AUTOMATIC GENERATION OF SCHEMATIC DIAGRAMS OF THE
DUTCH RAILWAY NETWORK

A thesis submitted to the Radboud University in partial fulfillment
of the requirements for the degree of

Master of Science in Mathematics

by
Angela Brands

December 2016
Supervisors:
Dr. Wieb Bosma
Dr. Rob Udink

ITEY

CG I Radboud University %

4,
MiNe €

/C)

7

CONTENTS

INTRODUCTION

PREVIOUS WORK
2.1 The metro map layout problem

RAIL PROPERTIES

IMPLEMENTED ALGORITHM
41 Assumptions. L
4.2 Aestheticcriteria L oL L
4.3 Minor data modification oL
4.4 Straightline algorithm
4.5 Linear Referencing
4.6 Drawing algorithm,
4.6.1 Paralleltracks
4.6.2 Schemay-values
4.6.3 Representation of diverging tracks
4.6.4 Schema x-values
4.7 Resultsand analysis
4.7.1 Outputexamples
4.7.2 Problems and solutions

CONCEPTUAL ALGORITHM

5.1 Aesthetic criteria Lo
5.2 Definitions and drawing rules
53 Concept.
5.4 Manually made schematic diagrams

11

17
17
17
18
18
24
26
26
26
30
30
35
35
44

INTRODUCTION

In the Netherlands, every day one million journeys are made by train. The
infrastructure manager of the Dutch railway network, ProRail, is responsi-
ble for the networks design, maintenance, management and safety. In order
to fulfill this responsiblity, among other things, clear overviews of important
network areas, mostly around stations, are needed. For example a construc-
tor needs a compact diagram of a marshalling yard, see figure 1.1. Planning
construction and maintenance activities can be done by indicating out of
service areas in a clear overview, see figure 1.2. While figure 1.3 shows
a rather complex presentation needed for evacuation plans, the underlying
railway network is thoroughly simplified. And it is precisely the latter what
this thesis is about.

A simplified representation of a (partial) transportation network is called
a schematic map. In a schematic map only significant components of the net-
work are dipicted. Unnecessary details are omitted to improve readability.
As for the railway network, the exact location and shape of the tracks are not
important in diagrams such as mentioned above. For the users of schematic
maps only the topology of the network, ie. the relevant positions of the
tracks and interconnections are significant.

The aesthetically pleasing schematic maps shown in figures 1.1, 1.2 and 1.3
are created manually and by professional designers, which is a time consum-
ing and expensive process. Therefore, the automatic generation of schematic
maps is of high interest.

This master’s thesis has the aim to answer the following question:

e Is it possible to automatically derive a schematic map by using geo-
graphical information and network properties, and to what extent?

To answer this, the following sub research questions have to be answered
as well:

e What are the railway network properties?

e What software is used to store and manage the geographical informa-
tion of the network?

e What are the layout criteria of the schematic map?

The railway network constists out of tracks, interconnections, bufferstops
and fly-overs. A track is defined to be the element between interconnections
or between an interconnection and a bufferstop. The group of interconnec-
tions includes crossings and various types of switches. Crossings constist
out of two overlaying tracks, where switching from one track to the other
track is not possible. When a track has no successor it ends in a bufferstop.
A railway switch enables trains to go from one track to another. It divides a

4

| INTRODUCTION

branched track into a straight track and a diverging track, see figure 1.4. The
different types of switches and more network properties will be discussed
in Chapter 3.

To store, modify and visualize railway data, the geographic information
system ArcGIS is used. The various types of geographic datasets are cap-
tured in a common file system folder called a geodatabase. This geodatabase
can be seen as the physical storage of geographic information.

For the railway network it contains two types of feature classes, lines and
points. The feature class junctions holds the actual location, i.e. the (x,y)
coordinate of switches, bufferstops and crossings. Junctions are depicted
by points. The feature class tracks includes the geographical location, i.e. a
path of (x,y) coordinates of the tracks. Tracks are depicted by lines. See
figure 3.9 for an example.

ArcGIS has an extension called Schematics where geographical networks can
be represented as schematic diagrams. CGI and ProRail used Schematics
in many different ways to automatically create schematic maps of the rail-
way network. Unfortunately, the generated outputs were not good enough
and needed a lot of modifications done manually. The algorithm used in
Schematics is called the Relative Main Line Algorithm. See figures 1.6 - 1.11
for examples of geographic input networks, the wanted schematized dia-
grams and the actual generated outputs.

The aesthetic layout criteria of a good schematic map of the railway net-
work are:

e Tracks must be represented as straight line segments.

e If tracks are geographically parallel, then they must be displayed par-
allel in the schematic diagram.

e The relative positions of the tracks and junctions and their connectivi-
ties must remain the same.

These layout criteria are further refined in the process of this thesis.
The main objective of this research is to develop an algorithm that automat-
ically generates a schematic map from geographical input data of a partial
railway network. The specific objectives of this study are:
e Studying the concept of schematic maps.

e Understanding the railway network and its properties.

e Exploring the geographical information system ArcGIS and how rail-
way information is stored.

e Examining the metro map problem.
e Review existing algorithms for automatically generating schematic maps.

e Learning the programming language python.

INTRODUCTION | 5

%
Figure 1.1. Micro level diagram for a constructor.
|aa

asT et~ J:

I i Tl 9 mm
Frtrcezehom ﬁ Vmw mm ::wg;s;‘x Myr:il Voedingsgehpuw 3 Noondzijde

Strukton | Printergebouwen

12 3 4 5 6 “8 9 10 11 12 _1%_15_16_17 18 [19 |20 21 |

] Pn NR da ! -

Al i J . i - - m%\\' A
B < NN TR |B
_ 4 | b
D N i D

= i §i!\\ E
=" g o SE
e] =S i A [T 5'*\ G
111273 4 b5 67 8 9 10 11 12 13 14 15 16 17 18 19 [20 21
Lorarsen, A Toerngebouw pmpkamer (st Rotierdams
Sophismnnel [y ijver]Noodvulpunt Meuvelgeh DI Schenker

Hewvelgehouw 11
Vinduc " A .
Poort Zuidrijde (Hoollingang) hasa Ooseliike Re . " ¢ ¥

Figure 1.3. Representation of evacuation plans.

6

| INTRODUCTION

Figure 1.4. Example of a railway switch where AB is the straight track and AC the
diverging track.

=

Figure 1.5. Example of a partial network visualization from ArcGIS.

Figure 1.6. Geographical input.

Figure 1.7. Wanted schematic diagram.

I

T

INTRODUCTION |

Figure 1.8. Actual output using the Relative Main Line Algorithm.

Figure 1.9. Geographical input.

Figure 1.10. Wanted schematic diagram.

Figure 1.11. Actual output using the Relative Main Line Algorithm.

7

2 PREVIOUS WORK

A schematic map of a transportation network is a simplified presentation
of the given network, depicting all significant components. A well known
schematic map is the metro map. In 1931, technical draughtsman Harry
Beck, while drawing an elictrical circuit diagram, came up with the idea of
using the same drawing rules to create a map of the Londen Underground,
see figure 2.1. Beck’s motivation was based on the needs of the users of a
metro map. They only need to know the relative positions of the stations
and tracks and are less concerned with the exact geographical locations.
His design uses mostly horizontal, vertical and diagonal lines, rather than
the geographic polylines. Nowadays schematic maps of transportation net-
works are still following Beck’s basic design cues.

A subset of schematic maps are metro maps. Work done in the field of
automatic generation of metro map drawings is generally applicable to
schematic maps, Oke and Siddiqui [2015].

21 THE METRO MAP LAYOUT PROBLEM

A first attempt to automatically create metro maps is from Hong et al. [2005].
To automate the process of drawing a metro map, they start with defining
the actual problem as follows. Given a graph G and a set of paths that cover
all the vertices and edges of G. Find a good layout of G such that each line
is drawn as straight as possible, there are no edge crossings and no overlap-
ping labels, lines are mostly drawn horizontally or vertically with some at
40°, and each line is drawn with a unique color.

They demonstrated five different methods using various combinations of
forced-directed algorithms. The implementation did not presereve the topol-
ogy of the input embedding.

Nollenburg and Wolff [2011] translated the metro map layout problem
into a mixed integer program (MIP) where hard constraints must be satis-
fied and soft constraints are globally optimized. The drawback of this mixed
integer problem is the potentially long running time.

Oke and Siddiqui [2015] considered the MIP formulation of Nollenburg and
Wolff as a significant improvement compared to previous efforts. They built
upon their work by improving the computational efficiency of the model.
This is done by relaxing some constraints and reducing the number of ob-
jectives.

10

PREVIOUS WORK

RICKMANSWORTH crontex aresn

MOgR sark
10N Woce

NORTHWOOD.
PINNER.

Hagsow

SORT NV

AR

pusue maynens e
xemioge_ickanan BARGR D ANET,,

HILLUNGOON RUISLIP EASTEOTE

‘WoRTIwICK
B

SOUTH HARROW

SUDBURY HiLL

WaTFORS JuNTION

WaTFORD (ucn srar)

susmex s oy

canrenois paRK

MATCH END for PINNER ATAHON,

HeADSTONE LANE
JARROV & WEALOSTONE

KENTO
Presron
RORS.

KiNGSBURY

NEASDEN.
ORI WeMaLEY

K sLer AR

WEMBLEY ron SUDBURY.

STONEBRIDGE PARK
HARLESDEN

wiLLgsoe U

KENSAL GREEN

CANONS PARK

coowane
BURNT Oak (WATUNG)
counpae Sy
oouws ik
TysNELL

WILLESDEN GREEN PARK

KILBURN & BRONDISBURY NanpsTi
WEST HAMPSTEAD geisiz KEER
NeTion Bk
FINCHLEY ROAD Ciata
HARSY

ENFIELD WEST
SOUTHGATE.

L anwos Grove

- sounos eneen
WooD GREEN
TURNPIKE LANE

MANOR HOUSE.

FINSBURY PARK

AisE, N ORATION pARK

SUDBURY TOWN

ALPERTON

PARK ROYAL

EALING NORTH EALING
SEORDAY

west
LB

sAst
A48

QuEENS PARK. swiss coTTAGE

KILBURN PARK

MAIDA VALE
WARWICK AVENUE

MARLBORO ROAD

wooo.
LATIMER wesTBoURKE RO it
Rons R B RN

AR
LpBRos s
G)

ke sisHos anear
savswaTesy_padoiiGron

o
AU Senyenos

GoLpHawK
RS
ACTON TOWN
stameoRo HAMS
BREST

ek
BRRK

HOUNSLOW WEST

REGENTS
Nornel ke

sonp

LANCASTER
it

. e

[wo orrond
T E <inchs
piccapiLLy
\oromrr | DOVER STAGET

USRS von pan comnen.

e
S
i Gl o

ApDIsON
R8%E
st TRaraLcan
BARows counr N AR VERE

VicToRA

GUNNERSBURY,

SN

RAvescoun

THRE MR

SRk

i

SLoane
Kelbineron R

sl
west xeRQingTon SGUARE
sAGHpron'

WALHAM GREEN

REFERENCE
DISTRICT RAILWAY === METROPOLITAN

" EAST LONDON.

HETRoPOLITAN
PRSI ALY

EAST PUTNEY
Ry
Ay — SOUTHEIELDS

o=
WA =

G

e
AR

camoen Ahouomar
TN RoRD"
soNAN
EAD.
KNGS cROss
A

MoRINGTON
G
uston
ANGEL
SSORRE
s vEssaNTE
SAREET ssert
o006t &
iy 1 Cuancery posr
Jrotsonu LANE P

T
MUZEO

 ALDWYCH
COUENT maNsion
U

Ccxammns, it

5 WesnansTts,

KENNINGTON

‘ovaL

TRINITY ROAD (10OTING BEC).

HIGHBURY & ISLINGTON

(CANONBURY & 55EX ROAD

ouo staceT

RGATE

1verpooL sTReET

Nk

sworgomcn

e srepmer
ioNuMENT stmanes || DA
TRRK
RN

LONDON BRIDGE.

BoRoUGH
evtpranr
£

newaoss Rew
ERES RS

NDERGROUN
WIMBLEDON PARK. T00TING 8ROADWAY \ y
Contigns woop
Souh winBLEDON (HERTON)
MoRvEn

— InriacimcTATON O
CENTAALLONBONALY__ UNDER ConaTALETION v

WiMBLEOON

Hc.BEck

Figure 2.1. Beck’s London Underground Tube Map, published in 1933.

RAIL PROPERTIES

The railway network consist out of tracks, different types of switches, cross-
ings and bufferstops. There are three types of switches: the single switch,
the full slip and the single slip.

A single switch is a device that enables the train to choose from two possi-
ble forward directions and either divides a track into a straight track and a
diverging track or branches off into two diverging tracks. See figure 3.1 for
the different types of single switches.

A full slip, as shown in figure 3.2a, is an intersection of two straight tracks
with two additional tracks that make it possible for a train to go from one
track to the other. A single slip is similar to a full slip but has only one
additional track, see figure 3.2b.

A crossing, see figure 3.3, is simply the intersection of two tracks tracks.

A buffer stop, figure 3.4, is a device that prevents trains to go beyond the
physical end of a track.

N /

(@) (b) (c)

Figure 3.1. Single switches with diverging direction (a) right, (b) left, (c) right and
left.

gl gl
/S /

(a) (b)

Figure 3.2. (a) Full slip. (b) Single slip.

Figure 3.3. Crossing of tracks.

1"

12

| RAIL PROPERTIES

—

Figure 3.4. Track ending in a buffer stop.

To store, modify and visualize railway data, the geographic information
system ArcGIS is used. The various types of geographic datasets are cap-
tured in a common file system folder called a geodatabase. This geodatabase
can be seen as the physical storage of geographic information.

For the railway network bufferstops, crossings and switches are contracted
to one point. In the geodatabase these points are called called junctions.

A track is defined to be the element between two junctions. Every track be-
gins in a source junction and ends in a target junction.

A buffer stop is a junction with only one adjacent straight track. A single
switch is a junction with three adjacent tracks, where two oposite tracks are
straight and the other one is diverging. Also only one pair of neighboring
tracks (one straight and one diverging) form an angle equal or less than 90°.
A crossing, full slip and single slip are junctions defining the intersection of
two tracks. In this case, every track is divided into two opposite track seg-
ments, by the intersection. So this kind of junction has four adjacent straight
track segments, where every pair of neighboring tracks segments form an
angle of less than 180°. From now on we call these tracks segments just
tracks. Keep in mind that a track endig or beginning in a junction of type
full slip, single slip or crossing needs to have its opposite track to be whole.
See figures 3.5 - 3.8 for the various representations of junctions and their
associated tracks.

—0

Figure 3.5. Buffer stop as a junction with one adjacent track.

Figure 3.6. Crossing as a junction with four adjacent track segments.

N L

() (b) (c)

Figure 3.7. Single switches as junctions with three adjacent tracks.

RAIL PROPERTIES | 13

y
—

Figure 3.8. Full slip or single slip as a junction with four adjacent track segments.

The geodatabase of the railway network contains two feature classes, junc-
tions and tracks. A junction is a point and is depicted as a circle. A track is
a path of points and is depicted as a polyline. See 3.9 for an example of the
visualization of a partial railway network.

The feature class junctions contains for every junction the following infor-
mation:

e unique identification number

e type, i.e. buffer stop, crossing, single switch, full slip or single slip

e diverging direction, i.e. left”, right or null

e geographical location, i.e. (x,y) coordinate.

Additional to the feature classes junctions and tracks, the geodatabase
contains a table that stores the topology of the railway network.
By joining this table with the feature class tracks, the topological informa-
tion of the network will be appended to the information of the tracks. The
resulting augmented feature class tracks holds the following information for
every track:

unique identification number

e length

o geographical location, i.e. a path of (x,y) coordinates of the points
that form the track

e identification number of the source junction

e identification number of the target junction

e the positions of the track in the clockwise ordering around the two
adjacent junctions. This will be explained below.

14

| RAIL PROPERTIES

/

Figure 3.9. Example of a partial network visualization from ArcGIS.

RAIL PROPERTIES | 15

The clockwise ordering of tracks around a junction is denoted by the

ordered sequence (0,1,2,3). The position in the ordered sequence of a track
around its source junction is called a source index. Similarly, the position in
the ordered sequence of a track around its target junction is called a target
index. See figures 3.10 and 3.11 for junctions of type buffer stop and single
switch, and their adjacent tracks together with their relevant indexes.
By studying junctions of type single switch and the associated indexes of the
adjacent tracks, we conclude that the track with index 0 is always a straight
track and always opposite to the tracks with indexes 1 and 2. Furthermore,
for the latter pair, the track with index 1 is always the left one of the two and
the track with index 2 the right one. For junctions of type full slip, single
slip or crossing, two track segments with indexes i, and i}, form a straight
track if |i, — 7| = 2. See figures 3.13 and 3.12.

_ o

Figure 3.10. Junction of type buffer stop and one adjacent track with the associated
index.

(a) (b) ()

Figure 3.11. Three junctions of type single switch with three adjacent tracks and
their associated indexes.

Figure 3.12. Junction of type crossing where blue track segments form a straight
track and black track segments form a straight track.

e
—

Figure 3.13. Junction of type full slip” or single slip where blue track segments form
a straight track and black track segments form a straight track..

IMPLEMENTED ALGORITHM

We begin this chapter by making some assumptions regarding the input
map. We then define the set of aesthetic criteria and make some minor data
modifications. Then we will carefully describe the implemented algorithms
and give some output diagrams. We conclude by discussing the occurred
problems and sugesting their solutions.

4.1 ASSUMPTIONS

For this project we make the following assumptions about the geographical
input map.

Assumption 1. The majority of the tracks of the input map lie in a common main
direction. And tracks perpendicular to the main direction are omitted.

See for example figure 4.1.

/

Figure 4.1. The common main direction is indicated in red.

Since fly-overs are not yet objects in the data we assume the following:

Assumption 2. The input map does not contain fly-overs.

4.2 AESTHETIC CRITERIA

The wanted schematic diagrams are those that visualize the railway network
around a station. Before the development of the algorithm, the criteria of the
schematic diagram where somewhat vague. But since we want to automate
the process we need to have some conditions on the schematic output map.
We decided to use the following set of aesthetic criteria:

1. the topology of the underlying graph of the railway network is pre-
served

2. the order of the junctions in the main direction remains the same

3. every track is represented as straight line segments with at most one
bend

17

18

| IMPLEMENTED ALGORITHM

4. straight tracks are drawn horizontally as much as possible
5. with the exeption of crossings, all angles are 60° or —60°

After studying the railway network and its properties, we make the fol-
lowing assumption regarding the representation of crossings in the schematic
diagram.

Assumption 3. Tracks that form a crossing are never straight and therefore are
never drawn horizontally.

4.3 MINOR DATA MODIFICATION

As mentioned, every track begins in a source junction and ends in a target
junction. For the railway network this means that a junction can be the
source of two opposite tracks, see figure 4.2.

To make the network easier to work with, we modify the relevant data such
that for all tracks with source junction at (xg, o), target junction at (x1,y1)
and xg # x1 holds: xg < x7. See figure 4.3.

Note that tracks with xp = x; are no longer defined. For now, we leave out
geographical input maps where the main direction is vertical.

u \' w
)
O——O0——=0

Figure 4.2. Two adjacent tracks where junction v is the source of track vu and the
source of track vw.

u v
)
O —O —0O

Figure 4.3. After modification: v is the target of track uv and the source of track vw.

After the modification we can create two useful python dictionaries. The
dictionary incoming tracks contains for every junction u, all tracks with target
junction u. The dictionary outgoing tracks includes for every junction v, all
tracks with source junction v.

4.4 STRAIGHT LINE ALGORITHM

One of the aesthetic criteria of the schematic diagram is that straight tracks
need to be drawn horizontally as much as possible.

Since a track is defined to have a source junction and a target junction, it
can be straight and diverging at the same time. For example think of a track
uv with single switch type source junction u and single switch type target
junction v. Suppose that junction u has an incoming straight track, an out-
going straight track and assume that track uv is the diverging track out of
u. Also assume that track uv is the straight track into v. This makes track
uv simultanously diverging and straight. So, do we draw it horizontal or
not? No, since junction u already has an outgoing straight track that needs
to be drawn horizontally. Hence, if a track is in any way a diverging one,
it cannot be drawn horizontally. We need a new definition for tracks that

4.4 STRAIGHT LINE ALGORITHM \

need to be drawn horizontally.

Definition 1. A track is called completely straight if it is the straight track out of
its source junction and the straight track into its target junction.

Since a full slip or single slip need two opposite tracks to form a whole
track, it makes sense to call a track ending or beginning in such junction
completely straight only if its other half is completely straight.

Definition 2. A straight line is a maximal sequence of connected tracks that are
completely straight. Where maximal means that the sequence cannot be augmented.

After observing straight lines in the network we make the following as-
sumption.

Assumption 4. Every straight line contains at least one junction of type single
switch.

So starting at a random single switch type junction #, how can we find
the straight line containing u?

We mark junction u as placed. Then we first walk to the right by looking
at the outgoing tracks of junction u and appending, the completely straight
track out of u, if it exists, to the line. Say uv is the completely straight track
out of u. We then repeat this by looking at the outgoing tracks of junction v,
appending the possible completely straight track out of v to the line. And so
on. The line ends in a junction if it has no outgoing track or if the outgoing
track is not completely straight.

Similarly we walk to the left by looking at the incoming tracks of junction
u and inserting, the completely straight track into u, if it exists, at first posi-
tion of the line.

Lets explain the part of “walking to the right” more carefully, see algo-
rithm 1.

Given a single switch type junction u. In the algorithm we call u the cur-
rent_junction. Obviously u has to have an outgoing track to walk to the right.
If it does we have to know its type. Of course we started with knowledge
of u being of type single switch, but as we will see later on, we can and
will arrive at this part of the algorithm with a junction of type full slip or
single slip. So, we know junction u is of type single switch. We know that a
junction of type single switch has either one or two outgoing tracks.

For an outgoing track of a single switch junction to be straight, one of the
following possibilies must be true.

(i) its source index = 0, this is by definition a straight track out of a single
switch type junction

(ii) its source index = 1 and the diverging direction of u = right
(iii) its source index = 2 and the diverging direction of u = left.

If junction u has no outgoing straight track, the right side of the straight
line is finished and u is the end of the line.

Suppose now, that there is a straight track out of u, say uv. In the algorithm

19

20

| IMPLEMENTED ALGORITHM

uv is called the current_track. First we need to check if its target junction v
is not already placed in a straight line. If it is already placed then the right
side is finished with the line ending in u. If target v is not placed yet, we
need to decide if track uv is the straight track into target v. Therefore, we
need to know the type of junction v. If target v is of type single switch, one
of the following possiblities must be true for uv to be a straight track into
target v.

(i) its target index = 0, this is by definition a straight track into a single
switch type junction

(ii) its target index = 1 and the diverging direction of v = right
(iii) its target index = 2 and the diverging direction of v = left.

If none of the possiblities holds for track uv, it is not the straight track
into its target, and thus track uv is not completely straight. Hence, track uv
is not appended to the straight line, finishing the line in junction u.
Furthermore, if one of the possibilities holds for track uv, it is the straight
track into its target, and thus track uv is a completely straight track. So now
we append uv to the line, and mark target junction v as placed. Also we
remove track uv from the outgoing tracks of # and the incoming tracks of v.
We then define target v to be the current_junction and we walk further to the
right.

Lets go back to the point were we knew that track uv was the straight track
out of junction v. But now, assume that v is of type crossing. Assumption 3
forces the line to stop in junction u.

There are still two possible types for target v. Suppose target v is of type
buffer stop. A buffer stop has exactly one adjacent track and this track is
by definition straight. So uv is the straight track into target v and therefore
a completely straight track. We append uv to the line, remove it from the
outgoing tracks of v and mark junction v as placed. Since a junction of type
buffer stop has only one adjacent track, we cannot go any further to the
right. Thus the line ends in junction v.

The last option for v is to be of type full slip or single slip. We already
know that track uv is actually one of two track segments that form a whole
track through v. As mentioned above, we call track uv completely straight
if its other half is also completely straight. So we will save track uv and
target junction v and need to go further to the right, defining target v to
be the current_junction. This brings us to the part of the algorithm where
the junction from which we want to walk to the right, is of type full slip or
single slip.

So current_junction v is of type full slip or single slip. To go any further
to the right, the other half of track uv must exist. If it does not exist, saved
track uv cannot be appended to the line, so the line end in junction u.

Now suppose the other half of track uv exists, say vw. In the algorithm
vw is called current_track. Since by definition all adjacent tracks to a full slip
or single slip type of junction are straight, we need to decide if track vw is
the straight track into its target w. Again we have to check the type of target
w.

Suppose junction w is of type single switch. We already know how to check

4.4 STRAIGHT LINE ALGORITHM \

if a track is the straight track into a single switch type junction. If track vw
is not the straight track into target w, saved track uv cannot be appended to
the line, finishing it at junction u. Assume now, that vw is the straight track
into target w. We first need to append every saved track (in this case only
track uv) to the line. Then append track vw to the line. Also we mark every
saved junction (in this case only junction v) and target junction w as placed.
Now we walk further to right by defining target to be the current_junction.
If target w is of type crossing. Again by assumption 3 vw is not a straight
track into w, so vw is not completely straight. Thus, the line ends at junction
u, since the other half of vw, saved track uv, cannot be appended.

Suppose target w is of type buffer stop. This makes vw a completely straight
track. Hence, uv is a completely straight track. We append every saved track
(in this case only uv) and current_track vw to the line. Also we mark every
saved junction (in this case only v) and target junction w as placed. We can-
not walk any further to the right, since a buffer stop type of junction has
only one adjacent track. This means that the line ends in junction w.

The last option for target w is to be of type full slip or single slip. As before
we have to save current_track vw and target junction w. By defining target
w to be the current_junction we try to walk further to right, by checking its
outgoing tracks.

Note that the line never ends in a junction of type full slip or single slip.

At any point in the algorithm, where the right side of the line is finished,
we do the same thing to determine the left side of the line by walking to the
left of the starting junction u.

21

22 | IMPLEMENTED ALGORITHM

Algorithm 1: Straight line algorithm

Input :Geographical data of the input map and a random single switch type junction u
Output :The straight line containing junction u

"to the right”

done «+ []
line + []
temp_tracks < []
temp_junctions < []
current junction < u
stop < false
done.append (current_junction)
while (current_junction has outgoing tracks) and (stop == false) do
if type(current_junction) == Single Switch then
if no straight track out of current_junction exists then
| stop « true
else
current_track < straight track out of current_junction
target < target of current_track
if target in done then
‘ stop < true
else
if type(target) == Single Switch then
if current_track is not the straight track into into target then
| stop « true
else
line.append(current_track)
remove track from associated outgoing and incoming tracks
done.append(current_junction)
current_junction < target

else if type(target) == Crossing then

| stop « true

else if type(target) == Buffer Stop then

line.append(current_track)

remove track from associated outgoing and incoming tracks
done.append(current_junction)

else

temp_tracks.append(current._track)
temp_junctions.append(current_junction)

current junction <« target

else

if other half of current_track not exists then
| stop « true

else

current_track <— other half

target < target of current_track

if target in done then
| stop « true

else

if type(target) == Single Switch then

if current_track is not the straight track into target then
‘ stop < true

else

for track in temp_tracks do
| lineappend(track)

line.append(current_track)

remove all appended tracks from associated outgoing and
incoming tracks

for junction in temp_junctions do
L done.append (junction)

done.append(current_junction)
current_junction <« target

else if type(target) == Crossing then
| stop « true
else if type(target) == Buffer Stop then
for track in temp_tracks do
L line.append(track)

line.append(current_track)

remove all appended tracks from assoiciated outgoing and incoming
tracks

for junction in temp_junctions do
L done.append (junction)

done.append(current_junction)

else

temp_tracks.append(current._track)
temp_junctions.append(current_junction)
current_junction <« target

”to the left”

temp_tracks < []

temp_junctions < []

current_junction < u

stop < false

while (current_junction has incoming tracks) and (stop == false) do
| Similar to the above

4.4 STRAIGHT LINE ALGORITHM \

Now we know how to find the straight line containing at least one single
switch type of junction, it is not difficult to find all the straight lines of the
input map, see algorithm 2.

By assumption 4 we can find all the straight lines of the input map by
randomly start at a junction of type single switch, untill there are no more
single switch type of junctions.

Algorithm 2: Find all straight lines algorithm

Input :Geographical data of the input map
Output :All the straight lines of the input map

single_switch_junctions < []
all_straight_lines < []

for junction in junctions do
if type(junction) == Single Switch then
| single_switch_junctions.append (junction)

while single_switch_junction # @ do
u < random.choice(single_switch_junctions)
straight_line <— the straight line containing junction u by algorithm 1
all_straight_lines.append(straight_line)
single_switch_junctions.remove(u)

return all_straight_lines

23

24

| IMPLEMENTED ALGORITHM

4.5 LINEAR REFERENCING

In the previous section we explained that straight lines need to be drawn
horizontally in the schematic diagram. In order to do that we must give
every straight line a schema y-value. Therefore we need to know the verti-
cal order of the straight lines. This means that by looking at a straight line,
we must decide if its above or below another straight line. Since the net-
work of the input map has a main direction that can be anything but totally
vertical, we cannot simply compare the two straight lines by looking at the
geographical y positions of the included junctions. If only we could rotate
the network in a way that the main direction becomes horizontal. Luckily
this can be done by Linear Referencing. In this case, Linear Referencing is
used to store the geographic locations of the tracks and junctions by using
relative positions along a linear line.

After observing various input maps and their straight lines, we conclude
that for most of the input maps, the longest straight line covers the network,
i.e. there are no tracks or junctions before the beginning and after the end
of the longest straight line. So by using this line as the line for linear refer-
encing, we can rotate the network. It is easy to find the longest straight line,
since we know the length of every track, see algorithm 3

Algorithm 3: Longest straight line algorithm

Input :Geographical data of the input map and all straight_lines
Output :The longest straight_line

Function: length_of_straight_line(straight_line, length)
L+ 0

for track in straight line do
| L« L+ length(track)

return L

Algorithm:

T+ 0
for straight line in all straight lines do
L « length_of straight_line(straight_line, length)
if L > T then
T+ L
longest_straight_line <— straight_line

return longest_straight_line

Suppose the input map is the network around a very small station in a
town called Ommen, see figures 4.21 and 4.22.

Figure 4.4. Input map of Ommen.

4.5 LINEAR REFERENCING |

Figure 4.5. Input map of Ommen, zoomed in.

So once we know the longest straight line, we have to select this line man-
ually in ArcMap. And since the longest straight line constists of multiple
tracks, we merge these tracks into one, figure 4.6.

\//m

Figure 4.6. Track defining the longest straight line of Ommen are merged into one.

Recall that every track in the original network data was assigned a direc-
tion. When merging the tracks that make up the longest straight line, we
must give it the properties of one of the included tracks. Suppose we gave it
the properties of the first track. The merged line will then posess the same
direction as the first track. In this case, the direction of the first track was
from left to right. Thus the merged line has now a direction from left to
right. Next, the merged line is scaled, straightend and rotated untill it is
horizontal.

To explain how the linear referencing algorithm in ArcGIS works, we give
the following example. Suppose we walk along the unstraightend merged
line, starting on the left. While walking we look 100 to the right and 100m
to the left. Every time we see a track or junction it is placed at its rela-
tive position with reference to the the scaled straightend merged line. See
figures 4.24 and 4.25 for the Ommen input map after linear referencing.

Figure 4.7. The input map of Ommen after linear referencing.

25

26

| IMPLEMENTED ALGORITHM

N

Figure 4.8. The input map of Ommen after linear referencing, zoomed in.

4.6 DRAWING ALGORITHM

After linear referencing, the junctions and tracks have new coordinates.
From now on we use these new coordinates in stead of the initial coordi-
nates that represent their geographical locations.

4.6.1 Parallel tracks

In the input map we often find two single switch type of junctions connected
by two different tracks, see figure 4.9 for an example.

Definition 3. Two tracks are called parallel if they share the same source junction
and the same target junction.

By observing parallel tracks in the railway network, we make the follow-
ing assumptions.

Assumption 5. The common source junction and target junction of parallel tracks
are of type single switch.

Assumption 6. Parallel tracks constist of a completely straight track and a diverg-
ing track.

6\14/6
B

Figure 4.9. Parallel tracks between two junctions u and v of type single switch. Track
A is a completeley straight track. Track B is the diverging track.

4.6.2 Schema y-values

By linear referencing we obtain an input map with a horizontal main direc-
tion. From this we can derive the vertical order of the straight lines.

Ater finding all the straight lines, there are still some features left as they
are not included in a straight line, i.e. the rest of the junctions and diverg-
ing tracks. We need to assign a schema y_value to all the junctions in the

4.6 DRAWING ALGORITHM | 27

straight lines (leaving out the longest straight line), the diverging parallel
tracks and the rest of the junctions except those of type crossing. By joining
two track segments for each track through the crossing, a junction of type
crossing does not need a schema y-value because the intersection of the two
associated tracks will appear naturally in the schematic diagram.

So, after putting all the straight lines and the rest of the junctions together
in a in a python list, we can determine the vertical order as follows. Every
element in the list is either a list of junctions and tracks (straight line) or a
list of a single junction.. After the linear referencing algorithm, the longest
straight line has y-value 0. We start by dividing the elements into positive
elements, i.e. elements that lie above ¥y = 0 and negative elements, i.e. el-
ements that lie below y = 0. Next, we order the positive elements and the
negative elements. Let’s explain algorithm 4 more precisely.

In the schematic diagram we use the longest straight line as a base line.
All the included junctions get the schema y-value 0.
The list of all elements that need a schema y-value is called lines.

In the first part of the algorithm we check for every line in lines if it lies above
base line, by testing if the y-values of the first and last junctions of the line
are greater than 0. If so, the line is appended to a list called lines_above_base.
If not, the line is appended to a list called lines_below_base.

From now we will explain the algorithm as if the input map consist of only
positive lines, since the ordering of negative lines will go similarly.

So we now have a list of lines that lie above the base line. We define
a new list called positve lines. We start by selecting a random line from
lines_above_base, put it in positive lines and remove from lines_above_base. Next,
we select another random line, called current_line and remove it. Then we
check if this line lies below the line already placed in positive lines. We call
this placed line the test_line. Thus, we want to know if current_line lies above
test_line. To do this we first define start_current_line and end_current_line to be
the first and last junctions of current _line.

Similarly we define start_test_line and end_test_line. Let current_interval be
the interval defined by the x-value of start_current_line and the x-value of
end_current line. Similarly we define test_interval. There are two possibilities,
the two lines overlap or not. We check if the two lines overlap by testing if

e start_current_line lies in test_interval or

e end_current line lies in fest_interval or

o start_test_line lies in current_interval or

o end_test_line lies in current_interval.

If one of the above options holds, we can determine their vertical order.

Suppose start_current_line lies in test_interval. We know the x-value of start_current_line
and since we have for each track (and thus for each line) its path of coordi-
nates, we can search for the nearest x-value in that line. Next we compare
the associated y-value to the y-value of start_current_line. Now, if current_line
lies below test_line we put it before test_line in positive_lines. If not, we append

it to positive lines. Note that if a line consists out of one junction, its path is
just one coordinate.

28

| IMPLEMENTED ALGORITHM

Now suppose the two lines do not overlap. We then determine if current_line
lies before test_line or after. If curren_line lies before test_line, we compare
the y-values of end_current_line and start_test_line and define current_line to
lie below test_line if y-value of end_current_line is less than the y-value of
start_test_line. Similarly for the other way around. Again if current_line lies
below test_line we put it before test_line in positive_lines. If not, we append it.

At this point we have two lines in positive_lines. We repeat the above un-
till there are no more lines in lines_above_base. This means that for the next
random line there are two test lines. If the line lies below the first test line it
is inserted immediately. If not, the next test line will be used to determine
if the random line lies below it.

Now we have all the straight lines and the rest of the junctions ordered
in positive_lines. To make this vertical order complete, we need to insert the
diverging parallel tracks. We do this by finding the straight line that con-
tains the two junctions of the diverging parallel track and determine if it
is above or below the completely straight track out of its source junction.
Since we know the source index of the diverging parallel track and the di-
verging direction of its single switch type source junction, we can decide if
it is above or below the completely straight track. We already assigned a
schema y-value to the source junction, so the diverging parallel track will
have schema y-value of one less or one more.

4.6 DRAWING ALGORITHM | 29

Algorithm 4: Schema y-values algorithm

Input :Geographical data of the input map, all straight_lines and y-value of the longest
straight line
Output :Schema y-values for all junctions

lines < all straight lines and the rest of the junctions except of type crossing
diverging_parallel_tracks < all diverging parallel tracks
copy-diverging_parallel_tracks < a copy of diverging_parallel_tracks
lines_above_base < []

lines_below _base <« []

schema_y_junctions + {}

schema_y_diverging_parallel_tracks < {}

“part one”
while lines # @ do
current_line < random.choice(lines)
if current_line lies above base line then
| lines_above base.append(current. line)
else
L lines_below _base.append(current_line)

”.

part two for positive lines”

while lines_above_base # @ do

current_line <— random.choice(lines_above_base)
lines_above_base.remove(current_line)

positive_lines « []
N < #lines in positive_lines
done « false
i+ 0
while done == false do
if i # N then
test_line < positive_lines][i]
if current_line lies below test_line then
positive_lines.insert(i, current_line)
‘ done < true
else
L i—i+1
else
positive_lines.append(current._line)
L done « true

if copy_diverging_parallel_tracks # @ then

for track in copy_diverging_parallel_tracks do

source <— source junction of track

target <— target junction of track

for line in positive_lines do

if source in line and target in line then

insert track at the right position in positive_lines
copy-diverging_parallel_tracks.remove(track)

for i, line in positive_lines do
if line in diverging_parallel_tracks then
| schema_y_diverging_ parallel_tracks[line] < i+ 1
else
for junction in line do
L | schema._yjunctions[junction] = i +1

“part two for negative lines”
while lines_below_base # @ do
L Similar to the above

return schema_y_junctions, schema_y_diverging_parallel_tracks

30

| IMPLEMENTED ALGORITHM

4.6.3 Representation of diverging tracks

From now on we use uy to denote the schema y-value for junction u.
Before we can determine the schema x-values we first need know how tracks
should be respresented in the schematic diagram. Of course, the straight
lines are drawn horizontally. This means that every track in a straight line,
connects its source junction to its target junction by a horizontal line. But
how do we draw the rest of the tracks (the diverging tracks)? Well, there are
a few possibilities.

First recall that one of the criteria of the schematic diagram is that, except
voor tracks through crossings, diverging tracks are drawn using the same
angle. Now, suppose track uv is the outgoing diverging track and suppose
that y, < y,. The possible representations of track uv are shown in fig-
ure 4.10. Where 4.10a shows the representation of track uv as a linear line
making an angle of 60° with the grid line y = y,,. We call the intersection of
this linear line with a grid line, a track corner of junction u. In 4.10b track uv
is represented as a bended line making that same angle of 60° with the grid
line y = y,. Figure 4.10c shows the representation of track uv as a bended
line making an angle of 60° with the grid line y = y,.

From now on we call the line in subfigure 4.10a an outgoing up line, the
bended line in subfigure 4.10b an outgoing up-right line since the line goes
up first and then to the right. The bended line in subfigure 4.10c is called
an outgoing right-up line.

For uv an outgoing track and y, > y, we define an outgoing down line, an
outgoing down-right line and outgoing right-down line.

Let’s define the possible track corners around a junction, in clockwise or-
der starting left above the junction, by cj, c3, c3 and c4. To be precise, let
u(cq); define the upper corner left of junction u where |y(u) — y(u(c1))| =i,
see figure 4.11.

v v v

/ YT T

(a) (b) ()

Figure 4.10. Representations of a diverging track in the schematic diagram.

4.6.4 Schema x-values

We start by sorting the junctions in ascending order by their new x-values
obtained after linear referencing. Next, we give all the junctions a first
schema x-value such that each pair of neighboring junctions has equal dis-
tance. These first assigned schema x-values are not necessarily the final
values, because a few of them need to change in order to satisfy the criteria
of the lines.

Note that the first and last junctions in the horizontal order are the first and
last junctions of the longest straight line. From now on we use x, to denote
the current schema x-value of junction u.

_}() DRAWING ALGORITHM |

u(cr) u(ca)

Figure 4.11. Possible track corners of u aty =y, —1land y =y, + 1.

The following algorithm determines for each junction its final schema x-
value. By checking how each junction is connected and how that conncec-
tion, i.e. the diverging track, can be drawn.

To get a grasp of how this algorithm works, we will explain it by example.

Suppose we are looking at the first line from positive_lines, the longest straight
line. We call this line the current_line in the algorithm. Say junction v is in
current_line. We then check if v has an incoming track such that yspyree = 1.
Suppose it does, and let the source be . Now we need to determine how
to draw this diverging track uv using one of the representation discussed
in the previous section. If we know how to draw track uv, we can derive
the associated schema x-value for u. This x-value can only be the current
first assigned x-value or it is changed to a corner position around a certain
junction.

So, to decide how to draw track uv, we check if u has another outgoing
track. If so, we want to know if this other track is completely straight or
diverging. Suppose that the other outgoing track is completely straight, and
let its target be w, figure 4.12. Since a completely straight track is drawn
horizontally, we have only two option for uv left, an outgoing down-right
line or an outgoing down line. We do not like to shift junctions to a new
x-position since that includes the shifting of all other junctions in the associ-
ated interval. So let’s check when we can use an outgoing down-right line
to represent uv. It means that v will have an incoming line at y,. We can
do this only if v does not have an incoming track that is completely straight,
since that track will be drawn incoming at 1,. Assume that v has not an
incoming completely straight track. We can draw uv using an outgoing
down-right line, see 4.13. Now suppose that v has an incoming completely
straight track, see figure 4.14. Now we have to shift u to the position of
v(c1)1 so we can use the outgoing down line, see figure 4.15. In order to
keep the correct horizontal order of junctions, the junctions included in the
interval (old u,v) need to be shifted to the interval (u,v), see figure 4.16. If
the interval (old u,v) includes a junction that was shifted before, say junc-
tion a, we know that a is connected, by a down line or up line, to a junction,
say b. We need to check if b is also in the interval (old u,0). If not, then
conflict?!

Now consider the option that the other outgoing track, uw of u is a diverg-
ing track. If w does not have an incoming track that is completely straight

31

32

| IMPLEMENTED ALGORITHM

en thus uw can be represented by an outgoing up-right line, we can draw
track uv using an outgoing right-down line, see figure 4.17. Obviously, if
w has an incoming completely straight track, uv cannot be represented by
an outgoing right-down line, since uw must be represented by an outgoing
right-up line. Assume that v has not a completely straight incoming track.
We can draw uv using an outgoing down-right line, see figure 4.18. Now,
assume that v has an incoming completely straight track. This means that
we have to shift u, the new position depends on the horizontal order of v
and w. Suppose x, < Xy. Then u is shifted to the position of v(c1)1, see 4.19.
If x, > xy, u is shifted to the position of w(cy)1, figure 4.20.

At the end of the algorithm we know all the schema x-values and how every
track needs to be represented. Hence, we can draw the schematic diagram.

Figure 4.12. u has a completely straight outgoing track uw.

u(cs)r v

Figure 4.13. Track uv represented by an outgoing down-right line.

Figure 4.14. u has a completely straight outgoing track uw and v has a completely
straight incoming track.

4.6 DRAWING ALGORITHM | 33

Figure 4.15. Track uv represented by an outgoing down line from u = v(cq);.

Figure 4.16. The orange indicated interval needs to be moved to the small interval
between u and v.

Figure 4.17. Track uv represented by an outgoing right-down line.

u(cs) v

Figure 4.18. Track uv represented by an outgoing down-right line.

34 | IMPLEMENTED ALGORITHM

Algorithm 5: Assigning schema x-values

Input :LR data of the input map and all straight_lines, schemay-values, diverging parallel
tracks, ordered list of junctions, positive_lines, negative_lines, first assigned schema
x-values

Output :Final schema x-values

done «+ []

shifted « []

representations <—

N <« #postive_lines

schema_x « first assigned x-values

for i in range(0, N) do

if positive_lines[i] is not a diverging parallel track then

current_line <— positive_lines][i]

for junction in current_line do

0 4 junction

ki

while v not in done do

for j in range(k + 1, N) do

if positive_lines[j] is not a diverging parallel track then
if v is the target of a track with Ysource == j and source not in done then
1 ¢ source

uv < track

if u has another outgoing track then

w < target of other track

uw <+ other track

if uw is completely straight then

if v has an incoming straight track then
schema_x[u] + v(c1)j_;
shifted.append(u)
representations[uv] <— outgoing down line

else

L representations[uv] < outgoing down-right
line

else
/ uw is also diverging/
if w has not a completely straight incoming track then
representations[uv] < outgoing right-down
‘ line
else if w has a completely straight incoming track and v
not then
| representation[uv] — outgoing down-right line
else
*/both have a completely straight incoming
track/* if x, < x;, then
schema_x[u] < v(c1),
shifted.append(u)
representations[uv] < outgoing down
line

j—il

else

schema_x[u] < w(cs)

shifted.append(u)

representations[uv] < outgoing
right-down line

j=il

else
| */uhas no other outgoing track/*

done.append(v)

break

else

if v is the source of a track with Yiareer == j and target not in done
then
| Similar

4.7 RESULTS AND ANALYSIS \

Figure 4.19. Track uv represented by an outgoing down line.

Figure 4.20. Track uv represented by an outgoing right-down line.

4.7 RESULTS AND ANALYSIS

4.7.1 Output examples

We start with some small input maps where junctions are only of type single
switch. Figures 4.21 and 4.22 show the geographical input map of Ommen.
Next, we find all straight lines and determine the longest straight line. The
latter consists out of merged tracks, depicted in figure 4.6. The longest
straight line is used as a base line for the linear referencing algorithm, see
figures 4.24 and 4.25. The schematic representation of the Ommen network
is shown in figure 4.26.

Figures 4.27 - 4.32 show the same process for the network of Rijen, and
figures 4.33 - 4.38 depict the steps to schematization of the network of Steen-
wijk.

While the created schematic diagrams satisfy the conditions, there occured
a problem in the output of Steenwijk. See figures 4.39 - 4.41. According
to the original x-values of the junctions, junction B lies between junction A
and junction C. And since track AC must be drawn using an angle of 60°,
junction B is placed in the very small interval between A and C, causing
junctions B and C to partially overlap in the visualization. Technically B
still preceeds C, so the order is correct, but according to the most important
reason of schematization, i.e. improving the visualization of the network,
this is a problem.

Next, we have created a schematic representation of a small part of the

35

36

| IMPLEMENTED ALGORITHM

network of Utrecht, including junctions of type full slip additional to single
switch type junctions, see figures 4.42 and 4.43. We see that the left side of
the network after linear referencing is sort of aligned, figure 4.44, while this
is lost in the schematic diagram figure 4.45. Again all the conditions are
met, but it appears more chaotic.

While the left side of the network appears to be aligned, the associated junc-
tions have slightly different x-values. And since the junctions are ordered,
their difference will be greater in the schematic diagram.

Figures 4.46 and 4.57 show the input map of Zuthpen after linear referenc-
ing and the associated schematic output map. Now the junctions are of type
single switch and crossing. The crossings in the schematic diagram are no
longer aligned, see figures 4.48 and 4.49. Also there is a problem, see fig-
ure 4.50. Junction E appears before junction D while in the original input
map it is the other way around. Actually, this part of the network leads
to a conflict regarding the drawing conditions. Since track AE needs to be
drawn using an angle of 60°, all junctions between A and E must fit in the
small area created by the schema x-values of A and E. So junctions B, C,
and D have a schema x-value between A and E. The problem occurs when
track BD needs to be drawn using an angle of 60° as well. This forces junc-
tion D to lie beyond junction E. Adjusting the schema position of junction
E will lead to the wrong order of A and B. This configuration is therefore
not solvable using the given drawing conditions.

To get the crossings more aligned we set a margin, see figure 4.57.

The last example includes a network with all junction types. See figures 4.51
and 4.52 regarding the network of Weert. Junctions in the red indicated ar-

eas, see figures 4.53 and 4.54, are too close together due to the 60° angle
condition and the order condition.

Figure 4.21. Input map of Ommen.

Figure 4.22. Input map of Ommen, zoomed in.

4.7 RESULTS AND ANALYSIS | 37

/N

Figure 4.23. Merged tracks that form the longest straight line.

Figure 4.24. Network of Ommen after linear referencing.

AN

Figure 4.25. Network of Ommen after linear referencing, zoomed in.

Figure 4.26. Schematic representation of Ommen.

38 | IMPLEMENTED ALGORITHM

= T
‘-\-\-\-_"‘-—\.____
H“"-i-..__
"’“—t__q_
“_H.__‘__-‘-\-\-_-\-\-\--_\-
—_-_“'““'1--.,___1
Figure 4.27. Input map of Rijen.
M}____‘
o e
H}:::‘"'“:ha-b._
Hﬁ{‘ﬁbﬁbﬁiﬁ*ﬁ#
H,_h:_:hb.sr?:

Figure 4.28. Input map of Rijen, zoomed in.

Figure 4.29. Merged tracks that form the longest straight line.

Figure 4.30. Network of rijen after linear referencing.

4.7 RESULTS AND ANALYSIS | 39

I~

=

Figure 4.31. Network of Rijen after linear referencing, zoomed in.

Figure 4.32. Schematic representation of Rijen.

Figure 4.33. Input map of Steenwijk.

40 | IMPLEMENTED ALGORITHM

Figure 4.34. Input map of Steenwijk, zoomed in.

Figure 4.35. Merged tracks that form the longest straight line.

Figure 4.36. Network of Steenwijk after linear referencing.

e

-\.—/\u\' -

Figure 4.37. Network of steenwijk after linear referencing, zoomed in.

4.7 RESULTS AND ANALYSIS |

Figure 4.38. Schematic representation of Steenwijk.

-\‘—’_w

Figure 4.39. Network of steenwijk after linear referencing, zoomed in. Indicating a
problem in red.

Figure 4.40. Schematic representation of Steenwijk. Indicating a problem in red.

== —

]

Figure 4.41. Junctions B and C overlap.

Figure 4.42. Part of the network of Utrecht, after linear referencing.

— \\\
7

N 7

»

Figure 4.43. Schematic representation of a part of the network of Utrecht.

4

42 | IMPLEMENTED ALGORITHM

T

Figure 4.44. Part of the network of Utrecht, after linear referencing.

T
N 7

Figure 4.45. Schematic representation of a part of the network of Utrecht.

ANEE

Figure 4.46. The network of Zutphen, after linear referencing.

Figure 4.47. Schematic representation of the network of Zutphen.

AN

Figure 4.48. The network of Zutphen, after linear referencing.

,_.
|
k.
o
o

<

Figure 4.49. Schematic representation of the network of Zutphen.

4.7 RESULTS AND ANALYSIS |

Figure 4.50. Schematic representation of the network of Zutphen.

Figure 4.51. The network of Weert, after linear referencing.

Figure 4.52. Schematic representation of the network of Weert.

43

Figure 4.53. The network of Weert, after linear referencing.

Figure 4.54. Schematic representation of the network of Weert.

44

| IMPLEMENTED ALGORITHM

4.7.2 Problems and solutions

We found out that there is a configuration such that no solution exists using
the given drawing conditions. The 60°angle rule and the order condition can
create a conflict. Also we saw that junctions can overlap in the schematic
diagram. These problems can be solved by choosing a smaller angle say of
30° and setting the maximum number of bends per line at two.

A possible drawing of the conflict area in the network of Zutphen is shown
in figure 4.55.

We saw that if an input map contains visually aligned junctions, while their
x-values are slightly different, this visual alignment is lost in the schematic
map. To solve this we could set a margin for the distance between junctions.
If the distance between two junctions is within that margin, we’ll treat them
as if they have the same position in the order and they are assigned the same
schema x-value. See for example figures 4.56 and 4.57.

Also crossings appear a bit messy since they have different angles in the
output map. This is easily solved by using the same drawing rule for all
angles in the schematic diagram.

Figure 4.55. Possible drawing solution of the conflict area in the network of Zut-
phen.

Figure 4.56. Aligned schematic representation of a part of the network of Utrecht.

Figure 4.57. Aligned schematic representation of the network of Zutphen.

While testing the algorithm on bigger input maps, we found out that
there can be a consistency problem, i.e. the same input map yields differ-
ent schematic output maps. This is due to the randomness in the schema
y-value algorithm together with the way we order two non-overlapping
straight lines. See for example figure 4.59. When starting with C, B lies
above C and A lies below C. The vertical order from above is then BCA.
Again, startig with C but now the algorithm first tests A. Then A is below
C, and B is below A, giving the vertical order from above CAB.

4.7 RESULTS AND ANALYSIS \

This consistency problem can be solved by only defining a vertical order of
overlapping straight lines. This means that in the above given example, we
cannot say that C lies above A. We only know that A is above B and B is
above C. This will always give the vertical order of ABC.

Recall that we use the longest straight line to rotate, scale and straighten the
network. As mentioned a longest straight line covering the whole network
exists most of the time but not always. To overcome this problem we can cre-
ate an additional linear line below the network. See for example figure 4.58.
This additional linear line is then used as a base line for linear referencing.

Furthermore, assumption 3 seems incorrect. So a crossing can lie on a
straight line. This can be solved by adjusting the straight line algorithm.

The proposed solutions give rise to a new set of aestethic criteria and draw-
ing rules. And in the process of developing the algorithm described in this
chapter, we gained some new insights to develop a new algorithm. In the
next chapter we will define the new set of criteria and outline the idea of
our new algorithm.

Figure 4.58. Input map of Ommen with an additional linear line.

B \
/

Figure 4.59. Three straight lines.

45

5 CONCEPTUAL ALGORITHM

In this chapter we will describe the concept of our new algorithm. First we
will give a new set of aesthetic criteria, some straight forward definitions
and drawing rules. Then we globally describe the steps of the algorithm
leaving out the technical details. We conclude with a few schematic dia-
grams, manually made following the steps of the algorithm.

5.1 AESTHETIC CRITERIA

We define the following new set of aesthetic criteria:

1. the topology of the underlying graph of the railway network is pre-
served

2. after including a margin, the order of the junctions in the main direc-
tion remains the same

3. every track is represented as straight line segments with at most two
bends

4. straight tracks are drawn horizontally as much as possible
5. all angles are 30° or —30°
Furthermore, some additional wishes include:

e the schematic diagram must be compact

e the output is consistent

5.2 DEFINITIONS AND DRAWING RULES

Before we outline the approach of our new algorithm we need to make some
new definitions.

As explained before, a track is straight or diverging out of its source junction
and straight or diverging into its target junction. Recall the definition of a
completely straight:

Definition 4. A track is called completely straight if it is the straight track out of
its source junction and the straight track into its target junction.

Similarly we define the following:

Definition 5. A track is called completely diverging if it is the diverging track out
of its source junction and the diverging track into its target junction.

Definition 6. A track is called straight-diverging if it is the straight track out of
its source junction and the diverging track into its target junction.

47

48

| CONCEPTUAL ALGORITHM

Definition 7. A track is called diverging-straight if it is the diverging track out of
its source junction and the straight track into its target junction.

We introduce the following drawing rules. A completely straight track is
always drawn horizontally, see figure 5.1. A straight-diverging track can be
drawn using at most one bend as shown in figure 5.2. In a similar manner
we draw a diverging-straight track. We prefer to draw a completely diverg-
ing track as shown in figures 5.3a and 5.3b. If this is not possible then the
line that represents the track includes two bends as in figures 5.3¢ and 5.3d.

N

53

u %
o—0

Figure 5.1. Representation of the completely straight track uv.

u v u

() (b) () (d)

Figure 5.2. Possible representations of the straight - diverging track uv.

() (b) () (d)

Figure 5.3. Possible representations of the completely diverging track uv.

CONCEPT

. Start with an input map and create an additional linear line, a base

line below the network of the input map. See for example figure 4.58.
Rotate the network such that the added line becomes horizontal. This
can be done by linear referencing.

. To make the network easier to work with, modify the relevant data

such that for all tracks with source junction at (xg, o), target junction
at (x1,y1) holds: xyp < x. See figure 4.3.

. Determine for each track its "type”, i.e. if it is completely straight,

completely diverging, straight-diverging or diverging-straight.

. Determine all the straight lines. *Aanpassingen kruisingen en slips*.

. Determine the vertical order of the straight lines. This is done by using

lines, through each junction, perpendicular to the base line. (nog meer
uitleggen, parallel tracks)

. Use the vertical order of the straight lines to assign a schema y-value

to every junction and track.

. Including a margin, create a horizontal order of the junctions.

. Place the first junction at (0,0). Then, since we know for each junction

its schema y-value and its type, we can calculate its schema x-position.

49

5.4 MANUALLY MADE SCHEMATIC DIAGRAMS
Using the above mentioned approach, and by carefully calculating the schema
x-positions, we made a schematic map of the network of Ommen, see fig-

ure 5.4, the network of Steenwijk, figure 5.5, and the network of Weert, see
figures 5.6 and 5.7.

o
F I
o
B G H] K M
o
A D E L N
C

Figure 5.4. Manually made schematic map of the network of Ommen.

S—

1
/ e L
B C F M N
A D E] K o

Figure 5.5. Manually made schematic map of the network of Steenwijk.

Figure 5.6. Manually made schematic diagram of the network of Weert.

50

Fiqure 5.7

BIBLIOGRAPHY

Hong, S.-H., Merrick, D., and do Nascimento, H. A. D. (2005). The Metro
Map Layout Problem, pages 482—491. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Nollenburg, M. and Wolff, A. (2011). Drawing and labeling high-quality
metro maps by mixed-integer programming. IEEE Transactions on Visu-
alization and Computer Graphics, 17(5):626-641.

Oke, O. and Siddiqui, S. (2015). Efficient automated schematic map drawing
using multiobjective mixed integer programming. Computers & Opera-
tions Research, 61:1 — 17.

51

	1 Introduction
	2 Previous work
	2.1 The metro map layout problem

	3 Rail Properties
	4 Implemented Algorithm
	4.1 Assumptions
	4.2 Aesthetic criteria
	4.3 Minor data modification
	4.4 Straight line algorithm
	4.5 Linear Referencing
	4.6 Drawing algorithm
	4.6.1 Parallel tracks
	4.6.2 Schema y-values
	4.6.3 Representation of diverging tracks
	4.6.4 Schema x-values

	4.7 Results and analysis
	4.7.1 Output examples
	4.7.2 Problems and solutions

	5 Conceptual algorithm
	5.1 Aesthetic criteria
	5.2 Definitions and drawing rules
	5.3 Concept
	5.4 Manually made schematic diagrams

