
Planning problems with
rechargable energy in

non-deterministic environments

Arthur Al-Sett
Supervisor: Dr Sebastian Junges

Second supervisor: Dr Wieb Bosma

Radboud University

A thesis submitted in partial fulfilment
of the requirements for the degree of

Bachelor in Mathematics

August 2023

Contents

1 Introduction 2

2 Preliminaries 2
2.1 Strategies . 3
2.2 Objectives . 4
2.3 Problem statement . 5

3 Safety 5
3.1 Minimum cost to reach a target state . 6
3.2 Safely reaching reload states . 7

3.2.1 Explanation of Algorithm 1 . 7
3.2.2 Correctness of Algorithm 1 . 8

3.3 Solving the Safety problem . 10
3.3.1 Explanation of Algorithm 2 . 11
3.3.2 Correctness . 11

4 Counter selectors 15

5 Positive reachability 17
5.1 Explanation of Algorithm 3 . 19

5.1.1 Initialisation . 19
5.1.2 Improving the intermediate approximations 19

5.2 Correctness of Algorithm 3 . 20

6 Implementation and evaluation 22
6.1 Setup . 22

6.1.1 Verifying the produced counter selectors 22
6.1.2 Runtimes versus number of reload states 23
6.1.3 Comparing the implementations . 23

6.2 Results . 24

7 Conclusion 25

1

1 Introduction

Consider e.g. a drone that needs to deliver parcels. The locations of the drone are
modelled as vertices of a graph, referred to as states in this thesis. The drone can
go from state to state by taking actions, which typically represent movement. We
assume that when the drone takes an action, it is uncertain what its next state will
be. To be more precise, the next state is chosen according to a probability distribution.
In particular, different states can have different probabilities for being the drone’s
next state. In practice the uncertainty of the outcome of an action could be caused
by interference from environmental factors such as the wind. For example, if a drone
flies north for ten seconds with a fixed amount of wattage, the actual distance flown
would vary depending on the velocity of the wind.

We want the drone to reach a certain special state, called a target state. In this
example that would be a location where a parcel needs to be delivered. Furthermore,
we assume that the drone’s energy supply is limited and that it can be recharged in a
subset of the states: the reload states.

Instead of using a concrete example such as drones, the generic term agent will
be used to refer to entities that are being controlled. In this thesis we aim to use
algorithms to solve the planning problem where an agent needs to reach a target
state without running out of energy. Strategies will be defined as functions that decide
at any point in time what the agent’s next action should be, given the information of
which states it has visited and which actions it has taken so far. Essentially, strategies
decide how the agent should be controlled. The goal is to use algorithms to create a
strategy that solves the aforementioned planning problem.

The majority of this thesis is based on [3]. In particular, most of the definitions,
statements, and proofs are based on those from [3], but we have tried to mention it
explicitly wherever they are copied verbatim.

2 Preliminaries

We let zero be included in N and define N := N ∪ {∞}. Vector indices are often written
as subscripts. However, we will sometimes use subscripts for vectors to denote some-
thing other than indices. So we use the notation ector(nde) instead of ector nde.

We assume the reader has some experience with probability theory. A probab-
ility distribution over an at-most-countable set X is a function Pr: X → R such that
∑

∈X Pr() = 1. D(X) denotes the set of all probability distributions on X. Now we
introduce the model:

Definition 1.
A consumption Markov decision process (CMDP) is a tuple M = (S,A,Δ, C, R, cp),
where

� S is a finite set of states,

� A is a finite set of actions,

� Δ is a total transition function S × A→ D(S),
� C is a total consumption function S × A→ N,

� R ⊆ S is a set of reload states, and

2

� cp ∈ N is an integer, sometimes written as cp(M) for emphasis. ♢

The states typically represent possible locations for the agent, but additional inform-
ation can be encoded into them, such as whether the doors of a driverless car are open
or closed. In that case there would be two states for each location. Actions are what
the agent can do. Examples include driving forward, flying up, and opening its doors.
The probability distribution Δ(s, ) indicates for each state s′ how likely it is that the
agent will visit s′ after taking action  in state s. This is how we model the outcome
of actions potentially1 being uncertain due to influence of the agent’s environment,
e.g. the weather or other vehicles. C(s, ) is the cost of taking action  in state s: the
amount of resource that the agent has to spend. When the agent visits a reload state,
its resource reserve is fully replenished so that the level is equal to cp: the maximum
capacity of its resource reserve.

If the agent is currently in state s ∈ S and takes action  ∈ A, it cannot reach states
which are assigned a chance of zero. The only possible successor states are the states
which have a non-zero chance according to the probability distribution Δ(s, ). The set
of potential successors is denoted by Scc(s, ) = {t ∈ S | Δ(s, )(t) > 0}.

A path α = s11s22s3 . . . is a sequence that starts with a state, contains actions
and states alternatingly, and is either infinite or ends with a state. We also require that
there are no impossible transitions. That is, for all , s+1 ∈ Scc(s, ). Let Xω be the
set of infinite sequences with elements in X, for an arbitrary set X. Furthermore, let X∗

be the set of sequences in X of arbitrary but finite length. Then formally, a path is an
element of (S × A)ω ∪ (S × (A × S)∗) with the above constraint of having no impossible
transitions.

Indices are used to refer to states in a path: α is defined as s. Furthermore, the
finite prefix s11s22 . . . s−1−1s is denoted by α.... An infinite path is called a run
and Rns is the set of all runs in M. Similarly, a finite path is a history and Hst is the
set of all histories in M. If α is a history, we write st(α) for the last state of α.

We assume there are no cycles in the CMDPs which have zero cost. This is a real-
istic assumption because in practice even idling or rebooting costs energy. Further-
more, this assumption allows the results to be presented in a clearer way with fewer
exceptions.

2.1 Strategies

The behaviour of the agent is controlled by a strategy: a function Hst → A which
decides which action should be taken, given a history. Strategies are what we wish to
generate. Several requirements can be set for strategies.

When the agent acts according to a strategy σ, the resulting run is non-deterministic
because the results of actions are in general non-deterministic. Therefore we cannot
write “the run resulting from acting according to σ,” but we can find a sample run,
which is just a run that could result from playing by σ.

Now, such a sample run ρ can be obtained as follows. Suppose the initial state
is s1. At first the path describing what the agent has done, is just α = s1. For the -th
iteration of the following process, suppose the current state of the agent is s = st(α).
The strategy may need to know the whole history, so we get the next action by taking

1If according to Δ(s, ) a certain state has probability 1 and all other states (necessarily) have probab-
ility 0, then the outcome of taking action  in s is certain.

3

 = σ(α). The state s+1 which the agent visits next, is chosen randomly according to
the probability distribution Δ(s, ). Repeat the above process with αs+1, then with
αs+1+1s+2, etc. Doing this infinitely many times gives a sample run ρ.

A run is σ-compatible if it can be produced using the above process. That is, each
action in the run corresponds to what the strategy σ would have chosen, and the
chance is non-zero for each transition between states. Furthermore, a run is s-initiated
if s is its first state. We write Comp(σ, s) for the set of all σ-compatible, s-initiated
runs. Furthermore, Pσ

s
(X) is the chance that a run from Comp(σ, s) belongs to a given

measurable set X of runs. For details on Pσ
s
(·) and measurable sets of runs, we refer

to [1].

2.2 Objectives

Clearly it would be a problem if the agent ran out of energy. In order to prevent this,
we first need to track the energy level. The energy level decreases when the agent
takes actions, but it is restored in reload states.2 Therefore it is not sufficient to only
sum the costs of the actions taken. However, the latter concept will be used later and
is thus defined here. For a finite path α we define the consumption of α as

cons(α) :=
n−1
∑

=1

C(s, )

where α = s11s22 . . . sn−1n−1sn.

We introduce the following definition to track the actual energy level, taking reload
states into account.

Definition 2. We assume a CMDP M and use the notation from Definition 1. Let α
be a history and let the integer d (0 ≤ d ≤ cp) be the initial resource level. Then
the resource level after α, initialised by d, written as RLd(α) is defined recursively as
follows.

For a history consisting of only one state (α = s1), RLd(α) := d, since the agent has
taken no action and thus has consumed no energy.

If alpha contains at least one action (α = βs), then let c be the cost of the last
action: c := C(st(β), ). In the below definition, which was copied almost verbatim
from [3], the symbol ⊥ represents an insufficient resource level.

RLd(α) :=











RLd(β) − c if st(β) /∈ R and c ≤ RLd(β) ̸= ⊥
cp − c if st(β) ∈ R and c ≤ cp and RLd(β) ̸= ⊥
⊥ otherwise

(1)

As can be seen above, the cost of the last action is subtracted from what the agent’s
resource level was when it exited the previous state. If that cost is greater than that
resource level, the new resource level is ⊥. ♢

Remark 1. With the way the resource level is defined in Definition 2, it need not be
a problem for the agent to start with zero initial energy assuming it starts in a reload
state. Granted we have c ≤ cp with c as in Definition 2, the resource level will be
cp − c in the second state of the run. ♢

2In our model the resource is technically restored when the agent leaves a reload state.

4

A run ρ is d-safe if the resource level, initialised by d, is non-negative throughout
the run, i.e. non-negative after each finite prefix of ρ. Expressed differently, using
Definition 2, ρ is d-safe if RLd(ρ...) ̸= ⊥ for all  ≥ 1.

We define Rech
T
:= {ρ ∈ Rns | ρ ∈ T} for all  ≥ 1 to be the set of runs reaching a

state in T at the -th step. Furthermore, RechT :=
⋃

≥1 Rech

T

is the set of runs that
reach some state in T at some point.

A strategy σ is d-safe in a state s if every run in Comp(σ, s) is d-safe. This means
that regardless of the state-transitions the agent happens to make (as this is determ-
ined by chance), it never runs out of energy. Because of the restriction from Defini-
tion 2 that d ≤ cp, the above definition of d-safe is not valid for d > cp. However, we
declare that all strategies are ∞-safe in each state. We say that σ is T-positive d-safe
in s if it is d-safe in s and if it satisfies Pσ

s
(RechT) > 0. The latter means that there

exists a run in Comp(σ, s) that is contained in RechT . In other words, if the agent
starts in s and makes choices according to σ, then the chance that the agent reaches
a target state in T at some point, is not zero.

2.3 Problem statement

We introduce two vectors in order to concisely state the problems that will be solved.

The vectors Sƒe, SƒePRT ∈ N
|S|

contain for each state s ∈ S the minimal resource
level d ≤ cp such that there exists a strategy that is d-safe in s and a strategy that
is T-positive d-safe in s, respectively and ∞ if no such d ≤ cp exists. The “PR”
in SƒePRT stands for “positive reachability.”

We will consider the following two problems:

� The safety problem:
Given a CMDP with states S, compute the vector Sƒe =:  and a strategy that is
(s)-safe in each s ∈ S.

� The positive reachability problem:
Given a CMDP with states S and a set of target states T, compute the vector
SƒePRT =:  and a strategy that is T-positive (s)-safe in each s ∈ S.

3 Safety

In this section we will solve the safety problem for a CMDP M which we fix for the rest
of this section. To solve the safety problem we essentially need to prevent resource
exhaustion. To do this, the agent must eventually reach a reload state, since there are
no cycles of zero cost. Once it has reached a reload state, the agent must keep visiting
reload states without running out of energy in between reload states. However, once
the agent has reached a reload state, the initial resource level no longer matters, since
the agent’s current resource level will be cp regardless of what the initial level was. At
that point, what matters is that the strategy controlling the agent only tries to guide it
to reload states from which reaching another reload state can be guaranteed.

Hence, the minimal initial amount of resource for which safety can be guaranteed3

is the minimal initial amount for which it can be guaranteed that the agent reaches

3Formally: the minimal amount d of initial resource for which there exists a d-safe strategy.

5

Figure 1: an example CMDP. The r are reload states. The labels for the transitions in-
dicate actions and cost respectively. “0,1” means the cost and probability distribution
are the same for both actions: 0 and 1. Transitions with probability 0 are omitted.
r0 is a “bad” reload state because the agent cannot be guaranteed to reach another
reload state from there, using at most cp units of resource. The set of reload states
for which this can be guaranteed, is R′ = {r1, r2}.

s0r0s1 r1 r2
0, 1

0,1, cp

0,1, cp
1, 1

0,1, cp/2

0,1, cp/2

a “good” reload state. Here, “good” means that it belongs to a certain set of reload
states R′ such that if the agent is in one of those, it can be guaranteed that the agent
reaches another reload state in R′. See Figure 1. Both for finding the aforementioned
minimal initial level and for finding the set R′, we need a way to find the minimal initial
resource level to guarantee that the agent reaches a state from a given set. This leads
us to first define the vector MnntCons below and to subsequently use Algorithm 1 to
compute it. Then in Subsection 3.3 we solve the safety problem.

3.1 Minimum cost to reach a target state

First we introduce a number of concepts that relate to the minimum amount of resource
that is required to reach a certain state. Below, a generic set T ⊆ S of target states is
used. This will typically be a set of reload states, but it will not always be the original
set of reload states. Therefore it is clearer to have a more general definition.

Definition 3. Let α = s11s2 . . . be a finite or infinite path. RechConsM,T(α) is
defined as the amount of the resource that is consumed in α before reaching a target
state from T. If α never reaches a state in T then RechConsM,T(α) :=∞. Otherwise,
let  ≥ 1 be the smallest index such that s ∈ T. Then RechConsM,T(α) := cons(α...).

Furthermore, we define for a strategy σ and a state s

RechConsM,T(σ, s) := sp
ρ∈Comp(σ,s)

RechConsM,T(ρ). ♢

If the agent starts in s and makes decisions according to a strategy σ, producing
a sample run ρ, then the amount of resource required to reach a target state will be
at most RechConsM,T(σ, s). The latter is the minimal amount that is sufficient for
each sample run that starts in s, since we take the supremum over the exact amounts
required for all possible sample run.

Definition 4. We define the vector MnRechT such that for each state s,

MnRechT(s) := inf{RechConsT(σ, s) | σ is a strategy}. ♢

For each s ∈ S we take the infimum over all strategies and for each strategy we
consider the maximal amount of resource that the agent will consume before reaching

6

a target state when starting in s. Hence for each s ∈ S, MnRechT(s) is the minimal
amount d of resource for which there is some strategy that will guide the agent to
a target state if it starts in s, such that the agent consumes no more than d units
of resource before reaching a target state.

The index  in Definition 3 is allowed to be equal to 1 – the index of the first state –
because if the agent starts in a reload state then taking no actions at all is a valid way
to (trivially) reach a reload state. However, after initially reaching a reload state, the
agent needs to keep visiting reload states indefinitely. For this, it is required that the
agent takes at least one step to reach another reload state. Hence, for each of the
above definitions – the functions RechConsT(·) and RechConsT(·, ·) and the vector
MnRechT – we define versions where the index  from Definition 3 is required to be
strictly greater than one. We denote these alternative versions in the same way but
add a “+” superscript: RechCons+

T
(·), RechCons+

T
(·, ·), MnRech+

T
.

3.2 Safely reaching reload states

In this subsection we present an algorithm for computing the vector MnntCons,
which is defined to be equal to MnRech+

R
. Note that R was substituted for T in

the subscript. The following truncation operator is used in Algorithm 1. Its purpose is
explained below.

TUM(s) :=

¨

(s) if s /∈ R
0 if s ∈ R

(2)

Algorithm 1 Computing MnntConsM, taken from [3]
Input: a CMDP M = (S,A,Δ, C, R, cp)
Output: the vector MnntConsM

1: initialise  ∈ N
|S|

to be ∞ in all components
2: repeat
3: old← 
4: for all s ∈ S do
5: c←min∈A

�

C(s, ) +mxs′∈Scc(s,)ToldUM(s′)
�

6: (s)←min(c,(s))
7: end for
8: until old = 
9: return 

3.2.1 Explanation of Algorithm 1

We will explain three aspects of Algorithm 1: the initialisation, the structure of the
repeat-loop, and the expression on line 5. Concerning the initialisation: at no point
did we require that it is possible to reach a reload state from each state. For a state
from which the agent cannot reach a reload state, there is no finite energy level that
guarantees reaching a reload state. Hence all components of  are initialised to ∞ in
line 1 of Algorithm 1.

Regarding the structure of the repeat-loop: in line 3 the current approximation
of MnntConsM is stored in a variable old so it can be compared against the next

7

approximation in line 8. When there is no longer any change after an iteration of the
loop, i.e. two subsequent approximations are the same, the loop is terminated.

Finally, the expression in line 5 will be explained in steps. We want to assign to
the variable c the lowest amount of energy which guarantees reaching a reload state.
From the problem statements it should be clear that the “free variable” is the strategy.
In other words, we optimise the result by finding the best strategy. And since strategies
choose actions, this boils down to optimising the result by choosing actions. Therefore
we can determine for each action the lowest4 energy level that guarantees reaching
a reload state, and subsequently take the minimum over all actions. The produced
strategy should then simply be constructed such that it selects the action correspond-
ing to that minimum.

Determining for a given action and state the lowest energy level that guarantees
reaching a reload state, is done by the following expression (which is part of the ex-
pression in line 5).

C(s, ) + mx
s′∈Scc(s,)

ToldUM(s′)

For each successor state s′, we consider how much of the resource is needed to reach
a reload state from s′, using our previous approximation old. However, if s′ is itself a
reload state, this cost becomes zero. This is exactly what the truncation operator is
for.

Reaching a reload state must be guaranteed. So regardless of what s′ is randomly
determined to be, the energy level must be sufficient. Hence we take the maximum
over all successor states. Finally, we add the cost of taking action : C(s, ).

3.2.2 Correctness of Algorithm 1

The essence of Algorithm 1 is repeatedly applying a functional to a starting value.
More concretely, the functional G is applied to ∞∞∞, where

G()(s) :=min
∈A

�

C(s, ) + mx
s′∈Scc(s,)

TUM(s′)
�

(copied verbatim from [3]) and ∞∞∞ ∈ N
|S|

is a vector with all components equal to ∞.
The counterparts of these definitions are

F()(s) :=















min
∈A

�

C(s, ) + mx
s′∈Scc(s,)

(s′)
�

if s /∈ R

0 if s ∈ R

and T , which is defined to be a vector with T(s) = 0 if s ∈ T ⊆ S and T(s) = ∞
otherwise. Instead of directly proving that applying G to ∞∞∞ gives the correct result, the
approach is to prove that repeatedly applying F to R in a modified CMDP ÝM (defined
below) gives the correct result and that the latter result equals the result of applying
G to ∞∞∞ in the original CMDP M.

Theorem 1 ([3, Theorem 2]). Denote by n the length of the longest simple path in M.
Then iterating F on T yields a fixed point in at most n steps and this fixed point equals
MnRechT . (Proof omitted.)

4More accurately: our currently best approximation.

8

Reload states are assigned the value zero by F: it does not require any energy to
go to a reload state if the agent is already in a reload state. However, we want the
agent to travel between reload states, which requires that at least one step is taken.
The way we enfore this is by creating a modified CMDP.

Definition 5. Suppose M = (S,A,Δ, C, R, cp) is a CMDP with S = {s0, . . . , sN}. Let
eS = {s̃0, . . . , s̃N} be a set that contains for each s ∈ S a duplicate state s̃. Furthermore,
define eΔ and eC such that for all  ∈ A and for  = 0, . . . , N,

eΔ(s, ) := Δ(s, )
eΔ(s̃, ) := Δ(s, )
eC(s, ) := C(s, )
eC(s̃, ) := C(s, )

We define the CMDP ÝM = (S ∪ eS,A, eΔ, eC,R, cp). ♢

In Definition 5 the set of states is duplicated, but the set of reload states is not
changed. This means that for each j such that sj is a reload state, s̃j is not a reload
state, but everything else is the same for s̃: after taking an abritrary action  ∈ A, the
cost and the resulting probability distribution are the same as if the agent had taken
action  in sj. Therefore starting in a state s̃k is equivalent to starting in sk, except the
initial state will not be regarded as a reload state by F .

Lemma 2 ([3, Lemma 2]). Let M be a CMDP and let ÝM be the corresponding CMDP
from Definition 5. Then MnRech+M,T

(s) = MnRech
ÝM,T(s̃) for each state s of M,

where s̃ corresponds to s as in Definition 5. (Proof omitted.)

Lemma 3 ([3, Lemma 3]). Let ∞∞∞ ∈ N
|S|

be a vector with all components equal to ∞.
Consider iterating G on ∞∞∞ in M and F on R in ÝM. Then for each  ≥ 0 and each s ∈ R
we have G (∞∞∞)(s) = F (R)(s̃) and for every s ∈ S \ R we have G (∞∞∞)(s) = F (R)(s).
(Proof omitted.)

Theorem 4 ([3, Theorem 3]). Algorithm 1 correctly computes the vector MnntCons.
Moreover, the repeat-loop terminates after at most |S| iterations.

Proof. In the repeat-loop, the operator G is iteratively applied to a starting point. We
will show that this leads to a fixed point and that this fixed point equals MnntCons.

Since the length of the longest simple path in M is at most |S|, we know from
Theorem 1 that iterating F on R leads to a fixed point after at most |S| steps. Let

∞∞∞ ∈ N
|S|

be the vector with every element equal to ∞. We will first show that iterating G on ∞∞∞
leads to a fixed point in at most as many steps as it takes when iterating F on R. Let
 and j be the number of iterations after which F and G reach a fixed point, respectively.
Suppose G has not yet reached a fixed point after k steps. This means there is some s ∈
S such that

Gk+1(∞∞∞)(s) ̸= Gk(∞∞∞)(s).

9

Then by Lemma 3

Fk+1(R)(s̃) = Gk+1(∞∞∞)(s) ̸= Gk(∞∞∞)(s) = Fk(R)(s̃)

so F has not reached a fixed point after k steps either. It follows that j ≤ .
Finally, the fact that the output is correct can be seen as follows:

G (∞∞∞)(s) = F (R)(s̃) (Lemma 3)
= MnRech

ÝM,R(s̃) (Theorem 1)

= MnRech+M,R
(s) (Lemma 2)

= MnntCons(s) (By definition.)

3.3 Solving the Safety problem

Since the goal is for the agent to survive indefinitely, it must be ensured that after
any reload state it reaches, it can reach another. Therefore it is necessary to find a
subset R′ ⊆ R of reload states such that from any r′ ∈ R′ another reload state in R′ can
be reached in at least one step, with consumption at most cp. If we were to relax this
requirement it could happen that the agent goes to a certain reload state from where
it would take more than cp of the resource to reach another reload state.

Algorithm 2 Computing the vector Sƒe, taken from [3]
Input: a CMDP M
Output: the vector Sƒe

1: cp← cp(M)
2: Re← R
3: ToRemoe← ∅
4: repeat
5: Re← Re \ ToRemoe
6: mc← MnntConsM(Re)
7: ToRemoe← {r ∈ Re | mc(r) > cp}
8: until ToRemoe = ∅

9: for all s ∈ S do
10: if mc(s) > cp then
11: ot(s)←∞
12: else
13: ot(s)←mc(s)
14: end if
15: end for
16: for all r ∈ Re do
17: ot(r)← 0
18: end for
19: return ot

In Algorithm 2 we use the notation M(Re) to refer to the CMDP that is equal to M
except its set of reload states has been replaced by Re. Then MnntConsM(Re) simply
means the vector MnntCons corresponding to the CMDP M(Re).

10

Figure 2:

s0 s1 s2 s3 s4

3.3.1 Explanation of Algorithm 2

In Algorithm 2 the set Re is initially a copy of R (line 2). In lines 4–8 we repeatedly
remove from Re the reload states from which no other reload state can be reached
(again with ≥ 1 step and ≤ cp consumption). The reason this has to be done multiple
times is illustrated by the following example.

Example 1. Consider the CMDP in Figure 2 where there is only one action (A = {})
and where each state has exactly one outgoing transition, which has probability 1.
Each transition has cost 1 < cp.

It is impossible to reach a reload state from s2 after taking at least one step, let
alone without consuming more than cp of the resource. As a result, mc(s2) will be
∞ in the first iteration of the repeat-until loop in Algorithm 2. On the other hand, we
will have mc(s1) = 1 because of the transition to s2. So after one iteration of the
repeat-until loop, s2 will have been removed from Re, but not s1.

However, if the agent is in s1 it will certainly go to s2 in its next step. And from s2
it will not reach a reload state. So s1 /∈ R′ and s1 should be removed from Re. It was
not removed in the first iteration, since it could reach a reload state (s2), but after s2
is removed and mc(s1) becomes ∞, another iteration is necessary to remove s1 as
well. ♢

After line 8, Re satisfies the requirement for R′ described above, since

{r ∈ Re | mc(r) > cp} = ∅. (3)

This means that mc = MnntConsM(R′) after line 8. Then in lines 9–15 any value
in mc that exceeds the capacity is replaced by ∞ as is required by the definition of
the vector Sƒe. Finally, in lines 16–18 the output values are set to zero for reload
states from Re. The reason is that if the agent starts in one of those states, then
by (3) it is possible to guarantee reaching another reload state from Re with at least
one step and consuming at most cp. However, the states in Re are reload states
and hence by Remark 1 it is enough to start with zero resource. The pseudocode in
lines 16–18 was omitted in [3], but included in their implementation.

3.3.2 Correctness

Theorem 5 ([3, Theorem 4]). Algorithm 2 computes the vector Sƒe in polynomial
time.

Proof. In each iteration of the repeat-loop at least one state is removed from Re. Since
Re is initialised to R and the number of states is finite, the repeat-loop takes at most
|R| <∞ iterations. Furthermore, by Theorem 4 computing MnntCons in line 6 takes
at most |S| steps. It follows that the time complexity is polynomial.

11

For the correctness, we first prove the component-wise inequality

ot ≤ Sƒe. (4)

Suppose s ∈ S. If s ∈ Re then ot(s) = 0 and we are done, so assume s /∈ Re. If
Sƒe(s) =∞ then (4) holds for s, so assume Sƒe(s) is finite. By definition this means

Sƒe(s) ≤ cp.

If we can prove that
mc(s) ≤ Sƒe(s) (5)

then by lines 10–14, ot(s) =mc(s) and we are done. So it is sufficient to prove that
(5) holds when the algorithm terminates.

Above, we have reduced Inequality (4) to (5). This will now be reduced further to (6)
below. For a CMDP M′, SƒeM′(s) is the minimal amount of initial fuel to move around
indefinitely without running out of energy and MnntConsM′(s) is the minimal amount
of initial fuel to reach a reload state in at least one step. So if the agent has enough
energy to do the former, it also has enough for the latter. From this it follows that

MnntConsM′(s) ≤ SƒeM′(s).

Now since mc = MnntConsM(Re) ≤ SƒeM(Re) it suffices to prove that

SƒeM(Re) ≤ SƒeM (6)

is an invariant of the algorithm.
Finally, we reduce (6) to proving that at every point of execution

SƒeM(t) =∞ for all t ∈ R \ Re. (7)

Equation (7) is proved in the next paragraph. But first, to see that (7) is sufficient,
suppose it holds and let s′ ∈ S. The only way that the values of SƒeM(Re) could be
affected by a state t ∈ R \ Re being a reload state, is if there is a way to go to t
and subsequently survive indefinitely by moving between reload states. If it is cheap
to go to t, then this could lower the value of SƒeM(Re)(s′). However, if the agent
reaches t, it cannot be guaranteed that it will reach another reload state using at most
cp energy. In other words, there does not exist a strategy that is d-safe (with d ≤ cp)
that would choose an action  at some state ŝ such that t ∈ Scc(ŝ, ). Otherwise, the
strategy would not be d-safe for any d. In conclusion, it does not matter whether t is
a reload state and declaring all states in R \Re to be non-reload, does not change the
values of SƒeM(Re) compared to SƒeM. Hence SƒeM(s′) = SƒeM(Re)(s′).

Now we know that (7) implies (6), but we still need to prove (7). We will use in-
duction on the set Re. Denote by Re the set Re after the -th iteration. For  = 0,
Re = R so the statement trivially holds. Suppose  ≥ 1 and let s ∈ R \ Re. If we
can show that for no strategy σ there exists a d ≤ cp such that σ is d-safe in s,
then by definition SƒeM(s) = ∞. So assume σ is a strategy. Suppose a run in
Comp(σ, s) were to visit a state t in R \ Re−1. Then it is possible to reach t when
playing by σ and it cannot be guaranteed that the resource level stays non-negative
after t, since SƒeM(t) = ∞ by the induction hypothesis. Therefore σ is not cp-safe.
Now suppose all runs in Comp(σ, s) only visit reload states in Re−1. This means that

12

s ∈ Re−1 \Re = ToRemoe because of the assumption on s. From lines 6–7 we know
that MnntConsM(Re−1)(s) > cp which implies that there is a run ρ ∈ Comp(σ, s)
such that RechCons+

Re−1
(ρ) > cp. It follows that ρ is not cp-safe. The details for

this last step can be found in the proof of [3, Theorem 4]. As a result, σ is not cp-safe,
since there is a possible run that is not cp-safe.

Finally, for the correctness it remains to show that

ot ≥ Sƒe (8)

after the algorithm terminates. Assume s ∈ S. If ot(s) = ∞ then (8) follows immedi-
ately, so assume ot(s) <∞. Then by lines 10–14 we have ot(s) ≤ cp. If the agent
starts in s with ot(s) units of resource, it has enough to reach a reload state from
Re.5 By construction of Re, the agent then has enough resource to guarantee reach-
ing another reload state from Re while consuming at most cp and can keep visiting
reload states from Re like that indefinitely. It follows that ot(s) ≤ cp is enough initial
resource for resource exhaustion to be prevented, meaning ot(s) ≥ Sƒe(s).

Definition 6. (Partly copied almost verbatim from [3].) An action  is safe in a state s
with Sƒe(s) <∞ if

s /∈ R and C(s, ) + mx
t∈Scc(s,)

Sƒe(t) ≤ Sƒe(s) (9)

or s ∈ R and C(s, ) + mx
t∈Scc(s,)

Sƒe(t) ≤ cp. (10)

This means that if the agent has Sƒe(s) (or cp) units of energy, it has enough energy
to take action  and subsequently reach a reload state. The reason to have a special
case for s ∈ R is that it might be possible to guarantee survival with d < cp energy
and then we would have Sƒe(s) < cp. However, if s ∈ R, cp units of energy are
available and we can also consider actions to be safe if they require d′ units of energy
for survival, where Sƒe(s) < d′ ≤ cp.

Note that by definition of Sƒe, there is at least one safe action for states with
Sƒe(s) <∞. For a state s with Sƒe(s) =∞, all actions are said to be safe in s. ♢

In Theorem 6, which shows we have solved the second part of the Safety problem,
the use of the word “memoryless” might seem inaccurate since the strategy needs to
remember a safe action for each state. However “memoryless” refers to the fact that
the strategy does not need to know the whole history: it only needs to know the last
state, i.e. the current state.

Theorem 6 ([3, Theorem 5]). Any strategy which always selects an action that is safe
in the current state is SƒeM(s)-safe in every state s. In particular, in each CMDP M
there is a memoryless strategy σ that is SƒeM(s)-safe in every state s. Moreover, σ
can be computed in polynomial time.

Proof. Suppose σ is a strategy that always selects a safe action in the current state.
Suppose s ∈ S is a state with SƒeM(s) <∞. Let d := SƒeM(s) ≤ cp and suppose ρ ∈
Comp(σ, s) is a run that is not d-safe. Then there is an index  such that RLd(ρ...) = ⊥.

5This is because ot(s) < ∞ implies either (i) we have ot(s) = mc(s) by lines 10–14, meaning the
agent has enough of the resource to reach an r ∈ Re in at least one step, or (ii) we have ot(s) = 0,
meaning s ∈ Re by lines 16–18 so the agent is already in Re.

13

No strategy can be ⊥-safe, since the resource level in a run would always be ⊥ if it
were initialised with ⊥. Hence, SƒeM(t) > ⊥ for all t ∈ S and so there is an index j ≤ 
such that RLd(ρ...j) < SƒeM(ρj). That is, eventually the current resource level drops
below the SƒeM value of the current state.

We will now derive a contradiction by proving, using induction, that RLd(ρ...k) ≥
SƒeM(ρk) for all k ≥ 1. In the case k = 1 we have equality. Suppose k > 1. We
need to say something about RLd(ρ...k) so let us simplify the matter by eliminating
the first case in (1). By the induction hypothesis, RLd(ρ...k−1) ≥ SƒeM(ρk−1) > ⊥. Let
 := σ(ρ...k−1) be the last action that σ selected before the agent reached state ρk. By
assumption,  is safe in ρk−1. Therefore if ρk−1 /∈ R we have by (9) and the induction
hypothesis that,

C(ρk−1, ) ≤ C(ρk−1, ) + Sƒe(ρk)
≤ C(ρk−1, ) + mx

t∈Scc(ρk−1,)
Sƒe(t)

≤ Sƒe(ρk−1)
≤ RLd(ρ...k−1).

If ρk−1 ∈ R then

C(ρk−1, ) ≤ C(ρk−1, ) + Sƒe(ρk)
≤ C(ρk−1, ) + mx

t∈Scc(ρk−1,)
Sƒe(t)

≤ cp
= RLd(ρ...k−1).

by (10) and Definition 2. In conclusion, RLd(ρ...k−1) ̸= ⊥ and C(ρk−1, ) ≤ RLd(ρ...k−1)
so the first case in (1) is eliminated.

Now we will make the induction step. Suppose ρk ∈ R. By (10) we have

RLd(ρ...k) = cp
≥ C(ρk−1, ) + mx

t∈Scc(ρk−1,)
Sƒe(t)

≥ Sƒe(ρk).

If ρk /∈ R, then by (1), the induction hypothesis, and (9),

RLd(ρ...k) = RLd(ρ...k−1) − C(ρk−1, )
≥ Sƒe(ρk−1) − C(ρk−1, )
≥ mx

t∈Scc(ρk−1,)
Sƒe(t)

≥ Sƒe(ρk).

This proves that RLd(ρ...k) ≥ SƒeM(ρk) > ⊥ for all k ≥ 1, which gives a contradic-
tion with RLd(ρ...) = ⊥. It follows that all runs in Comp(σ, s) are SƒeM(s)-safe and
therefore σ is SƒeM(s)-safe.

Next, we prove that in each CMDP M there exists a strategy that is SƒeM-safe in
each state s. Let ƒ : S→ A be a function that maps each state to a safe action. Define
the strategy σ′ by σ′(h) := ƒ (st(h)). Then σ′(h) = σ′(st(h)), so σ′ is memoryless.

14

Furthermore, σ′ always selects an action that is safe in the current state so by the
above argument, σ′ is SƒeM(s)-safe in every state s.

Finally, we prove the time complexity. To compute σ′ we first execute Algorithm 2
which by Theorem 5 has polynomial complexity. Then for each state-action pair we
check one of (9) and (10). The number of state-action pairs is polynomial and the
maxima in Definition 6 can be computed in polynomial time. It follows that the overall
time complexity is polynomial.

4 Counter selectors

In this section, we define counter selectors, which can be used to represent strategies
with a finite amount of memory. We say that a strategy σ is a finite-memory strategy
if σ can be represented by a memory structure, which is a tuple (M,nt, p,m0) where

� M is a finite set, the elements of which we call memory elements;

� nt : M×S→ A is a function that chooses the next action to be taken by the agent;

� p : M× S× A× S→ M is a function that updates the “current” memory element;6

and

� m0 : S → M is a function which selects an initial memory element based on the
initial state.

It is convenient to define a function p∗ : M × Hst → M which is semantically similar
to p, except it takes a history as its second argument instead of a state, action, and
a state as its second, third, and fourth argument, respectively. The following definition
was copied verbatim from [3].

p∗(m,α) :=

¨

m if α = s has length 0
p(p∗(m,β), st(β), , t) if α = βt for some  ∈ A and t ∈ S

p is a function which returns the new (current) memory element based on the old (pre-
vious) memory element, the current state, the last action taken, and the state which
the agent happened to visit next. On the other hand, p∗ is a function which returns
the current memory element based on the initial memory element and the agent’s
history. Applying p repeatedly will give exactly the same result as applying p∗ once
to the whole history.

If μ = (M,nt, p,m0) is a memory structure, we can define a strategy σμ by σμ(α) =
nt(p∗(m0(s1), α), sn) for each history α = s11s22 . . . sn. Here we apply m0 to the
initial state to get the initial memory element. Subsequently, we apply p∗ to the
initial memory element and the input history to get the current memory element.
Finally, we apply nt to the current memory element and the last (i.e. current) state sn
to determine which action to take next. We say that σμ is encoded by μ.

To prevent resource exhaustion, strategies need to track the energy level of the
agent. This seems to contrast Theorem 6, which mentions memoryless strategies.
However, to track the energy level, strategies do not need to remember the whole

6The memory structure does not actually contain a memory element, but the “current” memory ele-
ment can be found for each finite prefix of a path by repeatedly applying p.

15

history, which is what “memoryless” refers to. Instead, strategies can remember the
the energy level using an integer counter. This integer is updated when the agent
takes an action and afterwards the strategy can “forget” that part of the history.

The aforementioned integer counter is of course bounded by the capacity and hence
it requires only finite memory. Strategies with such counters are called finite-counter
strategies. Finite-counter strategies choose actions to play using selection rules.

Definition 7. A selection rule for M is a function ϕ : {0,1, . . . , cp(M)} → A ∪ {⊥}
where the value ⊥ is meant to indicate the result being “undefined.” ♢

The set of resource levels for which ϕ is not ⊥ (“undefined”) is denoted by dom(ϕ) :=
{ ∈ {0, . . . , cp} | ϕ() ̸= ⊥} which is different from what the domain of ϕ would be
according to the definition of domain common in mathematics. ResM is the set of
all selection rules for M. We omit the subscript if M is clear from context.

When selecting actions according to a selection rule ϕ, at any point the next action
to play is

ϕ(mx{ ∈ dom(ϕ) |  ≤ c}), (11)

where c is the current energy level. In words, we first disregard all possible energy
levels for which ϕ is “undefined” (⊥). Then, we take the maximum energy level 
which is no greater than the current energy level. Finally, we apply ϕ to  and obtain
the next action.

Definition 8. (Copied verbatim from [3].)
A counter selector for M is a function : S→ Res. ♢

We want to create a strategy from a counter selector, but we need to know the
current energy level in order to choose an action using a selection rule. Therefore we
need to use a memory structure to keep track of the resource level. Let  be a counter
selector. Let r ∈ {0, . . . , cp(M)}|s| be a vector which for each state holds an initial
energy level. To ensure that the strategy we create is unique, we fix an action 0 ∈ A
which we will use when a certain variable (n) below does not exist. Finally, we assume
⊥ < k for all k ∈ N. Now we denote by r the strategy encoded by the memory
structure (M,nt, p,m0) which we define as follows.

� M := {⊥} ∪ {0, . . . , cp(M)} is the set of all possible resource levels, including ⊥
which represents an insufficient level.

� For m ∈ M, s ∈ N, let n ∈ dom((s)) be the greatest resource level such that
n ≤ m. If n exists, we let nt(m,s) := n and otherwise nt(m,s) := 0. In other
words, we apply (11) with c =m but if the set { ∈ dom(ϕ) |  ≤m} is empty, we
let the result be 0.

� Suppose m ∈ M; s, t ∈ S;  ∈ A. The following definition was copied verbatim
from [3] and is very similar to Equation (1) from Definition 2.

p(m,s, , t) :=











m − C(s, ) if s /∈ R and C(s, ) ≤m ̸= ⊥
cp(M) − C(s, ) if s ∈ R and C(s, ) ≤ cp(M) and m ̸= ⊥
⊥ otherwise

Here the current resource level, of which we keep track using m, stays insuffi-
cient (⊥) if it already was and becomes insufficient if the cost of playing action 

16

Figure 3: an example CMDP where SƒePRT(s0) > Sƒe(s0). s1 and s2 are reload
states, but only s2 is a target state. The transition labels indicate actions and cost
respectively.

s0 s1s2
0,11,2

0,1,10,1,1

is greater than the amount of resource the agent had in s. If there is no reason to
say that the resource level is insufficient, we simply subtract the cost of playing .

� We define m0 by m0(s) := r(s).

If σ is a strategy and there exist a counter selector  and a vector r′ (from the same
set as above), such that σ = r

′
, then σ is a finite-counter strategy since the energy

level is kept track of by the memory structure using a memory element.
The above construction will be used to create a strategy that solves the posit-

ive reachability problem. The vector SƒePRT will be substituted for r. As can be
seen above, the memory element is initialised to r(s), which in this case would be
SƒePRT(s). This means that the strategy assumes the initial resource level in s is
SƒePRT(s), which might seem strange since this is not necessarily true. However, the
counter selector, and therefore the strategy, will be constructed so that it is T-positive
SƒePRT(s)-safe in s. Hence it can do its job if given SƒePRT(s) units of resource. If
the agent has more resource at the start, the strategy will assume the initial level is
SƒePRT(s) regardless. The extra resource will not get in the way. If the agent has less,
it does not matter what the strategy does since it is not required to prevent resource
exhaustion or give the agent a non-zero chance of reaching a target state if the initial
resource level is insufficient.

5 Positive reachability

After computing the vector Sƒe, the next step is to determine SƒePRT . Loosely,
for a state s the required initial energy to survive is Sƒe(s) while the required initial
energy to survive and reach a target state with non-zero probability is SƒePRT(s). The
reason SƒePRT is not necessarily equal to Sƒe and therefore needs to be computed
separately, is illustrated by the example CMDP in Figure 3.

In this section we present and prove correct an algorithm to compute the vector
SƒePRT and, omitting some details which have already been explained, a strategy for
which at least one of the resulting runs visits a set T ⊆ S of target states. We fix a
CMDP M for the rest of this section.

We introduce the following function, with “SPR” being short for “safe positive reach-
ability.”

SPR-VM : S × A × N
|S|
→ N,

(s, ,) 7→ C(s, ) + min
t∈Scc(s,)

�

mx(sos)
�

where sos := {(t)} ∪ {SƒeM(t
′) | t′ ∈ Scc(s, ), t′ ̸= t}

17

Here  should be thought of as a vector of resource levels. The set sos contains the
resource level (t) corresponding to t as well as the value SƒeM(t′) for each potential
successor t′ other than t. This means that if the agent is in s and has C(s, )+mx(sos)
units of the resource, it has enough to take action  and to either end up at t with
(t) amount of resource left, or to survive after reaching a different state t′. Hence
the name sos: “succeed or survive.” To be mathematically correct we would have to
attach t, s, , and  as subscripts to sos, but this was omitted in favour of visual clarity.

We additionally take the minimum over all potential successors t ∈ Scc(s, ) so that
SPR-V(s, ,) is the minimum amount of resource needed to guarantee that, for a
certain successor t̂, the agent either reaches t̂ with (t̂) units of energy remaining in
its reserve, or it survives after ending up at a different successor t′ ̸= t̂.

We define a two-sided version of the truncation operator defined in (2). This defini-
tion was copied verbatim from [3].

JKM(s) :=











∞ if (s) > cp(M)
(s) if (s) ≤ cp(M) and s /∈ R
0 if (s) ≤ cp(M) and s ∈ R

Algorithm 3 Positive reachability of T in M, from [3]
Input: a CMDP M and a subset T ⊆ S of target states
Output: the vector SƒePRT and a corresponding counter selector 

1: r ← {∞}|S|

2: for all s ∈ S with SƒeM(s) <∞ do
3: (s)(SƒeM(s))← arbitrary action safe in s
4: end for
5: for all t ∈ T do
6: r(t)← SƒeM(t)
7: end for

8: repeat
9: rold← r

10: for all s ∈ S \ T do
11: (s)← rgmin∈A SPR-V(s, , rold)
12: r(s)←min∈A SPR-V(s, , rold)
13: end for
14: r ← JrKM
15: for all s ∈ S \ T do
16: if r(s) < rold(s) then
17: (s)(r(s))← (s)
18: end if
19: end for
20: until rold = r
21: return r,

18

5.1 Explanation of Algorithm 3

5.1.1 Initialisation

In Algorithm 3, the vector r is to become SƒePRT =:  and we want to construct a
counter selector  such that we can create a strategy  from it that is T-positive (s)-
safe in each state s. Just like in Algorithm 1, we initialise the output vector, in this case
r, to ∞ in every component so that the result is correct for states where we do not find
a way to reach the objective with a finite amount of initial resource.

The goal with positive reachability is to survive indefinitely and to reach a target
state with non-zero probability. Hence, if the agent starts in a target state t ∈ T, the
latter objective is immediately satisfied and the only thing left to be concerned with,
is survival. This is why in line 6 the value of r is set to that of SƒeM for all target
states. That is also why in the remainder of Algorithm 3 the value of r is only changed
for non-target states. See lines 10 and 15.

For a counter selector  and a state s, (s) is the selection rule assigned to s. Using
pseudocode notation, (s)(d) ←  essentially7 means that if the agent is in s and its
current resource level is at least d, it must take action . In lines 2–4 we tell the agent
that if its resource level is enough to prevent resource exhaustion from its current
state, it should take some safe action to indeed prevent resource exhaustion.

5.1.2 Improving the intermediate approximations

As in Algorithm 1 there is a repeat-loop where the values of the result vector – and
in this case the counter selector – are updated repeatedly until there are no more
changes. In line 12 we try to find a better approximation of SƒePRT for each non-
target state. There we have the subexpression SPR-V(s, , rold). Consider the same
subexpression but with rold replaced by SƒePRT :

SPR-V(s, , SƒePRT). (12)

This is the minimal amount of resource for the agent to either not run out of energy or
to reach a successor s′ with at least SƒePRT(s′) resource remaining. However, having
SƒePRT(s′) units of resource remaining in s′ also means it can be guaranteed that
the agent will not run out of energy, since there exists a strategy σ that is T-positive
SƒePRT(s′)-safe in s′. This means that with SPR-V(s, , SƒePRT) units of resource,
resource exhaustion can be prevented from s. Furthermore, there is a non-zero chance
that the agent will visit s′ and if the agent plays by σ, the chance that the agent
will eventually visit a target state t ∈ T from s′ is not zero. Therefore (12) is close
to SƒePRT(s), except the latter is the minimal amount to guarantee survival with a
non-zero chance of reaching a target state. To get the minimal amount we take the
minimum over all actions.

The above example, where we replaced rold by SƒePRT to get (12), should give
an idea of why we improve our approximations r of SƒePRT by taking minima over
SPR-V values. But we did not explain why the approximations get closer to SƒePRT .
Before the repeat-loop, the value of r is equal to SƒePRT for all target states8 and ∞
for all other states. So r ≥ SƒePRT and the approximations r need to decrease to get

7Unless there is some e ∈ dom((s)) with d < e ≤ c, where c is the agent’s current resource level.
8See Subsection 5.1.1.

19

Figure 4:

s

t

10

1

1

1
1

closer to SƒePRT . In line 12 we take the minimum over actions, so SPR-V(s, , rold)
needs to decrease for some action  before r(s) can decrease.

This could happen as follows. Suppose s ∈ S and the algorithm is currently in it-
eration  > 1 of the repeat-loop. If the value r(t̂) for some successor t̂ ∈ Scc(s, )
was lowered in the previous iteration  − 1, then mint∈Scc(s,)

�

mx(sos)
�

– from the
definition of SPR-V – could decrease. In that case SPR-V(s, , rold) and hence r(s)
would decrease. Then in the next iteration  + 1, the value r(s′) could decrease for
some state s′ which has s as a potential successor. This process continues.

The first time r(s) is decreased some state s, r(s) is not yet necessarily equal
to SƒePRT(s). For example, if there is an action  such that starting in s, survival
and reaching a target state t with r(t) ≤ cp can be guaranteed, where t is a direct
successor of s, then in the first iteration of the repeat-loop r(s) may go from ∞ to a
finite value at most cp. However, it could be that C(s, ) is high and that there are a
series of cheap transitions which also lead to t. See Figure 4. In that case r(s) might
be lowered again after a few more iterations of repeat-loop.

Another way that for some state s the value of r can be lowered is if r(s) ≤ cp and
s is a reload state. In that case, in s, some amount d ≤ cp of resource is sufficient to
guarantee survival with a non-zero chance of reaching T. But when leaving s the agent
will have cp resource, even if it had zero when entering s. So we can set r(s) to zero
using the two-sided truncation operator J·K. On the other hand, when we find a way to
guarantee survival with a non-zero chance of reaching T for a state s with an amount
of resource that is finite yet greater than cp, we set r(s) to ∞ using J·K because this
is required by the definition of SƒePRT .

Concerning the counter selector: the action corresponding to the minimum found
for s in line 12 is stored in (s) and if the value r(s) was actually improved in the
current iteration, line 17 is executed. As explained in Subsection 5.1.1, the effect of
assigning to the counter selector as in line 17 is that if the agent is in s and its resource
level is at least (the current value of) r(s) but strictly less than the first higher element
of dom((s)), then it takes action (s). In other words, we have found a cheaper way
to guarantee survival and a non-zero chance of reaching T, and we tell the agent to
take that way if it has enough resource for it.

5.2 Correctness of Algorithm 3

The following functionals correspond to certain instructions in Algorithm 3. It is con-
venient to define them so we can refer to them in statements below. These two defin-

20

itions were copied verbatim from [3].

AM(r)(s) :=

¨

SƒeM(s) if s ∈ T
min∈A(SPR-VM(s, , r)) otherwise

BM(r) := JAM(r)KM

Suppose s ∈ S is a state. Then SƒePRM,T(s) is the minimum amount of energy d
such that there exists a strategy σ which is d-safe in s and which produces at least
one run ρ that starts in s and visits T at some point. That is, there is no restriction on
when the agent visits T. We now define the vector SƒePRM,T

which is the same as
SƒePRM,T , except the run ρ from above is required to visit T in the first  steps.

The last definition we need for Lemma 7 is the vector yT , which is equal to SƒeM ex-
cept the values of non-target states become ∞. (Definition copied verbatim from [3].)

yT(s) :=

¨

SƒeM(s) if s ∈ T
∞ if s /∈ T

Iterating the operator B on the vector yT corresponds to iterating the repeat-loop
of Algorithm 3 on what the value of r is just before the repeat-loop begins. Lemma 7
says that after the -th iteration of operator B on the vector yT , the result is the vector
SƒePRM,T

. Hence, the latter is also the value of r after the -th iteration of the repeat-
loop.

Lemma 7 ([3, Lemma 4]). Consider the iteration of BM on the initial vector yT . Then
for each  ≥ 0 it holds that BM(yT) = SƒePR


M,T

. (Proof omitted.)

Theorem 8 ([3, Theorem 6]). Algorithm 3 always terminates after a polynomial num-
ber of steps and upon termination, r = SƒePRT .

Proof. r is set to yT in the part of Algorithm 3 before the repeat-loop: lines 1–7. Further-
more, executing the repeat-loop is equivalent to iterating operator B. In [3, Lemma 5]
it is proved that BKM(yT) = SƒePRT where K = |R| + (|R| + 1) · (|S| − |R| + 1). It follows
that after K iterations, r = SƒePRT . The time complexity follows from the fact that K
is of polynomial size.

It is more difficult to prove that from the produced counter selector a strategy can
be generated that is T-positive SƒePRT(s)-safe in each state s. We will not give all
the details. The proof is done using invariants. First, it can be shown that at the end
of each iteration of the repeat-loop, r ≥ Sƒe [3, Lemma 6]. Next, [3, Lemma 7] shows
that a strategy y generated from a counter selector  is Sƒe(s)-safe in each state s
if y ≥ Sƒe and , put simply, always keeps the agent’s current resource level at least
as high as the value of Sƒe corresponding to the agent’s current state. By combining
the former invariant with the latter statement, it follows that after each iteration of the
repeat-loop, the strategy r is Sƒe(s)-safe in each state s.

The above explains how it can be shown that the produced strategy guarantees
survival. For guaranteeing a non-zero chance of reaching T, another invariant is used.
The invariant says that after each iteration of the repeat-loop, for each state s with
r(s) ≤ cp, there exists a finite r-compatible path starting in s and ending in a tar-
get state, where the agent’s current resource level never drops below the value of r

21

corresponding to its current state. Essentially, the chance of reaching a target state is
not zero if r(s) ≤ cp. The fact that the current resource level does not drop below the
corresponding value of r is not directly necessary for proving the desired result, but it
is helpful for proving the invariant. With these invariants, it follows that the produced
strategy r is T-positive SƒePRT(s)-safe in each state s. The details can be found
in [3].

6 Implementation and evaluation

We investigated the following questions:

� Does the strategy generated from the counter selector produced by Algorithm 3,
indeed prevent resource exhaustion and guarantee a non-zero chance of reaching
a target state t ∈ T, if starting in s ∈ S with SƒePRT(s) units of resource?

� What is the effect of the number of reload states on the runtimes of the presented
algorithms?

To answer these questions, we implemented9 the presented algorithms in C++ using
the open-source model checker “Storm” as a basis. Since the algorithms had also
been implemented in Python by the authors of [3], we additionally checked that our
implementation gives the same result for the vectors MnntCons, Sƒe, and SƒePRT
as the Python implementation.

6.1 Setup

6.1.1 Verifying the produced counter selectors

The counter selector which is produced by Algorithm 3 is not unique because in line 3
an arbitrary safe action is used. That is to say, we cannot check that the counter
selector produced by our implementation of Algorithm 3 is correct by comparing it to
the one produced by the implementation of the authors of [3], since it is possible for
the two counter selectors to be different yet both correct.

Instead, we checked the correctness of the produced counter selector  as follows.
The vector SƒePRT and a corresponding counter selector  were computed for each
CMDP M from Subsection 6.1.3. We transformed M into an MDP M′ where one special
state represents resource exhaustion and every other state represents a tuple (s, d)
with s a state from M and d a resource level. In each state s′ of M′ the only outgoing
transition is the one corresponding to the action that  would choose if the agent
were in s with d units of resource, where s′ represents (s, d). Here  := SƒePRT and
 is the strategy generated from . That means that for a state from M′ representing
the tuple (s, d), the only runs which are possible in M′ correspond exactly to the runs
in CompM(, s). In other words, it is no longer necessary to consult the strategy :
its behaviour is encoded into the transitions of the MDP M′.

Subsequently, we used an algorithm from [2, Chaper 10] that was implemented
in Storm, to confirm that for each state s from M, the agent could never reach
the state representing resource exhaustion if it started in the state representing the

9https://github.com/arthuralsett/storm/tree/cmdp

22

https://github.com/arthuralsett/storm/tree/cmdp

tuple (s, SƒePRT(s)). This would show that  is SƒePRT(s)-safe in each s ∈ S.
Furthermore, for the states representing (s, SƒePRT(s)) we used an algorithm im-
plemented in Storm10 to confirm that the probability of a run which visits a target
state t ∈ T is not zero. This would show that  is T-positive SƒePRT(s)-safe in
each s ∈ S, assuming we already know it is SƒePRT(s)-safe.

6.1.2 Runtimes versus number of reload states

We investigated the influence of the number of reload states on the runtime of the
algorithms. We applied the algorithms to CMDPs modelling grid worlds: the set of
states corresponds to a 45 × 45 grid. The capacity was set to 5 and the number
of target states to 102. All reload and target states are distributed randomly over
the grid according to a uniform distribution. There are four actions: moving in the
directions north, east, south, and west, respectively. Each action has a cost of 1. When
the agent moves in a particular direction, the probability of moving one block is 0.9
and the probability of moving two blocks in that direction is 0.1.

However, what the exact values of these probabilities are, will not make a differ-
ence for the results of the algorithms as long as neither probability is zero and they
sum to one. The reason is as follows. The minimal initial resource level d for which
there is a strategy that is (T-positive) d-safe in a state s depends on which runs are
in Comp(σ, s) for each strategy σ. For a fixed strategy σ, the values of the aforemen-
tioned probabilities can only affect the contents of the set Comp(σ, s) by changing
whether specific elements of (S× A)ω are valid runs. But to determine whether an ele-
ment ρ ∈ (S× A)ω is a valid run, it only matters whether for each subsequence ss+1
we have Δ(s, )(s+1) > 0. Hence the results of the algorithms will not change if these
probabilities do not change between being zero and non-zero. This is also why none of
the algorithms consult the actual values of these probabilities, although they indirectly
check whether they are non-zero by using Scc.

6.1.3 Comparing the implementations

We checked that our C++ implementation gives the same results for the vectors
MnntCons, Sƒe, and SƒePRT as the Python implementation. We used CMDPs as
in Subsection 6.1.2, except with different values. Both sets of algorithms were applied
to CMDPs with n × n grids, ⌈n2⌉ reload states, ⌈yn2⌉ target states, and a capacity
of cp, where each combination of the following values was taken:

n = 20,30,40,50,
 = 0.1,0.2,0.3,
y = 0.05,0.1,0.15,

cp = 3,5,7.

The vector MnntCons is allowed to have finite values greater than cp in the
Python implementation, but in our implementation such values are replaced by ∞. We
performed our tests such that differences caused by this implementation detail were
ignored since it is a small design choice and not a significant semantic issue.

10See [4].

23

Figure 5:

6.2 Results

The tests showed that for all tried CMDPs, the produced counter selectors were correct
and our implementation agreed with the implementation by the authors of [3].

In Figure 5 the runtimes are plotted for various numbers of reload states, where for
each input size the average runtimes of five different inputs was taken. After an initial
spike, the runtimes for all three algorithms decrease as the number of reload states
increases. We discuss possible causes for this. Algorithm 1, in the first few iterations
of its loop, gives the correct values to states which are close to reload states. In
general there can be more complex situations, such as when a state s has a possible
transition to a reload state which is immediate (i.e. without intermediate states) but
expensive, as well as a possible series of cheap transitions which lead to the same
reload state. If the summed cost of the cheap transitions is less than the expensive
transition, Algorithm 1 only gives the correct value to s in a later iteration of the loop.
However, in the current setting this is not a concern since all actions have the same
cost in each state.

In each subsequent iteration, Algorithm 1 assigns the correct value to states which
are a little further removed from reload states. This leads to chains of states starting
at reload states where the states have increasing required initial resource levels as the
chain moves away from the reload state where it started.

Algorithm 1 terminates when there are no more changes to be made to the vector it
computes. Therefore the runtime depends on how quickly this fixed point is reached. If
there are more reload states, it is more likely that chains meet eachother as they move
away from reload states. When two chains meet eachother, the individual chains do
not go up from zero to cp, but instead they end at whatever value they had when
they met. This could lead to fewer iterations and thus a lower runtime. In Figure 6 a
simplified example is given to illustrate the idea.

One reason the runtime of Algorithm 2 decreases with more reload states, is that

24

Figure 6: the numbers above and below the states indicate MnntCons values.

r1

1 2 3 4 5 4 3 2 1
r3

r1

1 2 2 1

r2

1 2 2 1

r3

it uses Algorithm 1. Another reason could be that fewer iterations are needed be-
cause fewer reload states need to be removed from Re. First, if there are few reload
states then the reload states are sparse in the grid and it will occur more often that
reload states r are isolated from other reload states and need to be removed from
Re because it is not possible to guarantee reaching another reload state from Re
from the states r. If there are more of those “bad” reload states, it will be more likely
that they form a chain where they have to be removed one by one. See Example 1.
Clearly, chains of reload states that have to be removed one by one11 will lead to more
iterations being required in Algorithm 2 and thus a longer runtime.

The reason the runtime of Algorithm 3 decreases with the number of reload states
is likely mostly caused by it using Algorithm 2, given that the runtimes of Algorithms
2 and 3 are so close. The difference between their runtimes is too small compared to
the absolute runtime, for a statement to be made about whether the number of reload
states influences the runtime of Algorithm 3 through the part of Algorithm 3 that does
not use Algorithm 2.

7 Conclusion

In this thesis, we discussed a model that captures planning problems for systems with
rechargable batteries where the results of actions are non-deterministic. We formally
specified two problem statements related to preventing resource exhaustion and the
agent reaching a target state. The first problem, called safety, is to find for each state
the minimal initial resource level such that resource exhaustion can be prevented,
as well as to find a single12 strategy that indeed prevents resource exhaustion when
starting in an arbitrary state, if given the minimal initial resource level corresponding
to that state. The second problem, called positive reachability, is similar to the first,
except the goal is not simply to prevent resource exhaustion, but additionally for the
agent to reach a target state with a non-zero probability.

We presented algorithms to solve these two problems. For the safety problem,
constructing a strategy was done by fixing a safe action in each state. For the positive
reachability problem, a strategy was constructed by assigning to each state a partial
mapping ϕ from resource levels to actions. At any point in time, the agent’s next
action is ϕ(d), where d is the maximum resource level such that d is not greater than
the agent’s current resource level and such that ϕ(d) is defined. When no such d

11Or possibly a few at a time, but not all at once.
12As opposed to a separate strategy for each state.

25

exists, a globally fixed default action is used. Correctness as well as polynomial time
complexity were shown for the algorithms.

We re-implemented the presented algorithms in C++ and improved our confidence
that our implementation was correct by comparing the output to that of the implement-
ation by the authors of [3]. Furthermore, we verified the strategies our implementation
produced for the positive reachability problem by encoding their behaviour into an MDP
and using existing techniques to verify that they satisfy the desired qualities.

Finally, we investigated the influence of the number of reload states on the runtimes
of the algorithms and came up with possible explanations for the fact that a higher
number of reload states leads to a lower runtime. For Algorithm 1, we speculate that
chains of states leading away from reload states meet more often, leading to fewer
iterations being required. For Algorithm 2, besides the fact that it uses Algorithm 1, a
possible cause is that there are fewer chains of “bad” reload states which need to be
removed one by one. The main reason for Algorithm 3 is likely that it uses Algorithm 2.

References

[1] Robert B. Ash and Catherine A. Doléans-Dade. Probability and Measure Theory.
Harcourt/Academic Press, 2000.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

[3] František Blahoudek et al. “Qualitative Controller Synthesis for Consumption Markov
Decision Processes”. In: (2020). DOI: 10.48550/ARXIV.2005.07227. URL: https:
//arxiv.org/abs/2005.07227.

[4] Christian Hensel et al. “The probabilistic model checker Storm”. In: Int. J. Softw.
Tools Technol. Transf. 24.4 (2022), pp. 589–610. DOI: 10.1007/s10009- 021-
00633-z. URL: https://doi.org/10.1007/s10009-021-00633-z.

26

https://doi.org/10.48550/ARXIV.2005.07227
https://arxiv.org/abs/2005.07227
https://arxiv.org/abs/2005.07227
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1007/s10009-021-00633-z

	Introduction
	Preliminaries
	Strategies
	Objectives
	Problem statement

	Safety
	Minimum cost to reach a target state
	Safely reaching reload states
	Explanation of Algorithm 1
	Correctness of Algorithm 1

	Solving the Safety problem
	Explanation of Algorithm 2
	Correctness

	Counter selectors
	Positive reachability
	Explanation of Algorithm 3
	Initialisation
	Improving the intermediate approximations

	Correctness of Algorithm 3

	Implementation and evaluation
	Setup
	Verifying the produced counter selectors
	Runtimes versus number of reload states
	Comparing the implementations

	Results

	Conclusion

