resulting semiorthog-
onal decompositions of complexes on Xproét, are discussed in §5.1 and §5.2. This is
used to describe the left-completion of D(Xét) in terms of D(Xproét) in §5.3. Some
elementary remarks on the functoriality of ν in X are recorded in §5.4. Finally, we
describe Ekedahl’s category of“adic”complexes [Eke90] in terms of D(Xproét) in §5.5.
We rigorously adhere to the derived convention: the functors ν∗ and ν∗, when applied
to complexes, are understood to be derived.

5.1. The pullback. — We begin with the pullback at the level of sheaves of sets:

Lemma 5.1.1. — For F ∈ Shv(Xét) and U ∈ Xaff
proét with a presentation U = limi Ui,

one has ν∗F (U) = colimi F (Ui).

Proof. — The problem is local on X , so we may assume that X = Spec(A) is affine.
In that case, by Remark 4.2.5, the site Xproét is equivalent to the site S given by ind-
étale A-algebras B = colimBi, with covers given by faithfully flat maps. The pullback
F ′ of F to S as a presheaf is given by F ′(B) = colimF (Bi). It thus suffices to check
that F ′ is a sheaf; we will do this using Lemma 4.2.6. First, note that F ′ is a Zariski
sheaf since any finite collection of quasicompact open subschemes of SpecB come via

pullback from some SpecBi. It remains to show that F ′ satisfies the sheaf axiom for
every faithfully flat ind-étale map B → C of ind-étale A-algebras. If B → C is actually
étale, then it arises via base change from some faithfully flat étale map Bi → Ci, so
the claim follows as F is a sheaf. In general, write C = colimCj as a filtered colimit
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of étale B-algebras Cj , necessarily faithfully flat. Then F ′(C) = colimj F
′(Cj). The

sheaf axiom for B → C now follows by taking filtered colimits.

A first consequence of the above formula is that ν∗ is fully faithful. In fact, we
have:

Lemma 5.1.2. — The pullback ν∗ : Shv(Xét) → Shv(Xproét) is fully faithful. Its es-

sential image consists exactly of those sheaves F with F (U) = colimi F (Ui) for any

U ∈ Xaff
proét with presentation U = limi Ui.

Proof. — Lemma 5.1.1 shows that F ≃ ν∗ν∗F for any F ∈ Shv(Xét), which formally
implies that ν∗ is fully faithful. For the second part, fix some G ∈ Shv(Xproét)
satisfying the condition of the lemma. Then Lemma 5.1.1 (together with Lemma 4.2.4)
shows that ν∗ν∗G→ G is an isomorphism, which proves the claim.

Definition 5.1.3. — A sheaf F ∈ Shv(Xproét) is called classical if it lies in the essential

image of ν∗ : Shv(Xét)→ Shv(Xproét).

In particular, F is classical if and only if ν∗ν∗F → F is an isomorphism. We need
a simple lemma on recognizing classical sheaves.

Lemma 5.1.4. — Let F be a sheaf on Xproét. Assume that for some pro-étale cover

{Yi → X}, F |Yi is classical. Then F is classical.

Proof. — We may assume that X = SpecA is affine, that there is only one Y =
Yi = SpecB, with A → B ind-étale, B = colimiBi, with A → Bi étale. We need to
check that for any ind-étale A-algebra C = colimj Cj , we have F (C) = colimj F (Cj).
Now consider the following diagram, expressing the sheaf property for C → B ⊗ C,
resp. Cj → B ⊗ Cj .

F (C) !!

""

F (C ⊗B) !!
!!

""

F (C ⊗B ⊗B)

""

colimF (Cj) !! colimj F (Cj ⊗B) !!
!! colimj F (Cj ⊗B ⊗B)

The second and third vertical arrows are isomorphisms as F |SpecB is classical. Thus,
the first vertical arrow is an isomorphism as well, as desired.

As an example, let us show how this implies that the category of local systems does
not change under passage from Xét to Xproét.

Corollary 5.1.5. — Let R be a discrete ring. Let LocXét(R) be the category of

R-modules Lét on Xét which are locally free of finite rank. Similarly, let LocXproét(R)
be the category of R-modules Lproét on Xproét which are locally free of finite rank.

Then ν∗ defines an equivalence of categories LocXét(R) ∼= LocXproét(R).

In the following, we denote either category by LocX(R).
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Proof. — If Lét ∈ LocXét(R), then clearly Lproét = ν∗Lét ∈ LocXproét(R);
as ν∗ is fully faithful, it remains to verify essential surjectivity. Thus, take
Lproét ∈ LocXproét(R). As Lproét is locally free of finite rank, it is in particu-
lar locally classical, thus classical by Lemma 5.1.4. Thus, Lproét = ν∗Lét for
some sheaf Lét of R-modules on Xét. Assume that U ∈ Xaff

proét with presentation
U = limUi is such that Lproét|U ∼= Rn|U . The isomorphism is given by n elements of
(Lproét)(U) = colimi Lét(Ui). This shows that the isomorphism Lproét|U ∼= Rn|U is
already defined over some Ui, thus Lét ∈ LocXét(R), as desired.

Next, we pass to derived categories.

Corollary 5.1.6. — For any K ∈ D+(Xét), the adjunction map K → ν∗ν
∗K is

an equivalence. Moreover, if U ∈ Xaff
proét with presentation U = limi Ui, then

RΓ(U, ν∗K) = colimi RΓ(Ui,K).

Proof. — The first part follows from the second part by checking it on sections using
Lemma 4.2.4, i.e., by applying RΓ(V,−) to the map K → ν∗ν

∗K for each affine
V ∈ Xét. For the second part, the collection of all K ∈ D+(Xét) for which the claim
is true forms a triangulated category stable under filtered colimits. Hence, it suffices
to prove the claim for K ∈ Ab(Xét) ⊂ D+(Xét). For such K, since we already know
the result on H0 by Lemma 5.1.1, it suffices to prove: Hp(U, ν∗I) = 0 for I ∈ Ab(Xét)
injective, p > 0, and U ∈ Xaff

proét. By [SGA72b, Proposition V.4.3], it suffices to prove

that Ȟp(U, ν∗I) = 0 for the same data. Choose a presentation U = limi Ui for some
cofiltered category I. By Theorem 2.3.4, a cofinal collection of covers of U in Xproét

is obtained by taking cofiltered limits of affine étale covers obtained via base change
from some Ui. Using Lemma 5.1.1 again, we can write

Ȟp(U, F ) = colimHp
(
I(V ) !! !! I(V ×Ui V )

!!!!!! I(V ×Ui V ×Ui V )
!!!!!!!! · · ·

)

where the colimit is computed over (the opposite of) the category of pairs (i, V ) where
i ∈ I, and V → Ui is an affine étale cover. For a fixed i, the corresponding colimit
has vanishing higher cohomology since I|Ui is injective in Ab(Ui,ét), and hence has
trivial higher Cech cohomology. The claim follows as filtered colimits are exact.

Again, we will refer to objects in the essential image of ν∗ as classical, and
Lemma 5.1.4 extends to bounded-below derived categories with the same proof.

Remark 5.1.7. — The argument used to prove Corollary 5.1.6 also shows: if U ∈

Xaff
proét is w-strictly local, then Hp(U, ν∗F ) = 0 for all F ∈ Ab(Xét) and p > 0.

Indeed, for such U , any affine étale cover V → U has a section, so the corresponding
Cech nerve is homotopy-equivalent to U as a simplicial scheme.

Remark 5.1.8. — If K ∈ D(Xét) is an unbounded complex, then the formula in
Corollary 5.1.6 is not true. Instead, to describe ν∗K, first observe that ν∗K ≃

R lim ν∗τ!−nK as Shv(Xproét) is replete and ν∗ commutes with Postnikov trunca-
tions. Hence, RΓ(Y, ν∗K) ≃ R lim colimi RΓ(Yi, τ

!−nK) for any Y ∈ Xaff
proét with a
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presentation Y = lim Yi. Moreover, since ν∗ commutes with arbitrary limits, we also
see that ν∗ν∗K ≃ R lim τ!−nK. For an explicit example, we remark that Exam-
ple 3.3.4 can be adapted to exhibit the failure of id→ ν∗ν

∗ being an equivalence.

An abelian consequence is:

Corollary 5.1.9. — The pullback ν∗ : Ab(Xét) → Ab(Xproét) induces an equivalence

on Exti for all i. In particular, ν∗(Ab(Xét)) ⊂ Ab(Xproét) is a Serre subcategory.

Proof. — Let C ⊂ Ab(Xét) be the full subcategory of sheaves F for which
Exti(F,−) ≃ Exti(ν∗(F ), ν∗(−)) for all i. Then C contains all direct sums of sheaves
of the form ZU for U ∈ Xét by Corollary 5.1.6. Since any F ∈ Ab(Xét) admits a
surjection from such a direct sum, the claim follows by dimension shifting.

5.2. The pushforward. — Our goal is to describe the pushforward ν∗ :
D(Xproét) → D(Xét) and the resulting decomposition of D(Xproét). To do so,
it is convenient to isolate the kernel of ν∗:

Definition 5.2.1. — A complex L ∈ D(Xproét) is parasitic if RΓ(ν−1U,L) = 0 for

any U ∈ Xét. Write Dp(Xproét) ⊂ D(Xproét) for the full subcategory of parasitic

complexes, D+
p (Xproét) for bounded below parasitics, etc.

The key example is:

Example 5.2.2. — Let {Fn} ∈ Fun(Nop,Ab(Xét)) be a projective system of
sheaves with surjective transition maps. Set K = R limFn ∈ D(Xét), and
K ′ = R lim ν∗(Fn) ∈ D(Xproét). Then K ′ ≃ lim ν∗(Fn) as Xproét is replete.
The natural map ν∗K → K ′ has a parasitic cone since ν∗ν∗K ≃ K = R limFn ≃

R lim ν∗ν
∗Fn ≃ ν∗K

′. For example, when X = Spec(Q), the cone of the map
ν∗(R limµn)→ limµn is non-zero and parasitic.

The basic structural properties of Dp(Xproét) are:

Lemma 5.2.3. — The following are true:

1. Dp(Xproét) is the kernel of ν∗ : D(Xproét)→ D(Xét).

2. Dp(Xproét) is a thick triangulated subcategory of D(Xproét).

3. The inclusion i : Dp(Xproét)→ D(Xproét) has a left adjoint L.

4. The adjunction L ◦ i→ id is an equivalence.

Sketches of proof

1. This follows from the adjunction between ν∗ and ν∗ together with the fact
that D(Xét) is generated under homotopy-colimits by sheaves of the form ZU

for U ∈ Xét.

2. Clear.
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3. Consider the functor M : D(Xproét) → D(Xproét) defined via M(K) =
cok(ν∗ν∗K → K). There is a map id → M , and hence a tower id → M →

M2 → M3 → . . . , where Mn is the n-fold composition of M with itself. We
set L : D(Xproét) → D(Xproét) to be the (filtered) colimit of this tower, i.e.,
L(K) = M∞(K) := colimn M

n(K). We will show that L(K) is parasitic for
any K, and that the induced functor L : D(Xproét) → Dp(Xproét) is a left
adjoint to i. Choose any U ∈ Xét. As U is qcqs, we have

RΓ(ν−1U,L(K)) ≃ RΓ(ν−1U, colim
n

Mn(K)) = colim
n

RΓ(ν−1U,Mn(K)).

Hence, to show that L takes on parasitic values, it suffices to show that

RΓ(ν−1U,K) −→ RΓ(ν−1U,M(K))

is the 0 map for any K ∈ D(Xproét). Since ν is a map of a topoi, we have a
factorisation

RΓ(ν−1U,K) ≃ RΓ(U, ν∗K)
ν−1

−→ RΓ(ν−1U, ν∗ν∗K) −→ RΓ(ν−1U,K)

of the identity map on RΓ(ν−1U,K). The composition RΓ(ν−1U,K) →
RΓ(ν−1U,M(K)) is then 0 by definition of M(K), which proves that L(K) is
parasitic. To show that the induced functor L : D(Xproét) → Dp(Xproét) is a
left adjoint to the inclusion, note first that for any K,P ∈ D(Xproét) with P

parasitic, one has Hom(ν∗ν∗K,P ) = Hom(ν∗K, ν∗P ) = 0 by (1). The exact
triangle defining M(K) shows

Hom(K,P ) ≃ Hom(M(K), P ) ≃ Hom(M2(K), P ) ≃ · · · ≃ Hom(Mn(K), P )

for any n ! 0. Taking limits then shows

Hom(K,P ) = limHom(Mn(K), P ) = Hom(colim
n

Mn(K), P ) = Hom(L(K), P ),

which is the desired adjointness.

4. This follows from (1) and the construction of L given in (3): for any parasitic
P ∈ D(Xproét), one has P ≃ M(P ) ≃ Mn(P ) ≃ colimn M

n(P ) ≃ L(P ) since
ν∗P = 0.

Remark 5.2.4. — In Lemma 5.2.3, it is important to work at the derived level: the full
subcategory Abp(Xproét) of all F ∈ Ab(Xproét) with F (ν−1U) = 0 for any U ∈ Xét

is not a Serre subcategory of Ab(Xproét). For example, let X = Spec(Q) and set
Ẑℓ(1) := limµℓn ∈ Ab(Xproét). Then there is an exact sequence

1 −→ Ẑℓ(1)
ℓ
−→ Ẑℓ(1) −→ µℓ −→ 1

in Ab(Xproét). One easily checks that Ẑℓ(1) ∈ Abp(Xproét), while µℓ ̸∈ Abp(Xproét).

Remark 5.2.5. — The localisation functor L : D(Xproét) → Dp(Xproét) from
Lemma 5.2.3 admits a particularly simple description when restricted to bounded
below complexes: L(K) ≃ cok(ν∗ν∗K → K) for any K ∈ D+(Xproét). Indeed, by
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the proof of Lemma 5.2.3 (3), it suffices to show that M(K) ≃ M2(K) for such a
complex K; this follows from the formula ν∗ν∗ν∗ν∗K ≃ ν∗ν∗K, which comes from
Corollary 5.1.6.

We can now show that D+(Xét) and D+
p (Xproét) give a semiorthogonal decompo-

sition for D+(Xproét).

Proposition 5.2.6
Consider the adjoints D+(Xproét)

ν∗
!! D+(Xét)

ν∗

## and D+
p (Xproét)

i
!! D+(Xproét)

L## .

1. ν∗ is fully faithful.

2. The adjunction id→ ν∗ν
∗ is an equivalence.

3. The essential image of ν∗ is exactly those K ∈ D+(Xproét) whose cohomology

sheaves are in ν∗(Ab(Xét)).

4. The pushforward ν∗ realises D+(Xét) as the Verdier quotient of D+(Xproét) by
D+

p (Xproét).

5. The map L realises D+
p (Xproét) as the Verdier quotient of D+(Xproét) by

ν∗(D+(Xét)).

Sketches of proof

1. This follows formally from Corollary 5.1.6.

2. This follows from (1) by Yoneda.

3. Let C ⊂ D+(Xproét) be the full subcategory of complexes whose cohomology
sheaves lie in ν∗(Ab(Xét)); by Corollary 5.1.9, this is a triangulated subcat-
egory of D+(Xproét) closed under filtered colimits. Moreover, chasing trian-
gles and truncations characterises C as the smallest triangulated subcategory
of D+(Xproét) closed under filtered colimits that contains ν∗(Ab(Xét)). Now
ν∗(D+(Xét)) ⊂ C as ν∗ is exact. Moreover, by (1) and left-adjointness of ν∗, we
see that ν∗(D+(Xét)) is a triangulated subcategory of D+(Xproét) closed under
filtered colimits. Since ν∗(D+(Xét)) clearly contains ν∗(Ab(Xét)), the claim
follows.

4. By Lemma 5.2.7, we want ν∗ to admit a fully faithful left adjoint; this is what (1)
says.

5. This follows from Lemma 5.2.3 and Lemma 5.2.7 provided ν∗(D+(Xét)) is the
kernel of L. By Remark 5.2.5, the kernel of L is exactly those K with ν∗ν∗K ≃
K, so the claim follows using Corollary 5.1.6.

The following observation was used above:

Lemma 5.2.7. — Let L : C1 → C2 be a triangulated functor between triangulated cate-

gories. If L admits a fully faithful left or right adjoint i, then L is a Verdier quotient

of C1 by ker(L).
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Proof. — By symmetry, we may assume L is a left adjoint. Given a triangulated
functor F : C1 → D which carries ker(L) to 0, we will show that the natural map
F → F ◦ i◦L is an equivalence. First, adjunction shows L◦ i ≃ id via the natural map
as i is fully faithful. Hence, for each K ∈ C1, we get a triangle K ′ → K → (i ◦L)(K)
such that L(K ′) = 0. This shows that F (K) ≃ (F ◦ i ◦ L)(K) for all such F , proving
the claim.

Remark 5.2.8. — If we assume that Xét is locally of finite cohomological dimension,
then D(Xét) is left-complete. Since D(Xproét) is also left-complete, one can show that
ν∗ : D(Xét)→ D(Xproét) is fully faithful by reduction to the bounded below case. In
fact, every statement in Proposition 5.2.6 extends to the unbounded setting in this
case.

At the unbounded level, the pullback ν∗ : D(Xét) → D(Xproét) is not fully faith-
ful in general, as explained in Remark 5.1.8, so none of the arguments in Proposi-
tion 5.2.6 apply. Nevertheless, we can still prove a semiorthogonal decomposition as in
Proposition 5.2.6 at the expense of replacing D(Xét) with the smallest triangulated
subcategory D′ ⊂ D(Xproét) that contains ν∗(D(Xét)) and is closed under filtered
colimits:

Proposition 5.2.9. — Let D′ ⊂ D(Xproét) be as above. Then

1. If ν∗ is fully faithful, then ν∗ induces an equivalence D(Xét) ≃ D′.

2. Given K ∈ D(Xproét), one has K ∈ D′ if and only if Hom(K,K ′) = 0 for any

K ′ ∈ Dp(Xproét).

3. The inclusion i : D′ ↪→ D admits a right adjoint N : D(Xproét)→ D′ such that

N ◦ i ≃ id.

4. The localisation L realises Dp(Xproét) as the Verdier quotient of D(Xproét)
by D′.

5. The map N realises D′ as the Verdier quotient of D(Xproét) by Dp(Xproét).

Sketches of proof

1. If ν∗ is fully faithful, then K ≃ ν∗ν
∗K ≃ R lim τ!−nK (where the last iso-

morphism is from Remark 5.1.8). The claim now follows by reduction to the
bounded case, as in Remark 5.2.8.

2. Since ν∗(D(Xét)) is left-orthogonal to Dp(Xproét), so is D′. For the converse
direction, consider the functors Ni : D(Xproét) → D(Xproét) defined via

Ni(K) = ker(K → M i(K)) where M(K) = cok(ν∗ν∗K → K) (as in the proof
of Lemma 5.2.3). The tower id →M → M2 → M3 → . . . gives rise to a tower
N1 → N2 → N3 → · · · → id with Ni+1 being an extension of ν∗ν∗M i by Ni;
set N = colimi Ni. The description in terms of extensions shows Ni(K) ∈ D′

for all i, and hence N ∈ D′ as D′ is closed under filtered colimits. Moreover,
setting L = colimiM

i gives an exact triangle N → id → L of functors. As
in Lemma 5.2.3, L realises the parasitic localisation D(Xproét) → Dp(Xproét).
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Hence, if Hom(K,K ′) = 0 for every parasitic K ′, then K ≃ N(K) ∈ D′ by the
previous triangle.

3. One checks that the functor N : D(Xproét) → D′ constructed in (2) does the
job (using the exact triangle N → id→ L and the fact that Hom(D′, L(K)) = 0
for all K by (2)).

4. This follows from Lemma 5.2.7 if we could show that D′ is the kernel of L. For
this, one simply uses the exact triangle N → id→ L as in (2).

5. This is proven exactly like (4).

5.3. Realising the left-completion of D(Xét) via the pro-étale site. — Our
goal is to identify the left-completion D̂(Xét) with a certain subcategory of D(Xproét)
using the analysis of the previous sections. The starting point is the following obser-
vation: by Proposition 3.3.3, the pullback ν∗ : D(Xét) → D(Xproét) factors through
τ : D(Xét) → D̂(Xét). To go further, we isolate a subcategory of D(Xproét) that
contains the image of ν∗:

Definition 5.3.1. — Let Dcc(Xproét) be the full subcategory of D(Xproét) spanned by

complexes whose cohomology sheaves lie in ν∗(Ab(Xét)); we write D+
cc(Xproét) for the

bounded below objects, etc.

Since ν∗ : D(Xét)→ D(Xproét) is exact, it factors through Dcc(Xproét), and hence

we get a functor D̂(Xét)→ Dcc(Xproét). Our main observation is that this functor is
an equivalence. More precisely:

Proposition 5.3.2. — There is an adjunction Dcc(Xproét)
νcc,∗

!! D(Xét)
ν∗

cc## induced by ν∗
and ν∗. This adjunction is isomorphic to the left-completion adjunction D̂(Xét)

R lim
!!

τ##

D(Xét). In particular, Dcc(Xproét) ≃ D̂(Xét).

Proof. — The existence of the adjunction is formal from the following: (a) ν∗

carries D(Xét) to Dcc(Xproét), and (b) Dcc(Xproét) ↪→ D(Xproét) is fully faithful.
Proposition 5.2.6 immediately implies that ν∗cc induces an equivalence D+(Xét) ≃
D+

cc(Xproét). To extend to the unbounded setting, observe that K ∈ Dcc(Xproét)
if and only if τ!−nK ∈ Dcc(Xproét) by the left-completeness of D(Xproét) and

the exactness of ν∗. This lets us define functors µ : D̂(Xét) → Dcc(Xproét) and

γ : Dcc(Xproét) → D̂(Xét) via µ({Kn}) = R lim ν∗(Kn) and γ(K) = {ν∗τ
!−nK};

one can check that µ and γ realise the desired mutually inverse equivalences.

Since D′ is the smallest subcategory of D(Xproét) that contains ν∗D(Xét) and is
closed under filtered colimits, one has D′ ⊂ Dcc(Xproét). It is natural to ask how close
this functor is to being an equivalence. One can show that if D(Xét) is left-complete,
then D(Xét) ≃ D′ ≃ Dcc(Xproét); we expect that D′ ≃ Dcc(Xproét) fails without
left-completeness, but do not have an example.
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5.4. Functoriality. — We study the variation of ν : Shv(Xproét)→ Shv(Xét) with
X . For notational clarity, we often write νX instead of ν.

Lemma 5.4.1. — A morphism f : X → Y of schemes induces a map fproét :
Shv(Xproét)→ Shv(Yproét) of topoi with f∗ given by pullback on representable objects.

The induced diagram

Shv(Xproét)

fproét

""

νX !! Shv(Xét)

fét

""

Shv(Yproét)
νY !! Shv(Yét)

commutes. In particular, for F either in Shv(Yét) or D(Yét), there is an isomorphism

f∗proét ◦ ν
∗

Y (F ) ≃ ν∗X ◦ f
∗

ét(F ).

Proof. — Since all maps in sight are induced by morphisms of sites, this follows simply
by the definition of pullback.

Lemma 5.4.2. — Let f : X → Y be a universal homeomorphism of schemes, i.e.,
f is universally bijective and integral. Then f∗ : Shv(Xproét) → Shv(Yproét) is an

equivalence.

Proof. — The claim is local on Y , so we may Y and X are affine. By Theorem 2.3.4,
we can identify Shv(Yproét) with the topos of sheaves on the site opposite to the cat-
egory of ind-étale O(Y )-algebras with covers generated by faithfully flat maps and
Zariski covers, and likewise for X . Since f−1 identifies Xét with Yét while preserv-
ing affine objects (by integrality) and covers, the claim follows from the topological
invariance of the usual étale site.

Lemma 5.4.3. — Fix a qcqs map f : Y → X of schemes and F either in Shv(Yét) or

D+(Yét). Then the natural map

ν∗Y ◦ fét,∗(F ) −→ fproét,∗ ◦ ν
∗

X(F )

is an equivalence.

Proof. — We first handle F ∈ Shv(Yét). The claim is local on X , so we may assume
X is affine. First, consider the case where Y is also affine. Choose some U ∈ Y aff

proét

with presentation U = limi Ui. Then Lemma 5.1.1 shows

ν∗Y ◦ fét,∗(F )(U) = colim
i

F (f−1Ui).

As f−1U ∈ Y aff
proét with presentation f−1U = limi f

−1Ui, one concludes by reapplying
Lemma 5.1.1. For not necessarily affine but separated and quasicompact Y , the same
argument shows that the claim is true for all F ∈ Shv(Yét) obtained as pushforwards
from an affine open of Y . Since the collection of all F satisfying the above conclusion
is stable under finite limits, a Mayer-Vietoris argument shows that the claim is true
for all F ∈ Shv(Y ) with Y quasicompact and separated. Repeating the argument
(and using the separated case) then gives the claim for all qcqs Y . For F ∈ D+(Xét),
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the same argument applies using Corollary 5.1.6 instead of Lemma 5.1.1 (with finite
limits replaced by finite homotopy-limits).

Remark 5.4.4. — Lemma 5.4.3 does not apply to unbounded complexes. Any scheme
X ′ with D(X ′ét) not left-complete (see Remark 3.3.5) gives a counterexample as fol-
lows. Choose K ∈ D(X ′ét) for which K ̸≃ R lim τ!−nK. Then there is an X ∈ X ′ét
for which RΓ(X,K) ̸≃ RΓ(X,R lim τ!−nK) ≃ RΓ(Xproét, ν

∗K) (here we use Re-
mark 5.1.8). The map X → Spec(Z) with F = K|X gives the desired counterexample.

Remark 5.4.5. — One reason to prefer the pro-étale topology to the fpqc topology
is that the analogue of Lemma 5.4.3 fails for the latter: étale pushforwards do not
commute with arbitrary base change.

Lemma 5.4.3 and the repleteness of the pro-étale topology let us access pushfor-
wards of unbounded complexes quite easily; as pointed out by Brian Conrad, a similar
statement can also be shown for D(Xét) using Hartshorne’s formalism of “way-out”
functors.

Lemma 5.4.6. — Let f : X → Y be a map of qcqs schemes. Assume f∗ :
Mod(Xét, F ) → Mod(Yét, F ) has cohomological dimension " d for a ring F . Then

f∗ : D(Xproét, F )→ D(Yproét, F ) carries D"k
cc (Xproét, F ) to D"k+d+1

cc (Yproét, F ).

Proof. — Fix K ∈ D"k
cc (Xproét). Then K ≃ R lim τ!−nK by repleteness, so

f∗K ≃ R lim f∗τ
!−nK. Lemma 5.4.3 and the assumption on f show f∗τ

!−nK ∈

D"k+d
cc (Yproét). As R lim has cohomological dimension " 1 by repleteness, half of the

claim follows. It remains to check that Hi(f∗K) ∈ ν∗Ab(Yét). For this, observe that,
for fixed i, the projective system {Hi(f∗τ!−nK)} is essentially constant: for n≫ 0,
the map f∗τ

!−(n+1)K → f∗τ
!−nK induces an isomorphism on Hi by assumption

on f . By repleteness, this proves Hi(f∗K) ≃ Hi(f∗τ!−nK) for n ≫ 0, which is
enough by Lemma 5.4.3.

5.5. Relation with Ekedahl’s theory. — In this section, we fix a noetherian ring
R complete for the topology defined by an ideal m ⊂ R. For this data, we follow the
notation of §3.4 with X = Shv(Xproét). We use here the following (slight variations
on) assumptions introduced by Ekedahl, [Eke90].

Definition 5.5.1

(A) There is an integer N and a set of generators Yi, Yi ∈ Xét, of Xét, such that

for all R/m-modules M on Xét, H
n(Yi,M) = 0 for n > N .

(B) The ideal m is regular, and the R/m-module m
n/mn+1 has finite flat dimension

bounded independently of n.

Here, condition (A) agrees with Ekedahl’s condition (A), but condition (B) may be
slightly stronger than Ekedahl’s condition (B). By Proposition 3.3.7 (2), condition (A)
ensures thatD(Xét, R/m) is left-complete, as are allD(Xét, R/mn). Ekedahl considers
the following category.
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Definition 5.5.2. — If condition (A) is fulfilled, let ∗ = −, if condition (B) is fulfilled,

let ∗ = +, and if condition (A) and (B) are fulfilled, let ∗ be empty. Define D∗Ek(X,R)
as the full subcategory of D∗(XN

op

ét , R•) spanned by projective systems {Mn} whose

transition maps Mn ⊗R/mn R/mn−1 →Mn−1 are isomorphisms for all n.

In the pro-étale world, limits behave better, so we can define the following analogue:

Definition 5.5.3. — Define DEk(Xproét, R̂) ⊂ Dcomp(Xproét, R̂) as the full subcategory

of complexes K satisfying K⊗
R̂
R/m ∈ Dcc(Xproét), i.e., Hi(K⊗

R̂
R/m) ∈ ν∗Ab(Xét)

for all i. If ∗ ∈ {+,−, b}, let D∗Ek(Xproét, R̂) ⊂ DEk(Xproét, R̂) be the full subcategory

with corresponding boundedness assumptions.

The main comparison is:

Proposition 5.5.4. — If condition (A) is fulfilled, let ∗ = −, if condition (B) is fulfilled,

let ∗ = +, and if condition (A) and (B) are fulfilled, let ∗ be empty. There is a natural

equivalence D∗Ek(Xproét, R̂) ≃ D∗Ek(Xét, R).

Proof. — Assume first that condition (A) is satisfied. By Lemma 3.5.7 (iv), we
have D−comp(Xproét, R̂) ≃ D−comp(X

N
op

proét, R•). The full subcategory D−Ek(Xproét, R̂)

consists of those {Kn} ∈ D−comp(X
N

op

proét, R•) for which Kn ∈ D−cc(Xproét, R/mn)
for all n, as follows easily by induction on n. Under condition (A), D(Xét, R/mn)
is left-complete, so D−(Xét, R/mn) ∼= D−cc(Xproét, R/mn). This gives the result.

Now assume condition (B). Thus, there exists N ∈ N such that if K ∈

D!k
Ek(Xproét, R̂) for some k, then K ⊗R̂ R/mn ∈ D!k−N

cc (Xproét) for all n. Hence, by
Lemma 3.5.7, we may view D+

Ek(Xproét, R̂) as the full subcategory of
D+

comp(X
N

op

proét, R•) spanned by those {Kn} with Kn ∈ D+
cc(Xproét). Moreover, by

Proposition 5.2.6, ν∗ induces an equivalence D+(Xét) ≃ D+
cc(Xproét). The desired

equivalence is then induced by {Mn} *→ {ν∗Mn} and {Kn} *→ {ν∗Kn}.
If condition (A) and (B) are satisfied, simply combine the two arguments.

5.6. Relation with Jannsen’s theory. — Fix a scheme X . In [Jan88, §3], one
finds the following definition:

Definition 5.6.1. — The continuous étale cohomology Hi
cont(Xét, {Fn}) of X with co-

efficients in a pro-system {Fn} of abelian sheaves on Xét is the value of the i-th derived

functor of the functor Ab(Xét)N → Ab given by {Fn} *→ H0(Xét, limFn).

In general, the groups Hi
cont(Xét, {Fn}) and Hi(Xét, limFn) are distinct, even for

the projective system {Z/ℓn}; the difference is explained by the derivatives of the
inverse limit functor. As inverse limits are well-behaved in the pro-étale world, this
problem disappears, and we obtain:

Proposition 5.6.2. — Let {Fn} is a pro-system of abelian sheaves on Xét with surjec-

tive transition maps. Then there is a canonical identification

Hi
cont(Xét, {Fn}) ≃ Hi(Xproét, lim ν∗Fn).
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Proof. — Write RΓcont(Xét, {Fn}) := RΓ(Xét,R limFn), soHi(RΓcont(Xét, {Fn})) ≃
Hi

cont(Xét, {Fn}) as defined above by the Grothendieck spectral sequence for compo-
sition of derived functors. We then have

RΓcont(Xét, {Fn}) ≃ R limRΓ(Xét, Fn)

≃ R limRΓ(Xproét, ν
∗Fn) ≃ RΓ(Xproét,R lim ν∗Fn);

here the first and last equality use the commutation of RΓ and R lim, while the
second equality comes from the boundedness of Fn ∈ D(Xét). The assumption on
{Fn} ensures that R limFn ≃ limFn by the repleteness of Xproét, which proves the
claim.

6. Constructible sheaves

This long section studies constructible sheaves, with the ultimate goal of giving
a different perspective on the notion of a Qℓ-sheaf. We begin by studying in §6.1
and §6.2 the basic functoriality of pushforward and pullback along locally closed im-
mersions; the main novelty here is that pullback along a closed immersion is limit-
and colimit-preserving, contrary to the classical story. Next, we recall the theory of
constructible complexes in the étale topology in §6.3. We alert the reader that our
definition of constructibility is more natural from the derived perspective, but not the
usual one: a constructible complex on a geometric point is the same thing as a perfect

complex, see Remark 6.3.2. In particular, the truncation operators τ!n, τ"n do not
in general preserve constructibility. As a globalisation of this remark, we detour in
§6.4 to prove that constructible complexes are the same as compact objects under a
suitable finiteness constraint; this material is surely standard, but not easy to find in
the literature. We then introduce constructible complexes in the pro-étale world in
§6.5 with coefficients in a complete noetherian local ring (R,m) as those R-complexes
on Xproét which are complete (in the sense of §3.4), and classically constructible mod-
ulo m. This definition is well-suited for comparison with the classical picture, but, as
we explain in §6.6, also coincides with the more intuitive definition on a noetherian
scheme: a constructible complex is simply an R-complex that is locally constant and
perfect along a stratification. This perspective leads in §6.8 to a direct construction of
the category of constructible complexes over coefficient rings that do not satisfy the
above constraints, like Zℓ and Qℓ. Along the way, we establish that the formalism of
the 6 functors “works” in this setting in §6.7.

6.1. Functoriality for closed immersions. — Fix a qcqs scheme X , and a qcqs
open j : U ↪→ X with closed complement i : Z → X . We use the subscript “0”
to indicate passage from X to Z. First, we show “henselizations” can be realised as
pro-étale maps.

Lemma 6.1.1. — Assume X is affine. Then i−1 : Xaff
proét → Zaff

proét admits a fully

faithful left adjoint V *→ Ṽ . In particular, we have i−1(Ṽ ) ≃ V .

Proof. — See Definition 2.2.10 and Lemma 2.2.12.
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Henselization defines a limit-preserving functor between sites:

Lemma 6.1.2. — Assume X is affine. Then the functor V *→ Ṽ from Lemma 6.1.1

preserves surjections.

Proof. — Fix V = Spec(A0) with Ṽ = Spec(A) for a ring A that is henselian along
I = ker(A → A0). It suffices to show that any étale map W → Ṽ whose image
contains V ⊂ Ṽ is surjective. The complement of the image gives a closed subset of
Ṽ that misses V , but such sets are empty as I lies in the Jacobson radical of A by
assumption.

Contrary to the étale topology, we can realise i∗ simply by evaluation in the pro-
étale world:

Lemma 6.1.3. — If X is affine, then i∗F (V ) = F (Ṽ ) for any w-contractible V ∈

Zaff
proét and F ∈ Shv(Xproét).

Proof. — Clearly, i∗F is the sheafification of V *→ F (Ṽ ) on Zaff
proét. On w-contractible

objects, sheafification is trivial, giving the result.

Remark 6.1.4. — It follows from the affine analogue of proper base change, [Gab94],
[Hub93], that for classical torsion sheaves F , i∗F (V ) = F (Ṽ ) for all V ∈ Zaff

proét; in
fact, the affine analogue of proper base change says precisely that

RΓ(V, i∗F ) = RΓ(Ṽ , F ) .

As i∗ is realised by evaluation, it commutes with limits (which fails for Xét, see
Example 6.1.6):

Corollary 6.1.5. — The pullback i∗ : Shv(Xproét) → Shv(Zproét) commutes with all

small limits and colimits.

Proof. — The claim about colimits is clear by adjunction. For limits, we must show
that the natural map i∗ limi Fi → limi i

∗Fi is an isomorphism for any small diagram
F : I → Shv(Xproét). As this is a local statement, we may assume X is affine.
The claim now follows from Lemma 6.1.3 by evaluating either side on w-contractible
objects in Zaff

proét.

The next example illustrates how i∗ fails to be limit-preserving on the étale site:

Example 6.1.6. — Consider X = Spec(k[x]) with k an algebraically closed field, and
set i : Z ↪→ X to be the closed immersion defined by I = (x). Let R = k[x], and
set S to be the strict henselisation of R at I, so S = colimi Si where the colimit runs
over all étale neighbourhoods R → Si → k of Z → X . Now consider the projective
system {OX/In} in Shv(Xét). Then i∗(OX/In) = S/ISn, so lim i∗(OX/In) is the
I-adic completion of S. On the other hand, i∗(limOX/In) = colimi limSi/I

n is the
colimit of the I-adic completions of each Si; one can check that this colimit is not
I-adically complete.
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Remark 6.1.7. — Corollary 6.1.5 shows that i∗ has a right adjoint i∗ as well as a left-
adjoint i#. The latter is described as the unique colimit-preserving functor sending
V ∈ Zaff

proét to Ṽ ∈ Xaff
proét. Note that i# is not left-exact in general, so there is no

easy formula computing RΓ(V, i∗F ) in terms of RΓ(Ṽ , F ) for V ∈ Zproét (except in
the torsion case, as in Remark 6.1.4).

Lemma 6.1.8. — The pushforward i∗ : Shv(Zproét)→ Shv(Xproét) is exact.

Proof. — Fix a surjection F → G in Shv(Zproét). We must show i∗F → i∗G is
surjective. As the claim is local, we may work with affines. Fix Y ∈ Xaff

proét and
g ∈ i∗G(Y ) = G(Y0). Then there is a coverW → Y0 in Zproét and a section f ∈ F (W )

lifting g. The map W̃ + Y |U → Y is then a cover by Lemma 6.1.1; here we use that
U ⊂ X is quasicompact, so Y |U is also quasicompact. One has i∗F (Y |U ) = F (∅) = ∗,

and i∗F (W̃ ) = F (W̃0) = F (W ), so f gives a section in i∗F (W̃ + Y |U ) lifting g.

We can now show that i∗ and j! behave in the expected way.

Lemma 6.1.9. — For any pointed sheaf F ∈ Shv(Xproét), the adjunction map F →

i∗i
∗F is surjective.

Proof. — Since the statement is local, we may assume X is affine. Fix V ∈ Xaff
proét.

Then i∗i
∗F (V ) = i∗F (V0) = F (Ṽ0). Now observe that Ṽ0 + V |U → V is a pro-

étale cover. Since F (V |U ) ̸= ∅ (as F is pointed), one easily checks that any section
in i∗i

∗F (V ) lifts to a section of F over Ṽ0 + V |U , which proves surjectivity.

Remark 6.1.10. — Lemma 6.1.9 needs F to be pointed. For a counterexample without
this hypothesis, take: X = U+Z a disjoint union of two non-empty schemes U and Z,
and F = i!Z, where i : Z → X is the clopen immersion with complement j : U → X .

Lemma 6.1.11. — For any pointed sheaf F ∈ Shv(Xproét), we have j!j
∗F ≃

ker(F → i∗i
∗F ).

Proof. — We may assume X is affine. For any V ∈ Xaff
proét, we first observe that the

sheaf axiom for the cover Ṽ0 + V |U → V gives a fibre square of pointed sets

F (V ) !!

""

F (V |U )

""

F (Ṽ0) !! F (Ṽ0|U ).

In particular, ker(F (V ) → F (Ṽ0)) ≃ ker(F (V |U ) → F (Ṽ0|U )). Now i∗i
∗F (V ) =

F (Ṽ0), so we must show that j!j
∗F (U) = ker(F (V ) → F (Ṽ0)) ≃ ker(F (V |U ) →

F (Ṽ0|U )). By definition, j!j∗F is the sheaf associated to the presheaf F ′ defined via:
F ′(V ) = F (V ) if V → X factors through U , and F ′(V ) = 0 otherwise. The sheaf

axiom for the cover Ṽ0 + V |U → V then shows that j!j∗F is also the sheaf associated

to the presheaf F ′′ given by F ′′(V ) = ker(F (V |U ) → F (Ṽ0|U )), which proves the
claim.
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Lemma 6.1.12. — One has the following identification of functors at the level of un-

bounded derived categories:

1. i∗i∗ ≃ id and j∗j! ≃ j∗j∗ ≃ id.

2. j∗i∗ ≃ 0, and i∗j! ≃ 0.

Proof. — By deriving Lemma 6.1.11, there is an exact triangle j!j
∗ → id → i∗i

∗ of
endofunctors on D(Xproét). Then (2) follows from (1) by applying i∗ and j∗ to this
triangle. The second part of (1) is a general fact about monomorphisms U ↪→ X in
a topos. For i∗i∗ ≃ id, we use that both functors are exact to reduce to the claim at
the level of abelian categories, where it follows from Ṽ0 ≃ V for any V ∈ Zaff

proét.

Lemma 6.1.13. — The pushforward j! : D(Uproét) → D(Xproét) commutes with

homotopy-limits.

Proof. — By Lemma 6.1.11, for any K ∈ D(Uproét), we have the following exact
triangle:

j!K −→ j∗K −→ i∗i
∗j∗K.

Since j∗, i∗ and i∗ all commute with homotopy-limits, the same is true for j!.

Remark 6.1.14. — One can show a more precise result than Lemma 6.1.13. Namely,
the pushforward j! : D(Uproét) → D(Xproét) admits a left-adjoint j# : D(Xproét) →
D(Uproét) which is defined at the level of free abelian sheaves as follows: given V ∈

Xproét, we have j#(ZV ) = cok(Z
Ṽ0|U

→ ZV |U
) ≃ cok(Z

Ṽ0
→ ZV ).

We record some special cases of the proper base change theorem:

Lemma 6.1.15. — Consider the diagram

f−1Z
i !!

f

""

Y

f

""

f−1U

f

""

j
##

Z
i !! X U

j
##

For any K ∈ D(Uproét) and L ∈ D(Zproét), we have

i∗f
∗L ≃ f∗i∗L and j!f

∗K ≃ f∗j!K.

Proof. — Note that i∗f∗i∗L ≃ f∗i∗i∗L ≃ f∗L. Hence, using the sequence j!j
∗ →

id → i∗i
∗ of functors, to prove the claim for L, it suffices to show j∗f∗i∗L ≃ 0; this

is clear as j∗f∗i∗ ≃ f∗j∗i∗ ≃ 0, since j∗i∗ ≃ 0. The second claim follows by an
analogous argument using i∗j! ≃ 0.

We end by noting that i∗ also admits a right adjoint:

Lemma 6.1.16. — The functor i∗ : D(Zproét) → D(Xproét) admits a right adjoint

i! : D(Xproét)→ D(Zproét). For any K ∈ D(Xproét), there is an exact triangle

i∗i
!K −→ K −→ j∗j

∗K.
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Proof. — The functor i∗ : D(Zproét) → D(Xproét) commutes with arbitrary direct
sums. As all triangulated categories in sight are compactly generated, one formally
deduces the existence of i!. For the exact triangle, write L for the homotopy-kernel of
K → j∗j

∗K. One has a natural map η : i∗i!K → L since RHom(i∗i!K, j∗j
∗K) = 0.

We first show η is an isomorphism through its functor of points. For this, note that
for any M ∈ D(Zproét), one has

RHom(i∗M, i∗i
!K) = RHom(M, i!K) = RHom(i∗M,K) = RHom(i∗M,L),

where the first equality uses the full faithfulness of i∗, the second comes from the
definition of i!, and the last one uses RHom(i∗M, j∗j

∗K) = 0. This proves that η
is an isomorphism. One also has L = i∗i

∗L as j∗L = 0, so the claim follows by full
faithfulness of i∗.

Finite morphisms are acyclic under finite presentation constraints:

Lemma 6.1.17. — If f : X → Y is finitely presented and finite, then f∗ :
Ab(Xproét)→ Ab(Yproét) is exact.

Proof. — This follows from Lemma 2.4.10.

6.2. Functoriality for locally closed immersions. — We fix a qcqs scheme X ,
a locally closed constructible subset k : W ↪→ X . We write DW (Xproét) for the full
subcategory spanned by K ∈ D(Xproét) with K|X−W ≃ 0; we refer to such objects as
“complexes supported on W .”

Lemma 6.2.1. — Fix i : Z ↪→ X a constructible closed immersion with complement

j : U ↪→ X. Then one has:

1. The functor j! establishes an equivalence D(Uproét) ≃ DU (Xproét) with

inverse j∗.

2. The functor i∗ establishes an equivalence D(Zproét) ≃ DZ(Xproét) with

inverse i∗.

3. The functor k∗ establishes an equivalence DW (Xproét) ≃ D(Wproét).

Proof. — For (1), we know that j∗j! ≃ id, so j! is fully faithful. Also, an object K ∈
D(Xproét) is supported on U if and only if i∗K ≃ 0 if and only if j!j∗K ≃ K, which
proves (1). The proof of (2) is analogous. For (3), fix a factorization W

f
→W

g
→ X

with f an open immersion, and g a constructible closed immersion. Then g∗ induces
an equivalence D(W proét) ≃ DW (Xproét) with inverse g∗ by (2), and hence restricts
to an equivalence DW (W proét) ≃ DW (Xproét). Similarly, f! induces an equivalence
D(Wproét) ≃ DW (W proét) with inverse f∗ by (1). Hence, the composition k! := g∗ ◦f!
induces an equivalence D(Wproét) ≃ DW (Xproét) with inverse k∗.

Definition 6.2.2. — The functor k! : D(Wproét) → D(Xproét) is defined as the

composition D(Wproét)
a
→ DW (Xproét)

b
→ D(Xproét), where a is the equivalence of

Lemma 6.2.1 (inverse to k∗), and b is the defining inclusion.
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Lemma 6.2.3. — One has:

1. The functor k! is fully faithful, preserves homotopy-limits, and has a left inverse

given by k∗.

2. For any map f : Y → X of qcqs schemes, one has k! ◦ f
∗ ≃ f∗ ◦ k! as functors

D(Wproét)→ D(Yproét).

3. For any K ∈ D(Wproét) and L ∈ D(Xproét), we have k!K ⊗ L ≃ k!(K ⊗ i∗L).

4. One has k! ◦ ν
∗ ≃ ν∗ ◦ k! as functors D(Wét)→ D(Xproét).

5. The functor k! admits a right adjoint k! : D(Xproét)→ D(Wproét).

Proof. — (1) follows from the proof of Lemma 6.2.1 as both f! and g∗ have the same
properties. (2) follows by two applications of Lemma 6.1.15. For (3), it suffices to
separately handle the cases where k is an open immersion and k is a closed immersion.
The case of an open immersion (or, more generally, any weakly étale map k : W → X)
follows by general topos theory and adjunction. Hence, we may assume k is a closed
immersion with open complement j : U ↪→ X , so k! ≃ k∗. For any K ′ ∈ D(Xproét),
we have the triangle

j!j
∗K ′ −→ K ′ −→ k∗k

∗K ′.

Tensoring this triangle with L and using the projection formula for j shows k∗k∗K ′⊗
L ≃ k∗

(
k∗K ′ ⊗ k∗L). Setting K ′ = k∗K then proves the claim as k∗k∗ ≃ id. For

(4), assume first that k is an open immersion. Then ν∗ ◦ k
∗ ≃ k∗ ◦ ν∗ as functors

D(Xproét)→ D(Uét) (which is true for any U → X in Xét). Passing to adjoints then
proves k! ◦ ν∗ ≃ ν∗ ◦ k!. Now assume k is a constructible closed immersion with open
complement j : U ↪→ X . Then for any K ∈ D(Xét), there is a triangle

j!j
∗K −→ K −→ i∗i

∗K

in D(Xét). Applying ν∗ and using the commutativity of ν∗ with j!, j∗ and i∗ then
proves the claim. (5) follows by considering the case of open and constructible closed
immersions separately, and using Lemma 6.1.16.

All the results in this section, except the continuity of k!, are also valid in the étale
topology.

6.3. Constructible complexes in the étale topology. — The material of this
section is standard, but we include it for completeness. We fix a qcqs scheme X , and
a ring F . Given an F -complex L ∈ D(F ), we write L for the associated constant
complex, i.e., its image under the pullback D(F )→ D(Xét, F ).

Definition 6.3.1. — A complex K ∈ D(Xét, F ) is called constructible if there exists a

finite stratification {Xi → X} by constructible locally closed Xi ⊂ X such that K|Xi

is locally constant with perfect values on Xét.

Remark 6.3.2. — One classically replaces the perfectness hypothesis in Defini-
tion 6.3.1 with a weaker finiteness constraint. However, imposing perfectness is more
natural from the derived point of view: under mild conditions on X , our definition
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picks out the compact objects of D(Xét, F ) (see Proposition 6.4.8), and is stable
under the six operations. Moreover, the two approaches coincide when F is a field.

Lemma 6.3.3. — Any K ∈ Dcons(Xét, F ) admits a finite filtration with graded pieces of

the form i!L with i : Y ↪→ X ranging through a stratification of X, and L ∈ D(Yét, F )
locally constant with perfect values.

Proof. — Same as in the classical case, see [SGA73, Proposition IX.2.5].

Lemma 6.3.4. — Each K ∈ Dcons(Xét, F ) has finite flat dimension.

Proof. — By Lemma 6.3.3, we may assume K = i!L for i : Y ↪→ X locally closed
constructible, and L ∈ D(Yét, F ) locally constant with perfect values. By the projec-
tion formula, it suffices to show L has finite flat dimension. As we are free to localize,
we may assume L = K ′ with K ′ ∈ Dperf(F ), whence the claim is clear.

Lemma 6.3.5. — Dcons(Xét, F ) ⊂ D(Xét, F ) is closed under tensor products.

Proof. — Clear.

Lemma 6.3.6. — Given K ∈ D(R) and s ∈ H0(Xét,K), there exists an étale cover

{Ui → X} such that s|Ui comes from si ∈ H0(K).

Proof. — Fix a geometric point x : Spec(k) → X , and consider the cofiltered cat-
egory I of factorizations Spec(k) → U → X of x with U → X étale. Then K ≃

colimRΓ(Uét,K) where the colimit is indexed by I op: the exact functor x∗(F ) =
colimI F (U) gives a point x : Set→ Xét, and the composition (Set, F )

x
→ (Xét, F )

can
→

(Set, F ) is the identity. This gives a section si ∈ H0(K) by passage to the limit. As
filtered colimits are exact, one checks that s agrees with the pullback of si over some
neighbourhood U → X in I. Performing this construction for each geometric point
then gives the desired étale cover.

Lemma 6.3.7. — If K ∈ Db(Xét, F ) has locally constant cohomology sheaves, then

there is an étale cover {Ui → X} such that K|Ui is constant.

Proof. — We may assume all cohomology sheaves ofK are constant. IfK has only one
non-zero cohomology sheaf, there is nothing to prove. Otherwise, choose the maximal
i such that Hi(K) ̸= 0. Then K ≃ ker(Hi(K)[−i]

s
→ τ<iK[1]). By induction,

both Hi(K) and τ<iK can be assumed to be constant. The claim now follows by
Lemma 6.3.6 applied to RHom(Hi(K)[−i], τ<iK[1]) with global section s; here we
use that the pullback G : D(F )→ D(Xét, F ) preserves RHom between A,B ∈ Db(F )
since G(R limCi) = R limG(Ci) if {Ci ↪→ C} is the stupid filtration on C ∈ D+(R)
(with C = RHom(A,B) calculated by a projective resolution of A).

Lemma 6.3.8. — A complex K ∈ D(Xét, F ) is constructible if and only if for any

finite stratification {Yi → X}, the restriction K|Yi is constructible.
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Proof. — The forward direction is clear as constructible sheaves are closed under
pullback. For the reverse, it suffices to observe k! preserves constructibility for k :
W ↪→ X locally closed constructible as k identifies constructible subsets of W with
those of X contained in W .

Lemma 6.3.9. — Dcons(Xét, F ) is a triangulated idempotent complete subcategory of

D(Xét, F ). It can be characterized as the minimal such subcategory that contains all

objects of the form k!L with k : Y ↪→ X locally closed constructible, and L ∈ D(Yét, F )
locally constant with perfect values.

Proof. — To show Dcons(Xét, F ) is closed under triangles, by refining stratifications,
it suffices to check: if K,L ∈ D(Xét, F ) are locally constant with perfect values, then
the cone of any map K → L has the same property. Replacing X by a cover, we
may assume K = K ′ and L = L′ with K ′, L′ ∈ Dperf(R). The claim now follows
from Lemma 6.3.6 applied to RHom(K ′, L′). The idempotent completeness is proven
similarly. The last part follows from Lemma 6.3.3 and the observation that each k!L

(as in the statement) is indeed constructible.

Lemma 6.3.10. — Constructibility is local on Xét, i.e., given K ∈ D(Xét, F ), if there
exists a cover {fi : Xi → X} in Xét with f∗i K constructible, then K is constructible.

Proof. — We may assume f : Y → X is a surjective étale map, and f∗K is con-
structible. First assume that f is a finite étale cover. Passing to Galois closures (and
a clopen cover of X if necessary), we may assume f is finite Galois with group G.
By refining strata, we can assume f∗K is locally constant along a G-invariant strat-
ification of Y . Such a stratification is pulled back from X , so the claim is clear. In
general, there is a stratification of X over which f is finite étale, so one simply applies
the previous argument to the strata.

Lemma 6.3.11. — If j : U → X is qcqs étale, then j! : D(Uét, F ) → D(Xét, F )
preserves constructibility.

Proof. — If j is finite étale, then the claim follows by Lemma 6.3.10 as any finite
étale cover of X is, locally on Xét, of the form +ni=1X → X . In general, there is a
stratification of X over which this argument applies.

Lemma 6.3.12. — If K ∈ D(Xét, F ), and I ⊂ F is a nilpotent ideal such that K ⊗F

F/I ∈ Dcons(Xét, F/I), then K ∈ Dcons(Xét, F ).

Proof. — We may assume I2 = 0. By devissage, we may assume K1 = K ⊗F F/I is
locally constant with perfect value L1 ∈ Dperf(F/I). By passage to an étale cover, we
may assume K1 ≃ L1. After further coverings, Lemma 6.3.7 shows K ≃ L for some
L ∈ D(F ). Since L⊗F F/I ≃ L1 is perfect, so is L (by the characterization of perfect
complexes as compact objects of D(F ) and the 5 lemma).
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Lemma 6.3.13. — Constructibility is local in the pro-étale topology on X, i.e., given
K ∈ D(Xét, F ), if there exists a cover {fi : Xi → X} in Xproét with f∗i K constructible,

then K is constructible.

Proof. — We may assume X is affine, and that there exists a pro-étale affine f : Y =
limi Yi → X covering X with f∗K constructible. The stratification on Y witnessing
the constructibility of f∗K is defined over some Yi. Hence, after replacing X by an
étale cover, we may assume that there exists a stratification {Xi ↪→ X} such that f∗K
is constant with perfect values over f−1(Xi). Replacing X by Xi, we may assume
f∗K ≃ f∗L with L ∈ Dperf(F ). Then the isomorphism f∗L → f∗K is defined over
some Yi (since L is perfect), so K|Yi is constant.

Lemma 6.3.14. — If K ∈ Dcons(Xét, F ), then RHom(K,−) commutes with all direct

sums with terms in D!0(Xét, F ).

Proof. — Let CX ⊂ Db(Xét, F ) denote the full (triangulated) subcategory spanned
by those M for which RHom(M,−) commutes with all direct sums in D!0(Xét, F ).
Then one checks:

1. For any M ∈ Dperf(F ), one has M ∈ CX .

2. For any qcqs étale map j : U → X , the functor j! carries CU to CX .

3. The property of lying in CX can be detected locally on Xét.

4. M ∈ D(Xét, F ) lies in CX if and only if RHom(M |U ,−) commutes with direct
sums in D!0(Uét, F ) for each qcqs U ∈ Xét.

By (4), it suffices to show that a constructible complex K lies in CX . By Lemma 6.3.3,
we may assume K = k!L with k : Y ↪→ X locally closed constructible, and L ∈

D(Yét, F ) locally constant with perfect values. Choose a qcqs open j : U ↪→ X with
i : Y ↪→ U a constructible closed subset. Then K = k!L ≃ (j! ◦i∗)L. By (2), it suffices
to show that i∗K ∈ CU , i.e., we reduce to the case where k is a constructible closed
immersion with open complement h : V ↪→ X . The assumption on K gives a qcqs
étale cover g : Y ′ → Y with g∗L ≃M for M ∈ Dperf(F ). By passing to a cover of X
refining g over Y , using (3), we may assume that L = M . Then the exact triangle

h!M −→M −→ K

and (1) and (2) above show that K ∈ CX , as wanted.

Remark 6.3.15. — It is crucial to impose the boundedness condition in Lemma 6.3.14:
if the cohomological dimension of X is unbounded, then RHom(F ,−) ≃ RΓ(Xét,−)
does not commute with arbitrary direct sums in D(Xét, F ).

Lemma 6.3.16. — For K ∈ Dcons(Xét, F ) and L ∈ D+(Xét, F ), one has

ν∗RHom(K,L) ≃ RHom(ν∗K, ν∗L) .
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Proof. — Fix U = limi Ui ∈ Xaff
proét, and write j : U → X and ji : Ui → X

for the structure maps. By evaluating on pro-étale affines, it suffices to check
RHom(j∗K, j∗L) ≃ colimiRHom(j∗i K, j∗i L). By adjunction, this is equivalent to
requiring RHom(K, j∗j

∗L) ≃ colimiRHom(K, ji,∗j
∗

i L). If L ∈ D!k(Xét), then
ji,∗j

∗

i L ∈ D!k(Xét) for all i, so the claim follows from Lemma 6.3.14.

6.4. Constructible complexes as compact objects. — The material of this
section is not used in the sequel. However, these results do not seem to be recorded
in the literature, so we include them here. We fix a qcqs scheme X , and a ring F . We
assume that all affine U ∈ Xét have F -cohomological dimension " d for some fixed
d ∈ N. The main source of examples is:

Example 6.4.1. — If X is a variety over a separably closed field k and F is torsion,
then it satisfies the above assumption. Indeed, Artin proved that Hi(Uét, F ) = 0 for
i > dim(U) if U is an affine k-variety.

Recall that K ∈ D(Xét, F ) is compact if RHom(K,−) commutes with arbitrary
direct sums. Let Dc(Xét, F ) ⊂ D(Xét, F ) be the full subcategory of compact objects.
Our goal is to identify Dc(Xét, F ) with the category of constructible complexes. We
start by recording a completeness property of D(Xét, F ):

Lemma 6.4.2. — For any qcqs U ∈ Xét, the functor RΓ(Uét,−) has finite F -

cohomological dimension.

Proof. — Assume first that U = V1 ∪ V2 with Vi ⊂ U open affines, and W := V1 ∩ V2

affine. Then one has an exact triangle

RΓ(Uét,−) −→ RΓ(V1,ét,−)⊕ RΓ(V2,ét,−) −→ RΓ(Wét,−)

which gives the desired finiteness. The general case is handled by induction using a
similar argument, by passing through the separated case first.

Lemma 6.4.3. — The category D(Xét, F ) is left-complete.

Proof. — This follows from Proposition 3.3.7.

Lemma 6.4.4. — For any j : U → X in Xét, the pushforward j! : D(Uét, F ) →
D(Xét, F ) preserves compact objects.

Proof. — Formal by adjunction since j∗ preserves all direct sums.

Lemma 6.4.5. — For each qcqs j : U → X in Xét, we have:

1. The object j!F ∈ D(Xét, F ) is compact.

2. The functor j∗ : D(Uét, F )→ D(Xét, F ) commutes with all direct sums.
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Proof. — For (1), by Lemma 6.4.4, we may assume j = id, so we want RΓ(X,−) to
preserve all direct sums. We first observe that the finiteness assumption on X and
the corresponding left-completeness of D(Xét, F ) give: for any K ∈ D(Xét, F ), one
has Hi(X,K) ≃ Hi(X, τ!−nK) for n > NX − i, where NX is the F -cohomological
dimension of X . One then immediately reduces to the bounded below case, which is
true for any qcqs scheme. For (2), fix some qcqs V ∈ Xét, and let W = U ×X V .
Then (1) shows that RΓ(Vét,−) commutes with direct sums. Hence, given any set
{Ks} of objects in D(Uét, F ), we have

RΓ(Vét,⊕sj∗Ks) ≃ ⊕sRΓ(Vét, j∗Ks) ≃ ⊕sRΓ(Wét,Ks|W )

≃ RΓ(Wét, (⊕sKs)|W ) ≃ RΓ(Vét, j∗ ⊕s Ks).

As this is true for all V , the claim follows.

Lemma 6.4.6. — Fix a closed constructible subset i : Z ↪→ X and K ∈ D(Zét, F )
that is locally constant with perfect value L ∈ Dperf(F ). Then i∗K ∈ D(Xét, F ) is

compact.

Proof. — By Lemma 6.4.5 (2), it suffices to show the following statement: the functor
RHom(i∗K,−) : D(Xét, F )→ D(Xét, F ) commutes with direct sums. To check this,
we may freely replace X with an étale cover. By passing to a suitable cover (see the
proof of Lemma 6.3.14), we may assume K = L for L ∈ Dperf(F ). If j : U → X

denotes the qcqs open complement of i, then the exact triangle

j!L −→ L −→ i∗L

finishes the proof by Lemma 6.4.5 (1)

Remark 6.4.7. — The constructibility of Z in Lemma 6.4.6 is necessary. For a coun-
terexample without this hypothesis, choose an infinite profinite set S and a closed
point i : {s} ↪→ S. Then S − {s} is not quasi-compact, so Z is not constructible.
Using stalks, one checks that i∗F ≃ colim j∗F , where the colimit is indexed by clopen
neighbourhoods j : U ↪→ S of s ∈ S. For such j, one has H0(S, j∗F ) = H0(U, F ) =
Mapconts(U, F ). As any continuous map f : U → F is locally constant, each non-zero
section of H0(S, j∗F ) is supported on some clopen V ⊂ U . As 1 ∈ H0(S, i∗F ) is
supported only at s, all maps i∗F → j∗F are constant, so i∗F is not compact in
D(S, F ). To get an example with schemes, one simply tensors this example with a
geometric point, in the sense of Example 4.1.9.

Proposition 6.4.8. — D(Xét,F ) is compactly generated and Dc(Xét,F )=Dcons(Xét,F ).

Proof. — We temporarily use the word “coherent” to refer to objects of the form
j!F for qcqs maps j : U → X in Xét. Lemma 6.4.5 shows that coherent ob-
jects are compact. General topos theory shows that all objects in D(Xét, F ) can
be represented by complexes whose terms are direct sums of coherent objects, so it
follows that D(Xét, F ) is compactly generated. Furthermore, one formally checks
that the subcategory Dc(Xét, F ) ⊂ D(Xét, F ) of compact objects is the smallest
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idempotent complete triangulated subcategory that contains the coherent objects.
Then Lemma 6.3.11 shows Dc(Xét, F ) ⊂ Dcons(Xét, F ). For the reverse inclusion
Dcons(Xét, F ) ⊂ Dc(Xét, F ), it suffices to show: for any k : W ↪→ X locally closed
constructible and L ∈ D(Wét, F ) locally constant with perfect values, the pushforward
K := k!L is compact. Choose W

f
→ U

g
→X with f a constructible closed immersion,

and g a qcqs open immersion. Then f∗K is compact in D(Uét, F ) by Lemma 6.4.6,
so k!K ≃ g!f∗K is compact by Lemma 6.4.4.

6.5. Constructible complexes in the pro-étale topology. — Fix a qcqs scheme
X , and a noetherian ring R complete for the topology defined by an ideal m ⊂ R.
Set R̂X := limR/mn ∈ Shv(Xproét); we often simply write R̂ for R̂X . In fact, in

the notation of Lemma 4.2.12, R̂ = R̂X is the sheaf FR on Xproét associated with

the topological ring R. We write L for the image of L ∈ D(R) under the pullback
D(R) → D(Xproét, R), and L̂ ∈ D(Xproét, R̂) for the m-adic completion of L. When

L = R or R/mn, we drop the underline. The key definition is:

Definition 6.5.1. — We say that K ∈ D(Xproét, R̂) is constructible if K is m-adically

complete, and K ⊗L

R̂
R/m is obtained via pullback of a constructible R/m-complex

under ν : Xproét → Xét. Write

Dcons(Xproét, R̂) ⊂ D(Xproét, R̂)

for the full subcategory spanned by constructible complexes.

It is immediate that Dcons(Xproét, R̂) is a triangulated subcategory of D(Xproét, R̂).
Applying the same definition to (R/mn,m), we get Dcons(Xproét, R/mn) ≃

Dcons(Xét, R/mn) via ν; note that the two evident definitions of Dcons(Xét, R/mn)
coincide by Lemma 6.3.12.

Example 6.5.2. — When X is a geometric point, pullback induces an equivalence
Dperf(R) ≃ Dcons(Xproét, R̂).

Lemma 6.5.3. — Each K ∈ Dcons(Xproét, R̂) is bounded.

Proof. — Completeness gives K ≃ R lim(K ⊗L
R R/mn). As R lim has cohomological

dimension " 1 by repleteness, it suffices to show Kn := K ⊗L
R R/mn has amplitude

bounded independent of n. This follows from standard sequences as K1 has finite flat
dimension.

Lemma 6.5.4. — If K ∈ Dcons(Xproét, R̂), then K ⊗
R̂
R/mn ∈ Dcons(Xproét, R/mn)

for each n.

Proof. — This is immediate from K ⊗
R̂
R/mn ⊗R/mn R/m ≃ K ⊗

R̂
R/m.

Lemma 6.5.5. — Dcons(Xproét, R̂) ⊂ Dcomp(Xproét, R̂) is closed under tensor prod-

ucts. In fact, if K,L ∈ Dcons(Xproét, R̂), then K ⊗
R̂
L is already complete.
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Proof. — The assertion is local on Xproét. By filtering K and L, and replacingX by a
cover, we may assume: X is w-contractible and henselian along a constructible closed
subset i : Z ↪→ X , and K = i∗M̂ and L = i∗N̂ for M,N ∈ Dperf(R). By realising M

and N as direct summands of finite free R-complexes, we reduce to M = N = R. Let
j : U → X be the open complement of i. We claim the more precise statement that
i∗R̂⊗R̂

i∗R̂ ≃ i∗R̂. For this, using the sequence

j!R̂ −→ R̂ −→ i∗R̂,

we are reduced to checking that j!R̂ ⊗R̂
i∗R̂ = 0, which is automatic by adjunction:

for any K ∈ D(Uproét, R̂) and L ∈ D(Zproét, R̂), one has

RHom(j!K ⊗R̂
i∗L,−) = RHom(j!K,RHom(i∗L,−))

= RHom(K,RHom(j∗i∗L, j
∗(−))) = 0,

where the last equality uses j∗i∗ = 0.

Lemma 6.5.6. — Fix K ∈ Dcons(Xproét, R̂) with K ⊗
R̂
R/m constant locally on Xét.

Then K ⊗
R̂
R/mn is also constant locally on Xét.

Proof. — Since the question concerns only complexes pulled back from Xét, we can
étale localize to assume that (X,x) is a local strictly henselian scheme. Then the as-
sumption impliesK⊗

R̂
R/m is constant. Moreover, one easily checks thatD(R/mn)→

D(Xét, R/mn) is fully faithful (as RΓ(Xét,−) ≃ x∗). Chasing triangles shows that
each K ⊗

R̂
R/mn is in the essential image of D(R/mn)→ D(Xét, R/mn), as wanted.

Corollary 6.5.7. — Assume X is a strictly henselian local scheme. Then pullback

Dperf(R) −→ Dcons(Xproét, R̂)

is fully faithful with essential image those K with K ⊗
R̂
R/m locally constant.

Proof. — The full faithfulness is automatic since RΓ(X, R̂) ≃ R limRΓ(X,R/mn) ≃
R limR/mn ≃ R. The rest follows by Lemma 6.5.6.

Lemma 6.5.8. — Fix a locally closed constructible subset k : W ↪→ X.

1. One has k∗(R̂X) = R̂W .

2. The functor k∗ : D(Xproét, R̂X)→ D(Wproét, R̂W ) preserves constructible com-

plexes.

3. The functor k! : D(Wproét, R̂W ) → D(Xproét, R̂X) preserves constructible com-

plexes.

Proof. — (1) follows from the fact that k∗ : Shv(Xproét) → Shv(Wproét) commutes
with limits (as this is true for constructible open and closed immersions). This also
implies k∗(K⊗

R̂X
R/m) ≃ k∗K⊗

R̂W
R/m for anyK ∈ D(Xproét, R̂X), which gives (2).

The projection formula for k! shows k!K⊗R̂X
R/m ≃ k!(K⊗R̂W

R/m), which gives (3).
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Lemma 6.5.9. — Let f : X → Y be a map of qcqs schemes, and let f∗ :
D(Xproét, R̂)→ D(Yproét, R̂) be the pushforward. Then we have:

1. For K ∈ D(Xproét, R̂), we have an identification {f∗K ⊗
R̂

R/mn} ≃

{f∗(K ⊗R̂
R/mn)} of pro-objects.

2. For K ∈ D(Xproét, R̂), we have f∗K̂ ≃ f̂∗K. In particular, f∗ preserves

m-adically complete complexes, and hence induces f∗ : Dcomp(Xproét, R̂) →
Dcomp(Yproét, R̂).

3. For any perfect complex L ∈ D(R), we have f∗K ⊗R̂
L̂ ≃ f∗(K ⊗R̂

L̂).

4. Pullback followed by completion gives f∗comp : Dcomp(Xproét, R̂) →

Dcomp(Yproét, R̂) left adjoint to f∗.

5. f∗comp preserves constructible complexes, and hence defines

f∗comp : Dcons(Yproét, R̂) −→ Dcons(Xproét, R̂) .

Proof. — (1) would be clear if each R/mn is R-perfect. To get around this, choose
P and J as in the proof of Proposition 3.5.1. Then {R ⊗P P/Jn} ≃ {R/mn} is a
strict pro-isomorphism, so {K ⊗R R/mn} ≃ {K ⊗P P/Jn} as pro-objects as well,
and similarly for f∗K. The claim now follows as P/Jn is P -perfect. (2) immediately
follows from (1) (or simply because T (f∗K,x) ≃ f∗T (K,x) ≃ 0 for x ∈ m and K is
complete as f∗ commutes with R lim). (3) immediately follows from the case L = R

by devissage, while (4) follows from (2) by adjointness of completion. For (5), as f∗

commutes with tensor products, we have f∗comp(K)⊗
R̂Y

R/m ≃ f∗(K ⊗
R̂X

R/m), so
the claim follows from preservation of constructibility under pullbacks in the classical
sense.

Remark 6.5.10. — When f : X → Y is a finite composition of qcqs weakly étale maps
and constructible closed immersion, we have f∗comp = f∗, i.e., that f∗K is complete
if K is so; this follows from Lemma 6.5.8.

Lemma 6.5.9 shows that pushforwards in the pro-étale topology commute with
taking m-adic truncations in the sense of pro-objects. To get strict commutation, we
need a further assumption:

Lemma 6.5.11. — Let f : X → Y be a map of qcqs schemes. Assume that f∗ :
Mod(Xét, R/m) → Mod(Yét, R/m) has cohomological dimension " d for some inte-

ger d. Then:

1. If P ∈ D"k(R) and K ∈ D"m
cons(Xproét, R̂), then f∗(K ⊗̂R̂

P̂ ) ∈
D"k+m+d+2(Yproét, R̂).

2. If K ∈ Dcons(Xproét, R̂) and M ∈ D−(R), then f∗(K ⊗̂R̂
M̂) ≃ f∗K⊗̂R̂

M̂ .

3. If K ∈ Dcons(Xproét, R̂), then f∗K ⊗R̂
R/mn ≃ f∗(K ⊗R̂

R/mn) for all n.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



170 B. BHATT & P. SCHOLZE

Proof. — For (1), observe that

f∗(K⊗̂R̂
P̂ ) ≃ f∗R lim(Kn ⊗R/mn Pn)

≃ R lim f∗(Kn ⊗R/mn Pn) ∈ D"k+m+d+2(Yproét, R̂),

where the last inclusion follows from Lemma 5.4.6 and repleteness. For (2), we may
assume by shifting that K ∈ D"0

cons(Xproét, R̂). First observe that if M is a free
R-module, then the claim is clear. For general M , fix an integer i and choose an
i-close approximation Pi → M in D(R) with Pi a finite complex of free R-modules,
i.e., the homotopy-kernel Li lies in D"−i(R). Then P̂i → M̂ is an i-close approxima-
tion in D(Xproét, R̂). Moreover, f∗(K⊗̂R̂

P̂i) ≃ f∗K⊗̂R̂
P̂i as P̂i is a finite complex of

free R̂-modules. We then get a commutative diagram

f∗K⊗̂R̂
P̂i

a !!

b

""

f∗K⊗̂R̂
M̂

c

""

f∗(K⊗̂R̂
P̂i)

d !! f∗(K⊗̂R̂
M̂).

Then b is an equivalence as explained above. The homotopy-kernel f∗(K⊗̂R̂
L̂i) of d is

(−i+d+2)-connected by (1), and the homotopy-kernel f∗K⊗̂R̂
L̂i of a is (−i+d+2)-

connected since f∗K ≃ R lim f∗Kn ∈ D"d+1(Yproét). Thus, the homotopy-kernel of c
is also (−i+ d+2)-connected. Letting i→∞ shows c is an isomorphism. (3) follows
from (2) by setting M = R/mn, observing that R/mn is already derived m-complete,
and using −⊗̂

R̂
R/m ≃ − ⊗

R̂
R/m as any R/m-complex is automatically derived

m-complete.

Remark 6.5.12. — Unlike pullbacks, the pushforward along a map of qcqs schemes
does not preserve constructibility: if it did, then H0(X,Z/2) would be finite dimen-
sional for any qcqs scheme X over an algebraically closed field k, which is false for
X = Spec(

∏
∞

i=1 k). We will see later that there is no finite type counterexample.

6.6. Constructible complexes on noetherian schemes. — Fix X and R as in
§6.5. Our goal in this section is to prove that the notion of a constructible complexes on
X coincides with the classical one from topology if X is noetherian: K ∈ D(Xproét, R̂)
is constructible if and only if it is locally constant along a stratification, see Proposi-
tion 6.6.11. In fact, it will be enough to assume that the topological space underlying
X is noetherian. The proof uses the notion of w-strictly local spaces, though a direct
proof can be given for varieties, see Remark 6.6.13.

For any affine scheme Y , there is a natural morphism π : Yét → π0(Y ) of sites. Our
first observation is that π is relatively contractible when Y is w-strictly local.

Lemma 6.6.1. — If Y is a w-strictly local affine scheme, then pullback D(π0(Y )) →
D(Yét) is fully faithful.
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Proof. — Fix K ∈ D(π0(Y ), F ). Choose a point y ∈ π0(Y ), and let y ∈ Y be
its unique preimage that is closed. Then the projective system {π−1U} of open
neighbourhoods of y obtained via pullback of open neighbourhoods y ∈ U in π0(Y ) is
cofinal in the projective system {V } of all open neighbourhoods y ∈ V in Y . Hence,

colim
y∈U

RΓ(U,π∗π
∗K) ≃ colim

y∈U
RΓ(π−1U,π∗K) ≃ colim

y∈V
RΓ(V,π∗K) ≃ (π∗K)y ≃ Ky.

Here the penultimate isomorphism uses that the Zariski and étale localizations of Y
at y coincide. This shows that K → π∗π

∗K induces an isomorphism on stalks, so
must be an isomorphism. The rest follows by adjunction.

For a profinite set S, we define Sproét := Sproét, with ∗ some fixed geometric point,
and S ∈ Shv(∗proét) the corresponding scheme. Alternatively, it is the site defined
by profinite sets over S with covers determined by finite families of continuous and
jointly surjective maps, see Example 4.1.10. Using repleteness of Shv(Sproét), we show
that a compatible system of constant perfect R/mn-complexes Ln on S has a constant
perfect limit L in Sproét; the non-trivial point is that we do not a priori require the
transition maps be compatible with trivializations.

Lemma 6.6.2. — Let S be a profinite set. Fix L ∈ Dcomp(Sproét, R̂) with L⊗R R/mn

constant with perfect value Cn ∈ D(R/mn) for all n. Then L is constant with perfect

values.

Proof. — Fix a point s ∈ S. Passing to the stalks at s shows that there exists C ∈

Dperf(R) with C ⊗R R/mn ≃ Cn. Write Ĉ ∈ D(Sproét, R̂) and Cn ∈ D(Sproét, R/mn)
for the corresponding constant complexes. We will show Isom

R̂
(L, Ĉ) ̸= ∅. First

observe that ExtiR/mn(Cn, Cn) ≃ Mapconts(S,Ext
i
R/mn(Cn, Cn)). By Lemma 6.6.3

and Lemma 6.6.6, the system {ExtiR/mn(Cn, Cn)} satisfies ML. As a map f : Cn → Cn

is an automorphism if and only if it is so modulo m, it follows that {AutR/mn(Cn)} also
satisfies ML. Lemma 6.6.4 and the assumption on Ln shows that {IsomR/mn(Ln, Cn)}
satisfies ML. As the evident map IsomR/mn(Ln, Cn) × ExtiR/mn(Cn, Cn) →

ExtiR/mn(Ln, Cn) is surjective, Lemma 6.6.5 shows that {ExtiR/mn(Ln, Cn)} satisfies
ML. On the other hand, completeness gives

RHom
R̂
(L, Ĉ) ≃ R limRHomR/mn(Ln, Cn),

so

Hom
R̂
(L, Ĉ) ≃ lim

n
HomR/mn(Ln, Cn).

By completeness, a map f : L → Ĉ is an isomorphism if and only f ⊗
R̂
R/m is one,

so Isom
R̂
(L, Ĉ) ≃ limn IsomR/mn(Ln, Cn). As {IsomR/mn(Ln, Cn)} satisfies ML with

non-empty terms, the limit is non-empty.

The next few lemmas record elementary facts about projective systems {Xn} of
sets; for such a system, we write X◦n := ∩kim(Xn+k → Xn) ⊂ Xn for the stable
image.
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Lemma 6.6.3. — Fix a topological space S and a projective system {Xn} of sets sat-

isfying the ML condition. Then {Mapconts(S,Xn)} also satisfies the ML condition.

Proof. — Fix n and N such that X◦n = im(XN → Xn). Fix a continuous map
f : S → Xn that lifts to XN . Then f factors through a continuous map S → X◦n. As
{X◦n} has surjective transition maps, the claim follows.

Lemma 6.6.4. — Let {Gn} be a projective system of groups, and let {Xn} be a com-

patible projective system of transitive G-sets. Assume {Gn} satisfies ML and Xn ̸= ∅

for all n. Then {Xn} satisfies ML, and limXn ̸= ∅.

Proof. — Note that any Nop-indexed system of non-empty sets satisfying the ML
condition has a non-empty inverse limit: the associated stable system has non-empty
terms and surjective transition maps. Hence, it suffices to show {Xn} satisfies ML.
Write hij : Gi → Gj and fij : Xi → Xj for the transition maps. Fix n and N

such that G◦n = im(GN → Gn). Fix some xn ∈ Xn that lifts to an xN ∈ XN . For
m ! N , choose some xm ∈ Xm, and gN ∈ GN with gN · fmN(xm) = xN ; this is
possible by transitivity. Then there exists a gm ∈ Gm with hmn(gm) = hNn(gn), so
xm := g−1m · xm ∈ Xm lifts xn ∈ Xn, which proves the ML property.

Lemma 6.6.5. — Let f : {Wn} → {Yn} be a map of projective systems. Assume that

{Wn} satisfies ML, and that fn : Wn → Yn is surjective. Then {Yn} satisfies ML.

Proof. — Fix n, and choose N such that W ◦n = im(WN → Wn). Then any yn ∈ Yn

that lifts to some yN ∈ YN further lifts to some wN ∈ WN with image wn ∈ Wn lifting
yn. By choice of N , there is a wn+k ∈ Wn+k for all k lifting wn ∈ Wn. The images
yn+k := fn+k(wn+k) ∈ Yn+k then lift yn ∈ Yn for all k, which proves the claim.

A version of the Artin-Rees lemma shows:

Lemma 6.6.6. — For K ∈ Dperf(R), the natural map gives pro-isomorphisms

{Hi(K)/mn} ≃ {Hi(K ⊗R R/mn)}.

Proof. — Let C be the category of pro-(R-modules), and consider the functor F :
ModfR → C given by M *→ {M/mnM}. Then F is exact by the Artin-Rees lemma,
so for any finite complex K of finitely generated R-modules, one has F (Hi(K)) ≃
Hi(F (K)). Applying this to a perfect K then proves the claim.

Lemma 6.6.7. — Let Y be a w-strictly local affine scheme. Then any M ∈ D(Yét)
that is locally constant on Yét is constant over a finite clopen cover, and hence comes

from D(π0(Y )) via pullback.

Proof. — For the first part, we may assume that there exist finitely many qcqs étale
maps fi : Ui → Y with f : +iUi → Y surjective such that f∗i M ≃ Ai for some
Ai ∈ D(Ab). By w-strict locality, there is a section s : Y → +iUi of f . Then
{Vi := s−1Ui} is a finite clopen cover of Y with M |Vi ≃ Ai ∈ D(Vi,ét). Now any finite
clopen cover of Y is the pullback of a finite clopen cover of π0(Y ), so the second part
follows.
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Lemma 6.6.8. — Let X = Spec(A) be connected. Fix K ∈ Dcons(Xproét, R̂) with

K ⊗
R̂
R/m locally constant on Xét with perfect values. Then there exists a pro-étale

cover f : Y → X with f∗K ≃ C with C ∈ Dperf(R).

Proof. — First observe that, by connectedness and examination of stalks in Xét, each
Kn := K ⊗

R̂
R/mn is locally constant on Xét with the same perfect value Cn. Now

choose a pro-étale cover f : Y → X with Y w-strictly local, and let π : Y → π0(Y ) be
the natural map. Then Lemma 6.6.7 and Lemma 6.6.1 show f∗Kn ≃ π∗Ln ≃ π∗Cn,
where Ln := π∗f

∗Kn ∈ D(π0(Y ), R/mn), and the isomorphism Ln ≃ Cn is non-
canonical. Lemma 6.6.1 shows that

Ln+1 ⊗R/mn+1 R/mn ≃ π∗π
∗
(
Ln+1 ⊗R/mn+1 R/mn

)

≃ π∗
(
f∗Kn+1 ⊗R/mn+1 R/mn

)
≃ π∗f

∗Kn = Ln

via the natural map Ln+1 → Ln. Applying Lemma 3.5.5 to {Ln} shows that L :=
π∗K ≃ R limLn ∈ D(π0(Y )proét, R̂) satisfies L ⊗

R̂
R/mn ≃ Ln. Lemma 6.6.2 then

shows L ≃ Ĉ ∈ D(π0(Y )proét, R̂), where C := R limCn ∈ Dperf(R) is a stalk ofK.

To state our result, we need the following definition.

Definition 6.6.9. — A scheme X is said to be topologically noetherian if its underly-

ing topological space is noetherian, i.e., any descending sequence of closed subsets is

eventually constant.

Lemma 6.6.10. — Let T be a topological space.

1. If T is noetherian, then T is qcqs and has only finitely many connected compo-

nents. Moreover, any locally closed subset of T is constructible, and noetherian

itself.

2. If T admits a finite stratification with noetherian strata, then T is noetherian.

3. Assume that X is a topologically noetherian scheme, and Y → X étale. Then

Y is topologically noetherian.

Proof

1. Quasicompacity of T is clear. Also, the property of being noetherian passes to
closed subsets, as well as to open subsets. Thus, all open subsets are quasicom-
pact; this implies that all locally closed subsets are constructible, and that T

is quasiseparated. Every connected component is an intersection of open and
closed subsets; this intersection has to be eventually constant, so that every
connected component is open and closed. By quasicompacity, there are only
finitely many.

2. Under this assumption, any descending sequence of closed subsets becomes even-
tually constant on any stratum, and thus constant itself.
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3. There is a stratification of X over which Y → X is finite étale. By (2), we
may assume that Y → X is finite étale. Any closed Z ⊂ Y gives rise to a
function fZ : X → N, mapping any x ∈ X to the cardinality of the fibre of Z
above a geometric point above x. As Z → X is finite, the function fZ is upper
semicontinuous, i.e., for all n, {x | fZ(x) ! n} ⊂ X is closed. Moreover, all fZ
are bounded independently of Z (by the degree of Y → X). Given a descending
sequence of Z’s, one gets a descending sequence of fZ ’s. Thus, for any n,
{x | fZ(x) ! n} forms a descending sequence of closed subsets of X , which
becomes eventually constant. As there are only finitely many n of interest,
all these subsets are eventually constant. This implies that fZ is eventually
constant, which shows that Z is eventually constant, as desired.

Here is the promised result.

Proposition 6.6.11. — Let X be a topologically noetherian scheme. A complex K ∈

D(Xproét, R̂) is constructible if and only if there exists a finite stratification {Xi ↪→ X}

with K|Xi locally constant with perfect values on Xi,proét.

The phrase “locally constant with perfect values”means locally isomorphic to L̂ ≃

L⊗R R̂ for some L ∈ Dperf(R).

Proof. — For the forward direction, fix K ∈ Dcons(Xproét, R̂). By noetherian in-
duction, it suffices to find a dense open U ⊂ X such that K|U is locally constant
with perfect values in D(Uproét, R̂). By assumption, there exists a U ⊂ X such
that K|U ⊗R̂

R/m ∈ D(Uét, R/m) is locally constant with perfect values. Any
topologically noetherian scheme has only finitely many (clopen) connected compo-
nents. Thus, by passing to connected components, we may assume U is connected.
Lemma 6.6.8 then proves the claim. For the reverse, fixK ∈ D(Xproét, R̂), and assume
there exists a finite stratification {Xi ↪→ X} such that K|Xi is, locally on Xi,proét,
the constant R̂-complex associated to a perfectR-complex. ThenK is complete by
Lemmas 6.5.8 and standard sequences (as completeness is a pro-étale local property).
For the rest, by similar reasoning, we may assume that X is affine and there exists a
pro-étale cover f : Y → X such that K|Y ≃ L̂ for a perfect R-complex L. Then K1 is
locally constant with perfect value L1 on Xproét. Lemma 6.3.13 then shows that K1

is étale locally constant with perfect value L1, as wanted.

The next example shows the necessity of the noetherian hypothesis in Proposi-
tion 6.6.11:

Example 6.6.12. — Fix an algebraically closed field k, a prime number ℓ. Set Xn =
Z/ℓn, and X = limXn = Zℓ ∈ Spec(k)proét following the notation of Example 4.1.9,
so X is qcqs. Consider the sheaf of rings R̂ = limZ/ℓn ∈ Shv(Spec(k)proét);
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THE PRO-ÉTALE TOPOLOGY FOR SCHEMES 175

X represents R̂, but we ignore this. We will construct a complex K ∈ D(Xproét, R̂)
satisfying:

1. K ⊗L

R̂
Z/ℓ is constant with perfect values over a finite clopen cover of X , so

K ∈ Dcons(Xproét, R̂).

2. K is constant on the connected components of X with perfect values.

3. There does not exist a finite stratification {Xi ↪→ X} with K|Xi locally constant
on Xi,proét.

For each n, let K ′n ∈ D(Xn,proét,Z/ℓ
n) be the locally constant complex whose value

over the connected component of Xn determined by α ∈ Z/ℓn is (Z/ℓn
α
→Z/ℓn).

Set Kn ∈ D(Xproét,Z/ℓ
n) to be its pullback to X . Then there is a coherent sys-

tem of quasi-isomorphisms Kn+1 ⊗
L
Z/ℓn+1 Z/ℓ

n ≃ Kn. Patching along these isomor-

phisms gives a complex K := R limKn ∈ D(Xproét, R̂) satisfying: for each map
fα : Spec(k) → X determined by an α ∈ Zℓ, we have f∗αK ≃ (Zℓ

α
→Zℓ). As X is to-

tally disconnected, (2) is clear. Since K ⊗
R̂
Z/ℓ ≃ K1, one easily checks (1). Finally,

as the stalks f∗αK over α ∈ X(k) take on infinitely many disinct values, (3) follows.

Remark 6.6.13. — When X is a variety over an algebraically closed field k, it is easy
to give a direct proof that any K ∈ Dcons(Xproét, R̂) is locally constant along a
stratification, together with an explicit description of the trivializing cover over each
stratum. Indeed, as in Proposition 6.6.11, it suffices to find a dense open U ⊂ X such
that K|U is locally constant in D(Uproét, R̂). Replacing X by a suitable open, we may
assume (by Artin’s theorem [SGA73, §XI.3]) that:

1. X is smooth, affine, connected, and a K(π, 1), i.e., pullback along the canonical
map Shv(Xét)→ Shv(Xf ét) induces a fully faithful functor D+(Xf ét, R/mn)→
D+(Xét, R/mn) (6).

2. ν∗K1 is locally constant on Xét, i.e., pulled back from Xf ét.

The normalization ofX in the maximal unramified extension of its fraction field within
a fixed separable closure gives a pro-(finite étale) cover f : Y → X . We will show
f∗K is constant. Note that Y is affine, connected, normal, and all finitely presented
locally constant sheaves of R/mn-modules on Yét are constant by construction. In par-
ticular, each Hi(Kn) is constant over Y . Moreover, since X was a K(π, 1), we have
RΓ(Yét,M) ≃ M for any M ∈ ModR/mn . Then the left-completeness of D(Yproét)
formally shows D(R/mn) → D(Yproét, R/mn) is fully faithful. Induction on the am-
plitude of Kn then shows f∗Kn ≃ Cn for Cn := RΓ(Yproét,Kn) ∈ D(R/mn). As K is

6. By the Leray spectral sequence for Φ : (Shv(Xét), R/mn) → (Shv(Xf ét), R/mn) and devissage

to reduce n, it suffices to check that Hi(Yét, R/m) ≃ Hi(Yf ét, R/m) for all i and all Y ∈ Xf ét. By

passage to suitable filtered colimits, we may assume R/m = Fℓ or R/m = Q. If R/m = Fℓ with

ℓ ∈ k∗, then the equality is due to Artin. If R/m = Fp with p zero in k, then the Artin-Schreier

sequence and the affineness of Y show that RΦ∗Fp ≃ Fp, which clearly suffices. If R/m = Q, then

Hi(Yf ét,Q) = 0 by a trace argument; the normality of Y combined with examination at stalks shows

that Q ≃ Rη∗Q, where η : Spec(K) → Y is the finite disjoint union of generic points of Y , which

proves the claim by reduction to Galois cohomology.
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constructible, each Cn is perfect (since Cn = x∗f∗Kn for any geometric point x of Y ),
and Cn+1 ⊗R/mn+1 R/mn ≃ Cn via the natural map. Then C := R limCn ∈ D(R)

is perfect, and f∗K ≃ R lim f∗Kn ≃ R limCn =: Ĉ ∈ D(Yproét, R̂), which proves the
claim.

6.7. The 6 functors. — We fix a complete noetherian local ring (R,m) with finite
residue field of characteristic ℓ. We say that a scheme X is ℓ-coprime if ℓ is invertible
on X .

Theorem 6.7.1 (Grothendieck, Gabber). — Let f : X → Y be a finitely presented map

of qcqs schemes. Assume either that f is proper, or that Y is quasi-excellent and ℓ-

coprime. Then f∗ : D(Xét, R/m) → D(Yét, R/m) has finite cohomological dimension

and preserves constructibility.

Lemma 6.7.2 (Pushforward). — Let f : X → Y be a finitely presented map of qcqs

schemes. Assume either that f is proper, or that Y is quasi-excellent and ℓ-coprime.

Then f∗ : Dcomp(Xproét, R̂) → Dcomp(Yproét, R̂) preserves constructibility. The in-

duced functor f∗ : Dcons(Xproét, R̂)→ Dcons(Yproét, R̂) is right adjoint to f∗comp.

Proof. — Fix K ∈ Dcons(Xproét, R̂). Then f∗K is complete by Lemma 6.5.9.
Lemma 6.5.11 shows f∗K ⊗R̂

R/m ≃ f∗(K ⊗R̂
R/m), so constructibility follows

Lemma 5.4.3 and Theorem 6.7.1; the adjunction is automatic.

Remark 6.7.3. — The ℓ-coprimality assumption in Lemma 6.7.2 is necessary:
H1(A1

Fp
,Fp) is infinite dimensional.

Lemma 6.7.4 (Smooth base change). — Fix a cartesian square of ℓ-coprime qcqs

schemes

X ′
g

!!

f

""

X

f

""

Y ′
g

!! Y

with f qcqs and g smooth. Then for any K ∈ Dcons(Xproét, R̂), the natural map

induces an isomorphism

g∗comp ◦ f∗K ≃ f∗ ◦ g
∗

compK ∈ Dcomp(Y
′

proét, R̂).

If Y is quasi-excellent and f finitely presented, the preceding equality takes place in

Dcons(Y ′proét, R̂).

Proof. — Lemma 6.5.9 shows that {f∗K ⊗R̂
R/mn} ≃ {f∗(K ⊗R̂

R/mn)} as pro-
objects. By the constructibility assumption on K, each K ⊗

R̂
R/mn is the pullback

under ν of a constructible complex in Db(Xét, R/mn), so f∗(K⊗R̂
R/mn) is a pullback

from D+(Xét, R/mn) by Lemma 5.4.3. The claim now follows by definition of g∗comp

and classical smooth base change (which applies to D+(Xét, R/mn)).
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Lemma 6.7.5 (Proper base change I). — Fix a cartesian square of qcqs schemes

X ′
g

!!

f

""

X

f

""

Y ′
g

!! Y

with f proper. Then for any K ∈ Dcons(Xproét, R̂), the natural map induces an

isomorphism

g∗comp ◦ f∗K ≃ f∗ ◦ g
∗

compK ∈ Dcons(Y
′

proét, R̂).

Proof. — This reduces to the corresponding assertion in étale cohomology as all
functors in sight commute with application of − ⊗

R̂
R/m by Lemma 6.5.9 and

Lemma 6.5.11.

Definition 6.7.6. — Let f : X → Y be a separated finitely presented map of

qcqs schemes. Then we define f! : Dcons(Xproét, R̂) → Dcons(Yproét, R̂) as f
∗
◦ j!

where X ↪→
j
X→

f
Y be a factorization with j an open immersion, and f proper.

If Y is a geometric point, we write RΓc(Xproét,K) := RΓ(Yproét, f!K).

Lemma 6.7.7. — Definition 6.7.6 is well-defined, i.e., f! is independent of choice of j

and preserves constructibility.

Proof. — This follows by the same argument used in the classical case thanks to
Lemma 6.1.12.

Remark 6.7.8. — Both j! and f∗ are right adjoints at the level of abelian categories.
However, the functor f! from Definition 6.7.6 is not the derived functor of the com-
position f∗ ◦ j! : Ab(Xproét) → Ab(Yproét), i.e., of H0(f!). To see this, take X → Y

to be A1 → Spec(k) with k algebraically closed. Then we choose j : X ↪→ X to
be A1 ⊂ P1. It suffices to check that the derived functors of F *→ Γ(X, j!F ) fail
to compute RΓ(Y, f!F ). Lemma 6.1.9 shows Γ(X, j!F ) = ker(F (X) → F (η̃)) where
η → X is the generic point, and η̃ → η → X is the restriction of the henseliza-
tion at ∞ on P1 to A1. The map η̃ → η is a pro-étale cover, so we can write
Γ(X, j!F ) = ker(F (X)→ F (η)) for any F ∈ Ab(Xproét). As η → X is a subobject in
Xproét, the map F (X) → F (η) is surjective for F injective. The derived functors of
F *→ Γ(X, j!F ) are thus computed by the homotopy-kernel of the map

RΓ(X,F ) −→ RΓ(η, F ).

Taking F = Z/n for n ∈ k∗ shows H0(Yproét, R
2H0(f!)F ) ≃ H1(η,Z/n) ̸=

H2
c (A

1,Z/n).

Remark 6.7.9. — The phenomenon of Remark 6.7.8 also occurs in classical étale co-
homology, i.e., f! does not compute the derived functors of H0(f!). However, the
reason is different. In the example considered in Remark 6.7.8, if X0 ⊂ X is the set
of closed points, then

Γ(X, j!F ) = ⊕x∈X0Γx(X,F ),
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for F ∈ Ab(Xét) torsion; one checks this directly for constructible sheaves, and then
observes that the constructible ones generate all torsion sheaves on Xét under filtered
colimits. The derived functors of F *→ Γ(X, j!F ) are thus calculated by the homotopy-
kernel of

⊕x∈X0RΓ(X,F ) −→ ⊕x∈X0RΓ(X − {x}, F ).

Taking F = Z/n for n ∈ k∗ shows H0(Yét, R
2H0(f!)F ) ≃ ⊕x∈X0H1(X− {x},Z/n) ̸=

H2
c (A

1,Z/n).

Lemma 6.7.10 (Proper base change II). — The conclusion of Lemma 6.7.5 is valid for

any separated finitely presented map f provided f∗ is replaced by f!.

Proof. — This follows from Lemma 6.7.5 and Lemma 6.2.3.

Lemma 6.7.11. — Let i : Z ↪→ X be a constructible locally closed immersion with X

quasi-excellent and ℓ-coprime. Then i! : D(Xproét, R̂) → D(Zproét, R̂) preserves con-

structible complexes, and the resulting functor i! : Dcons(Xproét, R̂)→ Dcons(Zproét, R̂)

is a right adjoint to i! : Dcons(Zproét, R̂)→ Dcons(Xproét, R̂).

Proof. — If i is an open immersion, then i! = i∗, so Lemma 6.5.8 settles the claim.
Thus, we may assume i is a closed immersion with open comelement j : U ↪→ X . Fix
K ∈ Dcons(Xproét, R̂). There is an exact triangle

i∗i
!K → K → j∗j

∗K.

Lemma 6.5.8 and Lemma 6.7.2 imply that j∗j∗K is constructible, and hence i∗i
!K is

also constructible. Another application of Lemma 6.5.8 shows that i!K = i∗i∗i
!K is

also constructible.

Lemma 6.7.12 (⊗-products). — Let X be a qcqs scheme. Then Dcons(Xproét, R̂) ⊂

D(Xproét, R̂) is closed under ⊗-products.

Proof. — This is Lemma 6.5.5.

Lemma 6.7.13 (Internal Hom). — Let X be a quasi-excellent ℓ-coprime scheme. If

K,L ∈ Dcons(Xproét, R̂), then RHomR(K,L) ∈ Dcons(Xproét, R̂). Moreover, for any

n ! 0, one has RHomR(K,L)⊗
R̂
R/mn ≃ RHomR/mn(K ⊗R̂

R/mn, L⊗
R̂
R/mn).

Proof. — The assertion is local on X . By filtering K, we may assume K = i!R̂ for
i : Z ↪→ X a constructible closed immersions. By adjointness, we have RHom(K,L) =
i∗RHom(R̂, i!L) ≃ i∗i

!L, which is constructible by Lemma 6.7.11 and Lemma 6.7.2.
The second assertion is proved similarly.

Lemma 6.7.14 (Projection Formula). — Let f : X → Y be a separated finitely pre-

sented map of qcqs schemes. For any L ∈ Dcons(Yproét, R̂) and K ∈ Dcons(Xproét, R̂),
we have f!K⊗̂R̂

L ≃ f!(K⊗̂R̂
f∗compL) via the natural map.
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Proof. — The assertion is local on Y . By filtering L, we may assume L = i∗R̂ for
i : Z ↪→ Y a constructible closed immersion. Let j : U ↪→ X be the open complement
of Z. For any R̂-complex L, we have L⊗

R̂
j!j
∗R̂ ≃ j!j

∗L, and hence L⊗
R̂
i∗R̂ ≃ i∗i

∗L.
Using this formula, the assertion now follows from Lemma 6.7.10 as i∗ = i∗comp.

Remark 6.7.15. — The analogue of Lemma 6.7.14 for f∗ is false, even for quasiexcel-
lent ℓ-coprime schemes. Indeed, the projection formula for the special case L = i∗R̂

for i : Z ↪→ X is equivalent to the base change theorem as in Lemma 6.7.10, which
fails for f∗.

Lemma 6.7.16. — Let f : X → Y be a separated finitely presented map of qcqs

schemes. For any K ∈ Dcons(Xét, R/mn) and M ∈ Db(R), we have f!K ⊗R/mn M ≃

f!(K ⊗R/mn M) ∈ Db(Yét, R/mn).

Proof. — Lemma 6.5.11 (applied with R̂ = R/mn) proves the corresponding state-
ment in the pro-étale world, i.e., after applying ν∗. It remains to observe that both
sides of the desired equality lie in Db(Yét, R/mn−1) by Lemma 6.7.2 and the finite flat
dimensionality of constructible complexes, so we can apply ν∗ to get the claim.

Lemma 6.7.17. — Let f : X → Y be a finitely presented map of quasi-excellent

ℓ-coprime schemes. For any K ∈ Dcons(Xét, R/mn) and M ∈ Db(R/mn), we have

f∗K ⊗R/mn M ≃ f∗(K ⊗R/mn M) ∈ Db(Yét, R/mn).

Proof. — This is proven exactly like Lemma 6.7.16.

Lemma 6.7.18. — Let f : X → Y be a separated finitely presented map of quasiex-

cellent ℓ-coprime schemes. Then f! : D+(Xét, R/mn) → D+(Yét, R/mn) has a right

adjoint f !
n. This adjoint preserves constructibility, and the following two diagrams

commute for n " m:

D+(Yét, R/mn) !!

f !
n

""

D+(Yét, R/mm)

f !
m

""

Dcons(Yét, R/mm) !!

f !
m

""

Dcons(Yét, R/mn)

f !
n

""

D+(Xét, R/mn) !! D+(Xét, R/mm) Dcons(Xét, R/mm) !! Dcons(Xét, R/mn).

Here the horizontal maps are induced by restriction and extension of scalars along

R/mm → R/mn respectively.

Proof. — The existence of f !
n and preservation of constructibility is classical. For

the rest, we write Rn = R/mn. The commutativity of the square on the left is
equivalent to the commutativity of the corresponding square of left adjoints, which
follows from the projection formula in étale cohomology. For the square on the right,
fix Km ∈ Dcons(Yét, Rm), and write Kn = Km ⊗Rm Rn ∈ Dcons(Yét, Rn). We must
show that f !

mKm⊗RmRn ≃ f !
nKn via the natural map f !

mKm → f !
mKm ≃ f !

nKn. This
assertion is local on X , so we can factor f as X

i
↪→P

g
→S with i a constructible closed

immersion, and g smooth of relative dimension d. Since f !
m = i!m ◦ g

!
m, it suffices to

prove the analogous claim for i and g separately. Since g!m = g∗m(d)[2d], the assertion
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is immediate. For i, let j : U ↪→ P be the open complement of i. Using the triangle
i∗i

!
m → id → j∗j

∗, it suffices to show that j∗j∗Km ⊗Rm Rn ≃ j∗j
∗Kn, which follows

from Lemma 6.7.17.

Lemma 6.7.19 (!-pullback). — Let f : X → Y be a separated finitely presented map of

quasiexcellent ℓ-coprime schemes. Then f! : Dcons(Xproét, R̂) → Dcons(Yproét, R̂) has

a right adjoint f ! with f !K ⊗
R̂
R/mn ≃ f !

n(K ⊗R̂
R/mn).

Proof. — Fix K ∈ Dcons(Yproét, R̂), and let Kn = K⊗RR/mn ∈ Dcons(Yét, R/mn) be

its truncation. Lemma 6.7.18 gives a projective system {f !
nKn} in Dcomp(Xproét, R̂),

and we write f !K := R lim f !
nKn ∈ Dcomp(Xproét, R̂). By completeness and Lem-

ma 6.7.18, one immediately checks that f !K has the right adjointness properties. It
remains to show f !K ⊗

R̂
R/m ≃ f !

1K1, which also implies f !K is constructible. This
follows from the second half of Lemma 6.7.18 and Lemma 3.5.5.

Lemma 6.7.20 (Duality). — Let X be an excellent ℓ-coprime scheme equipped with a

dimension function δ. Then there exists a dualizing complex ΩX ∈ Dcons(Xproét, R̂),

i.e., if DX := RHomX(−,ΩX), then id ≃ D2
X on Dcons(Xproét, R̂).

Proof. — First consider the case R = Zℓ, and set Rn = Z/ℓn. Then for each n,
there exists a unique (up to unique isomorphism) potential dualising complex ωn ∈

Dcons(Xproét,Z/ℓ
n), see [ILO14, XVII.2.1.2, XVII.5.1.1, XVII 6.1.1]. By [ILO14,

XVII.7.1.3] and uniqueness, one may choose isomorphisms ωn+1 ⊗Z/ℓn+1 Z/ℓn for

each n. Set ωX = limΩn ∈ D(Xproét, Ẑℓ). Then ωX is ℓ-adically complete, and
ωX ⊗Zℓ Z/ℓ

n ≃ ωn (by a slight modification of Lemma 3.5.5). Lemma 6.7.13 then
gives the duality isomorphism id ≃ D2

X in this case by reduction modulo ℓ. For general
rings R, set Rn := R/mn, so each Rn is a Z/ℓn-algebra. Then [ILO14, XVII.7.1.3]
shows that Ωn := ωn ⊗Z/ℓn Rn ∈ Dcons(Xproét, Rn) is dualizing. A repeat of the

argument for the previous case then shows that ΩX := limΩn ∈ Dcons(Xproét, R̂) has
the required properties.

Remark 6.7.21. — The dualizing complex constructed in Lemma 6.7.20 is not the
traditional dualizing complexes (as in [ILO14, §XVII.7]) unless R is Gorenstein. For
example, when X is a geometric point, the dualizing complex above is simply the ring
R itself, rather than the dualizing complex ω•

R coming from local duality theory. This
is a reflection of our choice of working with a more restrictive class of complexes in
Dcons(Xproét, R̂): when X is a point, Dcons(X, R̂) ≃ Dperf(R).

6.8. Zℓ-,Qℓ-,Z̄ℓ- and Q̄ℓ-sheaves. — Let us start by defining the relevant cate-
gories. For the moment, let X be any scheme.

Definition 6.8.1. — Let E be an algebraic extension of Qℓ with ring of integers OE.

Let EX = FE and OE,X = FOE be the sheaves associated with the topological rings E

and OE on Xproét as in Lemma 4.2.12.
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We first identify these sheaves in terms of the familiar algebraic definitions directly
on Xproét:

Lemma 6.8.2

1. If E is a finite extension of Qℓ with uniformizer ϖ, then OE,X = ÔE =
limn OE/ϖ

nOE, with notation as in Subsection 6.5.

2. In general, OE,X = colimF⊂E OF,X , where F runs through finite extensions of

Qℓ contained in E. Moreover, EX = OE,X [ℓ−1].

Proof

1. This follows from Lemma 4.2.12 and the identity

Mapcont(S,OE) = lim
n

Mapcont(S,OE/ϖ
n
OE)

for any profinite set S.

2. This follows from Lemma 4.2.12 and the identities

Mapcont(S,OE) = colim
F⊂E

Mapcont(S,OF ) ,

Mapcont(S,E) = Mapcont(S,OE)[ℓ
−1]

for any profinite set S, which result from the compactness of S and Lemma 4.3.7.

In this section, we abbreviate E = EX and OE = OE,X if no confusion is likely to
arise. First, we define lisse E-sheaves.

Definition 6.8.3. — A lisse E-sheaf (or E-local system) is a sheaf L of E-modules on

Xproét such that L is locally free of finite rank. Similarly, a lisse OE-sheaf, or OE-local

system, is a sheaf M of OE-modules on Xproét such that M is locally free of finite

rank over OE. Let LocX(E), resp. LocX(OE), be the corresponding categories.

For any discrete ring R, we also have the category LocX(R) consisting of sheaves of
R-modules on Xproét which are locally free of finite rank over R. In fact, this category
is just the classical one defined using Xét, cf. Corollary 5.1.5. Our first aim is to show
that our definitions coincide with the usual definitions of lisse sheaves. This amounts
to the following proposition.

Proposition 6.8.4

1. If E is a finite extension of Qℓ, with uniformizer ϖ, then the functor

M *−→ (M/ϖnM)n : LocX(OE) −→ lim
n

LocX(OE/ϖ
n
OE)

is an equivalence of categories.

2. For general E, lisse OE-sheaves satisfy descent for pro-étale covers.
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3. If X is qcqs, the functor

colim
F⊂E

LocX(OF ) −→ LocX(OE)

is an equivalence of categories, where F runs through finite extensions of Qℓ

contained in E.

4. If X is qcqs, the functor

M *−→ L = M [ℓ−1] : LocX(OE)[ℓ
−1] −→ LocX(E)

is fully faithful.

5. Lisse E-sheaves satisfy descent for pro-étale covers.

6. Let L be a lisse E-sheaf on X. Then there is an étale cover Y → X such that

L|Y lies in the essential image of the functor from (4).

Proof

1. Easy and left to the reader.

2. This is clear.

3. For fully faithfulness, observe that one has obvious internal Hom’s, which are
compatible with extension of scalars. Thus, fully faithfulness follows from the
observation that for an OF -local system MF with base extensions ME , MF ′ for
F ′ ⊂ E finite over F , ME = colimMF ′ and ME(X) = colimMF ′(X) as X is
qcqs.

Now fix a qcqs w-contractible cover Y ∈ Xproét, and describe LocX(OE) in
terms of descent data for Y → X . Any lisse OE-sheaf over Y is necessarily
trivial (and hence already defined over Zℓ), so that the categories of descent
data are equivalent by fully faithfulness, using that Y is still qcqs.

4. Both categories admit obvious internal Hom’s, which are compatible with the
functor M *→ M [ℓ−1]. Thus the result follows from M [ℓ−1](X) = M(X)[ℓ−1],
which is true as X is qcqs.

5. This is clear.

6. Consider the sheaf F on Xproét taking any U ∈ Xproét to the set of M ∈

LocU (OE) with M ⊗OE E = L. We claim that F is locally constant on Xproét.
To prove this, we can assume that L = En is trivial. We show more precisely
that in this case, F is represented by (the constant sheaf associated with) the
discrete set S = GLn(E)/GLn(OE), via mapping g ∈ S to Mg = gOn

E . Clearly,
the map S → F is injective. Let x ∈ X be any point. For any M ∈ LocX(OE)
with M⊗OE E = L, the fibre Mx is a OE-lattice in Lx = En. Thus, by applying
an element of GLn(E), we may assume that Mx = On

E. This gives n sections
m1,x, . . . ,mn,x ∈ Mx, which are defined over an open neighborhood of x; upon
replacing X by a neighborhood of x, we may assume that they are (the images
of) global sections m1, . . . ,mn ∈ M . Similarly, one can assume that there are
n sections m∗1, . . . ,m

∗

n ∈ M∗ = HomOE (M,OE) whose images in M∗x are the

ASTÉRISQUE 369
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dual basis to m1,x, . . . ,mn,x. This extends to an open neighborhood, so that
M = On

E in a neighborhood of x, proving surjectivity of S → F .

Thus, F is locally constant on Xproét. In particular, it is locally classical, and
therefore classical itself by Lemma 5.1.4. As there is a pro-étale cover Y → X

with F (Y ) ̸= ∅, it follows that there is also an étale such cover, finishing the
proof.

Corollary 6.8.5. — If X is topologically noetherian, then for any morphism f : L →
L′ in LocX(E), the kernel and cokernel of f are again in LocX(E). In particular,

LocX(E) is abelian.

Proof. — After passage to an étale cover, we may assume that there are lisse
OE-sheaves M , M ′ and a map g : M → M ′ giving rise to f : L → L′ by inverting
ℓ. Moreover, we may assume that X is connected; fix a geometric base point x̄ ∈ X .
Then LocX(OE) is equivalent to the category of representations of π1(X, x̄) on
finite free OE-modules. It follows that f : L → L′ is classified by a morphism of
representations of π1(X, x̄) on finite-dimensional E-vector spaces. The latter category
obviously admits kernels and cokernels, from which one easily deduces the claim.

Next, we consider constructible sheaves. For this, we restrict to the case of topo-
logically noetherian X . Note that the construction of EX is compatible with pullback
under locally closed immersions, i.e., EY = EX |Y for Y ⊂ X locally closed. In the
topologically noetherian case, any locally closed immersion is constructible.

Definition 6.8.6. — A sheaf F of E-modules on Xproét is called constructible if there

exists a finite stratification {Xi → X} such that F |Xi is lisse.

Lemma 6.8.7. — For any morphism f : F → F ′ of constructible E-sheaves, the kernel

and cokernel of f are again constructible. In particular, the category of constructible

E-sheaves is abelian.

Proof. — After passing to a suitable stratification, this follows from Corollary 6.8.5.

In particular, the following definition is sensible.

Definition 6.8.8. — A complex K ∈ D(Xproét, E) is called constructible if it is bounded

and all cohomology sheaves are constructible. Let Dcons(Xproét, E) denote the corre-

sponding full subcategory of D(Xproét, E).

Corollary 6.8.9. — The category Dcons(Xproét, E) is triangulated.

Proof. — This follows from Lemma 6.8.7, also observing stability of constructibility
under extensions.
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Also recall the full triangulated subcategories Dcons(Xproét,OE) ⊂ D(Xproét,OE)
for E/Qℓ finite defined in Subsection 6.5. Under our assumption that X is topo-
logically noetherian, these can be defined similarly to Dcons(Xproét, E), cf. Proposi-
tion 6.6.11. More precisely, we have the following proposition.

Definition 6.8.10. — For general E, a constructible OE-sheaf on the topologically

noetherian scheme X is a sheaf C of OE-modules such that there exists a finite

stratification {Xi → X} such that C|Xi is locally isomorphic to Λ ⊗OE OE,X for a

finitely presented OE-module Λ. Let ConsX(OE) be the corresponding category.

Proposition 6.8.11

1. The category of constructible OE-sheaves is closed under kernels, cokernels, and

extensions.

2. The functor

colim
F⊂E

ConsX(OF ) −→ ConsX(OE)

is an equivalence of categories, where F runs through finite extensions of Qℓ.

3. If E is a finite extension of Qℓ, then an object K ∈ D(Xproét,OE) is

constructible if and only if it is bounded and all cohomology sheaves are

constructible.

Proof

1. The proof is similar to the proof of Lemma 6.8.7.

2. The proof is similar to the proof of Proposition 6.8.4 (3).

3. By (1), the set D′cons(Xproét,OE) of K ∈ D(Xproét,OE) which are bounded with
all cohomology sheaves constructible forms a full triangulated subcategory. To
show D′cons(Xproét,OE) ⊂ Dcons(Xproét,OE), using that Dcons(Xproét,OE) ⊂
D(Xproét,OE) is a full triangulated subcategory, it suffices to prove that a con-
structible OE-sheaf C concentrated in degree 0 belongs to Dcons(Xproét,OE).
Passing to a stratification, we can assume that C is locally isomorphic to
Λ ⊗OE OE,X for a finitely presented OE-module Λ. In this case, Λ has a finite
projective resolution, giving the result.

For the converse, we argue by induction on q − p that D
[p,q]
cons(Xproét,OE) ⊂

D′cons(Xproét,OE). Thus, if K ∈ D
[p,q]
cons(Xproét,OE), it is enough to show

that Hq(X) is a constructible OE-sheaf. This follows easily from Proposi-
tion 6.6.11.

In particular, for general E, we can define Dcons(Xproét,OE) ⊂ D(Xproét,OE) as
the full triangulated subcategory of bounded objects whose cohomology sheaves are
constructible OE-sheaves.
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Lemma 6.8.12. — For any K ∈ Dcons(Xproét,OE), the functor RHom(K,−) com-

mutes with arbitrary direct sums in D!0(Xproét,OE).

Proof. — The proof is the same as for Lemma 6.3.14.

Although a lisse E-sheaf does not always admit an integral structure as a lisse
OE-sheaf, it does always admit an integral structure as a constructible OE-sheaf.

Lemma 6.8.13. — Let L be a lisse E-sheaf on the topologically noetherian scheme X.

Then there exists a constructible OE-sheaf C such that C ⊗OE E = L.

Proof. — First, we prove that there exists a finite stratification {Xi → X} such that
L|Xi admits an OE-lattice. By Proposition 6.8.4 (6), there exists some étale cover Y →
X such that L|Y admits an OE-lattice. After passing to a stratification on X , we may
assume that Y → X is finite étale, and that X is connected; fix a geometric base point
x̄ ∈ X with a lift to Y . In that case, L|Y corresponds to a continuous representation
of the profinite fundamental group π1(Y, x̄) on a finite-dimensional E-vector space.
As Y → X is finite étale, this extends to a continuous representation of the profinite
fundamental group π1(X, x̄) on the same finite-dimensional E-vector space. Any
such representation admits an invariant OE-lattice (as π1(X, x̄) is compact), giving
the claim.

In particular, L can be filtered as a constructibleE-sheaf by constructibleE-sheaves
which admit OE-structures. By Lemma 6.8.12, for two constructible E-sheaves C, C′,
one has

Ext1(C[ℓ−1], C′[ℓ−1]) = Ext1(C,C′)[ℓ−1] .

This implies that L itself admits a OE-structure, as desired.

The following proposition shows that the triangulated category Dcons(Xproét, E) is
equivalent to the triangulated category traditionally called Db

c(X,E).

Proposition 6.8.14
1. For general E,

colim
F⊂E

Dcons(Xproét,OF ) −→ Dcons(Xproét,OE)

is an equivalence of triangulated categories, where F runs through finite exten-

sions of Qℓ contained in E.

2. The functor Dcons(Xproét,OE)[ℓ−1]→ Dcons(Xproét, E) is an equivalence of tri-

angulated categories.

Note that in part (2), one has an equivalence of categories without having to pass
to étale covers of X .

Proof

1. Lemma 6.8.12 gives full faithfulness. For essential surjectivity, one can thus
reduce to the case of a constructible OE-sheaf. In that case, the result follows
from Proposition 6.8.11 (2).
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2. Again, full faithfulness follows from Lemma 6.8.12. For essential surjectivity,
one can reduce to the case of an E-local system L. In that case, the result is
given by Lemma 6.8.13.

Remark 6.8.15. — Let Λ ∈ {OE , E}. Under the same assumptions as in §6.7, the 6
functors are defined on Dcons(Xproét,Λ). Note that one can also define most of the 6
functors on D(Xproét,Λ). All schemes are assumed to be noetherian in the following.
There are obvious ⊗, RHom and f∗ functors for a morphism f : Y → X . The
functor f∗ admits a left adjoint f∗ : D(Xproét,Λ) → D(Yproét,Λ) given explicitly by
f∗K = f∗naiveK⊗f∗

naiveΛX ΛY , where f∗naive denotes the naive pullback. If f is étale or a
closed immersion (or a composition of such), then f∗naiveΛX = ΛY , so f∗K = f∗naiveK

is the naive pullback. Moreover, one has the functor j! : D(Uproét,Λ)→ D(Xproét,Λ)
for an open immersion j : U → X ; by composition, one gets a functor f! for a
separated morphism f : Y → X . If f is a closed immersion, f! = f∗ admits a right
adjoint f ! : D(Xproét,Λ)→ D(Yproét,Λ), given as the derived functor of sections with
support in Y .

It follows from the results of §6.7 and the previous discussion that under the corre-
sponding finiteness assumptions, these functors preserve constructible complexes, and
restrict to the 6 functors on Dcons(Xproét,Λ). In particular, one can compute these
functors by choosing injective replacements in D(Xproét,Λ).

7. The pro-étale fundamental group

We study the fundamental group resulting from the category of locally constant
sheaves on the pro-étale topology, and explain how it overcomes some shortcomings of
the classical étale fundamental group for non-normal schemes. The relevant category
of sheaves, together with some other geometric incarnations, is studied in §7.3, while
the fundamental group is constructed in §7.4. However, we first isolate a class of
topological groups §7.1; this class is large enough to contain the fundamental group
we construct, yet tame enough to be amenable to a formalism of “infinite” Galois
theory introduced in §7.2.

7.1. Noohi groups. — All topological groups in this section are assumed Haus-
dorff, unless otherwise specified. We study the following class of groups, with a view
towards constructing the pro-étale fundamental group:

Definition 7.1.1. — Fix a topological group G. Let G-Set be the category of dis-

crete sets with a continuous G-action, and let FG : G-Set → Set be the for-

getful functor. We say that G is a Noohi group (7) if the natural map induces an

7. These groups are called prodiscrete groups in [Noo08]. However, they are not pro-(discrete

groups), which seems to be the common interpretation of this term, so we adapt a different termi-

nology.
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isomorphism G ≃ Aut(FG) of topological groups, where Aut(FG) is topologized using

the compact-open topology on Aut(S) for each S ∈ Set.

The basic examples of Noohi groups are:

Example 7.1.2. — If S is a set, then G := Aut(S) is a Noohi group under the compact-
open topology; recall that a basis of open neighbourhoods of 1 ∈ Aut(S) in the
compact-open topology is given by the stabilizers UF ⊂ G of finite subsets F ⊂ S. The
natural map G → Aut(FG) is trivially injective. For surjectivity, any φ ∈ Aut(FG)
induces a φS ∈ G as S is naturally a G-set. It is therefore enough to show that any
transitive G-set is a G-equivariant subset of Sn for some n. Any transitive G-set is
of the form G/UF for some finite subset F ⊂ S finite. For such F , the G-action on
the given embedding F ↪→ S defines a G-equivariant inclusion G/UF → Map(F, S),
so the claim follows.

It is often non-trivial to check that a topological group with some “intrinsic” prop-
erty, such as the property of being profinite or locally compact, is a Noohi group. To
systematically deal with such issues, we relate Noohi groups to more classical objects
in topological group theory: complete groups.

Definition 7.1.3. — For a topological group G, we define the completion G∗ of G as

the completion of G for its two-sided uniformity, and write i : G ↪→ G∗ for the natural

embedding. We say G is complete if i is an isomorphism.

We refer the reader to [AT08] for more on topological groups, especially [AT08,
§3.6] for the existence and uniqueness of completions. We will show that a topological
group is Noohi if and only if it admits enough open subgroups and is complete. In
preparation, we have:

Lemma 7.1.4. — For any set S, the group Aut(S) is complete for the compact-open

topology.

Proof. — Let G := Aut(S), and η be a Cauchy filter on G for its two-sided uniformity.
For each F ⊂ S finite, the stabilizer UF ⊂ G is open, so, by the Cauchy property, we
may (and do) fix some HF ∈ η such that

HF ×HF ⊂ {(x, y) ∈ G2 | xy−1 ∈ UF and x−1y ∈ UF}.

Fix also some hF ∈ HF for each such F . Then the above containment means: h(f) =
hF (f) and h−1(f) = h−1F (f) for all h ∈ HF and f ∈ F . If F ⊂ F ′, then the filter
property HF ∩ HF ′ ̸= ∅ implies that hF ′(f) = hF (f), and h−1F ′ (f) = h−1F (f) for
all f ∈ F . Hence, there exist unique maps φ : S → S and ψ : S → S such that
φ|F = hF |F and ψ|F = h−1F |F for all finite subsets F ⊂ S. It is then immediate
that φ and ψ are mutually inverse automorphisms, and that the filter Bφ of open
neighbourhoods of φ is equivalent to η, so η converges to φ, as wanted.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



188 B. BHATT & P. SCHOLZE

The promised characterisation is:

Proposition 7.1.5. — Let G be a topological group with a basis of open neighbourhoods

of 1 ∈ G given by open subgroups. Then there is a natural isomorphism Aut(FG) ≃
G∗. In particular, G is Noohi if and only if it is complete.

Proof. — Let U be the collection of open subgroups U ⊂ G. For U ∈ U and g ∈ G, we
write Tg : G/(gUg−1)→ G/U for the G-equivariant isomorphism α · gUg−1 *→ αg ·U ,
i.e., right multiplication by g.

We first construct a natural injective map ψ : Aut(FG)→ G∗. Given φ ∈ Aut(FG),
one obtains induced automorphisms φU : G/U → G/U for U ∈ U. Let gU · U :=
φU (1 ·U) and hU ·U := φ−1U (1 ·U) denote the images of the identity coset 1 ·U ⊂ G/U

under φU and φ−1U ; here we view a coset of U as a subset of G. We claim that {gU ·U}

(indexed by U ∈ U) is a filter base that defines a Cauchy and shrinking filter. The
finite intersection property follows immediately from φ commuting with the projection
maps G/W → G/U for W ⊂ U a smaller open subgroup. For the Cauchy property,
we must check: given U ∈ U, there exists W ∈ U and b ∈ G such that gW ·W ⊂ U · b.
Fix an element h ∈ G defining the coset hU ·U , and let W = hUh−1 be the displayed
conjugate of U . Then one has a G-equivariant isomorphism Th : G/W → G/U defined
in symbols by α · W *→ α · Wh = αh · U , where the last equality is an equality of
subsets of G. The compatibility of φ with Th then shows gW ·W · h = φU (h ·U) = U ,
where the last equality uses φU ◦ φ

−1
U = id; setting b = h−1 then gives the Cauchy

property. For the shrinking property, we must show: for each U ∈ U, there exist
V,W, Y ∈ U such that V · gW · W · Y ⊂ gU · U ; we may simply take W = Y = U ,
and V = gUg−1 for some g ∈ G lifting the coset gU · U . Let ψ(φ) be the Cauchy
and shrinking filter associated to {gU · U}, i.e., ψ(φ) is the collection of open subsets
Y ⊂ G such that gU · U ⊂ Y for some U ∈ U. Then ψ(φ) ∈ G∗, which defines a map
ψ : Aut(FG)→ G∗.

Next, we show that ψ is injective. If φ ∈ ker(ψ), then gU · U = U in the notation
above. Now pick some U ∈ U and fix some g ∈ G. The naturality of φ with respect to
Tg : G/(gUg−1)→ G/U shows that φU (g · U) = g · U , which proves that φU = id for
all U ∈ U. Any S ∈ G-Set may be written as S = +iG/Ui for suitable Ui, so φS = id
for all such S, and hence φ = id.

It now suffices to show that Aut(FG) is complete. Recall that the class of complete
groups is closed inside that of all topological groups under products and passage to
closed subgroups. We may realize Aut(FG) as the equalizer of

∏
U∈U Aut(U) !! !!

∏
U,V ∈U

∏
MapG(G/U,G/V ) Map(G/U,G/V ) ,

with the maps given by precomposition and postcomposition by automorphisms.
Hence, Aut(FG) is a closed subgroup of

∏
U∈U Aut(S); as the latter is complete by

Lemma 7.1.4, the claim follows.
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Proposition 7.1.5 leads to an abundance of Noohi groups:

Example 7.1.6. — Any locally compact group with a fundamental system of neigh-
bourhoods of 1 given by open subgroups is a Noohi group. Indeed, any locally compact
group is complete. Some important classes of examples are: (a) profinite groups, and
(b) the groups G(E) where E is a local field, and G is a finite type E-group scheme,
and (c) discrete groups.

Perhaps surprisingly, the algebraic closure Qℓ of Qℓ is also a Noohi group for the
colimit topology, in contrast with the situation for the ℓ-adic topology. In fact, one
has:

Example 7.1.7. — Fix a prime number ℓ. For any algebraic extension E of a E0 = Qℓ,
the group GLn(E) is a Noohi group under the colimit topology (induced by expressing
E as a union of finite extensions) for all n. To see this, we first show that E is itself
Noohi. Choose a tower E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E such that E = colimEi. Let U

be the collection of all open subgroups of OE in the colimit topology. By Lemma
7.1.8, we must check that OE ≃ O∗E := limU OE/U ; here we use that OE is abelian
to identify the completion O∗E . A cofinal collection of open subgroups is of the form
Uf , where f : N → N is a function, and Uf = ⟨ℓf(i)OEi⟩ is the group generated in
OE by the displayed collection of open subgroups of each OEi . Choose OEi-linear
sections OEi+1 → OEi ; in the limit, this gives OEi-linear retractions ψi : OE → OEi

for each i. An element x ∈ O∗E = limU OE/U determines ψi(x) ∈ O∗Ei
= OEi . If

the sequence {ψi(x)} is eventually constant (in OE), then there is nothing to show.
Otherwise, at the expense of passing to a cofinal set of the Ei’s, we may assume
ψi(x) ∈ OEi − OEi−1 . Then one can choose a strictly increasing sequence {ki} of
integers such that ψi(x) ∈ OEi but ψi(x) /∈ OEi−1 + ℓkiOEi . The association i *→ ki
gives a function f : N → N. Choose some xf ∈ OEj for some j representing the
image of x in OE/Uf . Now ψi(x) − ψi(xf ) ∈ ψi(Uf ) for each i. As ψi is OEi-linear
and f is strictly increasing, it follows that ψi(x) ∈ OEj + ℓkiOEi for each i > j; this
directly contradicts the assumption on ψi(x), proving that OE is Noohi. To pass from
OE to GLn(OE), we use that the exponential exp : ℓc ·Mn(OE)→ GLn(OE) (for some
c > 0 to avoid convergence issues) is an isomorphism of uniform spaces onto an open
subgroup of the target, where both sides are equipped with the two-sided uniformity
associated to open subgroups of the colimit topology; see, for example, [Sch11, §18]
for more on the p-adic exponential for Lie groups.

The following lemma was used above:

Lemma 7.1.8. — If a topological group G admits an open Noohi subgroup U , then G

is itself Noohi.

Proof. — We must show that the natural map G→ Aut(FG) is an isomorphism. By
considering the action of both groups on the G-set G/U , it is enough to check that
U ≃ StabAut(FG)(x) =: H , where x ∈ G/U is the identity coset. For any U -set S,
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one has an associated G-set IndGU (S) = (S ×G)/ ∼, where the equivalence relation is
(us, g) ∼ (s, gu) for any u ∈ U , s ∈ S, g ∈ G, and the G-action is defined by h·(s, g) =
(s, hg) for h ∈ G. This construction gives a functor IndG

U : U -Set→ G-Set, left adjoint
to the forgetful functor. For any U -set S, there is an obvious map IndGU (S) → G/U

of G-sets defined by the projection S ×G→ G. The fibre of this map over x ∈ G/U

is the U -set S. In particular, there is an induced H-action on S. One checks that this
gives a continuous map H → Aut(FU ) extending the obvious map U → Aut(FU ).
Now the essential image of IndGU generates G-Set under filtered colimits: for any open
subgroup V ⊂ U , one has IndGU (U/V ) = G/V . Thus, H → Aut(FU ) is injective. On
the other hand, as U is Noohi, the composite U → H → Aut(FU ) is an isomorphism,
and hence so is U → H .

7.2. Infinite Galois theory. — Infinite Galois theory gives conditions on a pair
(C, F : C → Set), consisting of a category C and a functor F , to be equivalent to a
pair (G-Set, FG : G-Set → Set) for G a topological group. Here, an object X ∈ C is
called connected if it is not empty (i.e., initial), and for every subobject Y ⊂ X (i.e.,
Y
∼

→ Y ×X Y ), either Y is empty or Y = X .

Definition 7.2.1. — An infinite Galois category (8) is a pair (C, F : C→ Set) satisfying:

1. C is a category admitting colimits and finite limits.

2. Each X ∈ C is a disjoint union of connected objects.

3. C is generated under colimits by a set of connected objects.

4. F is faithful, conservative, and commutes with colimits and finite limits.

The fundamental group of (C, F ) is the topological group π1(C, F ) := Aut(F ), topol-
ogized by the compact-open topology on Aut(S) for any S ∈ Set.

Example 7.2.2. — If G is a Noohi group, then (G-Set, FG) is a Noohi category, and
π1(C, F ) = G.

However, not all infinite Galois categories arise in this way:

Example 7.2.3. — There are cofiltered inverse systemsGi, i ∈ I, of free abelian groups
with surjective transition maps such that the inverse limit G = limGi has only one ele-
ment, cf. [HS54]. One can define an infinite Galois category (C, F ) as the 2-categorical
direct limit of Gi-Set. It is not hard to see that π1(C, F ) = limGi, which has only
one element, yet F : C→ Set is not an equivalence.

This suggests the following definition.

Definition 7.2.4. — An infinite Galois category (C, F ) is tame if for any connected

X ∈ C, π1(C, F ) acts transitively on F (X).

8. A similar definition is made in [Noo08]. However, the conditions imposed there are too weak:

The category of locally profinite sets with open continuous maps as morphisms satisfies all axioms

imposed in [Noo08], but does not arise as G-Set for any Noohi group G. There are even more serious

issues, see Example 7.2.3.
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The main result is:

Theorem 7.2.5. — Fix an infinite Galois category (C, F ) and a Noohi group G. Then

1. π1(C, F ) is a Noohi group.

2. There is a natural identification of Homcont(G,π1(C, F )) with the groupoid of

functors C→ G-Set that commute with the fibre functors.

3. If (C, F ) is tame, then F induces an equivalence C ≃ π1(C, F )-Set.

Proof. — Fix a set Xi ∈ C, i ∈ I, of connected generators. As in the proof of
Proposition 7.1.5, one gets that π1(C, F ) is the closed subgroup of

∏
iAut(F (Xi)) of

those elements compatible with all maps between all Xi. It follows that π1(C, F ) is
closed in a Noohi group, and thus a Noohi group itself, proving (1). Also, part (2) is
completely formal.

It remains to prove part (3). As (C, F ) is tame, we know that for any connectedX ∈

C, π1(C, F ) acts transitively on F (X). It follows that the functor C → π1(C, F )-Set
preserves connected components. By interpreting maps f : Y → X in terms of
their graph Γf ⊂ Y × X , one sees that the functor is fully faithful. For essential
surjectivity, let C′ ⊂ π1(C, F )-Set denote the essential image of C. Now take any
open subgroup U ⊂ π1(C, F )-Set. As π1(C, F ) is closed in

∏
i Aut(F (Xi)), there are

finitely many Xij , with points xj ∈ F (Xij ), j ∈ J , such that U contains the subgroup
U ′ of π1(C, F ) fixing all xj . The element π1(C, F )/U ′ ∈ π1(C, F )-Set is the image of
some XU ′ ∈ C, as it can be realized as the connected component of

∏
j Xij containing

(xj)j . Applying this argument to the connected components shows that every object
in π1(C, F )-Set admits an epimorphism from an object of C′. As epimorphisms in
the larger category are effective, repeating this argument shows that each object in
π1(C, F )-Set is the coequalizer of a map between objects in C′. Since C′ is closed
under colimits in π1(C, F )-Set, the claim follows.

Proposition 7.1.5 is useful to study Noohi groups under limits. Similarly, Theo-
rem 7.2.5 is useful for studying the behaviour under colimits. For example, one has
coproducts:

Example 7.2.6. — The category of Noohi groups admits coproducts. Indeed, if G

and H are Noohi groups, then we can define an infinite Galois category (C, F ) as
follows: C is the category of triples (S, ρG, ρH) where S ∈ Set, while ρG : G→ Aut(S)
and ρH : H → Aut(S) are continuous actions on S of G and H respectively, and
F : C→ Set is given by (S, ρG, ρH) *→ S. One has an obvious map from the coproduct
of abstract groups G ∗ H to π1(C, F ), from which one can see that (C, F ) is tame.
Then G∗N H := π1(C, F ) is a coproduct of G and H in the category of Noohi groups.

Remark 7.2.7. — It may be true that general infinite Galois categories are classified
by certain group objects G in the pro-category of sets. One has to assume that
the underlying pro-set of this group can be chosen to be strict, i.e., with surjective
transition maps. In that case, one can define G-Set as the category of sets S equipped
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with an action of G (i.e., equipped with a map G×S → S in the pro-category of sets
that satisfies the usual axioms). It is easy to verify that G-Set forms an infinite Galois
category under the strictness hypothesis. To achieve uniqueness of G, one will again
have to impose the condition that there are enough open subgroups. Fortunately,
the infinite Galois categories coming from schemes will be tame, so we do not worry
about such esoteric objects!

7.3. Locally constant sheaves. — Fix a scheme X which is locally topologically
noetherian. We will consider the following classes of sheaves on Xproét:

Definition 7.3.1. — Fix F ∈ Shv(Xproét). We say that F is

1. locally constant if there exists a cover {Xi → X} in Xproét with F |Xi constant.

2. locally weakly constant if there exists a cover {Yi → X} in Xproét with Yi qcqs

such that F |Yi is the pullback of a classical sheaf on the profinite set π0(Yi).

3. a geometric covering if F is an étale X-scheme satisfying the valuative criterion

of properness.

We write LocX , wLocX and CovX for the corresponding full subcategories of

Shv(Xproét).

Remark 7.3.2. — The objects of LocX , wLocX and CovX are classical. This is evident
for CovX , and follows from Lemma 5.1.4 for LocX and wLocX .

Remark 7.3.3. — Any Y ∈ CovX is quasiseparated: Y is locally topologically noethe-
rian by Lemma 6.6.10. Hence, we can write Y as a filtered colimit of its qcqs open
subschemes. This remark will be used without comment in the sequel.

Remark 7.3.4. — Fix an F ∈ Shv(Xproét). One checks that F ∈ wLocX if and only
if for any qcqs w-contractible Y ∈ Xproét, the restriction F |Y is classical, and the
pullback of its pushforward to π0(Y ). For such Y , pushforward and pullback along
Shv(Yét) → Shv(π0(Y )ét), as well as the inclusion Shv(Yét) ⊂ Shv(Yproét), commute
with all colimits and finite limits; thus, the subcategory wLocX ⊂ Shv(Xproét) is
closed under all colimits and finite limits.

Example 7.3.5. — If X = Spec(k) is the spectrum of a field, then LocX = wLocX =
CovX = Shv(Xét). Indeed, this is immediate from the observation that any separable
closure of k provides a connected w-contractible cover of X . More generally, the same
argument applies to any finite scheme of Krull dimension 0: the underlying reduced
scheme is a finite product of fields.

Lemma 7.3.6. — If Y is a qcqs scheme, and F ∈ Shv(Yproét) is the pullback of a

classical sheaf on π0(Y ), then

1. F is representable by an algebraic space étale over Y .

2. F satisfies the valuative criterion for properness.

3. The diagonal ∆ : F → F ×Y F is a filtered colimit of clopen immersions.
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Proof. — As any classical sheaf on a profinite set is a filtered colimit of finite locally
constant sheaves, so F = colimi Ui is a filtered colimit of finite étale Y -schemes Ui

indexed by a filtered poset I. In particular, (2) and (3) are clear. (1) follows by
expressing F as the quotient of the étale equivalence relation on +iUi given by the
two evident maps +i"jUi → +iUi: the identity Ui → Ui and the transition map
Ui → Uj .

Remark 7.3.7. — The algebraic space F in Lemma 7.3.6 need not be quasiseparated
over Y . For example, we could take F to be the pullback of two copies of π0(Y )
glued along a non-quasicompact open subset. This phenomenon does not occur for
the geometric coverings we consider as X is topologically noetherian.

Lemma 7.3.8. — If Y is a henselian local scheme, then any F ∈ CovX is a disjoint

union of finite étale Y -schemes.

Proof. — If Z ⊂ Y is the closed point, then F |Z = +iZi with Zi → Z connected finite
étale schemes by Example 7.3.5. Let Z̃i → Y be the (unique) connected finite étale Y -
scheme lifting Zi → Z. Then the henselian property ensures that F (Z̃i) = F |Z(Zi),
so one finds a canonical étale map φ : +iZ̃i → F inducing an isomorphism after
restriction to Z. As the image of φ is closed under generalization, and because each
point of F specializes to a point of the special fibre (by half of the valuative criterion),
one checks that φ is surjective. To check φ is an isomorphism, one may assume Y is
strictly henselian, so Z̃i = Y for each i. Then each Z̃i → F is an étale monomorphism,
and hence an open immersion. Moreover, these open immersions are pairwise disjoint
(by the other half of the valuative criterion), i.e., that Z̃i ∩ Z̃j = ∅ as subschemes of
F for i ̸= j. Then +iZ̃i gives a clopen decomposition for F , as wanted.

Lemma 7.3.9. — One has LocX = wLocX = CovX as subcategories of Shv(Xproét).

Proof. — The property that a sheaf F ∈ Shv(Xproét) lies in LocX , wLocX , or CovX
is Zariski local on X . Hence, we may assume X is topologically noetherian. It is
clear that LocX ⊂ wLocX . For wLocX ⊂ CovX , fix some F ∈ wLocX . Lemma 7.3.6
and descent show that F satisfies the conclusion of Lemma 7.3.6. To get F to be
a scheme, note that F is quasiseparated as X is topologically noetherian, and thus
the diagonal of F is a clopen immersion by quasicompactness. In particular, F is
separated, and thus a scheme: any locally quasifinite and separated algebraic space
over X is a scheme, see [Sta, Tag 0417].

We next show CovX ⊂ wLocX , i.e., any geometric covering F → X is locally
weakly constant. In fact, it suffices to show the following: for any qcqs U ∈ Xét and
map φ : U → F , one may, locally on Xét, factor φ as U → L→ F with L finite locally
constant. Indeed, this property implies that F |Y is a filtered colimit of finite locally
constant sheaves for any w-contractible Y ∈ Xproét, which is enough for local weak
constancy. As F is a filtered colimit of qcqs open subschemes, this property follows
from Lemma 7.3.8 and spreading out.
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It remains to check wLocX = LocX . Choose F ∈ wLocX and a qcqs w-contractible
cover Y → X such that F |Y = π∗G for some G ∈ Shv(π0(Y )ét), where π : Y → π0(Y )
is the natural map. We must show thatG is locally constant. LetXη ⊂ X be the union
of the finite collection of generic points of X , and write Yη ⊂ Y for the corresponding
fibre. Let Yη be a qcqs w-contractible cover of Yη. Then we obtain a diagram

Yη
ψ

!!

a

""

π0(Yη)

π0(a)

""

Yη
φ

!!

b

""

π0(Yη)

π0(b)

""

Y
π !!

c

""

π0(Y )

X

Each connected component of Y is a strict henselisation of X , and thus contains a
point lying over a point of Xη, i.e., a point of Yη. This shows that π0(b) is surjective.
The map π0(a) is clearly surjective. Write f : π0(Yη) → π0(Y ) for the composite
surjection. As Y is w-contractible, the space π0(Y ) is extremally disconnected. Thus,
it is enough to show that f∗G is locally constant. As ψ∗ψ∗ ≃ id as endofunctors of
Shv(π0(Yη)), it is enough to show ψ∗f∗G is locally constant. By the commutativity
of the diagram, the latter sheaf coincides with the restriction of F to Yη. But Yη is a
w-contractible cover of Xη, so the claim follows from the equality wLocXη = LocXη
of Example 7.3.5.

Remark 7.3.10. — If X is Nagata, one may prove a more precise form of Lemma 7.3.9:
there exists a pro-étale cover {Ui → X} with Ui connected such that F |Ui is constant
for any F ∈ wLocX . To see this, choose a stratification {Xi → X} with Xi affine,
normal and connected; this is possible as X is Nagata. Let Vi be the henselisation of
X along Xi, and Ui → Vi be a connected pro-(finite étale) cover that splits all finite
étale Vi-schemes. Then one checks that {Ui → X} satisfies the required properties
using the Gabber-Elkik theorem (which identifies Vi,f ét ≃ Xi,f ét), and the observation
that each F ∈ wLocXi is a disjoint union of finite étale Xi-schemes by normality.

Remark 7.3.11. — For an arbitrary scheme Y , define LocY , wLocY and CovY as
above, except that objects of wLocY and CovY are required to be quasiseparated.
Then the proof of Lemma 7.3.9 shows that one always has LocY ⊂ wLocY = CovY ,
and the inclusion is an equivalence if Y has locally a finite number of irreducible
components.

Example 7.3.12. — Some topological condition on the scheme X (besides being con-
nected) is necessary to make coverings well-behaved. Indeed, consider the following
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example. Let T be topological space underlying the adic space corresponding to the
closed unit disc over Qp. This is a spectral space, so there is some ring A for which
X = SpecA is homeomorphic to T . All arguments in the following are purely topo-
logical, so we will argue on the side of T . The origin 0 ∈ T is a closed point which
admits no generalizations, yet T is connected. One has open subsets T1, T1/2, · · · ⊂ T ,
where T1/i is the annulus with outer radius 1/i and inner radius 1/(i+ 1).

The open subset U = T \ {0} ⊂ T defines an object of CovX . Indeed, it is
clearly étale, and it satisfies the valuative criterion of properness, as 0 does not admit
nontrivial generalizations. One can show that U also defines an object of wLocX ,
however it is not hard to see that U does not define an object of LocX . We claim
that the disjoint union of U with an infinite disjoint union of copies of X belongs to
LocX . This will prove that LocX is not closed under taking connected components,
so that it cannot define an infinite Galois category.

Consider the pro-étale cover Y → X which has connected components π0(Y ) =
{0, 1, 1/2, 1/3, . . .}, with connected components Y0 = {0}, Y1/i = U1/i; it is easy to
see how to build Y as an inverse limit. The pullback of U to Y is the pullback of the
sheaf FU on π0(Y ) concentrated on {1, 1/2, 1/3, . . .}. To show that the disjoint union
of U with an infinite disjoint union of copies of X belongs to LocX , it is enough to
show that the disjoint union of FU with an infinite constant sheaf on π0(Y ) is again an
infinite constant sheaf. This boils down to some easy combinatorics on the profinite
set π0(Y ), which we leave to the reader.

7.4. Fundamental groups. — In this section, we assume that X is locally topo-
logically noetherian and connected, and we fix a geometric point x of X with evx :
LocX → Set being the associated functor F *→ Fx.

Lemma 7.4.1. — The pair (LocX , evx) is an infinite Galois category. Moreover, it is

tame.

Proof. — For the first axiom, Remark 7.3.4 shows that wLocX ⊂ Shv(Xproét) is
closed under colimits and finite limits. For the second axiom, we use CovX . Indeed,
any Y ∈ CovX is locally topologically noetherian, so that its connected components
are clopen. Any clopen subset of Y defines another object of CovX . It is a connected
object. Indeed, assume Y ∈ CovX is connected as a scheme, and Z → Y is some map
in CovX . The image of Z is open and closed under specializations (by the valuative
criterion of properness). As Y is locally topologically noetherian, open implies locally
constructible, and in general, locally constructible and closed under specializations
implies closed. Thus, the image of Z is open and closed, and thus either empty or all
of Y . The third axiom regarding things being a set (as opposed to a proper class) is
left to the reader. For the last axiom, we use LocX . As any pair of points of X is
linked by a chain of specializations, one checks that evx is conservative and faithful
on LocX . As evx is given by evaluation on a connected w-contractible object, it
commutes with all colimits and all limits in Shv(Xproét), and hence with all colimits
and finite limits in LocX .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2015



196 B. BHATT & P. SCHOLZE

Finally, we have to prove tameness. This comes down to showing that π1 is large
enough, i.e., we have to construct enough paths in X . Thus, choose some connected
cover Y → X , and any two geometric points y1, y2 above x. They give rise to topo-
logical points ȳ1, ȳ2 ∈ Y . As Y is locally topologically noetherian, we can find a paths
ȳ1 = z̄0, z̄1, . . . , z̄n = ȳ2 of points in Y such that for each i = 0, . . . , n − 1, z̄i+1 is
either a specialization or a generalization of z̄i. Fix geometric points zi above z̄i. By
projection, we get geometric points xi of X , lying above topological points x̄i ∈ X .

For each i, choose a valuation ring Ri with algebraically closed fraction field, to-
gether with a map SpecRi → Y such that the special and generic point are (isomorphic
to) zi and zi+1 (or the other way around); we fix the isomorphisms. The valuation
rings Ri induce maps SpecRi → X , which induce isomorphisms of fibre functors
evxi ≃ evxi+1 . By composition, we get an isomorphism of fibre functors

evx = evx0 ≃ evx1 ≃ · · · ≃ evxn = evx ,

i.e., an automorphism γ ∈ π1(LocX , evx) of the fibre functor evx. By construction,
we have γ(y1) = y2, showing that (LocX , evx) is tame.

Tameness implies that the following definition is robust:

Definition 7.4.2. — The pro-étale fundamental group is defined as πproét
1 (X,x) :=

Aut(evx); this group is topologized using the compact-open topology on Aut(S) for

any S ∈ Set.

We now relate πproét
1 (X,x) to other fundamental groups. First, the profinite com-

pletion of πproét
1 (X,x) recovers the étale fundamental group πét

1 (X,x), as defined
in [SGA71]:

Lemma 7.4.3. — Let G be a profinite group. There is an equivalence

Homcont(π
proét
1 (X,x), G) ≃ (BFG)(Xproét) .

Here, Hom(H,G) for groups G and H denotes the groupoid of maps H → G, where
maps between f1, f2 : H → G are given by elements g ∈ G conjugating f1 into f2.

Proof. — Both sides are compatible with cofiltered limits in G, so we reduce to G

finite. In this case, one easily checks that both sides classify G-torsors on Xproét.

To understand representations of πproét
1 (X,x), we first construct “enough” objects

in LocX .

Construction 7.4.4. — The equivalence CovX ≃ LocX ≃ π
proét
1 (X,x)-Set implies that

for each open subgroup U ⊂ πproét
1 (X,x), there exists a canonically defined XU ∈

CovX with a lift of the base point x ∈ XU,proét corresponding to πproét
1 (X,x)/U ∈

πproét
1 (X,x)-Set in a base point preserving manner. Moreover, as XU is itself a

locally topologically noetherian scheme, one has πproét
1 (XU , x) = U as subgroups

of πproét
1 (X,x).
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Write LocXét for the category of locally constant sheaves on Xét, viewed as a full
subcategory of LocX . The difference between LocXét and LocX can be explained
group theoretically:

Lemma 7.4.5. — Under LocX ≃ π
proét
1 (X,x)-Set, the full subcategory LocXét ⊂ LocX

corresponds to the full subcategory of those S ∈ πproét
1 (X,x)-Set where an open sub-

group acts trivially.

Proof. — Fix S ∈ πproét
1 (X,x)-Set, and assume an open subgroup U ⊂ πproét

1 (X,x)
acts trivially on S. Then the corresponding locally constant sheaf is trivialized by
passage to XU , which is an étale cover of X . Conversely, fix some F ∈ LocXét

with fibre S, and consider the sheaf G = Isom(F, S) on Xproét. The étale local
trivializability of F shows that G is an Aut(S)-torsor on Xét; here we use that
Aut(S) = Aut(S) = ν∗FAut(S) on Xét as each U ∈ Xét has a discrete π0. Then

G ∈ CovX , so there exists an open subgroup U ⊂ πproét
1 (X,x) and a factorization

XU → G→ X . By construction, F |G is constant, so U = πproét
1 (XU , x) acts trivially

on the fibre Fx.

The pro-(discrete group) completion of πproét
1 (X,x) covers the fundamental pro-

group defined in [Gro64, §6]:

Lemma 7.4.6. — Let G be a discrete group. There is an equivalence

Homcont(π
proét
1 (X,x), G) ≃ (BG)(Xét) .

Proof. — Any continuous map ρ : πproét
1 (X,x) → G gives a G-torsor in

πproét
1 (X,x)-Set, and hence an object of (BG)(Xproét); one then simply observes that

(BG)(Xproét) = (BG)(Xét) as G is discrete. Conversely, any G-torsor F on Xét

defines a fibre preserving functor G-Set→ LocX simply by pushout, and hence comes
from a continuous map πproét

1 (X,x)→ G.

Lemma 7.4.6 shows that the inverse limit of the pro-group defined in [Gro64,
§6] is large enough, i.e., the limit topological group has the same discrete group
representations as the defining pro-group.

We now explain why the group πproét
1 (X,x) is richer than its pro-(discrete group)

completion: the latter does not know the entirety of LocX(Qℓ) (see Example 7.4.9),
while the former does. The main issue is that LocX(Qℓ) is not LocX(Zℓ)[ 1ℓ ], but
rather the global sections of the stack associated to the prestack U *→ LocU (Zℓ)[ 1ℓ ]
on Xproét.

Lemma 7.4.7. — For a local field E, there is an equivalence of categories

RepE,cont(π
proét
1 (X,x)) ≃ LocX(E).

Proof. — The claim is clear if E is replaced by OE as GLn(OE) is profinite. Now given
a continuous representation ρ : πproét

1 (X,x)→ GLn(E), the group U = ρ−1GLn(OE)

is open in πproét
1 (X,x), and hence defines a pointed covering XU → X with
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πproét
1 (XU , x) = U . The induced representation πproét

1 (XU , x) → GLn(OE) de-
fines some M ∈ LocXU (OE), and hence an M ′ ∈ LocXU (E); one checks that M ′

comes equipped with descent data for XU → X , and hence comes from a unique
N(ρ) ∈ LocX(E). Conversely, fix some N ∈ LocX(E), viewed as an FGLn(E)-torsor
for suitable n. For each S ∈ GLn(E)-Set, one has an induced representation
ρS : FGLn(E) → FAut(S). The pushout of N along ρS defines an NS ∈ LocX with
stalk S. This construction gives a functor GLn(E)-Set → LocX which is visibly
compatible with the fibre functor. As GLn(E) is Noohi, one obtains by Galois theory
the desired continuous homomorphism ρN : πproét

1 (X,x)→ GLn(E).

Remark 7.4.8. — By Example 7.1.7, the conclusion of Lemma 7.4.7 also applies to
any algebraic extension E/Qℓ with the same proof.

The following example is due to Deligne:

Example 7.4.9. — Let Y be a smooth projective curve of genus ! 1 over an alge-
braically closed field. Fix three distinct points a, b, x ∈ Y , and paths eva ≃ evx ≃ evb
between the corresponding fibre functors on LocY . Let X = Y/{a, b} be the nodal
curve obtained by identifying a and b on Y ; set π : Y → X for the natural map, and
c = π(a) = π(b). Then one has two resulting paths evx ≃ evc as fibre functors on
LocX , and hence an element λ ∈ πproét

1 (X,x) corresponding to the loop. Fix a local
field E, a rank n local system M ∈ LocY (E) with monodromy group GLn(OE) with
n ! 2, and a generic non-integral matrix T ∈ GLn(E). Then identifying the fibres
Ma and Mb using T (using the chosen paths) gives a local system M ∈ LocX(E)
where λ acts by T ; a similar glueing construction applies to local systems of sets,
and shows πproét

1 (X,x) ≃ πproét
1 (Y, y) ∗N λZ in the notation of Example 7.2.6. In

particular, the monodromy group of L is GLn(E). Assume that the correspond-
ing continuous surjective representation ρ : πproét

1 (X,x) → GLn(E) factors through

the pro-(discrete group) completion of πproét
1 (X,x), i.e., the preimage of each open

subgroup W ⊂ GLn(E) contains an open normal subgroup of πproét
1 (X,x). Then

U := ρ−1(GLn(OE)) is open, so it contains an open normal V ⊂ U . By surjectivity,
the image ρ(V ) is a closed normal subgroup of GLn(E) lying in GLn(OE). One then
checks that ρ(V ) ⊂ Gm(OE), where Gm ⊂ GLn is the center. In particular, the
induced representation πproét

1 (X,x) → PGLn(E) factors through a discrete quotient
of the source. It follows that L has abelian monodromy over an étale cover of X ,
which is clearly false: the corresponding statement fails for M over Y by assumption.

Example 7.4.9 is non-normal. This is necessary:

Lemma 7.4.10. — If X is geometrically unibranch, then πproét
1 (X,x) ≃ πét

1 (X,x).

Proof. — One first checks that irreducible components are clopen in any locally topo-
logically noetherian geometrically unibranch scheme: closedness is clear, while the
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openness is local, and may be deduced by a specialization argument using the finite-
ness of generic points on a topologically noetherian scheme. It follows by connected-
ness thatX is irreducible. Moreover, by the same reasoning, any connected Y ∈ CovX
is also irreducible. Let η ∈ X be the generic point, and let Yη → η be the generic fibre.
Then Yη is connected by irreducibility of Y , and hence a finite scheme as Locη is the
category of disjoint unions of finite étale covers of η. In particular, π : Y → X has
finite fibres. We claim that π is finite étale; this is enough for the lemma as πét

1 (X,x)
classifies finite étale covers of X . For the proof, we may assume X quasicompact.
Now any quasicompact open U ⊂ Y containing Yη is finite étale over a quasicompact
open V ⊂ X , and hence includes all points over V . Expanding U to include the fibre
over some point in the complement of V and proceeding inductively (using that X is
topologically noetherian) then shows that Y is itself quasicompact. Then π is proper
and étale, whence finite étale.

Remark 7.4.11. — The fundamental group πdJ
1 (X,x) for rigid-analytic spaces over a

non-archimedean valued field constructed by de Jong [dJ95] has some similarities with
the group πproét

1 (X,x) introduced above. In fact, in the language of our paper, the
category CovdJX of disjoint unions of “coverings” in the sense of [dJ95, Definition 2.1]
is a tame infinite Galois category by [dJ95, Theorem 2.10]. Thus, the corresponding
group πdJ

1 (X,x) is a Noohi group; by [dJ95, Theorem 4.2], the category of continu-
ous finite dimensional Qℓ-representations of πdJ

1 (X,x) recovers the category of lisse
Qℓ-sheaves (and the same argument also applies to Qℓ-sheaves by Example 7.1.7).
However, it is not true that a naive analogue of CovdJX for schemes reproduces the cat-
egory CovX used above: the latter is larger. Note, moreover, that [dJ95, Lemma 2.7]
is incorrect: the right hand side is a monoid, but need not be a group. As far as we
can tell, this does not affect the rest of [dJ95].

The following definition is due to Gabber:

Remark 7.4.12. — Assume Y is a connected scheme with locally a finite number of
irreducible components. Then one may define the weak fundamental groupoid wπ(Y )
as the groupoid-completion of the category of points of Yét (which is equivalent to
the category of connected w-contractible objects in Yproét). For each such point y ∈
wπ(Y ), one has a corresponding automorphism group wπ(Y, y); as Y is connected, the
resulting functor B(wπ(Y, y))→ wπ(Y ) is an equivalence. One can think of elements
of wπ(Y, y) as paths (of geometric points) in Y , modulo homotopy.

Note that the definition of πproét
1 (Y, y) works in this generality, cf. Remark 7.3.11.

Moreover, each F ∈ LocY restricts to functor wπ(Y ) → Set, so the fibre evy(F ) has

a canonical wπ(Y, y)-action. This construction gives a map wπ(Y, y) → πproét
1 (Y, y);

by the proof of Lemma 7.4.1, this map has dense image. If we equip wπ(Y, y) with
the induced topology, then continuous maps from πproét

1 (Y, y) to Noohi groups G are
the same as continuous maps from wπ(Y, y) to G. In particular, one can describe
lisse Qℓ- (resp. Qℓ-) sheaves in terms of continuous representations of wπ(Y, y) on
finite-dimensional Qℓ- (resp. Qℓ-) vector spaces.
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ASTÉRISQUE 369
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Marie 1963–1964 (SGA 4), dirigé par M. Artin, A. Grothendieck et J. L. Verdier;
avec la collaboration de P. Deligne et B. Saint-Donat.

[Sta] “The Stacks Project” – available at http://stacks.math.columbia.edu.

B. Bhatt, Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor,

MI 48109-1043, USA • E-mail : bhattb@umich.edu

P. Scholze, Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

E-mail : scholze@math.uni-bonn.de
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