
Radboud University Nijmegen

Faculty of Science

Synchronizing automata and their
reset words

The expected length of a reset word

Master thesis Mathematics

Author:
A.M.M. van Hoorn BSc
s4760387

Supervisor:
Dr. ir. H. Don

Second reader:
Dr. W. Bosma

June 2022

Content

1 Introduction 3

2 Preliminaries and definitions 6

3 Černý’s conjecture 11
3.1 The Černý automaton . 11
3.2 Upper bounds . 15

3.2.1 Upper bound by Marek Szyku la 19

4 Random words 38
4.1 Markov chains . 39
4.2 Expected length of reset word . 41

4.2.1 Calculating EA
Q: System 1 . 42

4.2.2 Calculating EA
Q: System 2 . 43

4.2.3 Calculating EA
Q exact for the Černý automaton Cn. 45

4.3 Automata with large expected length of a reset word 64
4.3.1 Upper bound of R(n) . 67
4.3.2 R(n) for small n . 73
4.3.3 Lower bound of R(n) . 84

5 Conclusion 96

6 Further research 98

A Proofs of propositions and lemmas, needed for proving Theorem
4.15 100
A.1 Proof of Lemma 4.24 . 100
A.2 Proof of Lemma 4.25 . 102
A.3 Proof of Lemma 4.27 . 104
A.4 Proof of Proposition 4.29 . 104
A.5 Proof of Corollary 4.30 . 108

B Additions Section 4.3 111
B.1 All possible power automata in the proof of Proposition 4.45. 111
B.2 Power automaton of the Černý automaton C5. 113

1

C Matlab programs 115
C.1 Automaton . 115
C.2 Power automaton . 116
C.3 Testing whether w is a reset word . 117
C.4 Find all subsets of Q = {1, . . . , n} . 118
C.5 Calculating the Exact Expected length of the reset word 119
C.6 Finding all permutation matrices . 119
C.7 Brute force search of all synchronising automatons 120
C.8 Calculate length of randomly generated reset word 121
C.9 Compare E[TA] of different automatons 122

2

Chapter 1

Introduction

Fresh carrots come out of the ground with green leaves attached, called haulm.
However, before the carrots are sold in the supermarket, the haulm is in most cases
removed. The haulm can be cut off for every carrot individually, but it would be
faster if all carrots lie side by side with the haulm of each carrot pointing the same
way. It is under these circumstances possible for a machine to cut off the haulm of
all the carrots at once. The use of a machine for this process is more beneficial in
comparison to manual labour, because it is cheaper in the long term. For such a
machine to function efficiently, all haulms have to be aligned in the same direction.
In Figure 1.1 we see different phases of this process. First all carrots are in disorder,
in the next phase they are all aligned with the haulm pointing to the right. The end
product consists of carrots without their haulm.

Figure 1.1: Phases of removing the haulm.

The step to achieve the correct alignment is executed by a machine, that performs a
series of actions. The starting position of a carrot has no impact on the end result,
since the haulms of all carrots are pointing in the same direction when the process
of the machine has ended. In mathematics the necessary actions to achieve this and
the possible positions are schematically visualised as an automaton.
The starting position of a carrot can be simplified to four possibilities. If we look
from above, the haulm can point up (U), down (D), left (L) and right (R). We call
(U), (D), (L) and (R) the four states of a carrot.

3

Figure 1.2: The four different states of a carrot.

All carrots, no matter the state they are in, are processed in the machine simul-
taneously. The machine has two possible actions for moving carrots. Option one
consists of turning all the carrots clockwise. Option two consists of turning only the
carrots which are in state (U). The carrots in state (R),(D) and (L) stay in their
same state, when option two is applied.
The question is, with which sequence of actions we can go from carrots in all possible
states ((U), (D), (L) and (R)) to all carrots in the same state (R)? For financial rea-
sons, it is of importance that the machine is as efficient as possible. The question is
now, what is the shortest sequence of actions that accomplishes our goal (all carrots
in the same state (R))?
This we can research with the use of mathematics. As stated before, the machine to
align the carrots is perceived as an automaton A = (Q,Σ, δ), with a finite amount
of states Q, a alphabet Σ and a transition function δ. In our carrot example, Q
consists of the four states (U), (R), (D) and (L). The alphabet represents the dif-
ferent actions we can perform. In our carrot example, there are two possible action
and thus two letters. In the introduction of this thesis letter a stands for action two
and letter b for action one. The transition function δ : Q × Σ → Q, tells us what
a letter does on the current state (of for instance our carrots). For example, in our
machine, letter b turns the carrots a quarter clockwise. Thus a carrot in state (R)
goes to state (D) after ”reading” letter b (δ((R), b) =(D)).
Schematically this looks like shown below.

(L)

(U) (R)

(D)

a

aa

a, b

b

b

b

Figure 1.3: Diagram of the carrot automaton.

4

A sequence of letters that causes all carrots to end in the same state, for instance
state (R), is called a reset word. An automaton which has a reset word is called
a synchronizing automaton. There are many different reset words, but with the
shortest reset word, our machine performs as efficient as possible. For that reason
we search for the shortest reset word, in this case this is word w = abbbabbba (see
Theorem 3.3).

There are many more objects for which an automaton with its shortest reset word is
required to sort and orientate the objects. For instance, cutting mushrooms stems at
the same length, or sticking an etiquette at a certain surface of an object. This raises
the following questions: Which synchronizing automaton has the largest shortest re-
set word, and what is the length of that word?

In 1964, J. Černý, a Slovak computer scientist, first explicitly mentioned a syn-
chronizing automaton, although he called such automaton differently at the time.
The name ’synchronizing’ in this context was probably introduced by F.C. Hennie in
the same year. The year 1964 was also the year that J. Černý came with the still not
proven Černý conjecture, claiming that considering all synchronizing automata with
n ∈ N states, the length of the largest shortest reset word is (n− 1)2. Throughout
time, different mathematicians found different upper bounds for the length of the
largest shortest reset word. We will discuss Černý’s conjecture and several upper
bounds in Chapter 3.

Most studies in the literature are written about the length of the shortest reset
word when we can choose the sequence of the letters ourselves. However, there are
less publications about this subject in case we can’t choose the sequence of the let-
ters. In that case we get a letter σ ∈ Σ with a certain probability (the sum of those
probabilities must be equal to one). Since we are working with probabilities we can
only look at the expected length of a reset word. This raises the following questions:
Which synchronizing automaton has the largest expected length of a reset word?
Considering all synchronizing automata with n ∈ N states, what is the largest ex-
pected length of a reset word? Does the automaton with the largest shortest reset
word also have the largest expected length of a reset word?

In this thesis we will discuss two problems, namely what is the length of the largest
shortest reset word and what is the value of the largest expected length of a reset
word.
To make these problems more clear and abstract, we first provide some preliminaries
and definitions in Chapter 2. Then in Chapter 3 we discuss the first problem, what
is the length of the largest shortest reset word. This is mostly done by literature
research. In the fourth Chapter we discuss how to calculate the expected length
of a reset word of a certain automaton and we use this knowledge to look which
automaton has the largest expected length of a reset word. Finally, in the same
chapter, we prove that the value of the largest expected length of a reset word is
bounded by some upper and lower bound. We end this thesis with a conclusion
about the findings and suggest further related research topics.

5

Chapter 2

Preliminaries and definitions

Before we can start with the research, we need some definitions.[9][5][8][4]
Normally when we talk about languages we talk about English, Dutch, Spanish, etc.
In mathematics we can also talk about languages, here we form words from a given
alphabet.

Definition 2.1. A alphabet is a finite set of symbols and/or letters. We denote a
alphabet with Σ.

Example 2.2. Examples of alphabets are:

• Σ = N = {1, 2, . . . }

• Σ = {a, b}

• Σ = {a, b, c, . . . , x, y, z} (Dutch alphabet)

• Σ = {yellow, orange, red, green, blue, purple} (The colors of a rainbow)

• Σ = {α, β, γ, . . . , ω} (Greek alphabet)

Remark. In this thesis, the set of natural number is: N = {1, 2, . . . }.

Definition 2.3. A word is a finite sequence of letters/symbols from an alphabet Σ.
We define λ to be the empty word.
We say a word w is of length m when the number of symbols forming this word w
is m. Notation: length(w) := |w| = m
|w|σ is the number of times symbol σ ∈ Σ occurs in word w.
Let σ ∈ Σ and j ∈ N, then we denote with σj the word of j times the letter σ.
Thus, σj = σσσ · · ·σ︸ ︷︷ ︸

j

Example 2.4. Let Σ = {a, b}, then w = (ab3)2a = abbbabbba is a possible word.
This word w is of length 9 (|w| = 9) and has |w|a = 3 and |w|b = 6.

Definition 2.5. With Σ∗ we denote the set of all finite words over Σ. So this is the
set of all words that we can make with our alphabet Σ.

Remark. Clearly a single symbol/letter is also a word, therefore Σ ⊆ Σ∗.
Since λ ∈ Σ∗ for all alphabets, we have Σ∗ ̸= ∅. In addition if Σ ̸= ∅, then |Σ∗| = ∞.

6

Example 2.6. Let Σ = {a, b}, then Σ∗ = {λ, a, b, aa, bb, ab, ba, aaa, . . . , abbbabbba, . . . }.

Definition 2.7. Suppose v, w ∈ Σ∗, then we denote the concatenation of the words
v and w by v · w (∈ Σ∗). Often we drop ·, so we write vw for v · w.

Example 2.8. Let v = aba and w = bb, then vw = ababb.

Remark. Let v, w ∈ Σ∗ and σ ∈ Σ, then |vw| = |v| + |w| and |vw|σ = |v|σ + |w|σ.
The concatenation isn’t commutative. Look for instance at Example 2.8, here is
vw = ababb, but wv = bbaba ̸= vw.

Definition 2.9. Let i ∈ N, then we have the following notations.
Σi := {w ∈ Σ∗ | |w| = i}, so Σi is the collection of words with length equal to i.
Σ≤i := {w ∈ Σ∗ | |w| ≤ i}, so Σ≤i is the collection of words with length less or equal
then i.

Remark. We have Σi ⊆ Σ≤i.

Now we have defined words, we want to define a machine that can process these
words.

Definition 2.10. A deterministic finite automaton (DFA) A is a 3-tuple (Q,Σ, δ),
where

• Q is a finite set of states.

• Σ is an alphabet.

• δ is a (transition) function: δ : Q × Σ → Q. Let q ∈ Q a state and l ∈ Σ a
letter from our alphabet, then δ(q, l) = q′ ∈ Q. The delta function gives you
a (different) state given a state and a letter from our alphabet.

In this thesis we often call a DFA an automaton.
We can expand the definition of the delta function to a function that processes words
not only symbols/letters from our alphabet.

Definition 2.11. Let w ∈ Σ∗ (w ̸= λ), which we can write as w = ul with u ∈ Σ∗

and l ∈ Σ. Let q ∈ Q. We define the function δ : Q× Σ∗ → Q as
δ(q, w) := δ(δ(q, u), l). It holds that δ(q, λ) := q.

Example 2.12. In Figure 2.1 we see a example of a deterministic finite automaton
(DFA). Here we have:

Q := {q0, q1, q2}
δ(q0, a) = q1
δ(q1, a) = q2
δ(q2, a) = q1

Σ := {a, b}
δ(q0, b) = q1
δ(q1, b) = q0
δ(q2, b) = q2

δ(q0, aaba) = δ(δ(q0, aab), a) = δ(δ(δ(q0, aa), b), a) = δ(δ(δ(δ(q0, a), a), b), a)

= δ(δ(δ(q1, a), b), a) = δ(δ(q2, b), a) = δ(q2, a) = q1

7

q0 q1 q2

a, b

b

a

a

b

Figure 2.1: A deterministic finite automaton.

Definition 2.13. The power automaton PA of a given DFA A = (Q,Σ, δ) is a
3-tuple (Q̂,Σ, δ) with:

• Q̂ = P(Q)\∅

• The function δ is an expansion of our already seen delta function, defined as
follows.
δ : P(Q)\∅ × Σ∗ → P(Q)\∅
We have δ(H,w) := ∪q∈Hδ(q, w), with H ∈ Q̂ and w ∈ Σ∗ a word.

Example 2.14. The power automaton of the DFA in Example 2.12 is given in
Figure 2.2.

{q0, q2}{q1, q2} {q1}

{q0, q1}

{q0, q1, q2} {q0}

{q2}

a

b

b

a

b

a

b

a

a

b

a

b

a, b

Figure 2.2: The power automaton of the DFA in Figure 2.1

Definition 2.15. A automaton is called synchronizing when there exist a w ∈ Σ∗

and a state q ∈ Q such that, ∀q′ ∈ Q, δ(q′, w) = q. The word w ∈ Σ∗ is then called
a reset (or synchronizing) word.
Let p, q ∈ Q, then we call w ∈ Σ∗ a reset word for p and q if δ(p, w) = δ(q, w).
Let S ⊆ Q, then we call w ∈ Σ∗ a reset word for S if δ(p, w) = δ(q, w) for all
p, q ∈ S.

8

Remark. Not every automaton is synchronizing. When an automaton is synchroniz-
ing, there are multiple reset words. Thus, reset words aren’t unique.
In addition, the largest reset word for a synchronizing automaton A is infinitely
long. If w ∈ Σ∗ is a reset word, then it is still a reset word after we add (infinitely
many) letters at the end of word w.

Definition 2.16. Let q ∈ Q be a state, S ⊆ Q and w ∈ Σ∗ a word. Then we use
the following notation: q ◦ w := δ(q, w).
We also write S ◦ w := δ(S,w) = {q ◦ w | q ∈ S}.
S ◦ w−1 is the preimage of S, thus S ◦ w−1 = {q ∈ Q | q ◦ w ∈ S}.
When S is a singleton, let’s say S = {q}, then we write
q ◦ w−1 = {q} ◦ w−1 = {p ∈ Q | q = p ◦ w}.

Definition 2.17. Let w be a word and 0 ≤ k ≤ |w| an integer. Then w[k] is the
word consisting of the first k letters of word w. For 1 ≤ k ≤ |w|, wk is the kth letter
of word w .

Example 2.18. Let w = abba. Then w[0] = λ (the empty word), w[1] = a, w[2] = ab,
w[3] = abb and w[4] = abba = w. We also have w1 = w4 = a and w2 = w3 = b.

Definition 2.19. Let A be a DFA. A path in A indicated by a word w ∈ Σ∗,
starting in some state q ∈ Q, is the path composed of the arrows in A you follow,
indicated by the letters of word w.
Analogue, a path in PA indicated by a word w ∈ Σ∗, starting in some state
∅ ≠ S ⊆ Q, is the path composed of the arrows in PA you follow, indicated by the
letters of word w.

Example 2.20. Let A be the DFA in Figure 2.1, then PA is given in Figure 2.2.
Let w = aba.
The path in A indicated by word w, with starting state q1, is indicated in red in
Figure 2.1. This path starts in state q1, goes to state q2, goes through a self loop
and ends in state q2.
The path in PA indicated by word w, with starting state {q1, q2}, is indicated in red
in Figure 2.2. This path starts in state {q1, q2}, goes through a self loop, then goes
to state {q0, q2} and ends in state {q1}.

Observation 2.21. A DFA A is synchronizing if and only if there exist a path from
Q to a singleton ({·} ⊂ Q) in the corresponding power automaton PA.

We can modify this observation to a proposition about when a word w ∈ Σ∗ is a
reset word or not.

Proposition 2.22. A word w ∈ Σ∗ is a reset word for DFA A if and only if
w indicates a path from Q to a singleton ({·} ⊂ Q) in the corresponding power
automaton PA.

Let’s look at some examples.

Example 2.23. The word v = aba is a reset word for the DFA in Figure 2.1.
This reset word leads every state to state q1. However, then every word w, with
the subword aba in it, is a reset word (but then perhaps to a different state). So
u = abab is a reset word to state q2 and z = abaa is a reset word to state q2.

9

Example 2.24. In Figure 2.3 we see a DFA A with 4 states. The corresponding
power automaton is given in Figure 2.4. To find a reset word for this automaton we
try to find a path from Q = {1, 2, 3, 4} to a singleton ({1}, {2} or {3}, {4}). We
can see in Figure 2.4, that the word v = abbababbba indicates such a path (to {1}).
However, we can see that the word u = abbbabbba is also a reset word. Note that
in word v every time we could have the possibility to get |δ (S, l) | < |S|, we choose
our next letter to be that letter l. However, this did not lead to the shortest reset
word in this automaton.

3

4 1

2

a

aa

a, b

b

b

b

Figure 2.3: The Černý automaton with 4 states.

{4}

{3}

{1}

{2}

{1, 4}

{3, 4} {2, 3}

{1, 2} {2, 4} {1, 3}

{1, 2, 4} {1, 3, 4}

{1, 2, 3} {2, 3, 4}{1, 2, 3, 4}b a

a

b

a
b

b

a

b

a

a

b

a

b

a

b

a
b

a

b

ba

a

b

a
b

a

b

a, b

Figure 2.4: The power automaton of Figure 2.3

10

Chapter 3

Černý’s conjecture

In practice, we always look for the shortest reset word, by using that word we are
faster to a singleton.
Let A be a DFA with n states and w the shortest reset word for A. Then we define
l(A) to be the length of this shortest word (l(A) = |w|).

For every DFA A, with n ∈ N states, we are interested in the length of the shortest
reset word. There are several different DFA’s A with n states. We are interested
in the maximal length of the shortest reset word considering all DFA’s A with n
states.

Definition 3.1. C(n) := max{l(A) |A is a synchronizing DFA with n states}.

In 1964, Ján Černý came up with the conjecture that C(n) = (n − 1)2 [4]. This is
called the Černý’s conjecture and is still an unsolved problem.

Černý’s conjecture: C(n) = (n− 1)2

In 1969, Ján Černý showed a construction of a automaton with n states for which
the shortest reset word has length (n − 1)2. This automaton is called the Černý
automaton, which will be discussed in Subsection 3.1. This automaton shows that
C(n) ≥ (n − 1)2, but proving C(n) ≤ (n − 1)2 has so far not been successful. We
do have other upper bounds about C(n) that are proven, these will be discussed in
Subsection 3.2.

3.1 The Černý automaton

Definition 3.2. The Černý automaton with n states (Q = {1, 2, . . . , n}), is a DFA
with Σ = {a, b} and the following transition function.

δ : Q× Σ∗ → Q :


δ(i, a) = i for i = 1, . . . , n− 1

δ(i, b) = i + 1 mod n for i = 1, . . . , n− 1

δ(n, a) = δ(n, b) = 1

We denote the Černý automaton with n states by Cn.

11

In Figure 2.3, we see the Černý automaton with 4 states, C4. We have already seen
that w = abbbabbba is a reset word for this automaton (C4). w = (abn−1)n−2a is a
reset for Cn. This we can check as follows. Observe that δ(n, abn−1) = n and that
for all k ∈ {1, . . . , n− 1} it holds that δ(k, abn−1) = k − 1. This means that for all
k ∈ {1, . . . , n − 2} we get δ(k, (abn−1)n−2) = n. We also have δ(n, (abn−1)n−2) = n
and δ(n− 1, (abn−1)n−2) = 1. Since δ(n, a) = δ(1, a) = 1, we then get that
w = (abn−1)n−2a is a reset word for Cn.

n− 2

n− 1

n

1

2

k − 1

k

k + 1

a

b

a

b a, b

a

b

a

a

b

a

b

a

Figure 3.1: The Černý automaton with n states (Cn).

Now we like to prove that this is also the shortest possible reset word for Cn.

Theorem 3.3. Let Cn be the Černý automaton with n states an w the shortest reset
word of Cn. Then |w| = (n− 1)2.[4]

Proof. ([11]) We give an informal prove. The situation we describe is analogue to
the situation we will describe in the proof of Theorem 4.15. In subsection 4.2.3 we
will give more formal definitions.

Let w be the shortest reset word for Cn. We set a certain situation. We have n
pawns: {1, . . . , n}.
Consider the situation that we start with a pawn on each state, let say pawn k starts
at state k, where k = 1, . . . , n.

12

Figure 3.2: Starting situation: pawn k on state k.

If we read the letter b, starting in the starting position, then all pawns move one
state forward. So, pawn n will be on state 1 and pawn k will be on state k + 1, for
all k = 1, . . . , n− 1.

Figure 3.3: Situation after reading letter b.

If we read the letter a, starting in the starting position, then pawn k stays at state
k for all k = 1, . . . , n − 1. Pawn n will go to state 1 after reading the letter a. In

13

this situation, pawn n catches up with pawn 1. Pawn n and 1 now follow the same
path, thus will always be on the same state together.

Figure 3.4: Situation after reading letter a.

Because of how the Černý automaton on n states is defined all pawns can only walk
circles in a clockwise direction. If w ∈ Σ∗ is a reset word, then after reading w all
pawns must end at the same state. This means that there must be a k ∈ {1, . . . , n}
such that pawn k catches up with pawn k − 1 (without pawn k − 1 catching up to
pawn k).
It also holds that once we have a k ∈ {1, . . . , n}, such that pawn k catches up with
pawn k − 1 (without pawn k − 1 catching up to pawn k), we have a reset word.
Because once a pawn catches up to another pawn they, from that point on, follow
the same path. For pawn k to catch up to pawn k− 1, pawn k first has to catch up
to all other pawns, since all pawns only can walk clockwise circles.

So in order to prove the theorem, we need to show that the shortest word that
bring all these pawns to one state w ∈ Σ∗ has length (n− 1)2. The question now
reads, ”How many letters do we need for pawn k to catch up with pawn k − 1?”

Suppose we look at pawn k ∈ {1, . . . , n}, starting at state k. Then we want to
know how many letters we at least need (in a word), for pawn k to catch up with
pawn k − 1.
The only place in our automaton for pawn k to gain on pawn k − 1 is when pawn
k is standing on state n. If pawn k is standing on any other state the amount of
states between pawn k and pawn k−1 remains the same or even increase no matter
the letter (a or b) that is read.
We count the number of states between pawns clockwise (in the same direction that
the pawns walk). In our starting situation there are n − 2 states in between pawn

14

k and pawn k − 1. For pawn k to catch up with pawn k − 1, pawn k has to stand
at least n− 1 times on state n.

We want to know the length of the shortest reset word. First we must have n−k b’s
to get pawn k to state n. If we have an a in between these b’s, our word would only
become longer without pawn k catching up with any other pawn. Each time pawn
k stands on state n we choose an a. This way pawn k still moves clockwise while
the other pawn stand still, that is how pawn k catches up with the other pawns
one by one. Then we chose n − 1 b’s, to get again to state n as fast as possible.
By same argument as before there is no point of adding a’s in between. This we
must repeat until pawn k comes together with pawn k − 1. Each time we have
an a, pawn k could catch up with one other pawn, so we need n − 1 a’s. This
means that our word consist of at least: n − k b’s, n − 2 times: one a followed by
n−1 b’s, one a. This word has length ≥ n−k+(n−2)(1+n−1)+1 = (n−1)2+n−k.

Let w ∈ Σ∗ be a reset word for Cn, then by the construction above we know that
|w| ≥ min{(n− 1)2 + n− k | 1 ≤ k ≤ n}.
(n− 1)2 + n− k is minimal for k = n, which implies that
min{(n−1)2 +n−k | 1 ≤ k ≤ n} = (n− 1)2. This all together gives that, if w ∈ Σ∗

is a reset word Cn, then |w| ≥ (n− 1)2.

We already saw that v = (abn−1)n−2a a reset word is for Cn.
|abn−1| = 1 + 1 · (n− 1) = n, so we have |v| = n(n− 2) + 1 = n2 − 2n+ 1 = (n− 1)2

Which means that |w| ≤ (n− 1)2, for w ∈ Σ∗ the shortest reset word of Cn.
Combining these two inequalities gives that for w ∈ Σ∗ the shortest reset word of
Cn, it must hold that |w| = (n− 1)2.

3.2 Upper bounds

We have seen that C(n) ≥ (n− 1)2, but the Černý’s conjecture (C(n) = (n− 1)2)
remains unproven. However, over time different upper bounds of C(n) have been
proven, each time (slightly) better than the already known upper bound.
In 1964 Černý himself came up with the following upper bound [4].

Lemma 3.4. Let n ∈ N. Then it holds that C(n) ≤ 2n − n− 1.

Proof. Let A be a synchronizing DFA with n states (|Q| = n) and PA the cor-
responding power automaton. Then we know from Proposition 2.22 that a word
w ∈ Σ∗ is a reset word for DFA A if and only if w indicates a path from Q to a
singleton ({·} ⊂ Q) in the corresponding power automaton PA.
There are 2n subsets of Q, so there are 2n−1 elements in Q̂ = P(Q)\∅. The longest
path, without going through the same state more then once, from Q to a singleton
in PA is the path that goes through all states in Q̂ except the singletons, since when
we reach a singleton our path ends. We have n states, so we have n singletons. Then
the longest path, without going through the same state more then once, from Q to
a singleton in PA goes through 2n − 1 − n states (in PA). This gives that for the
shortest reset word w ∈ Σ∗ of A holds: |w| ≤ 2n−n−1. Thus, C(n) ≤ 2n−n−1.

15

In 1966, Starke came with a better upper bound [4]:

C(n) ≤ 1 +
n(n− 1)(n− 2)

2

Lemma 3.5. Let n ∈ N. Then it holds that C(n) ≤ 1 + n(n−1)(n−2)
2

.

Proof. Let A be a synchronizing DFA with n states and PA the corresponding power
automaton.
Take S ⊂ Q, with |S| ≥ 2 arbitrary. Take a p, q ∈ Q with p, q ∈ S and p ̸= q. We
claim the following. There exists a word w ∈ Σ∗ which is a reset word for p and q
with |w| ≤

(
n
2

)
.

To prove this claim we look at the power automaton PA. If we search for a re-
set word w ∈ Σ∗ for p and q, we look for a path from the state {p, q} to a singleton
in PA. In PA we can’t go from a state S ⊆ Q with |S| = 2 to a state V ⊆ Q with
|V | ≥ 3.
Thus, the longest of such paths, without going through the same state more then
once, goes through all states {r, s} (r, s ∈ Q, r ̸= s) and then ends in a singleton.
There are in total

(
n
2

)
different states of the form {r, s} (r, s ∈ Q, r ̸= s). This gives

|w| ≤
(
n
2

)
.

If w ∈ Σ∗ is a reset word for A, then w indicates a path from Q to a singleton
in PA. We are trying to find a upper bound for C(n).

Let’s start at Q. It takes a word w ∈ Σ∗ with only one letter to get form Q to
some set S ⊂ Q with |S| < |Q| = n. If all letters in our alphabet sent Q back to Q
in PA then our automaton A isn’t synchronizing. This is in contradiction with our
assumption that A is synchronizing.
Now we have a subset S ⊂ Q, with |S| ≤ n− 1.
If |S| = 1, then we found our shortest reset word w ∈ Σ∗ for A (|w| = 1).
If |S| ≥ 2, then we can pick a p, q ∈ S with p ̸= q. We know that there exist a reset
word w ∈ Σ∗ for p and q with |w| ≤

(
n
2

)
. Thus, for Sw := δ(S,w) ⊂ Q it holds that

|Sw| < |S|.
We repeat the same steps for Sw ⊂ Q until we reach a singleton. The concatenation
of all the found words (in chronological order) gives a path from Q to a singleton,
so is a reset word for A.

In the worst case we have |Sw| = |S| − 1, each time we apply the case |S| ≥ 2.
This means we have to apply the case |S| ≥ 2 at least n − 2 times (for S ⊂ Q
with |S| = n − 1, n − 2, ..., 2). Then our found reset word w ∈ Σ∗ has length

|w| ≤ 1 + (n− 2)
(
n
2

)
= 1 + (n−2)(n−1)n

2
.

This implies that there exist a reset word w ∈ Σ∗ for A with |w| ≤ 1 + n(n−1)(n−2)
2

,
which proves our lemma.

There is a special class of automatons, namely the automatons with a sink state.

Definition 3.6. We call a state q ∈ Q a sink state if there are no outgoing transition
except self-loops. In other words, q ∈ Q is called a sink state if q = q ◦ l for all l ∈ Σ.

16

Remark. Any automaton with more then one sink state isn’t synchronizing.
Additionally a synchronizing automaton with a sink state always synchronizes in
the sink state. In other words, if q ∈ Q is the sink state, then for every reset word
w ∈ Σ∗ we have Q ◦ w = q.

For a automaton with a sink state we have the following upper bound [3].

Proposition 3.7. Let A = (Q,Σ, δ) be a synchronizing n-state DFA with a sink
state. Let w ∈ Σ∗ the shortest reset word for this automaton A. Then we have

|w| ≤ (n− 1)n

2

Proof. Let q ∈ Q be the sink state and let {q} ⊂ T ⊆ Q. There always exists a
state unequal to q in T , p ∈ T p ̸= q, for which there exists a word w ∈ Σ∗ with
p ◦ w = q and w ≤ n− |T |.
With this word w ∈ Σ∗, we have |T ◦ w| < |T |, since q ◦ v = q for all words v ∈ Σ∗

and thus also for v = w.
This gives that there exist a reset word w ∈ Σ∗ of length:

|w| ≤
1∑

i=n

n− i

=
n−1∑
i=0

i

=
1

2
(n− 1)n

Thus, for every automaton A with a sink state the following must hold.

|w| ≤ (n− 1)n

2

here is w ∈ Σ∗ the shortest reset word of the automaton A.

Proposition 3.8. The upper bound, in Proposition 3.7 for automatons with a sink
state, is tight.

Proof. We are going to proof this by showing an automaton with a sink state which
has a shortest reset word of length (n−1)n

2
.

Consider the following automaton A = (Q,Σ, δ). Where Q = {1, . . . , n},
Σ = {a1, . . . , an−1} and the transition function is determined as shown in Figure
3.5.

17

n 1 2 . . . n− 2 n− 1

Σ

a1

Σ\{a1, a2}

a2

Σ\{a2, a3}

a3 an−2

Σ\{an−2, an−1}

an−1

Σ\{an−1}

Figure 3.5: Automaton with sink state. [7]

State n the sink state. Lets again consider the situation where we start with a pawn
on each state, let say pawn k starts on state k (k = 1, . . . , n). Then the shortest
word for pawn k to get to state n is v = akak−1 . . . a1 (|v| = k). By definition
of our transition function we have q ◦ v = q for all k < q < n − 1. But observe
that q ◦ v = q + 1 for all 1 < q < k, since q ◦ akak−1 . . . aq+2 = q, then letter
aq+1 takes pawn q to state q + 1 and then by definition of the transition function
q + 1 ◦ aqaq−1 . . . a1 = q + 1.
This gives that the shortest reset word the following is.

w = a1a2a1a3a2a1a4a3a2a1 . . . an−1an−2 . . . a2a1

Note that we indeed first take pawn 1 to state n, then pawn 2, then pawn 3, etc. If
we first should take pawn k, with k ̸= 1, to state n, it would take a longer word to
take pawn 1 to state n, since it is now standing on state 2. So, then we would get
a reset word which is longer than w.
By calculating |w|, our prove is concluded.

|w| =
n−1∑
i=1

i =
1

2
(n− 1)n

This upper bound for automatons with a sink state is of order O (n2), which is much
better then all other general (until now) found upper bounds of C(n), which are of
order O (n3).

In 1982 J.-E Pin and P. Frankl came with the following upper bound [4].

C(n) ≤ n3 − n

6

This was then the best found upper bound.
Marek Szyku la was later able to improve this by the factor 85059

85184
[8].

We are going to discuss the found upper bound by Marek Szyku la further in the
next subsection. Here we are going to use slightly more accurate numbers, since we
don’t approximate the decimal numbers with a rational number. All statements and
proofs in Subsection 3.2.1 are inspired by the paper written by Marek Szyku la [8].

18

3.2.1 Upper bound by Marek Szyku la

In this subsection we deal with a DFA A = (Q,Σ, δ), with n := |Q|. We assume
Q = {1, . . . , n}.

Definition 3.9. Let A = (Q,Σ, δ) be a automaton, w ∈ Σ∗ a word and q ∈ Q a
state. Then we say that word w is avoiding for a state q, if after reading word w,
the automaton cannot be in q, no matter in which state you started.
In other notation, word w is avoiding for a state q if q ̸∈ Q ◦ w.

Definition 3.10. Let w ∈ Σ∗ be a word. Then we define the rank of word w to
be |Q ◦ w|. In other words the rank of word w is the cardinality of the image of Q
under the action of word w.

Remark. A reset word has rank 1.

Definition 3.11. We say that w ∈ Σ∗ is a shortest reset word if w is a reset word
and if for all words v ∈ Σ≤|w|−1 it holds that v isn’t a reset word.

Definition 3.12. Let S ⊆ Q and q ∈ Q a state. Then we say that a word w ∈ Σ∗

compresses the subset S, if |S ◦ w| < |S|.
Furthermore we say that w ∈ Σ∗ avoids state q if q ̸∈ Q◦w. A state q is avoidable if
there exists a word w ∈ Σ∗ such that q ̸∈ Q ◦w. In other words, a state that admits
an avoiding word is avoidable.
We also say that a state q is avoidable from subset S, if there exists a word w ∈ Σ∗

such that q ̸∈ S ◦ w.

Remark. Generally, avoiding words do not necessarily exists. But in case of a syn-
chronizing automaton there always exists an avoiding word, unless there is a sink
state. The sink state can not be avoided.

Since we are looking for a general upper bound, we only have to look at the worst
cases. That is why we can discard the automatons with a sink state. We already
have seen that, in that case, we have a upper bounds of order O (n2), so all upper
bound of order O (n3) also hold for an automaton with a sink state for large enough
n.

From now on (in this subsection) we assume that A is a DFA without a sink state.

We are going to show that for every state q ∈ Q and subset S ⊆ Q, there either
exists a short avoiding word for q from S, or that there exists a short compressing
word for S.

Definition 3.13. Let v ∈ Rn a vector and i ∈ {1, . . . , n}. With v(i) we denote the
value of the ith position of vector v. Let S ⊆ Q a subset of Q. We define [S] ∈ R1×n

to be the characteristic row vector of S.{
[S](i) = 1 if i ∈ S

[S](i) = 0 otherwise

19

For a word w ∈ Σ∗ we denote the n× n matrix of the transformation of w by [w].{
[w](i, j) = 1 if i ◦ w = j

[w](i, j) = 0 otherwise

Remark. The n × n matrix [w] has exactly one 1 in each row. The matrix [w]
indicates all transformation of the states when word w is applied.
That is why |S| =

∑
i∈Q[S](i) =

∑
i∈Q[S][w](i) holds for all S ⊆ Q and w ∈ Σ∗.

For all v, u ∈ Σ∗ it also holds that [uv] = [u][v].

Property 3.14. Let S ⊆ Q, u ∈ Σ∗ and 1 ≤ i ≤ n. Then we define [S][u] ∈ R1×n

as the vector for which the ith-value gives how many states from S go to state i,
after applying word u. Thus, ([S][u]) (i) = |{q ∈ S | q ◦ u = i}|.

Remark. By definition of [S][u] and [S ◦ u], we have that the following holds.
([S][u])(i) ≥ 1 if and only if [S ◦ u](i) = 1.

Definition 3.15. Let V ⊆ Rn. Then we denote with Span(V) the linear subspace
spanned by the vectors in V .

Definition 3.16. Let L ⊆ Rn a linear subspace and M an n × n matrix. The
dimension of L, we denote with Dim(L). We define LM = {v ·M | v ∈ L} as the
linear subspace mapped by M .

First we prove that by a short (linear) word we can either avoid a state from the
current subset or compress the current subset. We make this more precise in the
following lemma.

Lemma 3.17. Let A = (Q,Σ, δ) be a synchronizing n-state automaton, ∅ ≠ S ⊆ Q
and ∅ ≠ A ⊂ S. Suppose there is a word w ∈ Σ∗ such that A ̸⊆ S ◦ w.
Then there exists a word w ∈ Σ∗ with |w| ≤ n− |A| satisfying either

1. A ̸⊆ S ◦ w or,

2. |S ◦ w| < |S|

Proof. Define the linear subspaces Li := Span
({

[S][w] | w ∈ Σ≤i
})

for i = 0, 1, 2,
By definition of Li we have a increasing sequence of sets:

L0 ⊆ L1 ⊆ L2 ⊆ L3 ⊆ . . .

Since the sequence (Li)i is an increasing sequence and Li ⊆ Rn for all i = 0, 1, 2,
We have that Dim (Li) ≤ n for all i = 0, 1, 2, . . . and

Dim (L0) ≤ Dim (L1) ≤ Dim (L2) ≤ Dim (L3) ≤ . . .

This implies that there must exists a k such that Lk = Lk+1. So (Li)i satisfies the
ascending chain condition.

Now we are going to make this even stronger by proving that there exists a k
such that Lk = Lk+1 = Lk+2 =

20

To do this we are going to prove that if Lk = Lk+1, then Lk+1 = Lk+2.

First observe that Li+1 = Li ∪ Span ({[S][w] | w ∈ Σ∗ with |w| = i + 1}), by defini-
tion of Li. With this observation we are going to show that Li+1 = Span

(
Li ∪

⋃
a∈Σ Li[a]

)
.

Let w ∈ Σ∗ with |w| = i + 1, then there is a letter a ∈ Σ and a word v ∈ Σ∗

with |v| = i such that w = va. This gives us the following.

[S][w] = [S][va]

= [S][v][a]

[S][v] ∈ Li by definition of Li. Thus,
Span ({[S][w] | w ∈ Σ∗ with |w| = i + 1}) ⊆

⋃
a∈Σ Li[a].

This implies Li+1 ⊆ Li ∪
⋃

a∈Σ Li[a].

Let u ∈
(
Li ∪

⋃
a∈Σ Li[a]

)
arbitrary. By definition we can then write u = l · [a]

for some l ∈ Li. By definition of Li we can write l as a linear combination of vectors
in the set {[S][w] | w ∈ Σ≤i}.
Therefore, if we can proof that for all elements ([S][w]) in

{
[S][w] | w ∈ Σ≤i

}
it holds

that [S][w][a] ∈ Li+1 (for a ∈ Σ arbitrary), then u must also be an element of Li+1.
Which would give us that Li+1 ⊇ Li ∪

⋃
a∈Σ Li[a].

Take v ∈ Σ≤i and a ∈ Σ arbitrary, then va ∈ Σ≤i+1. So,
[S][v][a] = [S][va] ∈ {[S][w] | w ∈ Σ≤i+1} ⊆ Li+1.

Both inclusions together gives that ∀i ≥ 0:

Li+1 = Span

(
Li ∪

⋃
a∈Σ

Li[a]

)

Suppose there is a k ≥ 0 such that Lk = Lk+1, then we have for i = k the following

Lk = Lk+1

= Span

(
Lk ∪

⋃
a∈Σ

Lk[a]

)

= Span

(
Lk+1 ∪

⋃
a∈Σ

Lk+1[a]

)
= Lk+2

Applying this iteratively gives Lk = Lk+i for all i ≥ 0.
Let i be the smallest integer such that Li = Li+1, then for all j ≥ i we have Li = Lj.
We define m := Dim (Li).

By definition we know L0 = {c · [S] | c ∈ R}, so Dim (L0) = 1. Since Lj ⊂ Lj+1

for all j < i we have that the dimensions grow by at least 1 up to m. This gives

21

m ≥ Dim (Lk) ≥ min{m, k + 1} for all k.
This implies for k = n− |A| that we have

m ≥ Dim
(
Ln−|A|

)
≥ min{m,n− |A| + 1}

Take w ∈ Σ∗ arbitrary. Define z := [S][w].
If z (q) = 0 for some q ∈ A, then q ̸∈ S ◦ w. So we have case 1.
If there exists a q ∈ A such that z (q) ≥ 2, then a pair of states form S is compressed
by word w to state q. So we have case 2.

In order to prove this lemma we have to prove that there exists a z in the spanning
set of Ln−|A|, so z ∈

{
[S][w] | w ∈ Σ≤n−|A|}, such that either

• ∃q ∈ A such that z (q) = 0 , or

• ∃q ∈ A such that z (q) ≥ 2

(Since this implies that there exists a word w ∈ Σn−|A| satisfying case 1 or case 2.)

Suppose this is not the case, then for all z ∈
{

[S][w] | w ∈ Σ≤n−|A|} it must hold
that z (q) = 1 ∀q ∈ A.

Let v ∈ Lk, then v is a linear combination of vectors v1, v2, . . . from the span-
ning set of Lk. Let v = a1 · v1 + a2 · v2 + . . . , where v1, v2, · · · ∈

{
[S][w] | w ∈ Σ≤k

}
and a1, a2, · · · ∈ R.

Define c =
∑

i ai.
Let k = n−|A|. Because of our contradiction assumption we have that every vector
vj = [S][w] in the spanning set of Ln−|A| has [S][w] (q) = 1 for all q ∈ A. We also
know

∑n
i=1 ([S][w]) (i) = |S|. This gives∑

i

v (i) =
∑
j

∑
i

ajvj (i)

=
∑
j

aj
∑
i

vj (i)

= |S| ·
∑
j

aj

= c|S|

for q ∈ A we have

v (q) = a1v1 (q) + a2v2 (q) + . . .

= a1 · 1 + a2 · 1 + . . .

=
∑
i

ai = c

22

Together this gives that the sum of entries at positions corresponding to the states
in Q\A is equal to c|S| − c|A| = c (|S| − |A|).∑

p′∈Q\A

v (p′) =
∑
p∈Q

v (p) −
∑
p∈A

v (p)

= c|S| −
∑
p∈A

c

= c|S| − c|A| = c (|S| − |A|)

Thus, for all q ∈ A we have the following.

v (q) = c

=
1

|S| − |A|
· c (|S| − |A|)

=
1

|S| − |A|
∑

p∈Q\A

v (p)

The values at the positions corresponding to q ∈ A are completely determined by
the values from the other positions (corresponding to p ∈ Q\A). Q\A had n− |A|
elements. This gives that Dim

(
Ln−|A|

)
≤ n− |A|.

This together with the fact m ≥ Dim
(
Ln−|A|

)
≥ min{m,n− |A| + 1}, gives us that

Dim
(
Ln−|A|

)
= m

We assumed that there exists a word w ∈ Σ∗ that is an avoiding word for some
state q ∈ A. Hence there is a q ∈ A such that q ̸∈ S ◦ w.
Then there always exist a word w ∈ Σ∗ for which ∀q ∈ A : [S][w](q) = 1

|S|−|A|
∑

p∈Q\A[S][w](p)
does not hold.
If A is singleton (let’s say A = {q}), then we know that there exists a word w ∈ Σ∗

such that there is a q ∈ A with q ̸∈ S ◦ w. So [S][w](q) = 0, but
∑

p∈Q\A[S][w](p)

isn’t equal to zero. So [S][w](q) = 1
|S|−|A|

∑
p∈Q\A[S][w](p) doesn’t hold for q ∈ A.

If |A| ≥ 2, then we know that there exists a word w ∈ Σ∗ such that there is a
q ∈ A with q ̸∈ S ◦ w. Now we have two possible cases, either S ◦ w ⊂ A or
S ◦ w ̸⊂ A. If S ◦ w ⊂ A, then we have

∑
p∈Q\A[S][w](p) = 0 but there ex-

ist also a q′ ∈ S ◦ w ⊂ A, so we have also [S][w](q′) ̸= 0. So also in this case
∀q ∈ A : [S][w](q) = 1

|S|−|A|
∑

p∈Q\A[S][w](p) does not hold. If S ◦ w ̸⊂ A then∑
p∈Q\A[S][w](p) ̸= 0, but [S][w](q) = 0. So, also in this case,

∀q ∈ A : [S][w](q) = 1
|S|−|A|

∑
p∈Q\A[S][w](p) does not hold.

We know that for all v ∈ Ln−|A| the following must hold ∀q ∈ A : v(q) = 1
|S|−|A|

∑
p∈Q\A v(p).

But we have also that there exist a word w ∈ Σ, such that
∀q ∈ A : [S][w](q) = 1

|S|−|A|
∑

p∈Q\A[S][w](p) doesn’t hold. This implies that

[S][w] ̸∈ Ln−|A|, which indicates that the dimension of Ln−|A| is not maximal. In
other words, Dim

(
Ln−|A|

)
̸= m. This gives us a contradiction.

With this we have shown that there exist a z in the spanning set of Ln−|A| such
that, either there exist a q ∈ A such that z(q) = 0, or there exist a q ∈ A such that
z(q) ≥ 2. With this we have proven our lemma.

23

Lemma 3.18. Let A = (Q,Σ, δ) be a n-state automaton, ∅ ≠ S ⊆ Q, ∅ ≠ A ⊂ S
and k ≥ 1 an integer. Suppose there exists a word w ∈ Σ∗ such that A ̸⊆ S ◦ w.
Then there exists a word w ∈ Σ∗ with |w| ≤ k (n− |A|) satisfying either

1. A ̸⊆ S ◦ w or,

2. |S ◦ w| ≤ |S| − k

Proof. If case 1 holds for some w ∈ Σ≤k(n−|A|), then we are done. So suppose this is
not the case.
We are going to iteratively apply Lemma 3.17 (k times) for subset A, starting in set
S.
For i = 0, . . . , k − 1 apply Lemma 3.17 for subset S ◦ w1 · · ·wi, where wi ∈ Σ≤n−|A|

is the word obtained in the ith iteration.

After applying Lemma 3.17 k times we obtain a word w1 · · ·wk, with length
|w1 · · ·wk| ≤ k (n− |A|).

In each iteration we must have case 2 (of Lemma 3.17), otherwise there exists an
i ∈ {1, . . . , k − 1} such that A ̸⊆ S ◦ w1 · · ·wi. This gives a contradiction with our
assumption that case 1 doesn’t hold, since |w1 · · ·wi| ≤ i (n− |A|) ≤ k (n− |A|) for
all i = 1, . . . , k − 1.
So it must hold that |S ◦ w1| < |S|, |S ◦ w1w2| < |S ◦ w1|,. . . ,
|S ◦ w1 · · ·wk| < |S ◦ w1 · · ·wk−1|. This means that

|S ◦ w1 · · ·wk| ≤ |S ◦ w1 · · ·wk−1| − 1 ≤ · · · ≤ |S ◦ w1| − (k − 1) ≤ |S| − k

Thus case 2 of our lemma holds.

However we can’t just apply Lemma 3.17 k times, since it is not given that each
time the assumptions of Lemma 3.17 are satisfied. Therefore, the last thing we have
to do in this proof, is that we need to prove that the conditions of Lemma 3.17 are
satisfied in each iteration.

That there exists a word w ∈ Σ∗ such that A ̸⊆ S ◦ w is already given in the
assumptions of this lemma. So we only have to prove that A ⊂ S ◦ w1 · · ·wi for all
i = 0, . . . , k − 1. This is already given for i = 0, since in this lemma is given that
A ⊂ S.
Let i ≥ 1. Since in each iteration case 2 of lemma 3.17 must hold, we already have
A ⊆ S ◦w1 · · ·wi for all i = 1, . . . , k−1. We have left to prove that A ̸= S ◦w1 · · ·wi

for all i = 1, . . . , k − 1.

Suppose A = S◦w1 · · ·wi, for some i = 1, . . . , k−1. We know that for all M ⊆ Q and
a ∈ Σ it must hold that |M ◦ a| ≤ |M | (the number of states only decreases). Since
A = S ◦ w1 · · ·wi and case 1 of this lemma doesn’t hold, we get A = S ◦ w1 · · ·wia
for all a ∈ Σ. This gives that A ◦ a = A for all a ∈ Σ, which is in contradiction with
the fact that there exist a word w ∈ Σ∗ such that A ̸⊆ S ◦ w.
Thus, if A = S ◦ w1 · · ·wi for some i = 1, . . . , k − 1, then there must exists a letter

24

a ∈ Σ such that A ̸⊆ S ◦w1 · · ·wia. This is again in contradiction with our assump-
tion that case 1 doesn’t hold, since |w1 · · ·wia| ≤ i (n− |A|) + 1 ≤ k (n− |A|) for
i ∈ {1, . . . , k − 1} ((n− |A|) ≥ 1 because A ⊂ S ⊆ Q).
So, we have proven that A ⊂ S ◦ w1 · · ·wi for all i = 0, . . . , k − 1.

With this we have checked that the conditions of Lemma 3.17 are satisfied.

Lemma 3.19. Let A = (Q,Σ, δ) be a n-state automaton, ∅ ≠ S ⊆ Q and
∅ ≠ A ⊆ S. If there exists a word w ∈ Σ∗ such that A ̸⊆ S ◦ w. Then there exists a
word w ∈ Σ∗, with length |w| ≤ (|S| − |A|) (n− |A|) + 1, such that A ̸⊆ S ◦ w.

Proof. Assume that there exists a word w ∈ Σ∗ such that A ̸⊆ S ◦ w.
Again we iteratively apply Lemma 3.17 (at most |S|−|A| times) for subset A, start-
ing with set S. We stop this iteration if the conditions of Lemma 3.17 are not met,
so in other words if A = S ◦ w1 · · ·wi.
For all i = 1, . . . , |S|− |A| we have that in the ith iteration we obtain a word wi with
|wi| ≤ n− |A|.

In the worst case we have that |S ◦ w1 · · ·wi| = |S ◦ w1 · · ·wi−1| − 1 for all
i = 1, . . . , |S| − |A|. Since the number of states in our set S ◦ w1 · · ·wi can only
decrease in each iteration. Thus, in the worst case we have the following.

|S ◦ w1 · · ·w|S|−|A|| = |S| − (|S| − |A|) = |A|

This means that there exist an i ∈ {0, . . . , |S|−|A|} such that either A ̸⊆ S◦w1 · · ·wi

or A = S ◦ w1 · · ·wi.

If there exists an i ∈ {1, . . . , |S| − |A|} such that A ̸⊆ S ◦ w1 · · ·wi. Then we done,
since |w1 · · ·wi| ≤ i (n− |A|) ≤ (|S| − |A|) (n− |A|) ≤ (|S| − |A|) (n− |A|) + 1. So
there exist word w ∈ Σ∗, with length |w| ≤ (|S| − |A|) (n− |A|) + 1, such that
A ̸⊆ S ◦ w

If we have to stop our iteration at some point i ∈ {0, . . . , |S| − |A|} because we
have A = S ◦ w1 · · ·wi for some i. Then just as shown in the proof of Lemma 3.18
there must exists a letter a ∈ Σ such that A ◦ a ̸= A.
|w1 · · ·wia| ≤ i (n− |A|) + 1 ≤ (|S| − |A|) (n− |A|) + 1 and A ̸⊆ S ◦ w1 · · ·wia
(shown in proof of lemma 3.18). So, there exist word w ∈ Σ∗, with length
|w| ≤ (|S| − |A|) (n− |A|) + 1, such that A ̸⊆ S ◦ w

Thus in both cases there exists a word w ∈ Σ∗, with length
|w| ≤ (|S| − |A|) (n− |A|) + 1, such that A ̸⊆ S ◦ w.

Lemma 3.20. Let n ≥ 2 and A = (Q,Σ, δ) be a n-state automaton. Assume
that all ∅ ̸= A ⊂ Q contain an avoidable state from Q (so for all ∅ ̸= A ⊂ Q:
∃q ∈ A and ∃w ∈ Σ∗ such that q ̸∈ Q ◦ w). Then for all ∅ ̸= A ⊂ Q there exists
a word w ∈ Σ∗ avoiding a state from A (so ∃w ∈ Σ∗: A ̸⊆ Q ◦ w), with length
|w| ≤ (n− 1 − |A|) (n− |A|) + 2.

25

Proof. Let ∅ ≠ A ⊂ Q an arbitrary subset. Since there exist an avoidable state
in A, we know that there exist a q ∈ A and a word w ∈ Σ∗ such that q ̸∈ Q ◦ w
(A ̸⊆ Q ◦ w). This means that there exists a letter a ∈ Σ such that |Q ◦ a| < n.
If this was not the case (∀a ∈ Σ: |Q ◦ a| = n) then we have that ∀a ∈ Σ: Q ◦ a = Q.
This would mean that we could never get a word w ∈ Σ∗ such that q ̸∈ Q◦w, which
gives us a contradiction.

If A ̸⊆ Q ◦ a, then we have proven that there exists a word w (= a)
(|w| = 1 ≤ (n− 1 − |A|) (n− |A|) + 2) that avoids a state from A.

Otherwise we have A ⊆ Q ◦ a.
Define S := Q ◦ a.
Apply Lemma 3.19 with subset A ⊆ S = Q ◦ a. Then we know from this Lemma
3.19 that there exists a word w ∈ Σ∗, with |w| ≤ (|S| − |A|) (n− |A|) + 1, such that
A ̸⊆ S ◦ w = Q ◦ aw.
Note that |aw| ≤ (|Q ◦ a| − |A|) (n− |A|) + 1 + 1 ≤ (n− 1 − |A|) (n− |A|) + 2.
So we have shown that there exists a word v = aw with length at most
(n− 1 − |A|) (n− |A|) + 2 such that A ̸⊆ Q ◦ v.
Since we took ∅ ≠ A ⊂ Q arbitrary, we have proven this for all ∅ ≠ A ⊂ Q.

Let q ∈ Q. If we take A = {q} in Lemma 3.20 then we get that for the shortest
avoiding word w of state q it holds that |w| ≤ (n− 2)(n− 1) + 2.

Lemma 3.21. Let w ∈ Σ∗ and g = min {|q ◦ w−1| | q ∈ Q ◦ w} (The minimal num-
ber of states that go to some state q). There are at least (g + 1) |Q ◦ w| − n states
q ∈ Q ◦ w such that |q ◦ w−1| = g.

Proof. Define d := |{q ∈ Q ◦ w | |q ◦ w−1| = g}|. This lemma is proven, when we
have shown that d ≥ (g + 1) |Q ◦ w| − n.

By definition of d and g we know that there are |Q ◦ w| − d states with preim-
ages of size at least g+ 1. In other words there are |Q ◦ w|− d states q ∈ Q ◦w with
|q ◦ w−1| ≥ g + 1.

Note the following two things.
First (Q ◦ w) ◦ w−1 = Q for all w ∈ Σ∗, by definition of the preimage of Q ◦ w.
Second for p, q ∈ Q with p ̸= q we have p ◦w−1 ∩ q ◦w−1 = ∅. Because we look at a
DFA automaton A, there isn’t a state r ∈ Q that can go to both state p and state
q after reading w.

With this we get the following

n ≥
∣∣Q ◦ w−1

∣∣
≥ dg + (g + 1) (|Q ◦ w| − d)

= (g + 1) |Q ◦ w| − d

This gives d ≥ (g + 1) |Q ◦ w| − n.

26

Remark. When g = 1, Lemma 3.21 gives that there are at least 2 |Q ◦ w| − n states
in Q ◦ w with a unique preimage.

Lemma 3.22. Let w ∈ Σ∗ be a word of rank r (|Q ◦ w| = r), with
⌊
n+1
2

⌋
≤ r ≤ n−1.

Suppose that for some integer k ≥ 1 and for all A ⊂ Q with 1 ≤ |A| ≤ n− 1, there
is a word vA ∈ Σk(n−|A|) such that A ̸⊆ Q ◦ vA.
Then there exists a word u ∈ Σ∗ with |Q ◦ u| ≤ n

2
(rank of u is less of equal to n

2
)

and

|u| ≤ |w| + k
n2 − (2n− 2r − 1)2

4

Proof. We are going to prove this by giving such a word u. We are going to con-
struct this word u ∈ Σ∗ inductively.

For i = r, r − 1, . . . ,
⌊
n
2

⌋
we inductively construct words wi with

|wi| ≤ |w| + k (r − i) (2n− r − i− 1) and rank |Q ◦ wi| ≤ i.
In the end we see that u = w⌊n

2 ⌋ is the wanted word.

First define wr := w.

|wr| = |w|
≤ |w| + k(r − r)(2n− r − r − 1)

Given was |Q ◦ w| = r, so also |Q ◦ wr| ≤ r holds.

Now let i < r and suppose we have already found wi+1. Because |Q ◦ wi+1| ≤ i + 1
we have two cases: |Q ◦ wi+1| ≤ i and |Q ◦ wi+1| = i + 1.
If |Q ◦ wi+1| ≤ i, then define wi = wi+1.

|wi| = |wi+1|
≤ |w| + k(r − i− 1)(2n− r − i− 2)

≤ |w| + k(r − i)(2n− r − i− 1)

|Q ◦ wi+1| = |Q ◦ wi| ≤ i ≤ i + 1

If |Q ◦ wi+1| = i + 1, then we expand word wi+1 to get word wi.
Since

⌊
n
2

⌋
≤ i < r we get

i + 1 ≥
⌊n

2

⌋
+ 1

≥ n

2
− 1

2
+

2

2

=
n + 1

2

This gives |Q ◦ wi+1| = i + 1 ≥ n+1
2

.
By Lemma 3.21 (and the remark after this lemma) there exists a set
∅ ≠ B ⊆ {q ∈ Q ◦ wi+1 | |q ◦ w−1

i+1| = 1} ⊆ Q ◦ wi+1 of size
|B| ≥ 2|Q ◦ wi+1| − n = 2i + 2 − n.

27

Let X ⊆ B be a subset of size |X| = 2i + 2 − n.

Define Y := X ◦w−1
i+1. All states in X have an unique preimage (since X ⊆ B), thus

we have that |Y | = |X| = 2i + 2 − n
Since i ≤ r − 1 and X ̸= ∅, we have 1 ≤ |Y | ≤ 2 (r − 1) + 2 − n = 2r − n < n.
So by the assumption of this lemma, then there exists a word vY ∈ Σk(n−|Y |) with
Y ̸⊆ Q ◦ vY .
Now define wi := vYwi+1

Since Y ̸⊆ Q ◦ vY , there exists a p ∈ Y such that p ̸∈ Q ◦ vY .
Suppose q = p ◦ wi+1.
This gives that q ̸∈ Q ◦ vYwi+1 = Q ◦ wi, because p ̸∈ Q ◦ vY . wi+1 is a sub-
word of word wi and |wi| ≥ |wi+1|, so Q ◦ wi ⊆ Q ◦ wi+1. Now we have a state
q ∈ Q ◦ wi+1 with q ̸∈ Q ◦ wi. This means that Q ◦ wi ⊂ Q ◦ wi+1. Which implies
that |Q ◦ wi| ≤ |Q ◦ wi+1| − 1 = i + 1 − 1 = i.
We know the following of the length of word wi.

|wi| = |vY | + |wi+1|
≤ k (n− |Y |) + |w| + k (r − i− 1) (2n− r − i− 2)

= k (n− 2i− 2 + n) + |w| + k (r − i− 1) (2n− r − i− 2)

= 2k (n− i− 1) + |w| + k (r − i− 1) (2n− r − i− 2)

= k (2 (n− i− 1) − (r − i− 1) + (r − i− 1) (2n− r − i− 1)) + |w|
= k (2n− r − i− 1 − (2n− r − i− 1) + (r − i) (2n− r − i− 1)) + |w|
= k (r − i) (2n− r − i− 1) + |w|

So, for our defined wi, it holds that |wi| ≤ k (r − i) (2n− r − i− 1) + |w| and
|Q ◦ wi| ≤ i.

With this we have proven that we can construct words wi with
|wi| ≤ |w|+ k (r − i) (2n− r − i− 1) and rank |Q ◦wi| ≤ i, for i = r, r− 1, . . . ,

⌊
n
2

⌋
.

If we know look at the word wi for i =
⌊
n
2

⌋
, then we see that |Q ◦w⌊n

2 ⌋| ≤
⌊
n
2

⌋
≤ n

2

and that we have the following restriction on |w⌊n
2 ⌋|.

|w⌊n
2 ⌋| ≤ |w| + k

(
r −

⌊n
2

⌋)(
2n− r −

⌊n
2

⌋
− 1
)

≤ |w| + k

(
r − n− 1

2

)(
2n− r − n− 1

2
− 1

)
= |w| + k

(
2nr − r2 − n− 1

2
r − r − n(n− 1) +

n− 1

2
r +

(
n− 1

2

)2

+
n− 1

2

)

= |w| + k

(
2nr − r2 − r − n2 + n +

n− 1

2
+

n2 − 2n + 1

4

)
= |w| +

k

4

(
8nr − 4r2 − 4r − 4n2 + 4n + 2n− 2 + n2 − 2n + 1

)
28

= |w| +
k

4

(
n2 −

(
1 + 4n2 − 4n− 8nr + 4r2 + 4r

))
= |w| +

k

4

(
n2 − (2n− 2r − 1) (2n− 2r − 1)

)
= |w| + k

n− (2n− 2r − 1)2

4

So, we have found a word u ∈ Σ∗ with |Q ◦ u| ≤ n
2

and |u| ≤ |w| + k n2−(2n−2r−1)2

4

(namely u = w⌊n
2 ⌋).

Definition 3.23. Let A = (Q,Σ, δ) be a n-state synchronising automaton. We say
that A is a strongly connected automaton if for all states q1, q2 ∈ Q there is a word
w ∈ Σ∗ such that q1 ◦ w = q2.

Proposition 3.24 ([1],[2]). Let A = (Q,Σ, δ) be a n-state strongly connected syn-
chronising automaton. Let S ⊆ Q with |S| ≥ 2. Then there exists a word w ∈ Σ∗

with |w| ≤ (n−|S|+2)(n−|S|+1)
2

such that |S ◦ w| < |S|.

Definition 3.25. Let 1 ≤ i < j ≤ n be integers. Then we define the following
number.

C (j, i) :=

j∑
s=i+1

(n− s + 2) (n− s + 1)

2

Remark. C (j, i) is an upperbound on the length of the shortest word compressing
a subset of size j to a subset of size at most i. This you can see by starting with a
subset S ⊆ Q with |S| = j and then iteratively applying Proposition 3.24.

Corollary 3.26. Let 1 ≤ i < j ≤ n integers. Then

C (j, i) =
1

2
(j − i)n2+

(
(j − i) − 1

2

(
j2 − i2

))
n+

1

6

(
j3 − i3

)
−1

2

(
j2 − i2

)
+

1

3
(j − i)

Proof. C(j, i) is defined as a finite sum, thus we can rewrite this. Here we use,∑j
s=1 s = 1

2
j (j + 1) and

∑j
s=1 s

2 = 1
6
j (j + 1) (2j + 1).

j∑
s=i+1

(n− s + 2) (n− s + 1)

2
=

1

2

j∑
s=i+1

(
n2 + 3n + 2 + s2 − (2n + 3) s

)
=

1

2

j∑
s=i+1

(
n2 + 3n + 2

)
+

1

2

j∑
s=i+1

(
s2 − (2n + 3) s

)
=

1

2

(
n2 + 3n + 2

)
(j − i) +

1

2

j∑
s=1

(
s2 − (2n + 3) s

)
− 1

2

i∑
s=1

(
s2 − (2n + 3) s

)

29

=
1

2

(
n2 + 3n + 2

)
(j − i) +

1

2
· 1

6
j (j + 1) (2j + 1)

− 1

2
(2n + 3)

1

2
j (j + 1) − 1

2
· 1

6
i (i + 1) (2i + 1)

+
1

2
(2n + 3)

1

2
i (i + 1)

=
1

2

(
n2 + 3n + 2

)
(j − i) +

1

12

(
j
(
2j2 + j + 2j + 1

)
−i
(
2i2 + i + 2i + 1

))
+

1

4
(2n + 3)

(
i2 + i− j2 − j

)
=

1

2

(
n2 + 3n + 2

)
(j − i) +

1

12

(
2j3 + 3j2 + j −

(
2i3 + 3i2 + i

))
+

1

4
(2n + 3)

(
i2 − j2 + i− j

)
=

1

2
(j − i)n2 +

(
3

2
(j − i) +

1

2

(
i2 − j2 + i− j

))
n + (j − i)

+
1

12

(
2
(
j3 − i3

)
+ 3

(
j2 − i2

)
+ j − i

)
+

3

4

(
i2 − j2 + i− j

)
=

1

2
(j − i)n2 +

(
(j − i) − 1

2

(
j2 − i2

))
n + (j − i)

+
1

6

(
j3 − i3

)
+

1

4

(
j2 − i2

)
+

1

12
(j − i) − 3

4

(
j2 − i2

)
− 3

4
(j − i)

=
1

2
(j − i)n2 +

(
(j − i) − 1

2

(
j2 − i2

))
n

+
1

6

(
j3 − i3

)
− 1

2

(
j2 − i2

)
+

1

3
(j − i)

Lemma 3.27. Suppose that for some integer 1 ≤ k ≤ n
8
and for all A ⊂ Q with

1 ≤ |A| ≤ n − 1, there exists a word vA ∈ Σk(n−|A|) such that A ̸⊆ Q ◦ vA. Then
there exists a word w ∈ Σ∗ such that |Q ◦ w| ≤ n

2
and

|w| ≤ k
3n2 − 64k2 + 144k + 13

12

Proof. In the proof of Lemma 3.22 we have seen that there exist a word
(vY ∈ Σk(n−|Y |)) which reduces a subset (Q ◦ wi+1) of size i + 1 to a subset (Q ◦ wi)
of size i. This word is of length at most 2k (n− i− 1) (since |Y | = 2i + 2 − n).
When we compare this to our other upper bound C (i + 1, i) we get the following.

30

2k (n− i− 1) =C (i + 1, i)

=
1

2
(i + 1 − i)n2 +

(
(i + 1 − i) − 1

2

(
(i + 1)2 − i2

))
n +

1

6

(
(i + 1)3 − i3

)
− 1

2

(
(i + 1)2 − i2

)
+

1

3
(i + 1 − i)

=
1

2
n2 +

(
1 − 1

2
(2i + 1)

)
n +

1

6

(
3i2 + 3i + 1

)
− 1

2
(2i + 1) +

1

3

=
1

2
n2 +

(
1

2
− i

)
n +

1

2
i2 − 1

2
i

=
1

2
n2 +

1

2
n−

(
n +

1

2

)
i +

1

2
i2

0 =
1

2
i2 −

(
n +

1

2
− 2k

)
i +

1

2
n2 +

(
1

2
− 2k

)
n + 2k

The abc-formula gives two possible solutions (i1 and i2) for i.

i1 : = n +
1

2
− 2k +

1

2

√
16k2 − 24k + 1

= n +
1

2
− 2k +

1

2

√
(4k − 1)2 − 16k

≈ n +
1

2
− 2k +

1

2

√
(4k − 1)2

= n +
1

2
− 2k +

1

2
(4k − 1)

= n

i2 : = n +
1

2
− 2k − 1

2

√
16k2 − 24k + 1

= n +
1

2
− 2k − 1

2

√
(4k − 1)2 − 16k

≈ n +
1

2
− 2k − 1

2

√
(4k − 1)2

= n +
1

2
− 2k − 1

2
(4k − 1)

= n− 4k + 1

It must hold that i < n, so we can disregard the solution i1. Which leaves us
with the solution i2. Since we are interested in the case that n is large we define
i = n − 4k and j = n. Then we know that there exists a word v ∈ Σ∗ such that
|v| ≤ C(j, i) = C(n, n− 4k) and |Q ◦ v| ≤ i = n− 4k < n.

31

C(n, n− 4k) =
n∑

s=n−4k+1

(n− s + 2) (n− s + 1)

2

=
1

2

4k−1∑
i=0

(4k − i + 1) (4k − i)

=
1

2

4k∑
i=1

i (i + 1)

=
1

2

4k∑
i=1

i2 +
1

2

4k∑
i=1

i

=
1

2
· 1

6
4k (4k + 1) (8k + 1) +

1

2
· 1

2
4k (4k + 1)

= 4k

(
1

12

(
32k2 + 12k + 1

)
+

1

4
(4k + 1)

)
= 4k

(
8

3
k2 + k +

1

12
+

1

4
+ k

)
=

4k (8k2 + 6k + 1)

3

If |Q ◦ v| > n
2
, then since

⌊
n+1
2

⌋
=

{
n
2

if n even
n+1
2

if n odd

we have |Q ◦ v| ≥
⌊
n+1
2

⌋
. We can apply Lemma 3.22, this gives that there exists a

word w ∈ Σ∗ such that |Q ◦ w| ≤ n
2

and:

|w| ≤ |v| + k
n2 − (2n− 2 (n− 4k) − 1)2

4

≤ 4k (8k2 + 6k + 1)

3
+ k

n2 − (8k − 1)2

4

= k
16 (8k2 + 6k + 1) + 3

(
n2 − (8k − 1)2

)
12

= k
3n2 + 16 (8k2 + 6k + 1) − 3 (64k2 − 16k + 1)

12

= k
3n2 − 64k2 + 144k + 13

12

If |Q ◦ v| ≤ n
2
, then the already found word is the desired word (word v). This is

because k n2−(8k−1)2

4
≥ 0 (since k ≤ n

8
), so |v| ≤ 4k(8k2+6k+1)

3
≤ k 3n2−64k2+144k+13

12

Suppose we meet all assumptions of Lemma 3.27. Then we like to see that the
result of Lemma 3.27 is a better upper bound then the already known upper bound
C
(
n, n

2

)
.

32

We have 1 ≤ k ≤ n
8
. Suppose k := cn, where c ∈

[
1
n
, 1
8

]
. Lemma 3.27 gives then

that there exists a word w ∈ Σ∗ with |Q ◦ w| ≤ n
2

and |w| ≤ cn3n2−64(cn)2+144cn+13
12

.

cn
3n2 − 64 (cn)2 + 144cn + 13

12
=

(3c− 64c3)n3 + 144cn + 13

12

We want to compare the coefficient before n3 to the coefficient before n3 in C(n, n
2
)

C
(
n,

n

2

)
=

1

2
· n

2
n2 +

(
n

2
− 1

2

(
n2 −

(n
2

)2))
n +

1

6

(
n3 −

(n
2

)3)
− 1

2

(
n2 −

(n
2

)2)
+

1

3
· n

2

=
n3

4
+

(
n

2
− 1

2
· 3n2

4

)
n +

1

6
· 7n3

8
− 1

2
· 3n2

4
+

n

6

=
n3

4
+

n2

2
− 3n3

8
+

7n3

48
− 3n2

8
+

n

6

=
n3

48
+

n2

8
+

n

6

=
n3 + 6n2 + 8n

48

So if indeed the result of Lemma 3.27 is a better upper bound then the already
known upper bound C

(
n, n

2

)
, we must have that 3c−64c3

12
≤ 1

48
.

(3c− 64c3)

12
≤ 1

48

3c− 64c3 ≤ 1

4

0 ≤ 64c3 − 3c +
1

4

= c3 − 3c

63
+

1

256

=

(
c− 1

8

)2(
c +

1

4

)
0 ≤

(
c− 1

8

)2 (
c + 1

4

)
holds for all c ≥ −1

4
. And since we have c ∈

[
1
n
, 1
8

]
, this always

holds.
Therefore, for n large enough and if all assumptions of Lemma 3.27 are satisfied,
Lemma 3.27 gives a better result (upper bound) then C

(
n, n

2

)
gives.

Lemma 3.28. Let A be a synchronising, n-state automaton without a sink state.
Then for every integer 1 ≤ k ≤ n

8
there exists a reset word w ∈ Σ∗ with

|w| ≤ max

{
k

3n2 − 64k2 + 144k + 13

12
, k (n− 1) + C

(
n− k,

⌊n
2

⌋)}
+ C

(⌊n
2

⌋
, 1
)

Proof. Let k be any integer with 1 ≤ k ≤ n
8
.

Let A be a synchronising, n-state automaton with no sink state. Then we know
that for all ∅ ≠ A ⊂ Q there exist a word w ∈ Σ∗ such that A ̸⊆ Q ◦ w.
So we can use Lemma 3.18 with S = Q.

33

There are two cases, either for all ∅ ≠ A ⊂ Q case 1 of Lemma 3.18 hold, or there
exists a subset ∅ ≠ A ⊂ Q for which case 2 of Lemma 3.18 holds.

Suppose for all ∅ ̸= A ⊂ Q case 1 of Lemma 3.18 holds. So for all ∅ ̸= A ⊂ Q
there exist a word w ∈ Σ≤k(n−|A|) such that A ̸⊆ Q ◦ w.
Then we know by Lemma 3.27 that there exists a word w ∈ Σ∗ with
|w| ≤ k 3n2−64k2+144k+13

12
, such that |Q ◦ w| ≤ n

2
(which implies |Q ◦ w| ≤

⌊
n
2

⌋
, since

|Q ◦ w| is an integer).

Suppose there exist some subset ∅ ≠ A ⊂ Q for which case 2 of Lemma 3.18
holds. Then we know that for this subset ∅ ̸= A ⊂ Q (1 ≤ |A| ≤ n − 1) there
exists a word w ∈ Σk(n−|A|) such that |Q ◦ w| ≤ |Q| − k = n − k. We have
|w| ≤ k (n− |A|) ≤ k (n− 1).
We know there exist a word v ∈ Σ∗ with |v| ≤ C

(
n− k,

⌊
n
2

⌋)
which compresses the

subset Q ◦ w to some set of size less or equal to
⌊
n
2

⌋
.

Together this gives that there exist a word w ∈ Σ∗ with |w| ≤ k (n− 1)+C
(
n− k,

⌊
n
2

⌋)
such that |Q ◦ w| ≤

⌊
n
2

⌋
.

Combining these two cases gives that there exists a word w ∈ Σ∗ of length

|w| ≤ max
{
k 3n2−64k2+144k+13

12
, k (n− 1) + C

(
n− k,

⌊
n
2

⌋)}
such that |Q ◦ w| ≤

⌊
n
2

⌋
.

Finally we need to compress a subset of size less of equal to
⌊
n
2

⌋
, to a subset of

size 1. We know that there exist such word w ∈ Σ∗ with |w| ≤ C
(⌊

n
2

⌋
, 1
)
.

So we can conclude that there exist a reset word w ∈ Σ∗ of length

|w| ≤ max
{
k 3n2−64k2+144k+13

12
, k (n− 1) + C

(
n− k,

⌊
n
2

⌋)}
+ C

(⌊
n
2

⌋
, 1
)
.

Theorem 3.29.

C (n) ≤ 0.166421334n3 + 1.42781363n2 − 0.210099161n

Proof. To prove our theorem we use Lemma 3.22 with a suitable k, which minimizes

max
{
k 3n2−64k2+144k+13

12
, k (n− 1) + C

(
n− k,

⌊
n
2

⌋)}
, for n large enough.

Take a look at C
(
n− k,

⌊
n
2

⌋)
for n ≥ 2.

If n is even, then we get with the use of Corollary 3.26 the following.

C
(
n− k,

⌊n
2

⌋)
=C

(
n− k,

n

2

)
=

1

2

(
n− k − n

2

)
n2 +

((
n− k − n

2

)
− 1

2

(
(n− k)2 −

(n
2

)2))
n

+
1

6

(
(n− k)3 −

(n
2

)3)
− 1

2

(
(n− k)2 −

(n
2

)2)
+

1

3

(
n− k − n

2

)
=

1

2

(n
2
− k
)
n2 +

((n
2
− k
)
− 1

2

(
3n2

4
− 2kn + k2

))
n

+
1

6

(
7n3

8
− 3kn2 + 3k2n− k3

)
− 1

2

(
3n2

4
− 2kn + k2

)
+

1

3

(n
2
− k
)

34

=
n3

4
− kn2

2
− 3n3

8
+

(
1

2
+ k

)
n2 −

(
k +

k2

2

)
n +

7n3

48
− kn2

2
+

k2n

2

− k3

6
− 3n2

8
+ kn− k2

2
+

n

6
− k

3

=
1

48
n3 +

1

8
n2 +

1

6
n− 1

6
k3 − 1

2
k2 − 1

3
k

=
n3 + 6n2 + 8n− 8k3 − 24k2 − 16k

48

Analogue we get, if n is odd the following.

C
(
n− k,

⌊n
2

⌋)
= C

(
n− k,

n− 1

2

)
=

n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15

48

This is larger than C
(
n− k,

⌊
n
2

⌋)
with n is even. So we have that

C
(
n− k,

⌊n
2

⌋)
≤ n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15

48

Take a look at C
(⌊

n
2

⌋
, 1
)

for n ≥ 2. We use again Corollary 3.26
If n is even then we get:

C
(⌊n

2

⌋
, 1
)

= C
(n

2
, 1
)

=
7n3 − 6n2 − 16n

48

If n is odd then we get:

C
(⌊n

2

⌋
, 1
)

= C

(
n− 1

2
, 1

)
=

7n3 − 9n2 − 31n− 15

48

This is smaller than C
(⌊

n
2

⌋
, 1
)

with n is even. So, we have that

C
(⌊n

2

⌋
, 1
)
≤ 7n3 − 6n2 − 16n

48

We wanted to improve the coefficient of n3 (compared to the upper bound
C(n) ≤ n3−n

6
, which has coefficient 1

6
before n3). So, we want a coefficient of n3

smaller then 1
6
.

If k ∈ o (n), then for n large enough is

max
{
k 3n2−64k2+144k+13

12
, k (n− 1) + n3+9n2+23n−8k3−24k2−16k+15

48

}
determined by the sec-

ond argument. Since the second argument has a n3 term and the first argument

35

doesn’t.
In this case we get

C(n) ≤ n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15

48
+

7n3 − 6n2 − 16n

48

Here is the coefficient before n3 equal to 1+7
48

= 1
6
. This doesn’t give us an improved

upper bound.

Therefore we let k be linear dependent on n. Let’s assume k := cn for some constant
c ∈ R.
Since both functions k 3n2−64k2+144k+13

12
and k (n− 1) + n3+9n2+23n−8k3−24k2−16k+15

48
are

continuous and one is increasing with k and the other decreasing with k, it is enough
to consider the values of k such that both functions are equal.
For n large enough we have cn3n2−64c2n2+144cn+13

12
∼ 3c−64c3

12
n3 and

cn (n− 1) + n3+9n2+23n−8c3n3−24c2n2−16cn+15
48

∼ 1−8c3

48
n3.

So we want the coefficients before n3 in both function to be equal. This gives us the
following.

3c− 64c3

12
=

1 − 8c3

48

3c− 64c3 =
1 − 8c3

4

The approximate solution of this is c ≈ 0.11375462. Thus, we choose k = 0.11375462n.
With this value of k, we get the following.

k
3n2 − 64k2 + 144k + 13

12
= 0.11375462n

3n2 − 64 · 0.113754622n2 + 144 · 0.11375462n + 13

12

=
0.2470565007n3 + 1.863376354n2 + 1.4788106n

12
= 0.020588001n3 + 1.55281363n2 + 0.123234172n

and

k (n− 1) +
n3 + 9n2 + 23n− 8k3 − 24k2 − 16k + 15

48
=0.11375462n (n− 1)

+
n3 + 9n2 + 23n− 8 · 0.113754623n3 − 24 · 0.113754622n2 − 16 · 0.11375462n + 15

48
=0.11375462n2 − 0.11375462n

+
n3 + 9n2 + 23n− 0.011775982n3 − 0.310562726n2 − 1.82007392n + 15

48
=0.11375462n2 − 0.11375462n

+
0.988224018n3 + 8.689437274n2 + 21.17992608n + 15

48

36

=0.11375462n2 − 0.11375462n + 0.020588n3 + 0.181029943n2

+ 0.44124846n + 0.3125

=0.020588n3 + 0.294784563n2 + 0.32749384n + 0.3125

≤0.020588001n3 + 1.55281363n2 + 0.123234172n

With this and Lemma 3.28 we can conclude the following.

C(n) ≤ 0.020588001n3 + 1.55281363n2 + 0.123234172n +
7n3 − 6n2 − 16n

48
= 0.166421334n3 + 1.42781363n2 − 0.210099161n

Theorem 3.29 gives the coefficient of n3 to be 0.166421334 < 1
6
. So we have found

an improved upper bound of C(n).
Marek Szyku la finds the coefficient of n3 to be 85059

511104
= 0.166422098. Our Theorem

is slightly more accurate because we used k = 0.11375462n instead of the rational
approximation k =

⌊
5
44
n
⌋
.

Marek Szyku la was able to improve the upper bound, found by J.-E Pin and P.
Frankl, by the factor 85059

85184
≈ 0.998532588. We improved the upper bound, found

by J.-E Pin and P. Frankl, by the factor 0.166421334 · 6 = 0.998528004. Since
0.998528004 < 85059

85184
holds we again see that our found upper bound is slightly more

accurate. We have improved the upper bound found by Marek Szyku la by the factor
0.166421334 · 511104

85059
= 0.999995409.

37

Chapter 4

Random words

In this chapter we are still interested in finding the length of the shortest reset
word, but now we have a probability distribution on the letters of our alphabet.
This means that our words aren’t fixed, but are somewhat random.
Let Σ = {a, b}, then a probability distribution is:

P(a) = p P(b) = 1 − p

with p ∈ [0, 1].
This means that with probability p we get the letter a and with probability 1 − p
the letter b. With this probability distribution we again have an automaton and
power automaton, but then with probabilities next to the letters.

Since we now have no influence over the words and letters, we can only look at
the expected length of a reset word. If we have a synchronizing automaton A with
n states, then the probability that the expected length of a reset word is finite is
equal to one.

Example 4.1. For the C4 shown in Figure 2.3, we then get the following automaton:

3

4 1

2

a, p

a, pa, p

a, p

b, 1 − p
b, 1 − p

b, 1 − p

b, 1 − p

Figure 4.1: C4 with probability distribution on the alphabet.

For C3, we have the following automaton:

38

2 1

3

a, p

b, 1 − p

a, p
b, 1 − p

a, p

b, 1 − p

Figure 4.2: C3 with probability distribution on the alphabet.

The corresponding power automaton of automaton in Figure 4.2 is shown in Figure
4.3.

{2, 3} {1, 3}

{1, 2}{1, 2, 3}

{1} {3}

{2}

b, 1 − p

a, p

a, p

b, 1 − p

a, p

b, 1 − p

b, 1 − p

a, p

a, p

b, 1 − p

a, p

b, 1 − p

a, p

b, 1 − p

Figure 4.3: Power automaton of Figure 4.2.

4.1 Markov chains

We can see the automaton in Example 4.1 as a Markov chain. To understand what
this means we first need some definitions [10].

Definition 4.2. An E-valued process is a function ξ : I → E, where I is an index
set.

Definition 4.3. An E-valued stochastic process is an E-valued process in which:
∀i ∈ I: ξ(i) ∈ E is a random variable. In a discrete time stochastic process, the
index set I is finite or countable.

39

We can write:

P(ξi1 = x1, . . . , ξit = xt) = P(ξit = xt|ξi1 = x1, . . . , ξit−1 = xt−1) · P(ξi1 = x1, . . . , ξit−1 = xt−1)

...

= P(ξi1 = x1)
t∏

j=2

P(ξij = xj|ξi1 = x1, . . . , ξij−1
= xj−1)

Definition 4.4. A discrete time Markov chain (MC) is a stochastic process with
P(ξit = xt|ξi1 = x1, . . . , ξit−1 = xt−1) = P(ξit = xt|ξit−1 = xt−1)

with the same process as before we get for discrete time Markov chains the following.

P(ξi1 = x1, . . . , ξit = xt) = P(ξi1 = x1)
t∏

j=2

P(ξij = xj|ξij−1
= xj−1)

Definition 4.5. A homogeneous Markov chain is a Markov chain for which the
following holds.

∀m ∈ N : P(ξt = y|ξt−1 = x) = P(ξt+m = y|ξt+m−1 = x)

In this case we define a transition matrix, or Kernel, or transition probability K as
Kij := P(ξt = j|ξt−1 = i)

Let µt,i = P(ξt = i), then µt+1,j =
∑

i µt,iKij. In vector notation this is:
−→µ t+1 = −→µ tK.

Example 4.6. Look at the automaton in Figure 4.1 in Example 4.1. Here interpret
ξt as the (random) state at time t ∈ N.Then we have

pxy := P(ξt+m = y|ξt+m−1 = x) =


p if δ(x, a) = y

1 − p if δ(x, b) = y

0 otherwise

Since P(ξt+m = y|ξt+m−1 = x) is independent of m we get,
∀m ∈ N : P(ξt = y|ξt−1 = x) = P(ξt+m = y|ξt+m−1 = x). So we have a homogeneous
Markov chain.

The transition matrix for this automaton is: KC4 =


p 1 − p 0 0
0 p 1 − p 0
0 0 p 1 − p
1 0 0 0


Here is Kij = P(ξt = j|ξt−1 = i) ∀i, j = 1, 2, 3, 4.
Kij are calculated as follows:

• K44 = P(ξt = 4|ξt−1 = 4) = 0, since there is no loop at state 4 to itself.

• K41 = P(ξt = 1|ξt−1 = 4) = p+ 1− p = 1, since both letters a and b send state
4 to state 1.

• K23 = P(ξt = 2|ξt−1 = 3) = 1 − p, since only letter b sends state 2 to state 3
and P(b) = 1 − p.

• Etc.

40

4.2 Expected length of reset word

With our knowledge of a Markov chain, we can take a look at the expected length of
a reset word for a synchronizing automaton A. Let p ∈ [0, 1] and n ≥ 2 an integer.
Then we consider synchronizing automata A = (Q,Σ, δ), with Q = {1, . . . , n} and
Σ = {a, b} with P(a) = p and P(b) = 1 − p.
First, we are going to make this more precise with some definitions. Thereafter, we
will discuss how to calculate the expected length of a reset word of a synchronizing
automaton A. Finally, we end this section with the exact value of the expected
length of a reset word, for the Černý automaton Cn.

Definition 4.7. Let Q = {1, . . . , n} the set with all n states. Then we define A to
be the set of singletons from Q. So A = {S ⊂ Q | |S| = 1} = {{q} | q ∈ Q}
Definition 4.8. For t ≥ 1 we define the stochastic process (Wt)t∈N with Wt ∈ Σ by
the following probabilities.

P(Wt = a) = p P(Wt = b) = 1 − p

Remark. By definition of the stochastic process (Wt)t∈N, Wt is independent of the
time t ∈ N and independent of any other letter Wr (with r ∈ N and r ̸= t).

Since P(Wt = a) and P(Wt = b) don’t depend on time t ∈ N, we use the notations
P(Wt = a) = P(a) and P(Wt = b) = P(b)

Definition 4.9. We define the Markov chain (Vt)t∈N associated with a particular
automaton A, with Vt ∈ P(Q)\∅ as follows.
Start in some subset S ⊆ Q, say V0 := S and for t ≥ 1 we have Vt := Vt−1 ◦Wt.

Since P(Wt = a) and P(Wt = b) don’t depend on time t ∈ N, we have that
P(Vt = Y | Vt−1 = Z) = P(Vt+m = Y | Vt+m−1 = Z) holds for all m ∈ N. So the
chain (Vt)t∈N is indeed a (homogeneous) Markov chain (see Definitions 4.4 and 4.5).

Remark. When X = Vt then we have the following transition probabilities:
P(Vt+1 = X ◦ a) = p
P(Vt+1 = X ◦ b) = 1 − p

Definition 4.10. Let S ⊆ Q, then we define TA(S) := min{t | |Vt| = 1}, where
(Vt)t∈N is the Markov chain of automaton A with V0 = S.
We write TA := TA(Q).

Remark. (|Vt|)t∈N is a decreasing sequence and at time TA(S) we have come across
a reset word for S in the automaton A (W1 · · ·WTA(S)), since |VTA(S)| = 1.
So q1 ◦W1 · · ·WTA(S) = q2 ◦W1 · · ·WTA(S) for all q1, q2 ∈ S.

Consider a synchronizing automaton A = (Q,Σ, δ), with Q = {1, . . . , n} (n ≥ 2
an integer) and Σ = {a, b}, with P(a) = p and P(b) = 1 − p. Then E [TA] is the
expected length of a reset word for automaton A.

Definition 4.11. Let A = (Q,Σ, δ) be a synchronizing automaton with n states
and S ⊆ Q. Then we define EA

S as the expected number of letters (elements of Σ)
we need to get to some element of A, starting in S.
By definition of TA(S), we get

EA
S = E [TA(S)]

41

As a corollary of Proposition 2.22 we then know that EA
Q(= E [TA]) is the expected

length of a reset word in automaton A. There are multiple ways to calculate EA
Q.

4.2.1 Calculating EA
Q: System 1

Since we can see the power automaton in the case of random input as a Markov
chain, we can compute EA

S with the following linear system [9].{
EA

S = 0 if S ∈ A

EA
S = 1 +

∑
α∈Σ P(α)EA

S◦α if S ̸∈ A
(4.1)

Recall that S ◦ α = δ(S, α) ⊆ Q, and P(α) is the probability of letter α ∈ Σ.

Example 4.12. Take the automaton in Figure 4.2. So we have the Černý automa-
ton C3 with Σ = {a, b} and P(a) = p and P(b) = 1 − p.
The system for this automaton is:

EA
{1,2,3} = 1 + pEA

{1,2} + (1 − p)EA
{1,2,3}

EA
{1,2} = 1 + pEA

{1,2} + (1 − p)EA
{2,3}

EA
{2,3} = 1 + pEA

{1,2} + (1 − p)EA
{1,3}

EA
{1,3} = 1 + pEA

{1} + (1 − p)EA
{1,2} = 1 + (1 − p)EA

{1,2}

Substituting EA
{1,3} = 1 + (1 − p)EA

{1,2} in EA
{2,3} = 1 + pEA

{1,2} + (1 − p)EA
{1,3} gives:

EA
{2,3} = 1 + pEA

{1,2} + (1 − p)EA
{1,3}

= 1 + pEA
{1,2} + (1 − p)

(
1 + (1 − p)EA

{1,2}
)

= 1 + 1 − p +
(
p + (1 − p)2

)
EA

{1,2}

= 2 − p +
(
p + (1 − p)2

)
EA

{1,2}

This we can again substitute in EA
{1,2} = 1 + pEA

{1,2} + (1 − p)EA
{2,3}.

EA
{1,2} = 1 + pEA

{1,2} + (1 − p)EA
{2,3}

= 1 + pEA
{1,2} + (1 − p)

(
2 − p +

(
p2 − p + 1

)
EA

{1,2}
)

= 1 + pEA
{1,2} + (1 − p) (2 − p) + (1 − p)

(
p + (1 − p)2

)
EA

{1,2}

This gives the following.

(1 − p− p(1 − p) − (1 − p)3)EA
{1,2} = 1 + (1 − p)(2 − p)

(1 − p + p3 − 2p2 + 2p− 1)EA
{1,2} = p2 − 3p + 3

(p3 − 2p2 + p)EA
{1,2} = p2 − 3p + 3

EA
{1,2} =

p2 − 3p + 3

p3 − 2p2 + p

42

Then at last we have EA
{1,2,3} = 1 + pEA

{1,2} + (1 − p)EA
{1,2,3}, this gives with the

calculation below our result.

EA
{1,2,3} = 1 + pEA

{1,2} + (1 − p)EA
{1,2,3}

(1 − 1 + p)EA
{1,2,3} = 1 + pEA

{1,2}

pEA
{1,2,3} = 1 + pEA

{1,2}

EA
{1,2,3} =

1

p
+ EA

{1,2}

=
1

p
+

p2 − 3p + 3

p3 − 2p2 + p

=
2p2 − 5p + 4

p3 − 2p2 + p
=

2p2 − 5p + 4

p(1 − p)2

Suppose P(a) = P(b) = 1
2
, then we get

EA
{1,2,3} =

2· 1
2

2−5· 1
2
+4

1
2

3−2· 1
2

2
+ 1

2

=
2
4
− 5

2
+4

1
8
− 2

4
+ 1

2

= 2
1
8

= 2 · 8 = 16.

The expected length of a reset word of the automaton in Figure 4.2 with p = 1
2

is
16.

4.2.2 Calculating EA
Q: System 2

We will describe another way to compute EA
Q. We still use the power automaton,

but now we compute for each arrow in the power automaton the expected number
of times we use that arrow and then we sum up all these expected numbers. To
make this more precise we need to define variable mIJ and pIJ , where I, J are states
in the power automaton (I, J ∈ P(Q)\∅).

Definition 4.13. Let (Vt)t∈N be the Markov chain with V0 = Q as defined in Defi-
nition 4.9. When |Vt| = 1 (Vt ∈ A) we stop our chain.
We define mIJ := E [#{0 ≤ t ≤ T | Vt = I, Vt+1 = J}] as the expected number of
times we go from state I to state J , and pIJ := P (Vt+1 = J | Vt = I) as the proba-
bility of going to state J , given that we are in state I.

Then we have that EA
Q =

∑
I,J⊆Q mIJ .

Remark. In the power automaton, a state I is a non-empty subset of Q.
We use one more notation, namely mIA, which is the expected number of times we
go from state ∅ ≠ I ⊆ Q (with |I| ≥ 2) to some state in A.

To calculate mIJ for all states, I and J , in the power automaton we use the following
rules [9].

1. We enter A precisely one time and mIA ∈ {0, 1} for all ∅ ≠ I ⊂ Q. There is
exactly one I ⊆ Q for which mIA = 1. For J ̸= I, we have mJA = 0. This
translates to

∑
J∈P(Q)\{∅}mJA = 1.

2. The expected number of times we go from state I to state J must (relative to
p) be the same expected number times we go from state I to state K, where
J ̸= K. This translates to pIKmIJ = pIJmIK , for all I, J,K ∈ P(Q)\{∅}.

43

3. The expected total number of times that we go out of state I, must be equal to
the expected total number of times we go in to state I, unless I = Q or I ∈ A.
This translates to

∑
J∈P(Q)\{∅}mIJ =

∑
J∈P(Q)\{∅}mJI , if I ̸= Q, I ̸∈ A.

4. For state I = Q, it holds that we travel exactly one more time out of state Q
then that we travel in to state Q. So

∑
J∈P(Q)\{∅}mIJ = 1 +

∑
J∈P(Q)\{∅}mJI ,

if I = Q.

5. The expected number of times that we go from one state in A to another state
in A is zero. This translates to mIJ = 0 for I, J ∈ A.

Rule 4 is necessary, because Q is our starting point and we are looking for a path
from Q to some state in A. Thus we have to exit state Q one time more than we
enter Q. We have rule 1 and 5 because A is our endpoint. Once we reach some state
in A we stop. Rule 3 exists because we can’t travel more times out (in) a state than
that we travel in to (out of) that same state.
All these rules together are sufficient to get a unique result about EA

Q.
In short we get:

∑
J ̸∈AmJA = 1

pIKmIJ = pIJmIK I, J,K ∈ P(Q)\{∅}∑
J∈P(Q)\{∅}mIJ =

∑
J∈P(Q)\{∅}mJI if I ̸= Q, I ̸∈ A∑

J∈P(Q)\{∅}mIJ = 1 +
∑

J∈P(Q)\{∅}mJI if I = Q

mIJ = 0 if I, J ∈ A

(4.2)

Example 4.14. Take again the automaton in Figure 4.2. So, we have the Černý
automaton C3 with Σ = {a, b} and P(a) = p and P(b) = 1 − p.
You start with the fact that you know that m{1,3}{1} = 1. Then rule 2 gives that
m{1,3}{1,2} = 1−p

p
. Rule 3 gives then that m{2,3}{1,3} = 1

p
. Etc.

This gives you the end result given in Figure 4.4, here are the mIJ values indicated
in red.

{2, 3} {1, 3}

{1, 2}{1, 2, 3}

{1} {3}

{2}b, 1−p
p

a, 1
a, 1

(1−p)2

b, 1
p(1−p)

a, 1
1−p

b, 1
p

b, 1−p
p

a, 1

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

Figure 4.4: Power automaton of Figure 4.2, with mIJ in red.

44

Then we get:

EA
Q = EA

{1,2,3} =
1 − p

p
+ 1 +

1

(1 − p)2
+

1

p(1 − p)
+

1

(1 − p)
+

1 − p

p
+

1

p
+ 1

=
−2p + 4

p(1 − p)
+

1

(1 − p)2

=
2p2 − 6p + 4

p(1 − p)2
+

p

p(1 − p)2
=

2p2 − 5p + 4

p(1 − p)2

We can again take p = 1
2
. This would give:

EA
{1,2,3} =

2· 1
2

2−5· 1
2
+4

1
2
· 1
2

2 =
2
4
− 5

2
+4

1
8

= 2
1
8

= 2 · 8 = 16.

We can see that the answer with this method is exactly the same as the answer
we got in Example 4.12.

4.2.3 Calculating EA
Q exact for the Černý automaton Cn.

In this subsection we only look at the Černý automaton with n states, Cn = (Q,Σ, δ).
We have Q = {1, . . . , n}, Σ = {a, b} and

δ : Q× Σ → Q :


δ(i, a) = i for i = 1, . . . , n− 1

δ(i, b) = i + 1 for i = 1, . . . , n− 1

δ(n, a) = δ(n, b) = 1

n− 2

n− 1

n

1

2

k − 1

k

k + 1

a, p

b, 1 − p

a, p b, 1 − p

a, p

b, 1 − p
a, p

b, 1 − p

a, p

a, p

b, 1 − p

a, p

b, 1 − p

a, p

Figure 4.5: The Černý automaton with n states (Cn) and P(a) = p, P(b) = 1 − p.

We want to calculate E[TCn], recall that this is the expected length of a reset word
(EA

Q) for the Černý automaton Cn with P(a) = p and P(b) = 1 − p.

45

Note that if p = 0 or p = 1 then E[TCn] is infinite. Since any reset word for
the Černý automaton Cn contains both letters a and b.

Theorem 4.15. Let A be the Černý automaton with n ≥ 2 states (Cn) and P(a) = p,
P(b) = 1 − p for some p ∈ (0, 1). Then the expected length of a reset word (E[TCn])
only depends on n and p, and can be calculated as follows.

E[TCn] =
(n− 1)p2 −

(∑n
i=2 i

)
p +

(
n+1
n−2

)
p(1 − p)2

Begin proof Theorem 4.15. Suppose n = 2. Then by the use of system 2 (Subsection
4.2.2) we have m{1,2}{1,2} = 1−p

p
, m{1,2}{1} = 1, m{1}{1} = 0,m{1}{2} = 0 and

m{2}{1} = 0. So E[TC2] = EA
Q = 1 + 1−p

p
= 1

p
.

If we fill in n = 2 in
(n−1)p2−

(∑n
i=2 i

)
p+(n+1

n−2)
p(1−p)2

, we get the following:

(n− 1)p2 −
(∑n

i=2 i
)
p +

(
n+1
n−2

)
p(1 − p)2

=
p2 − 2p +

(
3
0

)
p(1 − p)2

=
p2 − 2p + 1

p(1 − p)2

=
(1 − p)2

p(1 − p)2

=
1

p

For n = 2 the theorem is correct.

The proof of this theorem for n ≥ 3 is quite extensive. We need several lemmas
and propositions. In the end we calculate E[TCn] exactly for arbitrary n ≥ 3 and
p ∈ (0, 1) by conditional probabilities and expected values.

Proof Theorem 4.15 ([11])

From now on assume n ≥ 3.
First we can do the following calculations

(n− 1)p2 −
(∑n

i=2 i
)
p +

(
n+1
n−2

)
p(1 − p)2

=
np2 − p2 − 1

2
n2p− 1

2
np + p + 1

6
n3 − 1

6
n

p(1 − p)2

=
1
6
n3 − 1

2
pn2 + (p2 − 1

2
p− 1

6
)n + p(1 − p)

p(1 − p)2

=
n3 − 3pn2 + (6p2 − 3p− 1)n + 6p(1 − p)

6p(1 − p)2

46

Here we use the following facts.

n∑
i=2

i =
1

2
n(n + 1) − 1

=
1

2
n2 +

1

2
n− 1

(
n + 1

n− 2

)
=

(n + 1)!

3!(n− 2)!
=

(n− 1)n(n + 1)

6

=
1

6
n(n2 − 1) =

1

6
n3 − 1

6
n

If we can prove that E[TCn] = n3−3pn2+(6p2−3p−1)n+6p(1−p)
6p(1−p)2

then Theorem 4.15 is proven.

We are going to calculate E[TCn] by conditional probabilities and expected values.
But before we can start with that we have to consider a particular situation, in
which we can apply these conditional probabilities.

Consider an analogue situation of the one we saw in the proof of Theorem 3.3.
Here we start with a pawn on each state, let say pawn k starts at state k, where
k = 1, . . . , n.

Figure 4.6: Starting situation: pawn k on state k.

If we read the letter b, starting in the starting position, then all pawns move one
state forward. So pawn k will be on state k + 1 for all k = 1, . . . , n− 1 and pawn n
will be on state 1.

47

Figure 4.7: Situation after reading letter b.

If we read the letter a, starting in the starting position, then pawn k stays at state
k for all k = 1, . . . , n − 1. Pawn n will go to state 1 after reading the letter a. In
this situation, pawn n has caught up with pawn 1. Pawn n and 1 now follow the
same path, thus will always be on the same state together.

Figure 4.8: Situation after reading letter a.

Because of how the Černý automaton on n states is defined, all pawns can only walk
circles in a clockwise direction. If w ∈ Σ∗ is a reset word, then after reading w all

48

pawns must end at the same state. This means that there must be a k ∈ {1, . . . , n}
such that pawn k catches up with pawn k − 1 (without pawn k − 1 catching up to
pawn k).
It also holds that once we have a k ∈ {1, . . . , n}, such that pawn k catches up with
pawn k − 1 (without pawn k − 1 catching up to pawn k), we have a reset word.
Because once a pawn catches up to another pawn, they will follow the same path
from that point on. And for pawn k to catch up to pawn k− 1 he first has to catch
up to all other pawns, since all pawns can only walk in clockwise circles.

Let’s make this more precise with some extra definitions, in addition to the Def-
initions 4.8, 4.9, 4.10 and there corresponding remarks.

Definition 4.16. Let k ∈ Q and t ≥ 0. Define W1 · · ·Wt = λ for t = 0. Then we
define the following stochastic process: D(k, 0) = 0 and

D(k, t + 1) =

{
D(k, t) if k ◦W1 · · ·Wt = k ◦W1 · · ·Wt+1

D(k, t) + 1 otherwise

We say that pawn k has traveled distance D(k, t) after reading word W1 · · ·Wt.

Remark. The distance that pawn k travels is determined by the number of clockwise
steps it takes. The letter b always causes pawn k to take a step clockwise. But only
when pawn k is standing on state n, the letter a (and b) causes a clockwise step for
pawn k. If pawn k is standing on any other state i (i = 1, . . . , n − 1), the letter a
causes pawn k to stand still, and thus it does not travel any distance in that step.
We have D(k, t) ≥ |W1 · · ·Wt|b.

Example 4.17. Consider the Černý automaton Cn. Let k = n − 2 and suppose
W1 = b, W2 = a, W3 = b, W4 = a. Then calculating D(k, 4) goes as follows:
(n− 2) ◦ bab = n ̸= 1 = (n− 2) ◦ baba → D(n− 2, 4) = 1 + D(n− 2, 3)
(n− 2) ◦ ba = n− 1 ̸= n = (n− 2) ◦ bab → D(n− 2, 3) = 1 + D(n− 2, 2)
(n− 2) ◦ b = n− 1 = (n− 2) ◦ ba → D(n− 2, 2) = D(n− 2, 1)
(n− 2) ◦ λ = n− 2 ̸= n− 1 = (n− 2) ◦ b → D(n− 2, 1) = 1 + D(n− 2, 0) = 1
This together gives:
D(n−2, 4) = 1+D(n−2, 3) = 1+1+D(n−2, 2) = 1+1+D(n−2, 1) = 1+1+1 = 3

With this distance random variable we can define the event that pawn k catches up
to pawn j.

Definition 4.18. Let k, j ∈ Q where k ̸= j. Then Ek,j := {D(k, TCn) > D(j, TCn)}
is the event that pawn k catches up to pawn j.

In our calculation we use conditional probabilities. We look at the probability that
we start with a certain letter (a or b), given the event Ek,k−1.
P (W1 = a | Ek,k−1) and P (W1 = b | Ek,k−1).

Let w = W1 · · ·WT , we want to know the value of E [TCn].
We have defined TCn = TCn(Q) = min{t | |Vt| = 1}, where (Vt)t∈N is the Markov
chain of automaton Cn with V0 = Q. There must be precisely one k ∈ {1, . . . , n}

49

such that pawn k catches up to pawn k− 1, in other words ∃!k ∈ Q such that event
Ek,k−1 takes place. This means we can write E [TCn] as follows.

E [TCn] =
n∑

k=1

P (Ek,k−1) · E [TCn | Ek,k−1] (4.3)

Therefore, we have to calculate P (Ek,k−1) and E [TCn | Ek,k−1] for all k = 1, . . . , n.
For P (Ek,k−1) we have the following result.

Lemma 4.19. Let w ∈ Σ∗ be a reset word, then the following holds.

1. P (E2,1) = · · · = P (En,n−1) = 1
n−p

.

2. P (E1,n) = (1 − p) · 1
n−p

= 1−p
n−p

Proof. Since for pawn 1 to catch up to pawn n, we can never start with the letter
a, We have:

P (E1,n) = (1 − p)P (E2,1) (4.4)

For k = 2, . . . , n− 1 we have the following calculation.

P (Ek,k−1) = p · P (Ek,k−1) + (1 − p) · P (Ek+1,k)

(1 − p)P (Ek,k−1) = (1 − p)P (Ek+1,k)

P (Ek,k−1) = P (Ek+1,k)

This results in the following.

P (E2,1) = · · · = P (En,n−1) (4.5)

Besides Equations 4.5 and 4.4 we also know that 1 =
∑n

k=1 P (Ek,k−1). Together,
this gives us the following.

1 = P (E1,n) +
n∑

k=2

P (Ek,k−1)

= (1 − p)P (E2,1) + (n− 1)P (E2,1)

= (n− p)P (E2,1)

With this we can conclude that P (E2,1) = 1
n−p

. This in turn, together with Equa-
tions 4.5 and 4.4, gives us our proposition. □

Now we are going to look at the values E [TCn | Ek,k−1] (for all k = 1, . . . , n).
We can calculate these values by conditioning on with which letter (a or b) we start.

E [TCn | Ek,k−1] =P (W1 = a | Ek,k−1)E [TCn | Ek,k−1 & W1 = a]

+ P (W1 = b | Ek,k−1)E [TCn | Ek,k−1 & W1 = b]

To be able to use this we need to know P (V1 = V0 ◦ l | Ek,k−1) for l = a, b.

50

Lemma 4.20. Let w ∈ Σ∗ be a reset word, then the following holds.

• P (W1 = b | E1,n) = 1

• P (W1 = b | Ek,k−1) = 1 − p ∀k = 2, . . . , n− 1.

• P (W1 = b | En,n−1) = (1 − p)2

Proof. If we start with an a, we have that pawn n always catches up with pawn 1,
but never the other way around. Hence, if we know that pawn 1 catches up with
pawn n, we always start with the letter b. So P (W1 = b | E1,n) = 1.

For k ∈ {2, . . . , n} we use Bayes Theorem: P (A | B) = P(A)·P(B|A)
P(B)

.

For k = 2, . . . , n− 1 we have:

P (W1 = b | Ek,k−1) =
P (W1 = b) · P (Ek,k−1 | W1 = b)

P (Ek,k−1)

=
(1 − p)P (Ek+1,k)

P (Ek,k−1)

=
(1 − p)P (Ek,k−1)

P (Ek,k−1)
= 1 − p

For k = n we get (by using Equations 4.4 and 4.5):

P (W1 = b | En,n−1) =
P (W1 = b) · P (En,n−1 | W1 = b)

P (En,n−1)

=
(1 − p)P (E1,n)

P (En,n−1)

=
(1 − p) (1 − p)P (En,n−1)

P (En,n−1)
= (1 − p)2

□

Lemma 4.21. Let w ∈ Σ∗ be a reset word, then the following holds.

• P (W1 = a | E1,n) = 0

• P (W1 = a | Ek,k−1) = p ∀k = 2, . . . , n− 1.

• P (W1 = a | En,n−1) = p (2 − p)

Proof. This lemma is proven by Lemma 4.20 and the fact that ∀k = 1, . . . , n:

P (W1 = a | Ek,k−1) + P (W1 = b | Ek,k−1) = 1

□

Now we can for all k ∈ {1, . . . , n} express E [TCn | Ek,k−1] in terms of E [TCn | E1,n−1].

51

Proposition 4.22. Let k = 2, . . . , n− 1, then we have the following.

• E [TCn | E1,n] = 1 + n−2
1−p

+ p2−np+n
p(2−p)

+ E [TCn | E1,n−1]

• E [TCn | Ek,k−1] = n−k
1−p

+ p2−np+n
p(2−p)

+ E [TCn | E1,n−1]

• E [TCn | En,n−1] = p2−np+n
p(2−p)

+ E [TCn | E1,n−1]

Proof. We can calculate E [TCn | Ek,k−1] by

E [TCn | Ek,k−1] =P (W1 = a | Ek,k−1)E [TCn | Ek,k−1 & W1 = a]

+ P (W1 = b | Ek,k−1)E [TCn | Ek,k−1 & W1 = b]

With Lemma 4.20 and 4.21 we get the following calculations.
For k = 2, . . . , n− 1 we get:

E [TCn | Ek,k−1] = p · E [TCn | Ek,k−1 & W1 = a] +

(1 − p) · E [TCn | Ek,k−1 & W1 = b]

= p · (E [TCn | Ek,k−1] + 1) + (1 − p) · (E [TCn | Ek+1,k] + 1)

= p + 1 − p + p · E [TCn | Ek,k−1] + (1 − p) · E [TCn | Ek+1,k]

= 1 + p · E [TCn | Ek,k−1] + (1 − p) · E [TCn | Ek+1,k]

This gives:

(1 − p)E [TCn | Ek,k−1] = 1 + (1 − p)E [TCn | Ek+1,k]

E [TCn | Ek,k−1] =
1

1 − p
+ E [TCn | Ek+1,k]

By repetition of these calculations, this translates to:

E [TCn | Ek,k−1] =
n− k

1 − p
+ E [TCn | En,n−1] (4.6)

With Equation 4.6 (with k = 2) and the fact that P (W1 = b | E1,n) = 1 and
P (W1 = a | E1,n) = 0 we get:

E [TCn | E1,n] = 0 + 1 · E [TCn | E1,n & W1 = b]

= 1 + E [TCn | E2,1]

= 1 +
n− 2

1 − p
+ E [TCn | En,n−1]

(4.7)

With the use of Equation 4.7 and Lemma 4.20 and 4.21, we get for k = n the
following.

E [TCn | En,n−1] = p (2 − p)E [TCn | En,n−1 & W1 = a] +

(1 − p)2 E [TCn | En,n−1 & W1 = b]

= p (2 − p) (E [TCn | E1,n−1] + 1) + (1 − p)2 (E [TCn | E1,n] + 1)

= p (2 − p) + (1 − p)2 + p (2 − p)E [TCn | E1,n−1] + (1 − p)2 E [TCn | E1,n]

= 1 + p (2 − p)E [TCn | E1,n−1] + (1 − p)2
(

1 +
n− 2

1 − p
+ E [TCn | En,n−1]

)
= 1 + p (2 − p)E [TCn | E1,n−1] + (1 − p)2 + (n− 2) (1 − p)

+ (1 − p)2 E [TCn | En,n−1]

52

This gives:(
1 − (1 − p)2

)
E [TCn | En,n−1] = 1 + (1 − p)2 + (n− 2) (1 − p) + p (2 − p)E [TCn | E1,n−1]

p (2 − p)E [TCn | En,n−1] = p2 − np + n + p (2 − p)E [TCn | E1,n−1]

E [TCn | En,n−1] =
p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

Substitute this in earlier computations about E [TCn | E1,n] and E [TCn | Ek,k−1], then
we get:

E [TCn | E1,n] = 1 +
n− 2

1 − p
+ E [TCn | En,n−1]

= 1 +
n− 2

1 − p
+

p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

And for k = 2, . . . , n− 1 we get:

E [TCn | Ek,k−1] =
n− k

1 − p
+ E [TCn | En,n−1]

=
n− k

1 − p
+

p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

With this we have proven all items in our proposition. □

Proposition 4.22, Lemma 4.19 and the fact that
∑n

k=1 k = 1
2
n(n + 1) together gives

us our first (semi) result about E [TCn].

Proposition 4.23.

E [TCn] =
n− p− 1

n− p
+

p2 − np + n

p(2 − p)
+

(n− 2)(n− 1)

2(n− p)(1 − p)
+ E [TCn | E1,n−1]

Proof. This proof consists of a calculation which combines Proposition 4.22, Lemma
4.19 and Equations 4.3.

E [TCn] =
n∑

k=1

P (Ek,k−1) · E [TCn | Ek,k−1]

=
1 − p

n− p
· E [TCn | E1,n] +

n∑
k=2

(
1

n− p
· E [TCn | Ek,k−1]

)
=

1 − p

n− p
· E [TCn | E1,n] +

1

n− p

n∑
k=2

E [TCn | Ek,k−1]

=
1 − p

n− p

(
1 +

n− 2

1 − p
+

p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

)
+

1

n− p

n∑
k=2

(
n− k

1 − p
+

p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

)

53

=
1 − p

n− p
+

n− 2

n− p
+

(p2 − np + n) (1 − p)

p (2 − p) (n− p)
+

1 − p

n− p
E [TCn | E1,n−1]

+
n− 1

n− p

(
p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

)
+

1

(n− p) (1 − p)

n∑
k=2

(n− k)

=
n− p− 1

n− p
+

p2 − np + n

p (2 − p)
+

1

(n− p) (1 − p)

(
n (n− 1) −

n∑
k=2

k

)

+

(
1 − p

n− p
+

n− 1

n− p

)
E [TCn | E1,n−1]

=
n− p− 1

n− p
+

p2 − np + n

p (2 − p)
+

1

(n− p) (1 − p)

(
n (n− 1) −

(
1

2
n (n + 1) − 1

))
+ E [TCn | E1,n−1]

=
n− p− 1

n− p
+

p2 − np + n

p (2 − p)
+

(n− 2) (n− 1)

2 (n− p) (1 − p)
+ E [TCn | E1,n−1]

□

As we can see in Proposition 4.23 we still can’t know what E [TCn] is without the
value of E [TCn | E1,n−1]. Calculating this takes a bit more work, first we need some
lemmas and propositions.

Lemma 4.24. Let 1 ≤ m ≤ n− 1. Then P (En,n−m) = m
m+1

P (En,n−m−1)

Proof. The proof of this lemma is given in Appendix A.1 □

Lemma 4.25. Let 1 ≤ r ≤ n− 1, then we have that the following holds:

P (Ek,k−r) =

{
r−p
n−p

k = 1, . . . , r
r

n−p
k = r + 1, . . . , n

(For all k = 1, . . . , r we use k − r ≡ n + k − r.)

Proof. This proof uses Lemma 4.19 and Lemma 4.24 and can be found in Appendix
A.2. □

With Lemma 4.25 we can prove the following two lemmas about P (W1 = l | Er,s)
where r, s = 1, . . . , n, r ̸= s and l = a, b.

Lemma 4.26. Let s = r + 1 (mod n) then we have the following results about
P (W1 = l | Er,s) where r = 1, . . . , n and l = a, b.

P (W1 = l | Ek−1,k) =

{
p if l = a and k = 2, . . . , n− 1

1 − p if l = b and k = 2, . . . , n− 1

54

P (W1 = a | En−1,n) =
p (n− 2)

n− 1 − p

P (W1 = b | En−1,n) =
(1 − p) (n− 1)

n− 1 − p

P (W1 = a | En,1) =
p (n− p)

n− 1

P (W1 = b | En,1) =
(1 − p) (n− 1 − p)

n− 1

Proof. To prove this lemma we are going to calculate all values using Lemma 4.25
(and 4.19), Bayes Theorem and the fact that
P (W1 = a | E1,2) + P (W1 = b | E1,2) = 1.

P (W1 = a | E1,2) =
P (W1 = a) · P (E1,2 | W1 = a)

P (E1,2)

=
p · P (E1,2)

P (E1,2)
= p

P (W1 = b | E1,2) = 1 − P (W1 = a | E1,2) = 1 − p

The same we can do for P (W1 = a | Ek−1,k) and P (W1 = b | Ek−1,k), where k =
2, . . . , n− 1. This gives us:

P (W1 = a | E1,2) = · · · = P (W1 = a | En−2,n−1) = p

P (W1 = b | E1,2) = · · · = P (W1 = b | En−2,n−1) = 1 − p

P (W1 = a | En−1,n) =
P (W1 = a) · P (En−1,n | W1 = a)

P (En−1,n)

=
p · P (En−1,1)

P (En−1,n)

=
p · n−2

n−p

n−1−p
n−p

=
p (n− 2)

n− 1 − p

P (W1 = b | En−1,n) = 1 − P (W1 = a | En−1,n) =
(1 − p) (n− 1)

n− 1 − p

P (W1 = a | En,1) =
P (W1 = a) · P (En,1 | W1 = a)

P (En,1)

=
p · 1

P (En,1)

=
p

n−1
n−p

=
p (n− p)

n− 1

P (W1 = b | En,1) = 1 − P (W1 = a | En,1) =
p (n− 1 − p)

n− 1

□

55

Lemma 4.27. Let 1 ≤ t ≤ n − 3 and s = r + n − t − 1 (mod n) then we have the
following results about P (W1 = l | Er,s) where r = 1, . . . , n and l = a, b.

P (W1 = l | Ek,k+n−1−t) =

{
p if l = a and k = 1, . . . , t

1 − p if l = b and k = 1, . . . , t

P (W1 = a | Et+1,n) =
pt

t + 1 − p

P (W1 = b | Et+1,n) =
(1 − p) (t + 1)

t + 1 − p

P (W1 = l | Ek,k−1−t) =

{
p if l = a and k = t + 2, . . . , n− 1

1 − p if l = b and k = t + 2, . . . , n− 1

P (W1 = a | En,n−t−1) =
p (t + 2 − p)

t + 1

P (W1 = b | En,n−t−1) =
(1 − p) (t + 1 − p)

t + 1

Proof. This proof is analogue to the proof of Lemma 4.26 and can be found in
Appendix A.3. □

With all these conditional probabilities we can start computing E [TCn | E1,n−1]. This
we do by first computing E [TCn | E1,n−m], where 1 ≤ m ≤ n− 3.

Proposition 4.28. Let 1 ≤ m ≤ n− 3, then the following holds.

E [TCn | E1,n−m] =
n− 2p

2p (1 − p)2
+

m

2 (1 − p)2 (m + 1 − p)

+
m− p

2 (m + 1 − p)
E [TCn | E1,n−m+1] +

m + 2 − p

2 (m + 1 − p)
E [TCn | E1,n−m−1]

Proof. To prove this we again use:

E [TCn | Ek,k−1] =P (W1 = a | Ek,k−1)E [TCn | Ek,k−1 & W1 = a]

+ P (W1 = b | Ek,k−1)E [TCn | Ek,k−1 & W1 = b]

With our knowledge about P (V1 = V0 ◦ l | Ek,k−1), where l = a, b and k = 1, . . . , n,
obtained in lemmas 4.26 and 4.27.

First we can see that E [TCn | E1,n−m] only depends on m, p and E [TCn | Em+1,n].

E [TCn | E1,n−m] = P (W1 = a | E1,n−m) (E [TCn | E1,n−m] + 1)

+ P (W1 = b | E1,n−m) (E [TCn | E2,n−m+1] + 1)

= 1 + p · E [TCn | E1,n−m] + (1 − p) · E [TCn | E2,n−m+1]

(1 − p)E [TCn | E1,n−m] = 1 + (1 − p)E [TCn | E2,n−m+1]

E [TCn | E1,n−m] =
1

1 − p
+ E [TCn | E2,n−m+1]

...

E [TCn | E1,n−m] =
m

1 − p
+ E [TCn | Em+1,n]

56

So we like to know what E [TCn | Em+1,n] is.

E [TCn | Em+1,n] = P (W1 = a | Em+1,n) (E [TCn | Em+1,1] + 1)

+ P (W1 = b | Em+1,n) (E [TCn | Em+2,1] + 1)

=
pm

m + 1 − p
(E [TCn | Em+1,1] + 1) +

(1 − p) (m + 1)

m + 1 − p
(E [TCn | Em+2,1] + 1)

= 1 +
pm

m + 1 − p
E [TCn | Em+1,1] +

(1 − p) (m + 1)

m + 1 − p
E [TCn | Em+2,1]

This means we have to take a look at E [TCn | Em+1,1] and E [TCn | Em+2,1].
For E [TCn | Em+1,1] we find the following.

E [TCn | Em+1,1] = P (W1 = a | Em+1,1) (E [TCn | Em+1,1] + 1)

+ P (W1 = b | Em+1,1) (E [TCn | Em+2,2] + 1)

= 1 + p · E [TCn | Em+1,1] + (1 − p) · E [TCn | Em+2,2]

(1 − p)E [TCn | Em+1,1] = 1 + (1 − p)E [TCn | Em+2,2]

E [TCn | Em+1,1] =
1

1 − p
+ E [TCn | Em+2,2]

...

E [TCn | Em+1,1] =
n−m− 1

1 − p
+ E [TCn | En,n−m]

E [TCn | En,n−m] = P (W1 = a | n · · ·n−m) (E [TCn | E1,n−m] + 1)

+ P (W1 = b | n · · ·n−m) (E [TCn | E1,n−m+1] + 1)

= 1 +
p (m + 1 − p)

m
E [TCn | E1,n−m] +

(1 − p) (m− p)

m
E [TCn | E1,n−m+1]

E [TCn | Em+1,1] =
n−m− 1

1 − p
+ 1 +

p (m + 1 − p)

m
E [TCn | E1,n−m]

+
(1 − p) (m− p)

m
E [TCn | E1,n−m+1]

(4.8)

For E [TCn | Em+2,1] we find the following.

E [TCn | Em+2,1] = P (W1 = a | Em+2,1) (E [TCn | Em+2,1] + 1)

+ P (W1 = b | Em+2,1) (E [TCn | Em+3,2] + 1)

= 1 + p · E [TCn | Em+2,1] + (1 − p) · E [TCn | Em+3,2]

(1 − p)E [TCn | Em+2,1] = 1 + (1 − p)E [TCn | Em+3,2]

E [TCn | Em+2,1] =
1

1 − p
+ E [TCn | Em+3,2]

...

E [TCn | Em+2,1] =
n−m− 2

1 − p
+ E [TCn | En,n−m−1]

57

E [TCn | En,n−m−1] = P (W1 = a | En,n−m−1) (E [TCn | E1,n−m−1] + 1)

+ P (W1 = b | En,n−m−1) (E [TCn | E1,n−m] + 1)

= 1 +
p (m + 2 − p)

m + 1
E [TCn | E1,n−m−1]

+
(1 − p) (m + 1 − p)

m + 1
E [TCn | E1,n−m]

E [TCn | Em+2,1] =
n−m− 2

1 − p
+ 1 +

p (m + 2 − p)

m + 1
E [TCn | E1,n−m−1]

+
(1 − p) (m + 1 − p)

m + 1
E [TCn | E1,n−m]

(4.9)

Equations 4.8 and 4.9 together with our first computations about E [TCn | E1,n−m]
gives us the following recursive formula for E [TCn | E1,n−m].

E [TCn | E1,n−m] =
m

1 − p
+ E [TCn | Em+1,n]

=
m

1 − p
+ 1 +

pm

m + 1 − p
E [TCn | Em+1,1] +

(1 − p) (m + 1)

m + 1 − p
E [TCn | Em+2,1]

=
m

1 − p
+ 1 +

pm

m + 1 − p

(
n−m− 1

1 − p
+ 1 +

p (m + 1 − p)

m
E [TCn | E1,n−m]

+
(1 − p) (m− p)

m
E [TCn | E1,n−m+1]

)
+

(1 − p) (m + 1)

m + 1 − p

(
n−m− 2

1 − p
+ 1 +

p (m + 2 − p)

m + 1
E [TCn | E1,n−m−1]

+
(1 − p) (m + 1 − p)

m + 1
E [TCn | E1,n−m]

)
= 1 +

m

1 − p
+

pm (n−m− 1)

(m + 1 − p) (1 − p)
+

pm

m + 1 − p
+ p2E [TCn | E1,n−m]

+
p (1 − p) (m− p)

m + 1 − p
E [TCn | E1,n−m+1] +

(m + 1) (n−m− 2)

m + 1 − p

+
(1 − p) (m + 1)

m + 1 − p
+

p (1 − p) (m + 2 − p)

m + 1 − p
E [TCn | E1,n−m−1]

+ (1 − p)2 E [TCn | E1,n−m]

(
1 − p2 − (1 − p)2

)
E [TCn | E1,n−m] = 1 +

m

1 − p
+

pm (n−m− 1)

(m + 1 − p) (1 − p)
+

pm

m + 1 − p

+
p (1 − p) (m− p)

m + 1 − p
E [TCn | E1,n−m+1]

+
(m + 1) (n−m− 2)

m + 1 − p
+

(1 − p) (m + 1)

m + 1 − p

+
p (1 − p) (m + 2 − p)

m + 1 − p
E [TCn | E1,n−m−1]

58

2p (1 − p)E [TCn | E1,n−m] = 1 +
m

1 − p
+

pm (n−m− 1)

(m + 1 − p) (1 − p)

+
pm

m + 1 − p
+

p (1 − p) (m− p)

m + 1 − p
E [TCn | E1,n−m+1]

+
(m + 1) (n−m− 2)

m + 1 − p
+

(1 − p) (m + 1)

m + 1 − p

+
p (1 − p) (m + 2 − p)

m + 1 − p
E [TCn | E1,n−m−1]

E [TCn | E1,n−m] =
1

2p (1 − p)
+

m

2p (1 − p)2
+

m (n−m− 1)

2 (m + 1 − p) (1 − p)2
+

m

2 (m + 1 − p) (1 − p)

+
m− p

2 (m + 1 − p)
E [TCn | E1,n−m+1] +

(m + 1) (n−m− 2)

2p (1 − p) (m + 1 − p)

+
m + 1

2p (m + 1 − p)
+

m + 2 − p

2 (m + 1 − p)
E [TCn | E1,n−m−1]

=
1 − p + m

2p (1 − p)2
+

(m + 1 − p) (n−m− 1 − p) + mp

2p (1 − p)2 (m + 1 − p)

+
m− p

2 (m + 1 − p)
E [TCn | E1,n−m+1] +

m + 2 − p

2 (m + 1 − p)
E [TCn | E1,n−m−1]

=
1 − p + m + n− 1 −m− p

2p (1 − p)2
+

mp

2p (1 − p)2 (m + 1 − p)

+
m− p

2 (m + 1 − p)
E [TCn | E1,n−m+1] +

m + 2 − p

2 (m + 1 − p)
E [TCn | E1,n−m−1]

=
n− 2p

2p (1 − p)2
+

m

2 (1 − p)2 (m + 1 − p)
+

m− p

2 (m + 1 − p)
E [TCn | E1,n−m+1]

+
m + 2 − p

2 (m + 1 − p)
E [TCn | E1,n−m−1]

With this we have proved the proposition. □

With the use of Proposition 4.28 we can prove that E [TCn | E1,n−m] can be expressed
in terms of m and E [TCn | E1,n−m−1].

Proposition 4.29. For 1 ≤ m ≤ n− 3, the following holds:

E [TCn | E1,n−m] =
(n− 2p) (m + 1 − p)

p (1 − p)2 (m + 2 − p)
+

m

(1 − p)2 (m + 2 − p)
+

(1 − p) (2 − p)

(m + 1 − p) (m + 2 − p)

+
(n− 2) (2 − p)

(m + 1 − p) (m + 2 − p)
+

(1 − p) (p2 − np + n)

p (m + 1 − p) (m + 2 − p)

+
m∑
i=2

(i− 1) (i− p)

(1 − p)2 (m + 1 − p) (m + 2 − p)

+
m∑
i=2

(n− 2p) (i− p)2

p (1 − p)2 (m + 1 − p) (m + 2 − p)
+ E [TCn | E1,n−m−1]

59

Proof. The proof goes by induction on m and uses Proposition 4.28. The full proof
is stated in Appendix A.4. □

We can further rewrite our result from Proposition 4.29.

Corollary 4.30. For 1 ≤ m ≤ n− 3, the following holds.

E [TCn | E1,n−m]

=
−2 (m + 1) p3 + 1

2
(m + 1) (3m + 2n + 8) p2 − 1

3
(m + 1) (m + 2) (m + 3n + 3) p

p (1 − p)2 (m + 1 − p) (m + 2 − p)

+
1
6

(2m + 3) (m + 1) (m + 2)n

p (1 − p)2 (m + 1 − p) (m + 2 − p)
+ E [TCn | E1,n−m−1]

Proof. To prove this we take Proposition 4.29 and calculate the finite sums. For the
complete calculations see Appendix A.5. □

With this corollary we can calculate E [TCn | E1,2] explicitly.

Proposition 4.31. E [TCn | E1,2] can be calculated as follows.

E [TCn | E1,2] =
(n− 1) (2n3 − 8n2p− n2 + 15np2 − 2np− 12p3 + 6p2)

6p (1 − p)2 (n− 1 − p) (n− p)

Proof. For m = n− 3 Corollary 4.30 gives us the following.

E [TCn | E1,3] =

=
−2 (n− 2) p3 + 1

2
(n− 2) (5n− 1) p2 − 4

3
(n− 2) (n− 1)np + 1

6
(2n− 3) (n− 2) (n− 1)n

p (1 − p)2 (n− 2 − p) (n− 1 − p)

+ E [TCn | E1,2]

(4.10)

We can also express E [TCn | E1,2] in terms of E [TCn | E1,3] by the following calcula-
tions (using Proposition 4.26).

E [TCn | E1,2] =P (W1 = a | E1,2) (E [TCn | E1,2] + 1)

+ P (W1 = b | E1,2) (E [TCn | E2,3] + 1)

=1 + p · E [TCn | E1,2] + (1 − p) · E [TCn | E2,3]

(1 − p)E [TCn | E1,2] =1 + (1 − p)E [TCn | E2,3]

E [TCn | E1,2] =
1

1 − p
+ E [TCn | E2,3]

...

=
n− 2

1 − p
+ E [TCn | En−1,n]

E [TCn | En−1,n] =P (W1 = a | En−1,n) (E [TCn | En−1,1] + 1)

+ P (W1 = b | En−1,n) (E [TCn | En,1] + 1)

=1 +
p (n− 2)

n− 1 − p
E [TCn | En−1,1] +

(1 − p) (n− 1)

n− 1 − p
E [TCn | En,1]

60

We can express E [TCn | En−1,1] as follows.

E [TCn | En−1,1] =P (W1 = a | En−1,1) (E [TCn | En−1,1] + 1)

+ P (W1 = b | En−1,1) (E [TCn | En,2] + 1)

=1 + p · E [TCn | En−1,1] + (1 − p) · E [TCn | En,2]

(1 − p)E [TCn | En−1,1] =1 + (1 − p)E [TCn | En,2]

E [TCn | En−1,1] =
1

1 − p
+ E [TCn | En,2]

=
1

1 − p
+ P (W1 = a | En,2) (E [TCn | E1,2] + 1)

+ P (W1 = b | En,2) (E [TCn | E1,3] + 1)

=
1

1 − p
+ 1 +

p (n− 1 − p)

n− 2
E [TCn | E1,2] +

(1 − p) (n− 2 − p)

n− 2
E [TCn | E1,3]

We can express E [TCn | En,1] as follows.

E [TCn | En,1] =P (W1 = a | En,1) · 1 + P (W1 = b | En,1) (E [TCn | E1,2] + 1)

=
p (n− p)

n− 1
+

(1 − p) (n− 1 − p)

n− 1
E [TCn | E1,2] +

(1 − p) (n− 1 − p)

n− 1

=1 +
(1 − p) (n− 1 − p)

n− 1
E [TCn | E1,2]

All this together gives the following expression of E [TCn | E1,2].

E [TCn | E1,2] =
n− 2

1 − p
+ 1 +

p (n− 2)

n− 1 − p

(
1

1 − p
+ 1 +

p (n− 1 − p)

n− 2
E [TCn | E1,2]

+
(1 − p) (n− 2 − p)

n− 2
E [TCn | E1,3]

)
+

(1 − p) (n− 1)

n− 1 − p

(
1 +

(1 − p) (n− 1 − p)

n− 1
E [TCn | E1,2]

)
=
n− 2

1 − p
+ 1 +

p (n− 2)

(n− 1 − p) (1 − p)
+

p (n− 2)

n− 1 − p
+ p2E [TCn | E1,2]

+
p (1 − p) (n− 2 − p)

n− 1 − p
E [TCn | E1,3] +

(1 − p) (n− 1)

n− 1 − p

+ (1 − p)2 E [TCn | E1,2]

(
1 − p2 − (1 − p)2

)
E [TCn | E1,2] =1 +

n− 2

1 − p
+

p (n− 2)

(n− 1 − p) (1 − p)

p (n− 2) + (1 − p) (n− 1)

n− 1 − p

+
p (1 − p) (n− 2 − p)

n− 1 − p
E [TCn | E1,3]

2p (1 − p)E [TCn | E1,2] =1 +
n− 2

1 − p
+

p (n− 2)

(n− 1 − p) (1 − p)

n− 1 − p

n− 1 − p

+
p (1 − p) (n− 2 − p)

n− 1 − p
E [TCn | E1,3]

61

E [TCn | E1,2] =
2

2p (1 − p)
+

n− 2

2p (1 − p)2
+

n− 2

2 (n− 1 − p) (1 − p)2

+
n− 2 − p

2 (n− 1 − p)
E [TCn | E1,3]

Now substitute Equation 4.10 into the expression of E [TCn | E1,2] stated above. With
this we can calculate E [TCn | E1,2].
To improve readability, let’s define B as follows.

B :=
−2 (n− 2) p3 + 1

2
(n− 2) (5n− 1) p2 − 4

3
(n− 2) (n− 1)np + 1

6
(2n− 3) (n− 2) (n− 1)n

p (1 − p)2 (n− 2 − p) (n− 1 − p)

With the calculation below we get exactly what we wanted to prove.

E [TCn | E1,2] =
n− 2

2p (1 − p)2
+

2

2p (1 − p)
+

n− 2

2 (1 − p)2 (n− 1 − p)

+
n− 2 − p

2 (n− 1 − p)
(B + E [TCn | E1,2])

=
n2 − 2np− n + 2p2

2p (1 − p)2 (n− 1 − p)
+

n− 2 − p

2 (n− 1 − p)
B +

n− 2 − p

2 (n− 1 − p)
E [TCn | E1,2]

n− p

2 (n− 1 − p)
E [TCn | E1,2] =

n2 − 2np− n + 2p2

2p (1 − p)2 (n− 1 − p)
+

n− 2 − p

2 (n− 1 − p)
B

E [TCn | E1,2] =
n2 − 2np− n + 2p2

p (1 − p)2 (n− p)
+

n− 2 − p

n− p
B

=
(n− 1) (2n3 − 8n2p− n2 + 15np2 − 2np− 12p3 + 6p2)

6p (1 − p)2 (n− 1 − p) (n− p)

□

With all our propositions, lemmas and corollaries we now can prove Theorem 4.15.

Continuation of proof of Theorem 4.15. Substitute the result from Proposition 4.31
in the result of Corollary 4.30, to calculate E [TCn | E1,n−1]. We use the computer to
calculate the finite sum.

E [TCn | E1,n−1] =

=
n−3∑
m=1

(−2 (m + 1) p3 + 1
2

(m + 1) (3m + 2n + 8) p2 − 1
3

(m + 1) (m + 2) (m + 3n + 3) p

p (1 − p)2 (m + 1 − p) (m + 2 − p)

+
1
6

(2m + 3) (m + 1) (m + 2)n

p (1 − p)2 (m + 1 − p) (m + 2 − p)

)
+ E [TCn | E1,2]

=
(n− 3) (n3 (2 − p) − 4n2 (2 − p) p− n (6p3 − 15p2 + 2p + 2) − 2p (5p− 4))

6p (1 − p)2 (2 − p) (n− 1 − p)

+
(n− 1) (2n3 − 8n2p− n2 + 15np2 − 2np− 12p3 + 6p2)

6p (1 − p)2 (n− 1 − p) (n− p)

62

At last, we substitute this expression of E [TCn | E1,n−1] in our result from Proposition
4.23.

E [TCn] =
n− p− 1

n− p
+

p2 − np + n

p (2 − p)
+

(n− 2) (n− 1)

2 (n− p) (1 − p)
+ E [TCn | E1,n−1]

=
n− p− 1

n− p
+

p2 − np + n

p (2 − p)
+

(n− 2) (n− 1)

2 (n− p) (1 − p)

+
(n− 3) (n3 (2 − p) − 4n2 (2 − p) p− n (6p3 − 15p2 + 2p + 2) − 2p (5p− 4))

6p (1 − p)2 (2 − p) (n− 1 − p)

+
(n− 1) (2n3 − 8n2p− n2 + 15np2 − 2np− 12p3 + 6p2)

6p (1 − p)2 (n− 1 − p) (n− p)

=
n3 − 3n2p + 6np2 − 3np− n− 6p2 + 6p

6p (1 − p)2

With this Theorem 4.15 is proven. □

Remarks on E[TCn]

The dominating part of E[TCn] is 1
6p(1−p)2

n3. Therefore, by solving
∂
(

1

6p(1−p)2
n3

)
∂p

= 0,

we can determine, for n large enough, for which p ∈ (0, 1) E[TCn] has a local minimum
or local maximum.

∂
(

1
6p(1−p)2

n3
)

∂p
=

0 · 6p (1 − p)2 − n3
(
6 (1 − p)2 − 12p (1 − p)

)
36p2 (1 − p)4

=
−6n3

(
(1 − p)2 − 2p (1 − p)

)
36p2 (1 − p)4

=
−n3 ((1 − p) − 2p)

6p2 (1 − p)3

=
n3 (3p− 1)

6p2 (1 − p)3

n3(3p−1)

6p2(1−p)3
= 0 for p = 1

3
. By looking at the second derivative at p = 1

3
we can check

whether p = 1
3

gives a local minimum or local maximum of E[TCn].

∂2
(

1
6p(1−p)2

n3
)

∂p2
=

18n3p2 (1 − p)3 − (3p− 1)n3
(
12p (1 − p)3 − 18p2 (1 − p)2

)
36p4 (1 − p)6

∂2
(

1
6p(1−p)2

n3
)

∂p2

(
1

3

)
=

18n3 1
3

2 (
1 − 1

3

)3
361

3

4 (
1 − 1

3

)6
≈ 15.1875n3 ≥ 0

63

Thus, for n large enough, E[TCn] has a local minimum at p = 1
3
.

In 2019, Anouk Jansen proved that for all n ∈ N the following holds
n3 − 3

2
n2 + 1

2
≤ E[TCn] ≤ 4n3log(n) + O(n3). [9]

In 2014, Vladimir V. Gusev proved that for n, a positive odd integer, the expected
number of letters to synchronize {1, n+1

2
} in the Černý automaton Cn is equal to

(n−1)((n−1)2+(1−p)(3n−5)+4(1−p)2)
8p(1−p)2

= O
(

1
8p(1−p)2

n3
)

. [6]

With Vladimir V. Gusev result we can only bound E[TCn]

(E[TCn] ≥ (n−1)((n−1)2+(1−p)(3n−5)+4(1−p)2)
8p(1−p)2

).

In this thesis we have improved both statements, since Theorem 4.15 gives the exact
value of E[TCn].

With Theorem 4.15 we observe that E[TCn] = O
(

1
6p(1−p)2

n3
)

. This indicates that

the expected number of letters to synchronize Q isn’t much larger than the expected
number of letters to synchronize {1, n+1

2
} (in the Černý automaton).

4.3 Automata with large expected length of a re-

set word

In the previous section we started looking at the expected length of a reset word,
in which we took a closer look at the Černý automaton Cn. But there are a lot
more different synchronizing automata with n states. What can we say about their
expected length of a reset word?
We know that the shortest reset word for the Černý automaton Cn has length
(n− 1)2. To the present days, we haven’t found a synchronizing automaton with n
states which has a shortest reset word w ∈ Σ∗ with |w| > (n− 1)2. But does this
mean that the Černý automaton Cn also has the largest expected length of a reset
word?

In this section we are going to look at all synchronizing automata A = (Q,Σ, δ)
with n states and look at which of these automata has the largest expected length
of a reset word.
Here we choose Σ = {a, b}. In theory we could take every alphabet with |Σ| ≥ 2.
Note that if |Σ| = 1, then the expected length of a reset word of a synchronizing
automaton is always equal to one. But if we would choose Σ to be infinitely large,
then the largest expected length of a reset word also becomes infinitely large. To
let our values be relatively small but still interesting to research we choose |Σ| = 2.

First let’s recall some definitions and remarks from Section 4.2.

Definition 4.8. For t ≥ 1 we define the stochastic process (Wt)t∈N with Wt ∈ Σ by
the following probabilities.

P(Wt = a) = p P(Wt = b) = 1 − p

64

Remark. By definition of the stochastic process (Wt)t∈N, Wt is independent of the
time t ∈ N and independent of any other letter Wr (r ∈ N) for r ̸= t.

Since P(Wt = a) and P(Wt = b) don’t depend on time t ∈ N, we use the notation
P(Wt = a) = P(a) and P(Wt = b) = P(b)

Definition 4.9. We define the Markov chain (Vt)t∈N associated with a particu-
lar automaton A, with Vt ∈ P(Q)\∅ as follows.
Start in some subset S ⊆ Q, say V0 := S and for t ≥ 1 we have Vt := Vt−1 ◦Wt.

Since P(Wt = a) and P(Wt = b) don’t depend on time t ∈ N, we have that
P(Vt = Y | Vt−1 = Z) = P(Vm+t = Y | Vm+t−1 = Z) holds for all m ∈ N. So
the chain (Vt)t∈N is indeed a Markov chain (see Definitions 4.4 and 4.5).

Remark. When X = Vt then we have the following transition probabilities:
P(Vt+1 = X ◦ a) = p
P(Vt+1 = X ◦ b) = 1 − p

Definition 4.10. Let S ⊆ Q, then we define TA(S) := min{t | |Vt| = 1}, where
(Vt)t∈N is the Markov chain of automaton A with V0 = S.
We write TA := TA(Q).

Remark. (|Vt|)t∈N is a decreasing sequence and at time TA(S) we have come across
a reset word for S in the automaton A (W1 · · ·WTA(S)), since |VTA(S)| = 1.
So q1 ◦W1 · · ·WTA(S) = q2 ◦W1 · · ·WTA(S) for all q1, q2 ∈ S.

Definition 4.32. Let S ⊆ Q. Then we define the following values.

d(S) =

{
0 if |S| = 1

min
{
k | ∃v ∈ Σk with |S ◦ v| = 1

}
if |S| ≥ 2

We say that the distance from S to some singleton is d(S).

Recall that we defined A to be the set of singletons from Q (see Definition 4.7). So
d(S) is the distance from S to A.

Consider an automaton A = (Q,Σ, δ), with Q = {1, . . . , n} (n ≥ 2 an integer)
and Σ = {a, b}, with P(a) = p and P(b) = 1− p. Then is E [TA] the expected length
of a reset word for automaton A.

We have seen that E [TCn] =
(n−1)p2−(

∑n
i=2 i)p+(n+1

n−2)
p(1−p)2

for the Černý automaton Cn
with P (a) = p, P (b) = 1 − p, where p ∈ (0, 1) (see Theorem 4.15).

E [TA] strongly depends on p ∈ (0, 1). Suppose we have an automaton with a reset
word (or multiple) in which the letter a occurs very often, then this automaton gives
a really large value of E [TA] if p goes to zero (since P(a) = p).
Analogue we have that an automaton gives a really large value of E [TA] if p goes
to one (since P(b) = 1 − p) if it has a reset word (or multiple) in which the letter b
occurs very often.
To be able to compare the value E [TA] of different automata, we choose
P(a) = P(b) = 1

2
. So from now on we have p = 1

2
, unless otherwise specified. This

65

way the number of a’s (or b’s) in the reset words of an automaton won’t play a role
in the value E [TA].

Definition 4.33. Let P(a) = P(b) = 1
2
. Then we define the value R(n) as follows.

R(n) := max {E [TA] | A a synchronizing automaton with n states}

The Černý automaton Cn has (as far as we know) the largest shortest reset word,
but does this also mean that R(n) = E [TCn]?
In this section we are going to investigate the value of R(n). So we are going to look
for the automaton A with with the largest value E[TA].

Since the states of an automaton can always be numbered differently, we use Greek
letters to indicate the states of an automaton.

Let n = 2 and Q = {α, β}. Since we have P (a) = P (b) = 1
2
, we can omit the

automata in which only the letters a and b are switched. Then we have the follow-
ing possible synchronizing automata.

β α β α β α β α

A1 A2 A3 A4

a, b a, bb

a a, b

a

b

a

b a

b

a, b

Figure 4.9: All synchronizing automata with n = 2.

Note that TA1 , TA4 ∼ Geo(p) (TA1 and TA4 are geometrically distributed). Both
automata A1 and A4 have as reset word w = a. So in both cases we are waiting
until the one moment we get a ”success” (the letter a). Since P(a) = 1

2
, we get that

the probability of ”success” is 1
2
.

This gives us immediately E[TA1] = E[TA4] = 2. If you want, you could also calcu-
late these values with the discussed systems in Subsection 4.2.1 and Subsection 4.2.2.

For automata A2 and A3 we have E[TA2] = E[TA3] = 1. Since for these two automa-
ton we have that w = a and v = b are both reset words.

This gives us that automata A1 and A4 give the largest value for E[TA], for n = 2
and p = 1

2
.

66

β α β α

A1 A4

a, b b

a

a

b

a, b

Figure 4.10: The automata with the largest value of E[TA] with n = 2 and p = 1
2
.

Observe that A4 = C2 the Černý automaton with n = 2. With p = 1
2

we have
E[TC2] = E[TA4] = E[TA1] = 2. This gives us the following value for R(2).

R(2) = 2

For n = 2 we could determine R(n) by checking all synchronizing automata. Now
we are interested in the case that we have n states, where n ∈ N. For n ≥ 2 an
integer, R(n) isn’t that easy to determine. So for the general case (n states), we are
going to look at lower and upper bounds of R(n).
We are going to start with the upper bound of R(n).

4.3.1 Upper bound of R(n)

Let A = (Q,Σ, δ) be a synchronizing automaton, with Q = {1, . . . , n} (n ≥ 2 an
integer) and Σ = {a, b} with

P(a) = P(b) =
1

2

Definition 4.34. Let A = (Q,Σ, δ) be a synchronizing automaton, with
Q = {1, . . . , n} (n ≥ 2 an integer) and Σ = {a, b}.
For t ≥ 1 we define the stochastic process (Xi)i∈N with Xi ∈ Σ by the following
probabilities:

P(Xi = a) = P(Xi = b) =
1

2

Let w ∈ Σ∗, then we define the following

tw := min
{
k | w = Xk−|w|+1 . . . Xk

}
In other words, tw is the amount of letters we need to get the word w ∈ Σ∗.

Remark. Note that tw is a random variable, since it depends on the stochastic process
(Xt)t∈N. But also observe that tw ≥ |w|.
If w ∈ Σ∗ is a reset word for automaton A, then we are interested in the value of
E[tw], since E[TA] and E[tw] are related (for w ∈ Σ∗ a reset word).
Observe that E[tw] ≥ E[TA] if w ∈ Σ∗ is a reset word for automaton A. E[tw] isn’t
necessarily equal to E[TA], because there might be more different reset words of
automaton A, besides w ∈ Σ∗.
Note that E[tλ] = 0.

67

If we have a word w ∈ Σ∗ with |w| = 1 (in other words w ∈ Σ), then we get

P (tw = k) =
(
1
2

)k
. To have tw = k, we must have that X1, . . . , Xk−1 ̸= w and

Xk = w. Since we have P(Xi = a) = P(Xi = b) = 1
2
, this gives

P (tw = k) =
(
1
2

)k−1 · 1
2

=
(
1
2

)k
.

Example 4.35. Let take a look at two different words w = ab and v = aa and
calculate E[tw] and E[tv].
Let i ≥ 1 be an integer, then we have

P(XiXi+1 = v) = P(Xi = a) · P(Xi+1 = a) =
1

2

2

=
1

4

and

P(XiXi+1 = w) = P(Xi = a) · P(Xi+1 = b) =
1

2

2

=
1

4

This gives that E[tw] = 1
P(XiXi+1=w)

= 4. Since tw ∼ Geo(P(XiXi+1 = w)) for

w = ab.
Let i ∈ N, then consider the following situation, we have Xi = a, but Xi+1 ̸= b. So
we have Xi+1 = a, this gives immediately a new start for word w. Thus E[tw] is
equal to 1 divided by the probability that word w occurs.
Meanwhile if we consider the following situation, let Xi = a, but Xi+1 ̸= a. So we
have Xi+1 = b, this doesn’t gives us a new start for word v. We have to wait until
word v starts again. So by the calculation of E[tv] we have to add the expected time
before we again start with word v. This gives E[tv] = 1

P(XiXi+1=v)
+ 1

P(Xi=a)
= 4+2 = 6

In Example 4.35 we have seen that E[tw] depends on the word w ∈ Σ∗. So to make
a more precise statement about E[tw] we need a extra definition.

Definition 4.36. Let m ∈ N and w = X1 . . . Xm, with Xi ∈ Σ,
P(Xi = a) = P(Xi = b) = 1

2
.

Then we define the following

k∗ := max {k < m | X1 . . . Xk = Xm−k+1 . . . Xm}

Thus X1 . . . Xk∗ is the longest subword that is both a prefix and suffix of word w.

Remark. Since we have k < m in the definition of k∗, we get that X1 . . . Xk∗ a
subword is of w (so X1 . . . Xk∗ ̸= w).

We could say that X1 . . . Xk∗ is the largest overlapping part of word w
(w = X1 . . . Xk∗vX1 . . . Xk∗ for some v ∈ Σ∗ with |v| = m− 2k∗).

Example 4.37. Let’s look at some example words and their value of k∗.
Let w = aaaa then k∗ = 3, since u := aaa is both a prefix and suffix of word w and
k∗ < |w| = 4 must hold.
Let w = abba then k∗ = 1. Because u := a is both a prefix and suffix of word w,
but ab is only a prefix and not a suffix of word w.

68

Let w = aa then k∗ = 1, since u := a is both a prefix and suffix of word w and
k∗ < |w| = 2 must hold.
Let w = ab then k∗ = 0, since there is no word that is both a prefix and suffix of
word w.

With the definition of k∗ we can formulate a general statement about E[tw].

Lemma 4.38. Let w ∈ Σ∗ be a word, then we have the following.

E[tw] = 2|w| + E[tw[k∗]]

Proof. ([11]) Suppose we have an infinite sequence X1X2 · · · , where Xi ∈ Σ with
P(Xi = a) = P(Xi = b) = 1

2
.

Since the row in infinite long, w must occur almost surely in this row.
Let I := {i | Xi−|w|+1 · · ·Xi = w} the set of indices where a occurrence of w ends.
Let Tj be the index of the last letter of w, in the jth occurrence of w. Thus, XTj

is
the last letter of w in the jth occurrence of w. Observe that by definition of Tj, we
have T1 = tw.

If i ∈ I, then it must hold that i ≥ |w|. For all i ≥ |w| we have P(i ∈ I) = 1
2|w| ,

since P(Xi = a) = P(Xi = b) = 1
2
.

Let m be an integer, then we have the following.

E [|I ∩ {1, . . . ,m}|] = E

 m∑
i=|w|

1{i∈I}


=

m∑
i=|w|

E
[
1{i∈I}

]
=

m∑
i=|w|

P (i ∈ I)

=
m− |w| + 1

2|w|

Define k := |I ∩ {1, . . . ,m}|. By definition of Tj we know that Tk ≤ m ≤ Tk+1. We

can write Tk = T1 +
∑k

j=2 Tj − Tj−1. This gives us the following.

T1 +
k∑

j=2

Tj − Tj−1 ≤ m ≤ T1 +
k+1∑
j=2

Tj − Tj−1

T1

m
+

1

m

k∑
j=2

Tj − Tj−1 ≤ 1 ≤ T1

m
+

1

m

k+1∑
j=2

Tj − Tj−1

T1

m
+

1

m

k∑
j=2

Tj − Tj−1 ≤ 1 ≤ T1 + Tk+1 − Tk

m
+

1

m

k∑
j=2

Tj − Tj−1

69

E

[
T1

m
+

1

m

k∑
j=2

Tj − Tj−1

]
≤ 1 ≤ E

[
T1 + Tk+1 − Tk

m
+

1

m

k∑
j=2

Tj − Tj−1

]

E
[
T1

m

]
+ E

[
1

m

k∑
j=2

Tj − Tj−1

]
≤ 1 ≤ E

[
T1 + Tk+1 − Tk

m

]
+ E

[
1

m

k∑
j=2

Tj − Tj−1

]
E [T1]

m
+ E

[
k

m

1

k

k∑
j=2

Tj − Tj−1

]
≤ 1 ≤ E [T1 + Tk+1 − Tk]

m
+ E

[
k

m

1

k

k∑
j=2

Tj − Tj−1

]

For m fixed we have the following.

E
[
k

m

]
=

1

m
E [k]

=
1

m
· m− |w| + 1

2|w|

=
m− |w| + 1

m2|w|

Take limits with m → ∞.
Since w occurs almost surely in our infinite sequence, we have that the variable
T1 is finite almost surely. This gives that limm→∞

E[T1]
m

= 0. Analogue we have

limm→∞
E[T1+Tk+1−Tk]

m
= 0.

If m → ∞ then 1
k

∑k
j=2 Tj − Tj−1 = E[Tj − Tj−1]. Hence we have the following.

lim
m→∞

E

[
k

m

1

k

k∑
j=2

Tj − Tj−1

]
= E[Tj − Tj−1] lim

m→∞
E
[
k

m

]
= E[Tj − Tj−1] lim

m→∞

m− |w| + 1

m2|w|

= E[Tj − Tj−1]
1

2|w|

Together this results in the following equations.

lim
m→∞

(
E [T1]

m
+ E

[
k

m

1

k

k∑
j=2

Tj − Tj−1

])
≤ 1 ≤ lim

m→∞

(
E [T1 + Tk+1 − Tk]

m
+ E

[
k

m

1

k

k∑
j=2

Tj − Tj−1

])

E[Tj − Tj−1]
1

2|w| ≤ 1 ≤ E[Tj − Tj−1]
1

2|w|

Thus, there must hold E[Tj −Tj−1]
1

2|w| = 1, which gives us E[Tj −Tj−1] = 2|w|. With
this we can give an equation for E[tw], which concludes our proof.

E[tw] = E[T1] = E[tw[k∗]] + E[T2 − T1]

= E[tw[k∗]] + 2|w|

□

70

By applying Lemma 4.38 iteratively, you can calculate E[tw] for each word w ∈ Σ∗.
Let’s look at an example.

Example 4.39. Let v = abbb, then we have |v| = 4 and k∗ = 0. By applying
Lemma 4.38 we get:

E[tv] = 24 + E[tλ]

= 24 + 0 = 16

Let w = aaaa (|w| = 4). We have seen in Example 4.37 that k∗ = 3. By applying
Lemma 4.38 we get the following.

E[tw] = 24 + E[tw[3]
]

= 16 + E[taaa]

We can again apply Lemma 4.38 on word u = aaa. For word u we have k∗ = 2 and
m = |u| = 3, so we get the following.

E[tw] = 16 + E[taaa]

= 16 + 23 + E[tw[2]
]

= 16 + 8 + E[taa]

This we can do again and again until we have at some point k∗ = 0 (u = λ). This
results in the following calculation.

E[tw] = 16 + E[taaa]

= 16 + 8 + E[taa]

= 16 + 8 + 4 + E[ta]

= 16 + 8 + 4 + 2 + E[tλ]

= 16 + 8 + 4 + 2 + 0 = 30

Corollary 4.40. Let w ∈ Σ∗ be a word with |w| = m ∈ N, then we have the
following.

E[tw] ≤
m∑
i=1

2i

Proof. If we want an upper bound for E[tw], we have to look at the worst case
scenario.
Since we have E[tw] = 2|w| + E[tw[k∗]], the worst case presents if in every iteration
(in the calculation of E[tw[k∗]]) k∗ is a large as possible. This occurs with two words
u = am and v = bm. In the first iteration we have k∗ = m−1, then k∗ = m−2, then
k∗ = m− 3, etc., until k∗ = 0. Here is k∗ maximal in each iteration, since k∗ < |w|
must hold in each iteration.
Since P(Xi = a) = P(Xi = b) = 1

2
we have that E[tu] = E[tv].

Applying Lemma 4.38 gives

E[tv] =
m∑
i=1

2i

Thus E[tw] ≤
∑m

i=1 2i holds for all words w ∈ Σ∗ with |w| = m. □

71

Corollary 4.41. Let w ∈ Σ∗ be a word with |w| = m ∈ N, then the following holds.

E[tw] ≤ 2m+1 − 2

Proof. We use Corollary 4.40 and then calculate the sum
∑m

i=1 2i. Here we use the

fact that
∑n

i=1 a
i = an+1−a

a−1
for a ̸= 1.

m∑
i=1

2i =
2m+1 − 2

2 − 1

= 2m+1 − 2

□

Proposition 4.42. Let A = (Q,Σ, δ) be a synchronizing automaton with n states.
Let θ1 := −0.210099161, θ2 := 1.42781363 and θ3 := 0.166421334. Then the follow-
ing holds.

E[TA] ≤ 2θ3n3+θ2n2+θ1n+1 − 2 = 2θ3n3+o(n2)

Proof. By Theorem 3.29 we know that there exists a reset word w, with
|w| ≤ 0.166421334n3 + 1.42781363n2 − 0.210099161n. By Corollary 4.41 and our
definitions of θ1, θ2 and θ3 we then know the following.

E[TA] ≤ E[tw]

≤ 2θ3n3+θ2n2+θ1n+1 − 2

= 2θ3n3+o(n2)

□

We can improve this upper bound of E[TA], to an upper bound of order 2
1
2
n2+o(n) in

the following way.

Proposition 4.43. Let A = (Q,Σ, δ) be a synchronizing automaton with n states,
then we have the following.

E[TA] ≤ (n− 1)
(

2(n
2)+1 − 2

)
= 2

1
2
n2+o(n)

Proof. In the proof of Lemma 3.5 we have seen the following:
Let S ⊂ Q, with |S| ≥ 2 arbitrary. Take a p, q ∈ Q with p, q ∈ S and p ̸= q. Then
there exists a word w ∈ Σ∗ for which δ(p, w) = δ(q, w) with |w| ≤

(
n
2

)
.

By Corollary 4.41 we then have for this word w, E[tw] ≤ 2(n
2)+1 − 2.

Now we do the same iteration as in the proof of Lemma 3.5. We start with S = Q.
If |S| = 1, then we are done.
If |S| ≥ 2, then we can pick a p, q ∈ S with p ̸= q. We know that there exists a reset
word w ∈ Σ∗ for p and q with |w| ≤

(
n
2

)
.

According to Corollary 4.41, we expect that we need E[tw] ≤ 2|w|+1− 2 ≤ 2(n
2)+1− 2

72

letters before word w occurs in our random word. After all iterations, we con-
catenate all found random words (in each random word, per iteration, occurs the
corresponding word w). This is a reset word for A of length E[TA].

In the worst case we have |δ(S,w)| = |S|−1, in each iteration. So, in the worst case,

we need n−1 iteration. This gives E[TA] =
∑n−1

i=1

(
2(n

2)+1 − 2
)

= (n− 1)
(

2(n
2)+1 − 2

)
Since

(
n
2

)
= 1

2
n2 − 1

2
n, we get (n− 1)

(
2(n

2)+1 − 2
)

= 2
1
2
n2+o(n) □

Proposition 4.43 gives us the following theorem.

Theorem 4.44. Let n ≥ 2 be an integer. Then the following holds

R(n) ≤ (n− 1) 2(n
2)+1 − 2 = 2

1
2
n2+o(n)

Proof. The proof follows from Definition 4.33 and Proposition 4.43. □

4.3.2 R(n) for small n

Before we are going to look at the lower bound of R(n), we would like to get some
feeling of the value R(n). So we are first going to look at the value R(n), for small
n. We have already seen that R(2) = 2. We calculated this by going through all
synchronizing automata A and calculating their value E[TA].

In this section we are going to look at the value of R(n) for n = 3, 4, 5.

Automaton with 3 states

We only consider synchronizing automata of the form A = ({α, β, γ}, {a, b}, δ), with
P (a) = P (b) = 1

2
.

We know from Proposition 2.22 that w ∈ Σ∗ is a reset word if and only if w indicates
a path from Q to a singleton in the power automaton PA. We also have seen in
Subsection 4.2.2 that we can calculate E[TA] by looking at the power automaton.
So to find the ”worst” automaton with 3 states, let’s first look at the ”worst” power
automaton with n = 3. Thus, we search for the power automaton with n = 3 which
gives the largest possible value for E[TA] with p = 1

2
.

Proposition 4.45. Let A = (Q,Σ, δ), with Q = {α, β, γ} and Σ = {a, b}. Let
A := {{q} | q ∈ Q} be the set of singletons and P (a) = P (b) = 1

2
. Then the following

power automaton gives the biggest value of E[TA] (with p = 1
2
), and thus determines

R(3).

73

{α, β, γ} {α, β} {β, γ} {γ, α} A

b

a

a

b

a

b

b

a

Figure 4.11: The power automaton with the largestvalue of E[TA] with n = 3 and
p = 1

2
.

Proof. We are going to proof this by construction. We start with the ”empty” power
automaton.

{α, β, γ} {α, β} {β, γ} {γ, α} A

Figure 4.12: The ”empty” power automaton.

First, we are going to show which arrows in a power automaton causes E[TA] to as
large as possible. Later we are going to look if these arrows are possible with the
letters in Σ.

Since we look at a synchronizing automaton there must be a path from {α, β, γ} to
A.
Suppose we have a reset word v ∈ Σ with |v| = 3. Then by Lemma 4.38 we get
E[tw] = 23 + 22 + 2 = 8 + 4 + 2 = 14. Since we know that E[TA] ≤ E[tw], we then get
E[TA] ≤ 14. This is in contradiction with the fact that E[TCn] = 16 (Theorem 4.15).
Thus, if we want E[TA] to be as large as possible, we can’t have a path of length 3
from Q to A.
Then, the only possible way for a automaton with n = 3 to be synchronizing is,
when we have a path from Q through all states {α, β}, {β, γ} and {α, γ} and then
end up in A.
This gives us the following situation.

{α, β, γ} {α, β} {β, γ} {γ, α} A

Figure 4.13: The power automaton with path from Q to A.

Since we have an alphabet of two letters, each state (exclusive A) in the power
automaton has two outgoing arrows. At the moment each state in the power au-

74

tomaton (exclusive A) has one outgoing arrow. We have yet to determine the second
outgoing arrow for each state in the power automaton.

For all S ⊆ Q and w ∈ Σ∗, we have |S ◦ w| ≤ |S|. In other words, the number
of states is decreasing. We can’t have arrows, from some S ⊆ Q with |S| ≤ 2, to Q.

We also have seen that we can’t have a reset word of length 3. This gives that
the second arrow out of Q must be a self loop. This together with the fact that the
number of states must decrease, gives that the second arrow out of {α, β} must also
be a self loop.
This gives the following situation.

{α, β, γ} {α, β} {β, γ} {γ, α} A

Figure 4.14: The power automaton with second arrows out of state Q and {α, β}.

For the second arrows out of state {β, γ} and {γ, α} there are still multiple options.
We go through all possible options for the power automaton and calculate E[TA]
with the use of System 2 (described in Subsection 4.2.2). All different options with
there value of E[TA] are listed in Appendix B.1.

We see that the following power automaton gives the largest value of E[TA].

{α, β, γ} {α, β} {β, γ} {γ, α} A

Figure 4.15: Possible the ”worst” power automaton with n = 3 and p = 1
2
.

If this power automaton is possible, then we know by construction that it will give
the largest value of E[TA]. It remains to check whether this power automaton is
possible. To check this, let’s assume such power automaton is possible and try to
assigning our letters to the arrows.
Since we can always exchange the letters a and b, we can without loss of generality
start with assigning the letters a and b to the outgoing arrows of state Q, anyway we
like. Let’s say we label the self loop of Q with the letter b and the outgoing arrow
into state {α, β} with the letter a.

75

Now that the letter a is the letter which decreases the number of states, we also
know that the arrow from {γ, α} to A must be labeled with the letter a. This means
that the other outgoing arrow from state {γ, α} must be labeled with the letter b.
This gives us the following situation.

{α, β, γ} {α, β} {β, γ} {γ, α} A

b

a

b

a

Figure 4.16: Possible the ”worst” power automaton with n = 3 and p = 1
2
.

{α, β, γ} b−→ {α, β, γ} and {γ, α} b−→ {α, β} gives β
b−→ γ. Which would mean that in

our possible power automaton we get {β, γ} b−→ {γ, α}.

Note that this gives β
b−→ γ

b−→ α and α
b−→ β.

Now that we know all the b arrows we can also fill in the a’s in our power au-
tomaton. So if our power automaton is possible we should get the following power
automaton.

{α, β, γ} {α, β} {β, γ} {γ, α} A

b

a

a

b

a

b

b

a

Figure 4.17: Possible the ”worst” power automaton with n = 3 and p = 1
2
.

We have to check if the a’s are possible in an automaton. We have the following a
arrow’s:

1. {α, β, γ} a−→ {α, β}

2. {α, β} a−→ {α, β}

3. {β, γ} a−→ {α, β}

4. {α, γ} a−→ A

We have {α, β, γ} a−→ {α, β}, so this means either γ
a−→ α or γ

a−→ β.

Suppose γ
a−→ α, then {β, γ} a−→ {α, β} gives that β

a−→ β. This in turn must
mean that α

a−→ α.
This would give us the following:

76

• γ
a−→ α

• β
a−→ β

• α
a−→ α

Suppose γ
a−→ β, then {β, γ} a−→ {α, β} gives that β

a−→ α. Then {α, γ} a−→ A also
gives that α

a−→ β.
This would give us the following:

• γ
a−→ β

• β
a−→ α

• α
a−→ β

Thus, there exists an automata with corresponding automaton shown in Figure 4.11.
This proves our proposition. □

Remark. In the proof of Proposition 4.45 we see the following. The second arrow
out of state {β, γ} and state {γ, α} that makes E[TA] the largest, are the arrows to
the state {α, β}. We observe that this is the state with the highest value of d(S)
(d({α, β}) = 3, d({β, γ}) = 2, d({γ, α}) = 1), besides state Q.
If we look at all second arrows out of each state in the power automaton we see that
all second arrows go to state S with d(S) maximal, taking into account the fact that
the number of states must be decreasing.

Corollary 4.46. We have
R(3) = 16

Proof. Proposition 4.45 gives the power automaton corresponding to the largest pos-
sible value of E[TA] with n = 3.
In Appendix B.1 we have seen that E[TA] = 16 for the power automaton in Propo-
sition 4.45 with p = 1

2
. Thus, we have R(3) = 16. □

Remark. The power automaton in Proposition 4.45 is similar to the power automa-
ton of the Černý automaton C3. The arrows within A could be different but accord-
ing to Subsections 4.2.1 and 4.2.2 this doesn’t matter in the calculation of E[TA].
So the Černý automaton C3 determines R(3).

77

Corollary 4.47. Let Q = {α, β, γ} and P (a) = P (b) = 1
2
. Then the following two

automata give the largest value of E[TA].

β α

γ

β α

γ

a, b

a
b

a

b b

a

a, b

a

b

Figure 4.18: Automata with the largest value of E[TA], with n = 3 and p = 1
2
.

Proof. With Proposition 4.45 we have seen what the worst power automaton is for
synchronizing automata with n = 3. In the proof of this Proposition we have shown
that this power automaton exists by giving the possible transition functions.

For the letter b we got: β
b−→ γ

b−→ α and α
b−→ β.

For the letter a we got two possibilities. First, γ
a−→ α, β

a−→ β and α
a−→ α.

Second, γ
a−→ β

a−→ α and α
a−→ β.

This gives us the two automata that give the largest possible value of E[TA] (shown
in Figure 4.18). □

There are 3! possible permutations for α, β and γ. With this and Corollary 4.46 we
know all synchronizing automata with n = 3 which give the (same) largest expected
length of a reset word.

Automaton with 4 states

Here, we only consider synchronizing automata of the form A = ({α, β, γ, µ}, {a, b}, δ),
with P (a) = P (b) = 1

2
.

Since we have four states, we have a lot more states in the corresponding power
automaton. For n = 4 we have 24 − 4 − 1 = 11 not singleton states in the corre-
sponding power automaton.
To find the synchronizing automata with the largest value for E[TA], we do a brute
force search with the use of Matlab. The code, inclusive further explanation on
how the code works can be found in Appendix C. The main function we use for the
brute force search is discussed in Appendix C.7, here we use p = 1

2
as chosen in the

beginning of this section.

78

We know that for the Černý automaton with 4 states holds E[TC4] = 3p2−9p+10
p(1−p)2

,

which is equal to 50 for p = 1
2
. Since we look for the automata with maximal E[TA],

we only have to save the automata with E[TA] ≥ 50 for p = 1
2
.

The Matlab program gives 24 automata with E[TA] = 67 for p = 1
2

and there
are no synchronizing automata A with E[TA] > 67 for p = 1

2
.

Below you see the automaton, let’s call this automata A, which together with the
4! possible permutation of the states, gives all these 24 automata.

γ

α β

µ

b

aa

a

a

b

b

b

Figure 4.19: Automaton A with the largest value of E[TA], with n = 4 and p = 1
2
.

With a Matlab program of system 1 (see Appendix C.5) described in Subsection 4.2.1
we have calculated the exact expected length of a reset word for the automaton in
Figure 4.19. This gives us the following.

E[TA] =
−p3 + 8p2 − 19p + 16

p(1 − p)2

Filling in p = 1
2

(or looking at the result of our brute force Matlab program), we get
the following value for R(4).

R(4) = 67

Remark. Automaton A in Figure 4.19 isn’t the Černý automaton C4.
We have −p3+8p2−19p+16 > 3p2−9p+10 for all p < 1, so −p3+8p2−19p+16

p(1−p)2
> 3p2−9p+10

p(1−p)2

for all p < 1. This gives us that for all p ∈ (0, 1) E[TA] > E[TC4]. Which tells us
that R(n) is not always determined by the Černý automaton Cn.

Let’s take a look at the power automaton, corresponding to automaton A (Figure
4.19).

79

Figure 4.20: Power automaton of automaton A (the automaton in Figure 4.19).

Remark. In the with red marked part of the power automaton, we see a similar
structure as in our proof of Proposition 4.45. With the second arrows in this part
we each time we increase the distance d(S) to A.

Remark. The shortest reset word of this automaton is w = abbababbb. So the length
of the shortest reset word is |w| = 9 = 32 = (n − 1)2, which is the same length of
the shortest reset word of C4.

For n = 4 we have that automaton A has the largest value for E[TA]. This automaton
is not equal to the Černý automaton C4, but is still an automaton with the length of
the shortest reset word equal to (n− 1)2 (for n = 4), just like the Černý automaton
C4.

80

Automaton with 5 states

Consider synchronizing automata of the form A = ({α, β, γ, µ, φ}, {a, b}, δ), with
P (a) = P (b) = 1

2
.

We again do a brute force search (with Matlab), to search for the automaton with
the largest value of E[TA].

Definition 4.48. Let A1 = (Q,Σ, δ1) and A2 = (Q,Σ, δ2) be synchronizing au-
tomata with n states. Then we say that automata A1 and A2 are isomorphic if
there exist a bijection f : Q → Q which preserves the transition function. In other
words, for every l ∈ Σ it must hold that δ2 (f (q) , l) = f (δ1 (q, l))

Remark. If automaton A1 and A2 are isomorphic, then we have that E[TA1] =
E[TA2].

Knowing the above remark, we can make our program more efficient by excluding
the isomorphic automata. There are 5! = 120 different permutations α, β, γ, φ, δ.

We know that the Černý automaton with 5 states has E[TC5] = 4p2−14p+20
p(1−p)2

, which

is equal to 112 for p = 1
2
. Since we look for the automata with maximal E[TA], we

only have to save the automata with E[TA] ≥ 112 for p = 1
2
.

The Matlab program (see Appendix C.7) gives that the automaton below (Fig-
ure 4.21), has the largest value for E[TA] for p = 1

2
(in this case we have

E[TA] = 36,5625
0,21875

= 1170
7

≈ 167, 143 for p = 1
2
). Let’s call this automaton A.

α

β γ µ

φ

b

b

b b b

a

a

a
a

a

Figure 4.21: Automaton A with the largest value of E[TA], with n = 5 and p = 1
2
.

With a Matlab program of system 1 (see Appendix C.5) described in Subsection 4.2.1
we have calculated the exact expected length of a reset word for the automaton in
Figure 4.21. This gives us the following.

E[TA] =
−4p5 + 27p4 − 80p3 + 136p2 − 140p + 81

p(1 − p)2(p2 − p + 2)

Filling in p = 1
2

(or looking at the result of our brute force Matlab program), we get
the following value for R(5).

R(5) =
1170

7

Remark. Automaton A in Figure 4.21 isn’t the Černý automaton C5.
We have −4p5+27p4−80p3+136p2−140p+81

p(1−p)2(p2−p+2)
> (4p2−14p+20)

p(1−p)2
for all p ∈ (0, 1). This gives that,

81

for all p ∈ (0, 1) E[TA] > E[TC5] holds.
Thus also for n = 5, R(n) isn’t determined by the Černý automaton Cn.

Let’s take a look at the power automaton corresponding to the automaton in Figure
4.21 (PA). And compare this to the power automaton of the Černý automaton C5

(C5 is show in Figure 4.22). The power automaton of Cn (PCn) is shown in Appendix
B.2.

α

β γ µ

φ
a, b

b

b

b

b

a

a

a

a

Figure 4.22: The Černý automaton C5.

In PA (Figure 4.23) we have indicated the shortest path from Q to {φ} with the
color green.
Note that in any path from Q to {φ} in this power automaton, you will never
go through the states {α, β, γ, φ}, {α, β, γ, µ} and {α, γ, β}. So these states (and
arrows out of these states) don’t contribute to the value of E[TA]. That is why these
states and arrows are colored light grey.

Remark. The shortest reset word of automaton A (Figure 4.21) is
u = abbababbaababba. The path indicated by u is green in Figure 4.23. The length
of the shortest reset word is |u| = 15 < 16 = 42 = (n − 1)2. This implies that
the shortest reset word of the automaton in Figure 4.21 is smaller then the shortest
reset word of C5.
Thus, the automaton A with the largest value of E[TA], isn’t necessarily the au-
tomaton with the largest shortest reset word.

Remark. In the with red marked parts of the power automaton in Figure 4.23 we
see again the similar structure as in our proof of Proposition 4.45 and Figure 4.20.
We do not see this structure in the power automaton of the Černý automaton C5

(Figure B.7).

Remark. In the power automaton of automaton A we have light grey states and
arrows, while we don’t have those in the power automaton of the Černý automaton
C5 (Figure B.7). We also have E[TA] > E[TCn]. This indicates that for a high value
of E[TA], not necessarily every state in the power automaton should play a role in
the path from Q to a singleton.

82

Figure 4.23: Power automaton of automaton A (the automaton in Figure 4.21).

83

If we further compare the power automaton of automaton A (Figure 4.23) to the
power automaton of the Černý automaton C5 (Figure B.7), we have that the fol-
lowing stands out. Take any ∅ ≠ S ⊂ Q that lies on the green path. Then for
PA (Figure 4.23) holds that, if we divert from the green path then d(S ◦ l) > d(S)
(l ∈ Σ) unless S ◦ l = S. While in PC5 (Figure B.7) we see
d({β, α, φ}) = 7 = d({β, φ}) = d({β, α, φ} ◦ a).
In PC5 (Figure B.7) we can see that there are two paths (they have some overlap)
from Q to {φ} indicated by w = abbbbabbbbabbbba (color green in Figure B.7) and
v = abbabbabbbbabbbba (color green/purple in Figure B.7). We see that w indicates
the shortest path |w| = 42 = 16, but that |v| = 17 = |w| + 1.
If we are in state {β, α, φ} and then have letter a, we move of the green path,
onto a state on the purple path. For all states S on the purple path holds that
d(S) ≤ d({γ, α, β, φ}) = 13, so in this case if we divert from the green path to
somewhere on the purple path we still have a relative small distance to state {φ}.
This might be an reason why we have E[TA] > E[TC5]

Since the light grey parts of the power automaton in Figure 4.23 don’t contribute
to the value of E[TA], we don’t draw the light grey parts of a power automaton
anymore.

4.3.3 Lower bound of R(n)

The lower bound for R(n) is done by construction. We look for a synchronizing
automaton A with n states where E[TA], with p = 1

2
, is as large as possible. This

gives us a lower bound on R(n) by definition of R(n) (Definition 4.33).

For the cases n = 3, 4, 5 we have seen which automaton has the largest value for
E[TA]. These automata all have similar structures. Let’s look at two possible au-
tomata that continue this trend (Definition 4.49 and 4.50).

Definition 4.49. For n ≥ 4 we define automaton A1 = (Σ, Q, δ) as follows.
Σ = {a, b}, Q = {1, . . . , n} and

δ(q, a) =


n if q = 1, 2

q if q = 3, . . . , n− 1

2 if q = n

δ(q, b) =


q + 1 if q = 1, 2, 4, . . . , n− 1

1 if q = 3

4 if q = n

84

1

3 2

n

4

n− 1

b

a

b

a
b

a

b

a

a

b

a

Figure 4.24: Automaton A1 (Definition 4.49 with n ≥ 4 states and P(a) = p,
P(b) = 1 − p.

Definition 4.50. For n ≥ 6 we define automaton A2 = (Σ, Q, δ) as follows.
Σ = {a, b}, Q = {1, . . . , n} and

δ(q, a) =


n if q = 1, 2

q if q = 3, . . . , n− 1

2 if q = n

δ(q, b) =


q + 1 if q = 1, 2, . . . , ⌊n

2
⌋ − 1, ⌊n

2
⌋ + 1, . . . , n− 1

1 if q = ⌊n
2
⌋

⌊n
2
⌋ + 1 if q = n

1

3 2

⌊n
2
⌋ n

⌊n
2
⌋ + 1

n− 1

b

a

b

a

a

a

b
b

a

a

b

a

Figure 4.25: Automaton A2 (Definition 4.50) with n ≥ 6 states and P(a) = p,
P(b) = 1 − p.

85

With a Matlab program described in Appendix C.9 we can compare these two au-
tomata with p = 1

2
. Since we wondered whether R(n) is determined by the Černý

automaton Cn, we immediately compare these automata to the Černý automaton
Cn.
The values of E[TA1], E[TA2] and E[TCn] are calculated with system 1 (Subsection
4.2.1, Matlab program in Appendix C.5), rounded to one decimal. The results are
given in Table 4.1.

n E[TCn] E[TA1] E[TA2]
6 210 328.6 328.6
7 352 513.0 513.0
8 546 768.6 648.3
9 800 1068.0 898.3
10 1122 1401.2 1112.3

Table 4.1: Rounded values of E[TA] for automata Cn, A1 and A2 with p = 1
2
.

From now on if we talk about the value E[TA], we talk about the value E[TA] for
p = 1

2
unless otherwise specified.

Note that for n = 6 and n = 7 the automata A1 and A2 are the same, so they
have the same value for E[TA]. We see that E[TA1] > E[TCn] and E[TA2] > E[TCn],
for all n = 6, . . . , 9. However, for n = 10 we have E[TA2] < E[TCn] while we still have
E[TA1] > E[TCn].
Further, we see that E[TA1] > E[TA2], for n = 6, . . . , 10. Finally note that the growth
rate of E[TA2] is lower then the growth rate of E[TA1]. For instance from n = 8 to
n = 9, the value E[TA1] grows with factor 1.390, while the value E[TA2] grows with
factor 1.386.
This convinces us to say that for n large we have E[TA1] > E[TA2]. Since we are
looking for the best possible lower bound, we can disregard automaton A2. We can’t
however disregard the Černý automaton Cn yet, since the growth rate of E[TCn] is
larger than that of E[TA1]. This means that for n large enough, it could be that
E[TA1] < E[TCn].

We want to find the best lower bound for R (n). To find the synchronizing automa-
ton A, with largest value for E[TA], we have to look at more different automata.
When we were looking at the upper bound for R(n), we used that in the worst case
we had an automaton with as shortest reset word a repetition of only one letter (for
example w = bbbbbb). Since we can always exchange the letter a and b, lets look at
an automata with shortest reset words consisting of only the letter b.

Let’s consider the following automaton.

86

Definition 4.51. Let n ≥ 2. We define the following automaton A3 = (Σ, Q, δ).
Σ = {a, b}, Q = {1, . . . , n} and the transition function is defined as follows.[9]

δ(q, a) =

{
1 if q is odd

2 if q is even
and δ(q, b) =

{
q + 1 if q = 1, . . . , n− 1

n if q = n

1 2 3 4 n− 1 n

a

b

a

b

a

b

a a

b

a

b

Figure 4.26: Automaton A3 (Definition 4.51) with n states and P(a) = p, P(b) =
1 − p.

The corresponding Powerautomaton PA3 is given in Figure 4.27.

Q {2, . . . , n} {3, . . . , n} {n− 1, n} {n}

{1, 2}

{2, 3}

{n− 2, n− 1}

b b b

a
a a

a

b

b

a
a

Figure 4.27: Powerautomaton of automaton A3 (Figure 4.26).

Remark. The shortest reset word of automaton A3 is w = bn−1, because this is the
shortest path from Q to a singleton (in this case {n}). The shortest reset word has
length n−1, which is much smaller then the length of the shortest reset word of the
Černý automaton Cn (which is (n− 1)2).

Proposition 4.52. Let p ∈ (0, 1), P(a) = p and P(b) = 1 − p, then the following
holds.

E[TA3] =
1

p (1 − p)n−1 − 1

p

87

Proof. We are going to calculate E[TA3] with system 1 (Subsection 4.2.1), so we are
going to calculate EA

Q. First we have the following equations.

EA
Q = 1 + pEA

{1,2} + (1 − p)EA
{2,...,n}

EA
{2,...,n} = 1 + pEA

{1,2} + (1 − p)EA
{3,...,n}

EA
{3,...,n} = 1 + pEA

{1,2} + (1 − p)EA
{4,...,n}

...

EA
{n−2,...,n} = 1 + pEA

{1,2} + (1 − p)EA
{n−1,n}

EA
{n−1,n} = 1 + pEA

{1,2} + (1 − p)EA
{n} = 1 + pEA

{1,2}

With these equation we can express EA
Q in terms of p and EA

{1,2}. Here we use the

fact that
∑n

j=1 a
j = an+1−a

a−1
(for a ̸= 1).

EA
Q =1 + pEA

{1,2} + (1 − p)EA
{2,...,n}

=1 + pEA
{1,2} + (1 − p)

(
1 + pEA

{1,2} + (1 − p)EA
{3,...,n}

)
=1 + (1 − p) + p (1 + (1 − p))EA

{1,2} + (1 − p)2EA
{3,...,n}

=1 + (1 − p) + p (1 + (1 − p))EA
{1,2} + (1 − p)2

(
1 + pEA

{1,2} + (1 − p)EA
{4,...,n}

)
=1 + (1 − p) + (1 − p)2 + p

(
1 + (1 − p) + (1 − p)2

)
EA

{1,2} + (1 − p)3EA
{4,...,n}

...

=1 + (1 − p) + · · · + (1 − p)n−3 + p
(
1 + (1 − p) + · · · + (1 − p)n−3)EA

{1,2}

+ (1 − p)n−2EA
{n−1,n}

=1 + (1 − p) + · · · + (1 − p)n−3 + p
(
1 + (1 − p) + · · · + (1 − p)n−3)EA

{1,2}

+ (1 − p)n−2 (1 + pEA
{1,2}

)
=1 + (1 − p) + · · · + (1 − p)n−2 + p

(
1 + (1 − p) + · · · + (1 − p)n−2)EA

{1,2}

=
n−2∑
j=0

(1 − p)j + p

(
n−2∑
j=0

(1 − p)j
)
EA

{1,2}

=
1 − (1 − p)n−1

p
+ p

(
1 − (1 − p)n−1

p

)
EA

{1,2}

=
1 − (1 − p)n−1

p
+
(
1 − (1 − p)n−1)EA

{1,2}

Now we need to calculate EA
{1,2}. This we do with the rest of the equation according

to system 1.

88

EA
{1,2} = 1 + pEA

{1,2} + (1 − p)EA
{2,3}

EA
{2,3} = 1 + pEA

{1,2} + (1 − p)EA
{3,4}

EA
{3,4} = 1 + pEA

{1,2} + (1 − p)EA
{4,5}

...

EA
{n−2,n−1} = 1 + pEA

{1,2} + (1 − p)EA
{n−1,n}

EA
{n−1,n} = 1 + pEA

{1,2} + (1 − p)EA
{n} = 1 + pEA

{1,2}

Analogue to the calculations for EA
Q we get the following.

EA
{1,2} =1 + pEA

{1,2} + (1 − p)EA
{2,3}

=1 + pEA
{1,2} + (1 − p)

(
1 + pEA

{1,2} + (1 − p)EA
{3,4}

)
=1 + (1 − p) + p (1 + (1 − p))EA

{1,2} + (1 − p)2EA
{3,4}

...

=1 + (1 − p) + · · · + (1 − p)n−2 + p
(
1 + (1 − p) + · · · + (1 − p)n−2)EA

{1,2}

=
n−2∑
j=0

(1 − p)j + p

(
n−2∑
j=0

(1 − p)j
)
EA

{1,2}

=
1 − (1 − p)n−1

p
+ p

(
1 − (1 − p)n−1

p

)
EA

{1,2}

=
1 − (1 − p)n−1

p
+
(
1 − (1 − p)n−1)EA

{1,2}

With this we can calculate EA
{1,2}, which we can then substitute in the equation for

EA
Q.

(
1 −

(
1 − (1 − p)n−1))EA

{1,2} =
1 − (1 − p)n−1

p

(1 − p)n−1EA
{1,2} =

1 − (1 − p)n−1

p

EA
{1,2} =

1 − (1 − p)n−1

p (1 − p)n−1 =
1

p (1 − p)n−1 − 1

p

89

EA
Q =

1 − (1 − p)n−1

p
+
(
1 − (1 − p)n−1)EA

{1,2}

=
1 − (1 − p)n−1

p
+
(
1 − (1 − p)n−1)(1 − (1 − p)n−1

p (1 − p)n−1

)

=
(1 − p)n−1 (1 − (1 − p)n−1)

p (1 − p)n−1 +

(
1 − (1 − p)n−1)2
p (1 − p)n−1

=
1 − (1 − p)n−1

p (1 − p)n−1 =
1

p (1 − p)n−1 − 1

p

□

Remark. For p = 1
2
, proving that E[TA3] = 2n − 2 is much easier. We know that

w ∈ Σ∗ is a reset word for automaton A3 if and only if bn−1 is a subword of w. This
implies that E[TA3] = E[tbn−1]. Lemma 4.38 then gives our wanted result.

E[TA3] = E[tbn−1]

=
n−1∑
i=1

2i

=
2n − 2

2 − 1
= 2n − 2

Comparing automata A1, A3 and Cn with the Matlab program described in Ap-
pendix C.9 gives us the results in Table 4.2.

n E[TCn] E[TA1] E[TA3]
6 210 328.6 62
7 352 513.0 126
8 546 768.6 254
9 800 1068.0 510
10 1122 1401.2 1022

Table 4.2: Rounded values of E[TA] for automata Cn, A1 and A3 with p = 1
2
.

Table 4.2 indicates that automaton A3 probably gives a better lower bound than
Cn. But there are more automata with shortest reset words, which consist mostly
out of one letter. Let’s take a look at the following automaton.

Definition 4.53. Let n ≥ 2. We define the following automaton A4 = (Σ, Q, δ).
Σ = {a, b}, Q = {1, . . . , n} and the transition function is defined as follows.[11]

δ(q, a) =

{
1 if q is odd

2 if q is even
and δ(q, b) =

{
q + 1 if q = 1, . . . , n− 1

1 if q = n

Remark. Automaton A4 is only synchronizing if n is odd. If n would be even, then
there is no path from Q to A. This can be seen in the Power automaton PA4 with
n even (Figure 4.28).

90

Q {1, 2} {2, 3} {3, 4} {n− 1, n} {n, 1}

b

a

a

b b

a

a

b

a

a, b

Figure 4.28: Powerautomaton of automaton A4 with n even

Let’s assume that n is odd. Then automaton A4 is given in Figure 4.29, and the
corresponding power automaton PA4 is given in Figure 4.30.

n− 1

n

1

2

3

b a

a, b

a

b

a

b

a

Figure 4.29: Automaton A4 (Definition 4.53) with n (odd) states and P(a) = p,
P(b) = 1 − p.

Q {1, 2} {2, 3} {3, 4} {n− 1, n} {n, 1} {1}

b

a

a

b b

a

a

b

a

b

a

Figure 4.30: Powerautomaton of automaton A4 with n odd (Figure 4.29)

91

Remark. The shortest reset word of automaton A4 is v = abn−1a, because this is
the shortest path from Q to a singleton (in this case {1}).
The length of this word is |v| = n+ 1 > n− 1 = |bn−1|, which is again much smaller
then (n− 1)2 (the length of the shortest reset word of the Černý automaton Cn).
The length of this word is larger than the length of the shortest reset word of
automaton A3.

Proposition 4.54. Let n ≥ 3 be an odd integer, p ∈ (0, 1), P(a) = p and
P(b) = 1 − p, then the following holds.

E[TA4] =
1

p
+

1

p(1 − p)n−1
+

1 − (1 − p)n−1

p2(1 − p)n−2
=

(1 − p)n−1 (2p− 1) + 1

p2(1 − p)n−1

Proof. We are going to calculate E[TA4] with system 1 (Subsection 4.2.1), so we are
going to calculate EA

Q. We have the following equations.

EA
Q = 1 + pEA

{1,2} + (1 − p)EA
Q

EA
{1,2} = 1 + pEA

{1,2} + (1 − p)EA
{2,3}

EA
{2,3} = 1 + pEA

{1,2} + (1 − p)EA
{3,4}

...

EA
{n−1,n} = 1 + pEA

{1,2} + (1 − p)EA
{n,1}

EA
{n,1} = 1 + pEA

{1} + (1 − p)EA
{1,2} = 1 + (1 − p)EA

{1,2}

We calculate EA
Q in the same way as in the proof of Proposition 4.52. First we

calculate EA
{1,2}.

EA
{1,2} =1 + pEA

{1,2} + (1 − p)EA
{2,3}

=1 + pEA
{1,2} + (1 − p)

(
1 + pEA

{1,2} + (1 − p)EA
{3,4}

)
=1 + (1 − p) + p (1 + (1 − p))EA

{1,2} + (1 − p)2EA
{3,4}

...

=1 + (1 − p) + · · · + (1 − p)n−2 + p
(
1 + (1 − p) + · · · + (1 − p)n−2)EA

{1,2}

+ (1 − p)n−1EA
{n,1}

=1 + (1 − p) + · · · + (1 − p)n−2 + p
(
1 + (1 − p) + · · · + (1 − p)n−2)EA

{1,2}

+ (1 − p)n−1 (1 + (1 − p)EA
{1,2}

)
=1 + (1 − p) + · · · + (1 − p)n−1 + p

(
1 + (1 − p) + · · · + (1 − p)n−2)EA

{1,2}

+ (1 − p)n EA
{1,2}

=
n−1∑
j=0

(1 − p)j + p

(
n−2∑
j=0

(1 − p)j
)
EA

{1,2} + (1 − p)nEA
{1,2}

92

=
(1 − p)n − (1 − p)

1 − p− 1
+ 1 + p

(
(1 − p)n−1 − (1 − p)

1 − p− 1
+ 1

)
EA

{1,2} + (1 − p)nEA
{1,2}

=
(1 − p) − (1 − p)n

p
+ 1 +

(
(1 − p) − (1 − p)n−1 + p

)
EA

{1,2} + (1 − p)nEA
{1,2}

(
1 −

(
(1 − p) − (1 − p)n−1 + p

)
− (1 − p)n

)
EA

{1,2} =
(1 − p) − (1 − p)n

p
+ 1(

1 − (1 − p) + (1 − p)n−1 − p− (1 − p)n
)

=
(1 − p) − (1 − p)n

p
+ 1(

(1 − p)n−1 − (1 − p)n
)
EA

{1,2} =
(1 − p) − (1 − p)n

p
+ 1

(1 − p)n−1 pEA
{1,2} =

(1 − p) − (1 − p)n

p
+ 1

EA
{1,2} =

(1 − p) − (1 − p)n

p2 (1 − p)n−1 +
1

p (1 − p)n−1

=
1 − (1 − p)n−1

p2 (1 − p)n−2 +
1

p (1 − p)n−1

With this we can calculate EA
Q as follows.

EA
Q =1 + pEA

{1,2} + (1 − p)EA
Q

(1 − (1 − p))EA
Q =1 + pEA

{1,2}

pEA
Q =1 + pEA

{1,2}

EA
Q =

1

p
+ EA

{1,2}

=
1

p
+

1 − (1 − p)n−1

p2 (1 − p)n−2 +
1

p (1 − p)n−1

=
p (1 − p)n−1 + p + (1 − p)

(
1 − (1 − p)n−1)

p2 (1 − p)n−1

=
(1 − p)n−1 (p− (1 − p)) + 1

p2 (1 − p)n−1

=
(1 − p)n−1 (2p− 1) + 1

p2 (1 − p)n−1

□

As shown automaton A4 isn’t synchronizing for n even. So If we want to use this
automaton construction for a lower bound, we have to find some other bound for
when n is even.
By definition of R(n), we know that R(n) increases as n increases. If n is odd,
then we have R(n) ≥ 2n+1 (E[TA4] = 2n+1 for p = 1

2
and n states). If n is even,

then R(n) ≥ R(n − 1) ≥ 2n (E[TA4] = 2n for p = 1
2

and n − 1 states). This is the
motivation for the following definition.

93

Definition 4.55. Let n ≥ 3 the number of states and p ∈ (0, 1). We define the
following function.

l(n, p) =


(1−p)n−1(2p−1)+1

p2(1−p)n−1 if n odd
(1−p)n−2(2p−1)+1

p2(1−p)n−2 if n even

We define L(n) := l(n, 1
2
) =

{
2n+1 if n odd

2n if n even
.

With A (n) we refer to automaton A with n states.

Lemma 4.56. let n ≥ 3 be an integer and p = 1
2
. Then the following holds.

E[TA3(n)] < L(n)

Proof. We know that for p = 1
2

we have E[TA3(n)] = 2n − 2.
Since 2n+1 > 2n > 2n − 2 holds for all n ≥ 3, we have that L(n) > E[TA3(n)] for all
n ≥ 3, by definition 4.55. □

Lemma 4.56 shows us that L (n) gives a better lower bound then E[TA3].
This leads to the question whether E[TCn], E[TA1(n)] or L(n) gives a better lower
found for R(n).

Calculating E[TA1] exactly for p = 1
2

is more complicated then calculating L(n)
or E[TCn]. This is because for L(n) and E[TCn] we have exact values by Definition
4.55 and Theorem 4.15, but we don’t have this for E[TA1]. Besides, the power au-
tomaton of automaton A1 isn’t structured like we had with automata A3 and A4.

We take p = 1
2
. For n = 3, . . . , 10 our Matlab program of system 1 (Subsection 4.2.1,

Matlab program in Appendix C.5) can still calculate E[TA1(n)] exactly. However, for
n ≥ 11 the numbers become inconveniently large. To still be able to give a value
for E[TA1(n)] with n ≥ 11 we approximate E[TA1(n)] with the use of some simulations.

For n = 11, 12, 13, we simulate random words (P(a) = P(b) = 1
2
). We start with a

one letter word and check whether it is a reset word or not. If not, then we add a
letter to the word and check again whether it is a reset word or not. And so on, we
stop when our random simulated word is a reset word. We store the length of this
word and start over. This we do 100 times (we have 100 samples). In the end we
take the mean of the stored lengths, that is our approximated value of E[TA1].
With this we get the results in Table 4.3.

94

n E[TCn] E[TA1] (n = 11, 12, 13 approximations) L (n)
6 210 328.6 64
7 352 513.0 256
8 546 768.6 256
9 800 1068.0 1024
10 1122 1401.2 1024
11 1520 1774 4096
12 2002 2216 4096
13 2576 2753 16384

Table 4.3: Values (rounded) of E[TCn], E[TA1] and L (n) with p = 1
2
.

This gives us a good indication that for n large (n ≥ 11), L (n) gives a better lower
bound. We also see that for 4 ≤ n ≤ 10, E[TA1] gives a better lower bound then
L(n).
In Subsection 4.3.2, we have even seen that automaton A1 gives the largest value of
E[TA] for n = 4 and n = 5.
However, for n = 2 and n = 3, we have seen that E[TCn] gives the largest value of
E[TA].

Theorem 4.57. Let n ≥ 11 be an integer and p = 1
2
. Then we have the following.

L (n) ≤ R (n)

Proof. The proof follows directly from the definitions of R (n) (Definition 4.33),
automaton A4 (Definition 4.53) and L (n) (Definition 4.55). □

This all together gives that for n ≥ 11 Theorem 4.57 gives the best lower bound we
have found so far. This is shown by all the comparisons between different automata
and lower bounds we have performed. There could be an automaton, which we
haven’t looked at yet, that gives an even better lower bound. A way to determine
the absolute best lower bound for R(n) is by checking all possible synchronizing
automata. We have experienced that, even for n = 5, this takes a long time,
since there are so many different synchronizing automata, even if you remove all
isomorphic automata. Thus, for synchronizing automata with n ≥ 11 states, this is
a really expensive option.

95

Chapter 5

Conclusion

This thesis is all about synchronizing automata A = (Q,Σ, δ) and the (expected)
length of their reset words. We mostly used Q = {1, . . . , n} and Σ = {a, b}. For all
these synchronizing automata A, we explored what we could say about the length of
the largest shortest reset word (C(n)) and the largest value of the expected length
of a reset word (R(n)).

We defined C(n) to be the length of the largest shortest reset word, considering
all synchronizing automata A with n states.
Černý’s conjecture, stating C(n) = (n− 1)2, is still a conjecture. The shortest reset
word for the Černý automata Cn is of length (n− 1)2. With this we proved that
C(n) ≥ (n−1)2 holds. However proving C(n) ≤ (n−1)2 has not been accomplished.
We did improve the upper bound found by J.-E Pin and P. Frankl (1982), stating
C(n) ≤ n3−n

6
. This we did by looking at the work of Marek Szyku la. Marek Szyku la

was able to improve the upper bound of J.-E Pin and P. Frankl by the factor 85059
85184

.
We succeeded in proving that the upper bound, found by J.-E Pin and P. Frankl,
could be improved by the factor 0.998528004. This is a slightly better result than
Marek Szyku la had found (See Theorem 3.29). Thus we can conclude the following.

(n− 1)2 ≤ C(n) ≤ 0.166421334n3 + 1.42781363n2 − 0.210099161n

For a synchronizing automaton we considered the situation that, instead of fixed
letters, we have a probability distribution on the letters in our alphabet (P (a) = p,
P (b) = 1− p, with p ∈ [0, 1]). We could identify automata with a probability distri-
bution on the letters with a Markov chain and used this to calculate the expected
length of a reset word of a certain automaton. We denoted the expected length of
a reset word for a synchronizing automaton A, with E[TA].
For the Černý automata Cn, which proved that C(n) ≥ (n− 1)2, we calculated the
expected length of a reset word E[TCn]. For P (a) = p, P (b) = 1− p, with p ∈ (0, 1),
Theorem 4.15 showed us the following.

E[TCn] =
(n− 1)p2 − (

∑n
i=2 i) p +

(
n+1
n−2

)
p(1 − p)2

96

In section 4.3 we looked beyond the Černý automata Cn. We researched the value
of R(n), by considering all synchronizing automata A with n states and searching
for the maximal value of E[TA] with p = 1

2
. We have determined that R(2) = 2,

R(3) = 16, R(4) = 67 and R(5) = 1170
7

. In the case n = 4, we discovered that

R(n) wasn’t determined by the Černý automaton Cn (the value E[TCn]). In the case
n = 5, we saw for the first time that the automaton with the largest value for E[TA]
wasn’t the automaton with the largest shortest reset word.
For n ≥ 6 we looked at a lower and upper bound for R(n). As upper bound we

found that R(n) ≤ (n− 1) 2(n
2)+1 − 2 = 2

1
2
n2+o(n). For the lower bound we looked

at different automata. With the use of automata A4 (Definition 4.53) we defined

L(n) =

{
2n+1 if n odd

2n if n even
.

For n ≥ 11 the best lower bound found at the present time is R(n) ≥ L(n). However
for 6 ≤ n ≤ 10, we saw that the value E[TA1] (automaton A1, defined in Definition
4.49) gave a better lower bound for R(n).
Thus we can conclude that R(n) isn’t determined by the Černý automata Cn
(R(n) ̸= E[TCn] for all n ≥ 4). We know that the synchronizing automaton A which
determines R(n) (R(n) = E[TA]), could have a largest shortest reset word w ∈ Σ∗

with |w| < (n− 1)2. In addition, we have the following results about the upper and
lower bound of R(n).
For 6 ≤ n ≤ 10 we have

E[TA1] ≤ R(n) ≤ (n− 1) 2(n
2)+1 − 2 = 2

1
2
n2+o(n)

For n ≥ 11 we have

L(n) ≤ R(n) ≤ (n− 1) 2(n
2)+1 − 2 = 2

1
2
n2+o(n)

97

Chapter 6

Further research

We have done a lot of research in this thesis about synchronizing automata and the
(expected) length of their reset words, but there are many more interesting facets
to explore in this subject. Below we mention some of the options for further research.

As stated in the conclusion, Černý’s conjecture, stating C(n) = (n − 1)2, is still
a conjecture. Therefore, the next steps in further research would be to prove or
contradict Černý’s conjecture. This can be achieved by further improving the upper
bound of C(n) until you get C(n) ≤ (n− 1)2 or by finding a synchronizing automa-
ton which has a shortest reset word w ∈ Σ∗ with |w| > (n− 1)2.

In the case that we have the probability distribution, P (a) = P (b) = 1
2
, on the

letters of our alphabet, we saw that we could bound R(n). These bounds (upper
and lower bound) can perhaps be improved. For the lower bound we could for in-
stance view even more different synchronizing automata. Perhaps this way, we can
find an automaton A for which the value E[TA] gives a better lower bound for R(n),
than the one we currently have. In this thesis we used some Matlab programs to
research the value of R(n). These programs can be made more efficient by for ex-
ample a more selective search (for instance, only check the synchronizing automata
which probably have a high value of E[TA]), or using simulations instead of using
system 1 to calculate E[TA]. In further research it is also possible to look at the
value of R(n) but then for a different value for p ∈ [0, 1] or for p as a variable.

In this thesis we researched the two extreme cases, either all letters were fixed or
all letter were random (with probability distribution). In further research we could
look at the expected length of a reset word in which m ∈ N letters are random and
the rest of the letters fixed. What could we say about the expected length of a reset
word if we don’t know the placements of those m random letters? What could we
say if we do know the placements of those m random letters?

In this thesis we mostly used Σ = {a, b}. In further research we could examine
how much influence the size of our alphabet has on the expected length of a reset
word, for a synchronizing automaton A.

98

Bibliography

[1] Peter Frankl. “An extremal problem for two families of sets”. In: European
Journal of Combinatorics 3.2 (1982), pp. 125–127.

[2] David Eppstein. “Reset sequences for monotonic automata”. In: SIAM Journal
on Computing 19.3 (1990), pp. 500–510.

[3] Igor Rystsov. “Reset words for commutative and solvable automata”. In: The-
oretical Computer Science 172.1-2 (1997), pp. 273–279.

[4] Mikhail V Volkov. “Synchronizing automata and the Černý conjecture”. In:
International conference on language and automata theory and applications.
Springer. 2008, pp. 11–27.

[5] Alexandra Silva. “Languages and Automata, Lecture notes”. 2013.

[6] Vladimir V Gusev. “Synchronizing automata with random inputs”. In: In-
ternational Conference on Developments in Language Theory. Springer. 2014,
pp. 68–75.

[7] Dmitry Ananichev. “A new lower bound for reset threshold of synchronizing
automata with sink state”. In: arXiv preprint arXiv:1701.07954 (2017).

[8] Marek Szyku la. “Improving the upper bound on the length of the shortest
reset words”. In: arXiv preprint arXiv:1702.05455 (2017).

[9] Anouk Jansen. “Bachelorscriptie wiskunde: Synchroniserende automaten”. 2019.

[10] Laura Scarabosio. “Monte Carlo Methods, Lecture notes”. 2021.

[11] Henk Don. “personal communication”. 2021-2022.

99

Appendix A

Proofs of propositions and
lemmas, needed for proving
Theorem 4.15

A.1 Proof of Lemma 4.24

Proof. The proof goes by induction to m.
The base case: m = 1.
Because of Equation 4.4 we have the following.

P (En,n−1) = p · P (E1,n−1) + (1 − p) · P (E1,n)

= p · P (E1,n−1) + (1 − p)2 · P (E2,1)

We can calculate P (E1,n−1) as follows.

P (E1,n−1) = p · P (E1,n−1) + (1 − p)P (E2,n)

(1 − p)P (E1,n−1) = (1 − p)P (E2,n)

P (E1,n−1) = P (E2,n)

= p · P (E2,1) + (1 − p) · P (E3,1)

We can see the following about P (E3,1).

P (E3,1) = p · P (E3,1) + (1 − p) · P (E4,2)

(1 − p)P (E3,1) = (1 − p)P (E4,2)

P (E3,1) = P (E4,2)

= · · · = P (En,n−2)

An analogue calculation can be done for P (E2,1), which gives us the following result.

P (E2,1) = P (En,n−1)

100

Combining all found equations gives us:

P (En,n−1) = p · P (E1,n−1) + (1 − p)2 · P (E2,1)

= p · (p · P (E2,1) + (1 − p) · P (E3,1)) + (1 − p)2 · P (E2,1)

= p · (p · P (En,n−1) + (1 − p) · P (En,n−2)) + (1 − p)2 · P (En,n−1)

= p2 · P (En,n−1) + p (1 − p) · P (En,n−2) + (1 − p)2 · P (En,n−1)(
1 − p2 − (1 − p)2

)
P (En,n−1) = p (1 − p)P (En,n−2)

2p (1 − p)P (En,n−1) = p (1 − p)P (En,n−2)

P (En,n−1) =
1

2
P (En,n−2)

Therefore, for m = 1 the lemma is correct.

For the induction step, we have the following induction hypothesis.

P (En,n−m) = m
m+1

P
(
En,n−(m+1)

)
holds for some m ∈ {1, . . . , n− 2}.

Now we want to prove that this also holds for m + 1.

P
(
En,n−(m+1)

)
= p · P

(
E1,n−(m+1)

)
+ (1 − p) · P (E1,n−m)

We can calculate P
(
E1,n−(m+1)

)
as follows.

P
(
E1,n−(m+1)

)
= p · P

(
E1,n−(m+1)

)
+ (1 − p) · P (E2,n−m)

(1 − p)P
(
E1,n−(m+1)

)
= (1 − p)P (E2,n−m)

P
(
E1,n−(m+1)

)
= P (E2,n−m)

= · · · = P (Em+2,n)

= p · P (Em+2,1) + (1 − p) · P (Em+3,1)

P (Em+3,1) = p · P (Em+3,1) + (1 − p) · P (Em+4,2)

P (Em+3,1) = P (Em+4,2)

= · · · = P
(
En,n−(m+2)

)
Analogue we get the following.

P (Em+2,1) = P
(
En,n−(m+1)

)
Combining these three equations gives us the following equation for P

(
En,n−(m+1)

)
.

P
(
En,n−(m+1)

)
= p · P

(
En,n−(m+1)

)
+ (1 − p) · P

(
En,n−(m+2)

)
The same kind of calculation we can do for P (E1,n−m), in short this gives the fol-
lowing.

P (E1,n−m) = P (Em+1,n)

= p · P (Em+1,1) + (1 − p) · P (Em+2,1)

= p · P (En,n−m) + (1 − p) · P
(
En,n−(m+1)

)
101

If we now combine our calculation about P
(
En,n−(m+1)

)
and P (E1,n−m) and use our

induction hypothesis we get the following calculations. This immediately shows that
the induction hypothesis is also correct for m + 1.

P
(
En,n−(m+1)

)
= p · P

(
E1,n−(m+1)

)
+ (1 − p) · P (E1,n−m)

= p ·
(
p · P

(
En,n−(m+1)

)
+ (1 − p) · P

(
En,n−(m+2)

))
+ (1 − p) ·

(
p · P (En,n−m) + (1 − p) · P

(
En,n−(m+1)

))
= p2 · P

(
En,n−(m+1)

)
+ p (1 − p) · P

(
En,n−(m+2)

)
+ p (1 − p) · P (En,n−m) + (1 − p)2 · P

(
En,n−(m+1)

)
= p2 · P

(
En,n−(m+1)

)
+ p (1 − p) · P

(
En,n−(m+2)

)
+ p (1 − p)

m

m + 1
· P
(
En,n−(m+1)

)
+ (1 − p)2 · P

(
En,n−(m+1)

)
(

1 − p2 − (1 − p)2 − mp (1 − p)

m + 1

)
P
(
En,n−(m+1)

)
= p (1 − p)P

(
En,n−(m+2)

)
(m + 2) p (1 − p)

m + 1
P
(
En,n−(m+1)

)
= p (1 − p)P

(
En,n−(m+2)

)
P
(
En,n−(m+1)

)
=

m + 1

m + 2
P
(
En,n−(m+2)

)
With this we have proved our lemma. □

A.2 Proof of Lemma 4.25

Proof. We have already seen that this lemma is correct for r = 1 (see Lemma 4.19).

Take 2 ≤ r ≤ n− 1 arbitrary.

P (Er+1,1) = p · P (Er+1,1) + (1 − p) · P (Er+2,2)

(1 − p)P (Er+1,1) = (1 − p)P (Er+2,2)

P (Er+1,1) = P (Er+2,2)

= · · · = P (En,n−r)

P (E1,n−r+1) = p · P (E1,n−r+1) + (1 − p) · P (E2,n−r+2)

(1 − p)P (E1,n−r+1) = (1 − p)P (E2,n−r+2)

P (E1,n−r+1) = P (E2,n−r+2)

= · · · = P (Er,n)

Now we compute P(En,n−r) and P(Er,n). We know that for random input the Černý
automaton must synchronize at some point. This means that at some point all
pawns are together on the same state (and from then on, stay together). Which
means that either pawn k catches up to pawn k−1, or the other way around, where
k = 1, . . . , n. This gives the following.

P (Ek,k−1) = 1 − P (Ek−1,k) (A.1)

102

First we calculate P(En,n−r) and P(Er,n) for r = n − 1, with the use of Equation
A.1.

P (E1,n) = 1 − P (En,1)

1 − p

n− p
= 1 − P (En,1)

P (En,1) = 1 − 1 − p

n− p
=

n− p− (1 − p)

n− p

=
n− 1

n− p

P (E2,1) = 1 − P (E1,2)

1

n− p
= 1 − P (E1,2)

P (En−1,n) = P (E1,2) = 1 − 1

n− p
=

n− p− 1

n− p

=
n− 1 − p

n− p

Thus, our Proposition is correct for r = n− 1.
The rest of this proof goes by induction to r, but then downwards. So our base case
is r = n− 1, which as we saw, checks out. Now for the induction step, assume that
our lemma is correct for r + 1. Then we want to check if it is also correct for r.
We can see this by the following computations, using Lemma 4.24 and our induction
hypothesis.

P (En,n−r) =
r

r + 1
P (En,n−r−1) =

r

r + 1
P
(
En,n−(r+1)

)
=

r

r + 1

r + 1

n− p
=

r

n− p

P (En,n−r) = p · P (E1,n−r) + (1 − p) · P (E1,n−r+1)

= p · P (Er+1,n) + (1 − p) · P (Er,n)

r

n− p
= p · r + 1 − p

n− p
+ (1 − p) · P (Er,n)

(1 − p)P (Er,n) =
r − p (r + 1 − p)

n− p

P (Er,n) =
r − p (r + 1 − p)

(n− p) (1 − p)

=
r − pr − p + p2

(n− p) (1 − p)
=

(r − p) (1 − p)

(n− p) (1 − p)
=

r − p

n− p

This concludes our proof. □

103

A.3 Proof of Lemma 4.27

Proof. The proof of this lemma is analogue to the proof of Lemma 4.26.

P (W1 = a | E1,n−t) = · · · = P (W1 = a | Et,n−1) = p

P (W1 = b | E1,n−t) = · · · = P (W1 = b | Et,n−1) = 1 − p

P (W1 = a | Et+1,n) =
p · P (Et+1,1)

P (Et+1,n)

=
p · t

n−p

t+1−p
n−p

=
pt

t + 1 − p

P (W1 = b | Et+1,n) = 1 − P (W1 = a | Et+1,n)

=
(1 − p) (t + 1)

t + 1 − p

P (W1 = a | Et+2,1) = · · · = P (W1 = a | En−1,n−t−2) = p

P (W1 = b | Et+2,1) = · · · = P (W1 = b | En−1,n−t−2) = 1 − p

P (W1 = a | En,n−t−1) =
p · P (E1,n−t−1)

P (En,n−t−1)

=
p · t+2−p

n−p

t+1
n−p

=
p (t + 2 − p)

t + 1

P (W1 = b | En,n−t−1) = 1 − P (W1 = a | En,n−t−1)

=
(1 − p) (t + 1 − p)

t + 1

□

A.4 Proof of Proposition 4.29

Proof. The proof of this proposition goes by induction to m.
The base case is m = 1.
Proposition 4.28 gives us the following.

E [TCn | E1,n−1] =
n− 2p

2p (1 − p)2
+

1

2 (1 − p)2 (2 − p)

+
1 − p

2 (2 − p)
E [TCn | E1,n] +

3 − p

2 (2 − p)
E [TCn | E1,n−2]

Proposition 4.22 gives us the following.

E [TCn | E1,n] = 1 +
n− 2

1 − p
+

p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

104

Together this results in the following.

E [TCn | E1,n−1] =
n− 2p

2p (1 − p)2
+

1

2 (1 − p)2 (2 − p)

+
1 − p

2 (2 − p)

(
1 +

n− 2

1 − p
+

p2 − np + n

p (2 − p)
+ E [TCn | E1,n−1]

)
+

3 − p

2 (2 − p)
E [TCn | E1,n−2]

=
n− 2p

2p (1 − p)2
+

1

2 (1 − p)2 (2 − p)
+

1 − p

2 (2 − p)
+

n− 2

2 (2 − p)

+
(1 − p) (p2 − np + n)

2p (2 − p)2
+

1 − p

2 (2 − p)
E [TCn | E1,n−1]

+
3 − p

2 (2 − p)
E [TCn | E1,n−2](

1 − 1 − p

2 (2 − p)

)
E [TCn | E1,n−1] =

n− 2p

2p (1 − p)2
+

1

2 (1 − p)2 (2 − p)
+

1 − p

2 (2 − p)
+

n− 2

2 (2 − p)

+
(1 − p) (p2 − np + n)

2p (2 − p)2
+

3 − p

2 (2 − p)
E [TCn | E1,n−2]

3 − p

2 (2 − p)
E [TCn | E1,n−1] =

n− 2p

2p (1 − p)2
+

1

2 (1 − p)2 (2 − p)
+

1 − p

2 (2 − p)
+

n− 2

2 (2 − p)

+
(1 − p) (p2 − np + n)

2p (2 − p)2
+

3 − p

2 (2 − p)
E [TCn | E1,n−2]

E [TCn | E1,n−1] =
(n− 2p) (2 − p)

p (1 − p)2 (3 − p)
+

1

(1 − p)2 (3 − p)
+

1 − p

3 − p
+

n− 2

3 − p

+
(1 − p) (p2 − np + n)

p (2 − p) (3 − p)
+ E [TCn | E1,n−2]

Fill m = 1 in, in the formula of our proposition, this gives the following.

E [TCn | E1,n−1] =
(n− 2p) (2 − p)

p (1 − p)2 (3 − p)
+

1

(1 − p)2 (3 − p)
+

(1 − p) (2 − p)

(2 − p) (3 − p)

+
(n− 2) (2 − p)

(2 − p) (3 − p)
+

(1 − p) (p2 − np + n)

p (2 − p) (3 − p)

+
1∑

i=2

(i− 1) (i− p)

(1 − p)2 (2 − p) (3 − p)

+
1∑

i=2

(n− 2p) (i− p)2

p (1 − p)2 (2 − p) (3 − p)
+ E [TCn | E1,n−2]

=
(n− 2p) (2 − p)

p (1 − p)2 (3 − p)
+

1

(1 − p)2 (3 − p)
+

1 − p

3 − p
+

n− 2

3 − p

+
(1 − p) (p2 − np + n)

p (2 − p) (3 − p)
+ 0 + 0 + E [TCn | E1,n−2]

105

This is exactly what we have calculated for E [TCn | E1,n−1]. So, for m = 1 our
proposition is correct.

For the induction step, we have the following induction hypothesis. For m ∈
{1, . . . , n− 4} holds:

E [TCn | E1,n−m] =
(n− 2p) (m + 1 − p)

p (1 − p)2 (m + 2 − p)
+

m

(1 − p)2 (m + 2 − p)
+

(1 − p) (2 − p)

(m + 1 − p) (m + 2 − p)

+
(n− 2) (2 − p)

(m + 1 − p) (m + 2 − p)
+

(1 − p) (p2 − np + n)

p (m + 1 − p) (m + 2 − p)

+
m∑
1=2

(i− 1) (i− p)

(1 − p)2 (m + 1 − p) (m + 2 − p)

+
m∑
i=2

(n− 2p) (i− p)2

p (1 − p)2 (m + 1 − p) (m + 2 − p)
+ E [TCn | E1,n−m−1]

Now we want to proof that it also holds for m + 1.
Substituting our induction hypothesis in Proposition 4.28 gives us the following.

E
[
TCn | E1,n−(m+1)

]
=E [TCn | E1,n−m−1]

=
n− 2p

2p (1 − p)2
+

m + 1

2 (1 − p)2 (m + 2 − p)

+
m + 1 − p

2 (m + 2 − p)
E [TCn | E1,n−m] +

m + 3 − p

2 (m + 2 − p)
E [TCn | E1,n−m−2]

=
n− 2p

2p (1 − p)2
+

m + 1

2 (1 − p)2 (m + 2 − p)
+

m + 1 − p

2 (m + 2 − p)

(
(n− 2p) (m + 1 − p)

p (1 − p)2 (m + 2 − p)

+
m

(1 − p)2 (m + 2 − p)
+

(1 − p) (2 − p)

(m + 1 − p) (m + 2 − p)

+
(n− 2) (2 − p)

(m + 1 − p) (m + 2 − p)
+

(1 − p) (p2 − np + n)

p (m + 1 − p) (m + 2 − p)

+
m∑
i=2

(i− 1) (i− p)

(1 − p)2 (m + 1 − p) (m + 2 − p)

+
m∑
i=2

(n− 2p) (i− p)2

p (1 − p)2 (m + 1 − p) (m + 2 − p)
+ E [TCn | E1,n−m−1]

)
+

m + 3 − p

2 (m + 2 − p)
E [TCn | E1,n−m−2]

106

=
n− 2p

2p (1 − p)2
+

m + 1

2 (1 − p)2 (m + 2 − p)
+

(n− 2p) (m + 1 − p)2

2p (1 − p)2 (m + 2 − p)2

+
m (m + 1 − p)

2 (1 − p)2 (m + 2 − p)2
+

(1 − p) (2 − p)

2 (m + 2 − p)2
+

(n− 2) (2 − p)

2 (m + 2 − p)2

+
(1 − p) (p2 − np + n)

2p (m + 2 − p)2
+

m∑
i=2

(i− 1) (i− p)

2 (1 − p)2 (m + 2 − p)2

+
m∑
i=2

(n− 2p) (i− p)2

2p (1 − p)2 (m + 2 − p)2
+

m + 1 − p

2 (m + 2 − p)
E [TCn | E1,n−m−1]

+
m + 3 − p

2 (m + 2 − p)
E [TCn | E1,n−m−2]

(
1 − m + 1 − p

2 (m + 2 − p)

)
E [TCn | E1,n−m−1] =

n− 2p

2p (1 − p)2
+

m + 1

2 (1 − p)2 (m + 2 − p)

+
(n− 2p) (m + 1 − p)2

2p (1 − p)2 (m + 2 − p)2
+

m (m + 1 − p)

2 (1 − p)2 (m + 2 − p)2

+
(1 − p) (2 − p)

2 (m + 2 − p)2
+

(n− 2) (2 − p)

2 (m + 2 − p)2

+
(1 − p) (p2 − np + n)

2p (m + 2 − p)2
+

m∑
i=2

(i− 1) (i− p)

2 (1 − p)2 (m + 2 − p)2

+
m∑
i=2

(n− 2p) (i− p)2

2p (1 − p)2 (m + 2 − p)2

+
m + 3 − p

2 (m + 2 − p)
E [TCn | E1,n−m−2]

m + 3 − p

2 (m + 2 − p)
E [TCn | E1,n−m−1] =

n− 2p

2p (1 − p)2
+

m + 1

2 (1 − p)2 (m + 2 − p)

+
(n− 2p) (m + 1 − p)2

2p (1 − p)2 (m + 2 − p)2
+

m (m + 1 − p)

2 (1 − p)2 (m + 2 − p)2

+
(1 − p) (2 − p)

2 (m + 2 − p)2
+

(n− 2) (2 − p)

2 (m + 2 − p)2

+
(1 − p) (p2 − np + n)

2p (m + 2 − p)2
+

m∑
i=2

(i− 1) (i− p)

2 (1 − p)2 (m + 2 − p)2

+
m∑
i=2

(n− 2p) (i− p)2

2p (1 − p)2 (m + 2 − p)2

+
m + 3 − p

2 (m + 2 − p)
E [TCn | E1,n−m−2]

107

E [TCn | E1,n−m−1] =
(n− 2p) (m + 2 − p)

p (1 − p)2 (m + 3 − p)
+

m + 1

(1 − p)2 (m + 3 − p)

+
(n− 2p) (m + 1 − p)2

p (1 − p)2 (m + 2 − p) (m + 3 − p)

+
m (m + 1 − p)

(1 − p)2 (m + 2 − p) (m + 3 − p)
+

(1 − p) (2 − p)

(m + 2 − p) (m + 3 − p)

+
(n− 2) (2 − p)

2 (m + 2 − p) (m + 3 − p)
+

(1 − p) (p2 − np + n)

p (m + 2 − p) (m + 3 − p)

+
m∑
i=2

(i− 1) (i− p)

(1 − p)2 (m + 2 − p) (m + 3 − p)

+
m∑
i=2

(n− 2p) (i− p)2

p (1 − p)2 (m + 2 − p) (m + 3 − p)
+ E [TCn | E1,n−m−2]

=
(n− 2p) (m + 2 − p)

p (1 − p)2 (m + 3 − p)
+

m + 1

(1 − p)2 (m + 3 − p)
+

(1 − p) (2 − p)

(m + 2 − p) (m + 3 − p)

+
(n− 2) (2 − p)

2 (m + 2 − p) (m + 3 − p)
+

(1 − p) (p2 − np + n)

p (m + 2 − p) (m + 3 − p)

+
m+1∑
i=2

(i− 1) (i− p)

(1 − p)2 (m + 2 − p) (m + 3 − p)

+
m+1∑
i=2

(n− 2p) (i− p)2

p (1 − p)2 (m + 2 − p) (m + 3 − p)
+ E [TCn | E1,n−m−2]

This is exactly what our propositions claims about E [TCn | E1,n−m−1]. □

A.5 Proof of Corollary 4.30

Proof. To prove this Corollary, we first have to calculate the finite sums (from i = 2
to m + 1). Here we can use the facts that

∑n
i=1 i = 1

2
n (n + 1) and

∑n
i=1 i

2 =
1
6
n (n + 1) (2n + 1).

108

Intermezzo

m∑
i=2

(i− 1) (i− p)

(1 − p)2 (m + 1 − p) (m + 2 − p)
=

=
1

(1 − p)2 (m + 1 − p) (m + 2 − p)

m∑
i=1

(
i2 − (1 + p) i + p

)
=

1

(1 − p)2 (m + 1 − p) (m + 2 − p)

(
1

6
m (m + 1) (2m + 1)

− (1 + p)
1

2
m (m + 1) + pm

)
=

m (m− 1) (2m− 3p + 2)

6 (1 − p)2 (m + 1 − p) (m + 2 − p)

m∑
i=2

(n− 2p) (i− p)2

p (1 − p)2 (m + 1 − p) (m + 2 − p)
=

=
n− 2p

p (1 − p)2 (m + 1 − p) (m + 2 − p)

(
m∑
i=1

(
i2 − 2pi + p2

)
− (1 − p)2

)

=
n− 2p

p (1 − p)2 (m + 1 − p) (m + 2 − p)

(
1

6
m (m + 1) (2m + 1)

−2p
1

2
m (m + 1) + p2m− (1 − p)2

)
=

(n− 2p)m (m + 1) (2m + 1)

6p (1 − p)2 (m + 1 − p) (m + 2 − p)
− (n− 2p)m

(1 − p)2 (m + 2 − p)

− n− 2p

p (m + 1 − p) (m + 2 − p)

This intermezzo, together with Proposition 4.29 gives the following.

109

E [TCn | E1,n−m] =
(n− 2p) (m + 1 − p)

p (1 − p)2 (m + 2 − p)
+

m

(1 − p)2 (m + 2 − p)
+

(1 − p) (2 − p)

(m + 1 − p) (m + 2 − p)

+
(n− 2) (2 − p)

(m + 1 − p) (m + 2 − p)
+

(1 − p) (p2 − np + n)

p (m + 1 − p) (m + 2 − p)

+
m (m− 1) (2m− 3p + 2)

6 (1 − p)2 (m + 1 − p) (m + 2 − p)

+
(n− 2p)m (m + 1) (2m + 1)

6p (1 − p)2 (m + 1 − p) (m + 2 − p)
− (n− 2p)m

(1 − p)2 (m + 2 − p)

− n− 2p

p (m + 1 − p) (m + 2 − p)
+ E [TCn | E1,n−m−1]

=
(n− 2p) (m + 1 − p) + pm− pm (n− 2p)

p (1 − p)2 (m + 2 − p)

+
p (2 − p) (n− 1 − p) + (1 − p) (p2 − np + n) − (n− 2p)

p (m + 1 − p) (m + 2 − p)

+
pm (m− 1) (2m− 3p + 2) + (n− 2p)m (m + 1) (2m + 1)

6p (1 − p)2 (m + 1 − p) (m + 2 − p)

+ E [TCn | E1,n−m−1]

=
(n− 2p) (m + 1 − p) + pm− pm (n− 2p)

p (1 − p)2 (m + 2 − p)

+
pm (m− 1) (2m− 3p + 2) + (n− 2p)m (m + 1) (2m + 1)

6p (1 − p)2 (m + 1 − p) (m + 2 − p)

+ E [TCn | E1,n−m−1]

=
−2 (m + 1) p3 + 1

2
(m + 1) (3m + 2n + 8) p2 − 1

3
(m + 1) (m + 2) (m + 3n + 3) p

p (1 − p)2 (m + 1 − p) (m + 2 − p)

+
1
6

(2m + 3) (m + 1) (m + 2)n

p (1 − p)2 (m + 1 − p) (m + 2 − p)
+ E [TCn | E1,n−m−1]

□

110

Appendix B

Additions Section 4.3

B.1 All possible power automata in the proof of

Proposition 4.45.

In this section we give all possible power automata, which we discussed in the proof
of Proposition 4.45. With each possible power automata we give the value of E[TA]
with p = 1

2
, calculated with System 2 described in Subsection 4.2.2. In each figure

with a possible power automaton we indicated the value of mIJ in red.

Option 1:

{α, β, γ} {α, β} {β, γ} {γ, α} A

1

1

1

1 1

1 1

1

Figure B.1: Option 1 of the power automaton with second arrows, n = 3 and mIJ

in red.

With option 1 we have E[TA] = 8 · 1 = 8.

111

Option 2:

{α, β, γ} {α, β} {β, γ} {γ, α} A

1

1

1

1

2

2

1

1

Figure B.2: Option 2 of the power automaton with second arrows, n = 3 and mIJ

in red.

With option 2 we have E[TA] = 6 · 1 + 2 · 2 = 10.

Option 3:

{α, β, γ} {α, β} {β, γ} {γ, α} A

1

1

2

2 2

2

1

1

Figure B.3: Option 3 of the power automaton with second arrows, n = 3 and mIJ

in red.

With option 3 we have E[TA] = 4 · 1 + 4 · 2 = 12.

Option 4:

{α, β, γ} {α, β} {β, γ} {γ, α} A

1

1

2

2

1

1

1

1

Figure B.4: Option 4 of the power automaton with second arrows, n = 3 and mIJ

in red.

With option 4 we have E[TA] = 6 · 1 + 2 · 2 = 10.

112

Option 5:

{α, β, γ} {α, β} {β, γ} {γ, α} A

1

1

3

3 2

2 1

1

Figure B.5: Option 5 of the power automaton with second arrows, n = 3 and mIJ

in red.

With option 5 we have E[TA] = 4 · 1 + 2 · 2 + 2 · 3 = 14.

Option 6:

{α, β, γ} {α, β} {β, γ} {γ, α} A

1

1

4

4

2

2

1

1

Figure B.6: Option 6 of the power automaton with second arrows, n = 3 and mIJ

in red.

With option 6 we have E[TA] = 4 · 1 + 2 · 2 + 2 · 4 = 16.

Comparing all six options gives us that the power automaton (if it exists) in option
6 has the largest value for E[TA].

B.2 Power automaton of the Černý automaton C5.

The power automaton of the Černý automaton C5 is shown on the next page in
Figure B.7.

113

{α, β, γ, µ, φ} {β, γ, µ, φ} {β, α, µ, γ} {γ, α, β, φ}

{α, β, µ, φ}

{α, µ, φ, γ}

{γ, µ, φ}

{β, µ, γ}

{β, α, γ}

{β, α, φ}

{α, µ, φ}

{β, γ, φ}

{β, α, µ}

{α, φ, γ}

{φ, µ, β}

{µ, γ, α}

{µ, φ}

{γ, µ}

{γ, β}

{β, α}

{α, φ}{φ}

{γ, φ}

{µ, β}

{α, γ}

{β, φ}

{α, µ}

b

a

a

b

a

b

b

a

b

a a

b

b

a

b

a

b

a

b

a

a

b

b

a

b

a

a

b

a

b

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

a

b

Figure B.7: Power automaton of the Černý automaton C5.
114

Appendix C

Matlab programs

For Chapter Random words we used some Matlab programs. These Matlab pro-
grams can be found through the following link.
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/tree/main/MatlabCode

In this Chapter we give some more context and explanations on how these programs
work. We only cover the most important (the ones that are most used) programs.
In each subsection you can find a corresponding link that will take you directly to
the used Matlab code.

C.1 Automaton

First we show how we program an automaton A = (Q,Σ, δ) with n states.

We translate this automaton in Matlab in the following way. For each letter in
the alphabet (Σ) we create a transition matrix. So, we will get a n × n-matrix A
for the letter a and a n× n-matrix B for the letter b. We define matrix A en B as
follows.

Aij =

{
1 if δ(i, a) = j

0 otherwise
Bij =

{
1 if δ(i, b) = j

0 otherwise

The function Automaton(n, q, A,B,w) shown below, is the Matlab program for
an automaton. The inputs of this function are, n the number of states, q ∈ Q the
start state, matrices A and B indicating automaton A and a word w ∈ Σ∗. A word
w ∈ Σ∗ in Matlab is a array of zeros and ones. The zeros correspond with the letter
a and the ones correspond with the letter b.
This function returns the value δ(q, w) for the automaton indicated by matrix A
and B.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/Automaton.m

115

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/tree/main/MatlabCode
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/tree/main/MatlabCode
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/Automaton.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/Automaton.m

Let’s go through this program with an example.

Example C.1. Consider the Černý automaton with n = 4 states shown in Figure
2.3, C4 = ({1, 2, 3, 4}, {a, b}, δ). Here we have as transition function

δ(q, a) =

{
q if q = 1, 2, 3

1 if q = 4
δ(q, b) =

{
q + 1 if q = 1, 2, 3

1 if q = 4

This gives that the following matrices indicated the Černý automaton C4.

A =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

 B =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Suppose we have the start state q = 3 and word w = aba. Our program we calcu-
lates δ(q, w). To do this we first convert our word into a array of zero’s and one’s.
The letter a becomes a zero and the letter b becomes an one. So word w = aba
becomes [0, 1, 0].

We run Automaton(4, 3, A,B, [0, 1, 0]), this gives as outcome the value of δ(q, w)
where matrix A and B indicate the automaton. This program’s does the following.
We start with state= 3 and we have length(w) = 3 so our for loop does three itera-
tions.
In the first iteration in the for loop we have w(1) = 0. So we take a look at matrix
A. With find(A(startstate, :)) Matlab searches for the 1 (there is only one 1 by
definition of matrix A) in row 3 (start state = 3). In this example this 1 in row 3,
is found in column 3. With [, state] = find(A(3, :)) we define the new state to be
state= 3.
In the second iteration in the for loop we have w(2) = 1. So we take a look at
matrix B. With find(B(state, :)) Matlab searches for the 1 (there is only one 1 by
definition of matrix B) in row 3 (state= 3). In this example this 1 in row 3, is found
in column 4. With [, state] = find(A(3, :)) we define the new state to be state= 4.
In the third and last iteration we have w(3) = 0. So we take a look at matrix A.
With find(A(state, :)) Matlab searches for the 1 (there is only one 1 by definition of
matrix A) in row 4 (state= 4). In this example this 1 in row 3, is found in column
1. With [, state] = find(A(4, :)) we define the new state to be state= 1.
So we get that Automaton(4, 3, A,B, [0, 1, 0]) gives endstate=state= 1

C.2 Power automaton

With our program of the automaton, we can write a program of the correspond-
ing power automaton. The function Powerautomaton(n, S,A,B,w) is the matlab
program for the power automaton (of the automaton indicated by matrix A and B).
This function returns the value of δ(S,w).

116

The input of this function is almost the same as with the function
Automaton(n, q, A,B,w). The only difference is that we have some subset S ⊆ Q
instead of a state q ∈ Q.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/Powerautomaton.m

We again go through this program with an example. Let’s continue with Exam-
ple C.1.

Example C.2 (Continue of Example C.1). We have automaton C4.
n = 4, w = [0, 1, 0] and matrices A and B are shown in Example C.1. Suppose
S = {3, 4}, to put this into matlab we have to write S = [3, 4].

We start with Endsubset= [], an empty list. In each iteration we take the fol-
lowing state in S and calculate there endstate. We add this endstate to our list
Endsubset.
In our example we first have S(1) = 3, with Automaton(4, 3, A,B, [0, 1, 0]) we
calculated endstate= 1 (see Example C.1). So after the first iteration we have
Endsubset= [1].
In our second (and last) iteration we have S(2) = 4, with Automaton(4, 4, A,B, [0, 1, 0])
we calculated endstate= 2. After this iteration we have Endsubset= [1, 2].
Since |S| = 2 our for loop is done. Our function Powerautomaton(4, [3, 4], A,B, [0, 1, 0])
returns Endsubset= [1, 2].

Remark. Suppose we have the same inputs, n = 4, S = [3, 4] and automaton C4,
but that our word would be w = [1, 0]. Then Automaton(4, 3, A,B, [1, 0]) and
Automaton(4, 4, A,B, [1, 0]) would both return endstate= 1. But in our End-
subset we don’t want duplicate numbers. We want that in this case the function
Powerautomaton(4, [3, 4], A,B, [1, 0]) returns Endsubset= [1]. Therefore, we have
included an if statement in our for loop. If the calculated endstate isn’t in our cur-
rent Endsubset, then we add this number to the Endsubset. But if it is an element
in our current Endsubset, then we do nothing and just go to the next iteration in
the for loop.
So in the first iteration we get Endsubset= [1], and after the second iteration this
stays Endsubset= [1]. So our final result is Endsubset= [1].

C.3 Testing whether w is a reset word

With our function of the power automaton we can easily check whether some word
w ∈ Σ∗ is a reset word for the automaton indicated by matrix A and B, or not. The
input of this function is the number of states n, the word w and the matrices A and
B which indicate the automaton. These are the same sort inputs as in the function
of the automaton and the power automaton.

From Proposition 2.22 we know that w is a reset word if w indicates a path from Q to
a singleton. Therefore, in the function resetwordforAutomatonyesorno(n,w,A,B),

117

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/Powerautomaton.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/Powerautomaton.m

we check whether w indicates such a path.
So this is what we are checking in the function
resetwordforAutomatonyesorno(n,w,A,B). Here we use the function
Powerautomaton(n,Q,A,B,w), where Q = {1, . . . , n}. If this function returns
an Endsubset of lenght one, then δ(Q,w) is a singleton, and thus w is a reset word.
If not (length(Endsubet)> 1), then w isn’t a reset word.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/resetwordforAutomatonyesorno.m

Example C.3. Let’s again consider the Černý automaton C4, so n = 4 and matrices
A and B are shown in Example C.1.
Let w = aba (in matlab w = [0, 1, 0]) and check whether this is a reset word for the
Černý automaton C4 or not.
The function Powerautomaton(4, [1, 2, 3, 4], A,B, [0, 1, 0]) returns Endsubset= [2, 3, 1].
Length(Endsubset)= 3. Hence, w = aba isn’t a reset word. Our function returns
TrueorFalse= 0.
Let w = abbbabbba (in matlab w = [0, 1, 1, 1, 0, 1, 1, 1, 0]), then
Powerautomaton(4, [1, 2, 3, 4], A,B,w) returns Endsubset= [1].
Length(Endsubset)= 1, thus w = abbbabbba is a reset word. Our function returns
TrueorFalse= 1.

C.4 Find all subsets of Q = {1, . . . , n}
In this section we deal with a help function. This function finds all non-empty
subsets of Q (∅ ≠ S ⊆ Q = {1, . . . , n}). The only input of this function is n, the
number of states.
The function findallsubsets(n) returns a cell (a list of matrices) ALLSUB. For
k = 1, . . . , n, ALLSUB{k} is a (

(
n
k

)
× k)-matrix with all subsets of Q of size k (the

rows are the subsets).

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/findallsubsets.m

Let’s look at an example.

Example C.4. Suppose n = 4. Then ALLSUB=findallsubsets(n) gives the fol-
lowing matrices.

ALLSUB{1} =


1
2
3
4


ALLSUB{2} =


3 4
2 4
2 3
1 4
1 3
1 2



118

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/resetwordforAutomatonyesorno.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/resetwordforAutomatonyesorno.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/findallsubsets.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/findallsubsets.m

ALLSUB{3} =


1 2 3
1 2 4
1 3 4
2 3 4


ALLSUB{4} =

(
1 2 3 4

)

The rows of ALLSUB{1} gives all subsets of size 1: {{1}, {2}, {3}, {4}}.
The rows of ALLSUB{2} gives all subsets of size 2: {{3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}}.
The rows of ALLSUB{3} gives all subsets of size 3: {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.
The rows of ALLSUB{4} gives all subsets of size 4: {{1, 2, 3, 4}}.
In total this gives all non empty subset of {1, 2, 3, 4}.

C.5 Calculating the Exact Expected length of the

reset word

In this section we see the function
ExactExpectedlengthresetwordAutomaton(n, pchance, A,B) (matlab program).
This function calculates E[TA] with the use of system 1 (described in Subsection
4.2.1).
The inputs of this function are the number of states n, matrices A and B which
indicate the automaton A and pchance ∈ [0, 1). If pchance = 0, then we calculate
E[TA] with p as a variable (the result is an expression depended on p). Otherwise we
calculate E[TA] for a certain p ∈ (0, 1) (the result is a number). We have P(a) = p
and P(b) = 1 − p.

Within this Matlab function all equations of system 1 get saved in eqns. There-
after we let Matlab solve the system of equations. At last we look at EA

Q, this is the
expected length of the reset word.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/ExactExpectedlengthresetwordAutomaton.m

C.6 Finding all permutation matrices

In Subsection 4.3.2 we do a brute force search across all synchronising automatons.
Before we can do a brute force search we need to know which different automata
exists. We have to find all possible matrices for matrix A and matrix B. Fortunately
all possible matrices for matrix A are the same as all possible matrices for matrix
B. So we only have to look for all possible matrices for matrix A.

The entries of matrices A are zeros and ones. For matrix A must hold that we
have precisely one 1 in each row. Thus all possible matrices for matrix A are all
n× n (column representation) permutation matrices.

119

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/ExactExpectedlengthresetwordAutomaton.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/ExactExpectedlengthresetwordAutomaton.m

Example C.5. Below we see all permutation matrices for n = 2.(
1 0
1 0

) (
1 0
0 1

) (
0 1
1 0

) (
0 1
0 1

)
For n = 4 we have to find all possible 4 × 4 permutation matrices
(function findallpermutationmatrices4states()) and for n = 5 we have to find all
possible 5×5 permutation matrices (function findallpermutationmatrices5states()).

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/findallpermutationmatrices4states.m

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/findallpermutationmatrices5states.m

C.7 Brute force search of all synchronising au-

tomatons

With previous programs/function we can now do a brute force search for the syn-
chronising automaton with the largest value of E[TA].

As input we have p ∈ (0, 1), where p = P(a) and P(b) = 1 − p.

With the functions findallpermutationmatrices4states() and
findallpermutationmatrices5states() we find all possible matrices A and B for
n = 4 and n = 5 respectively.

We go through all automatons, but we can only calculate E[TA] for synchronis-
ing automatons A. So, first we have to check whether some automaton indicated
by matrix A and B is synchronising or not. This is done by checking whether the
automaton has a reset word or not.

According to Lemma 3.17 we have for n = 4: C(4) ≤ 24 − 4 − 1 = 11. So if
an automaton with n = 4 has a reset word, it must have a reset word w ∈ Σ∗ with
|w| ≤ 11.
According to the upper bound found by J.-E Pin and P. Frankl we have for n = 5:
C(5) ≤ 53−5

6
= 20. So if an automaton with n = 5 has a reset word, it must have a

reset word w ∈ Σ∗ with |w| ≤ 20.

In both cases n = 4 and n = 5 we check whether an automaton has a reset word
or not. This is done by going through all words of length 11 and 20 respectively,
and checking whether or not this is a reset word for this particular automaton (use
function resetwordforAutomatonyesorno(n,w,A,B)).

120

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/findallpermutationmatrices4states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/findallpermutationmatrices4states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/findallpermutationmatrices5states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/findallpermutationmatrices5states.m

If it turns out that this particular automaton has a reset word, we calculate the
value E[TA] for the given p. Here we use the function
ExactExpectedlengthresetwordAutomaton(n, pchance, A,B) with pchance =
p.

Since we are looking for the automaton with the largest value of E[TA] we only
save the automatons A (and the value of E[TA]) with E[TA] ≥ E[TCn].

For n = 4 this gives the following Matlab program.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/lookformaximalexpectedresetlenght4states.m

For n = 5 there are even more possible matrices for A and B. This means that
there are a lot more automatons we need to check. To make our program a bit more
efficient, we do the following two things.
We can disregard all automatons with reset word w ∈ Σ∗ with |w| = 1, since for
these automatons E[TA] will be small.
We can disregard all isomorphic automatons, since they give the same value of E[TA].
For n = 5 this gives the following Matlab program.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/lookformaximalexpectedresetlenght5states.m

C.8 Calculate length of randomly generated reset

word

In this section we are dealing with a function, which we use by approximating E[TA1]
and E[TA2] for large n. The function randomAutomatonresetword(n, p, A,B)
calculates the length of a randomly generated reset word, with P(a) = p and
P(b) = 1 − p, of an automaton (with n states) indicated by matrix A and B.

We start with the empty word, which isn’t a reset word. Each iteration we add
a letter, randomly chosen with P(a) = p and P(b) = 1 − p. Then check whether the
new word is a reset word for the automaton indicated by matrix A and B. We stop
this process when we have found a reset word. Then we return the length of this
word.

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/randomAutomatonresetword.m

121

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/lookformaximalexpectedresetlenght4states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/lookformaximalexpectedresetlenght4states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/lookformaximalexpectedresetlenght5states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/lookformaximalexpectedresetlenght5states.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/randomAutomatonresetword.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/randomAutomatonresetword.m

C.9 Compare E[TA] of different automatons

To compare different automatons in Subsection 4.3.3 we have the following Matlab
program.
compareautomatonsexpectedlenghtresetword(minnumberofstates,maxnumberofstates, p)
In this program we use our knowledge about the exact value of E[TCn], E[TA3] and
L(n) found in Theorem 4.15, Proposition 4.52 and Definition 4.55 respectively. For
automatons A1 and A2 we use the function
ExactExpectedlengthresetwordAutomaton(n, p, A,B), or we approximate the
expected length of the reset word with (100 times)
randomAutomatonresetword(n, p, A,B).

With our function we compare the different values for
n = minnumberofstates,minnumberofstates + 1, . . . ,maxnumberofstates, with
P(a) = p.

For n ≥ 11 it’s gets to hard to calculate E[TA1] and E[TA2] exact. That is why
for n ≥ 11 we approximate E[TA1] and E[TA2] by taking 100 samples of randomly
generated reset words and calculate the mean of the length of all those words.

Our function gives a table with n and all corresponding calculated values E[TCn],
E[TA1], E[TA2], E[TA3] and L(n).

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/

-/blob/main/MatlabCode/compareautomatonsexpectedlenghtresetword.m

122

https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/compareautomatonsexpectedlenghtresetword.m
https://gitlab.science.ru.nl/vhoorn/synchronizing-automata-and-their-reset-words/-/blob/main/MatlabCode/compareautomatonsexpectedlenghtresetword.m

	Introduction
	Preliminaries and definitions
	Černý's conjecture
	The Černý automaton
	Upper bounds
	Upper bound by Marek Szykuła

	Random words
	Markov chains
	Expected length of reset word
	Calculating EQA: System 1
	Calculating EQA: System 2
	Calculating EQA exact for the Černý automaton Cn.

	Automata with large expected length of a reset word
	Upper bound of R(n)
	R(n) for small n
	Lower bound of R(n)

	Conclusion
	Further research
	Proofs of propositions and lemmas, needed for proving Theorem 4.15
	Proof of Lemma 4.24
	Proof of Lemma 4.25
	Proof of Lemma 4.27
	Proof of Proposition 4.29
	Proof of Corollary 4.30

	Additions Section 4.3
	All possible power automata in the proof of Proposition 4.45.
	Power automaton of the Černý automaton C5.

	Matlab programs
	Automaton
	Power automaton
	Testing whether w is a reset word
	Find all subsets of Q={1,…,n}
	Calculating the Exact Expected length of the reset word
	Finding all permutation matrices
	Brute force search of all synchronising automatons
	Calculate length of randomly generated reset word
	Compare E[TA] of different automatons

