
Radboud University Nijmegen

Faculty of Science

An Extension of Raney’s Algorithm for
Transducing Continued Fractions

Thesis B.Sc. Mathematics

Author:
Bart Sol

Supervisor:
Dr. Wieb Bosma

Second reader:
Dr. Henk Don

January 2020

Contents

1 Introduction 2

2 Initial Definitions 4

2.1 Disambiguation . 4

2.2 Continued Fractions . 4

2.3 Sequence Transducers . 6

3 Raney’s algorithm 9

3.1 Matrix representation of regular continued fractions 9

3.2 Balanced matrices . 11

3.3 Creating a transducer . 12

3.4 Reducing to the doubly-balanced case 14

3.5 Example . 15

4 Direct extension to nearest integer continued fractions 18

4.1 Matrix representation for NICF . 18

4.2 Creating transducers for NICF . 19

4.3 Validity of the transducer output . 20

4.3.1 Transforming a continued fraction into a nearest integer continued
fraction . 20

4.3.2 Simplifying Λ-sequences . 22

5 Roundabout algorithm 24

6 Discussion 25

A Appendix 26

1

1 Introduction

In 1695, John Wallis formally defined a method of approximating real numbers with
rational numbers using large embedded fractions. He named these approximations “con-
tinued fractions”. Despite this being the first formal definition of continued fractions,
this method of approximating real numbers had already been used for centuries by other
mathematicians. Nowadays, continued fractions are used in various areas of mathemat-
ics.

In essence, a continued fraction is a fraction of the form

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

(1)

where all coefficients ai are whole numbers.

The use of continued fractions to approximate real numbers has several advantages
over the use of decimal approximation. In most cases, continued fractions converge
to their appropriate real number a little faster than decimal approximations do. Fur-
thermore, continued fractions of rational numbers are always finite, much unlike their
decimal notations, and continued fractions of quadratic irrational numbers are always
periodic [1].

Despite these advantages, continued fractions have one very clear disadvantage to
decimal approximation that often makes them impractical to use. When simple arith-
metic expressions are applied to real numbers, their continued fractions drastically
change, to the degree that no simple methods exist to predict the outcome of such
expressions, given the continued fraction of the input.

In 1891, Adolf Hurwitz devised an algorithm to compute the continued fraction
of a real number β = 2α, given the continued fraction of α. In 1947, Marshall Hall
devised a generalised algorithm that computes the continued fraction of any Möbius
transformation applied to another continued fraction [2]. This method, however, turned
out to be highly impractical for anything but the simplest Möbius transformations.
Eventually, in 1973, George N. Raney found a more efficient method to replace Hall’s
[7].

Raney’s algorithm makes use of sequence transducers that automatically transform
input continued fractions into different continued fractions. Given a Möbius transfor-
mation µ, a transducer Tµ is constructed that transforms the continued fraction of any
real number α into the continued fraction of β = µ(α). The advantage of this method
over Hall’s is that in Raney’s algorithm, only a single transducer needs to be constructed
for any Möbius transformation, whereas in Hall’s algorithm, a whole number of difficult
computations are required for every α, even if the Möbius transformation remains the
same.

What makes Raney’s algorithm especially strong is that it can be stopped at any
point to give an accurate truncated continued fraction. For continued fractions to be
used in practice, they will need to be truncated, otherwise they cannot be stored in
finite space.

Next to the continued fraction in equation 1, also known as the “regular continued
fraction”, many other types of continued fractions exist. Two popular ones are the

2

“nearest integer continued fraction” and its complex analogue; the “Hurwitz continued
fraction”. Especially the Hurwitz continued fraction is used often when approximating
complex numbers with continued fractions. The different algorithms mentioned above
all only work for regular continued fractions. Several attempts have been made to
devise similar algorithms for these types of continued fractions with varying success. So
far, Raney’s algorithm has not been successfully extended to either of these continued
fractions.

This thesis gives an in-depth explanation of how Raney’s algorithm works, followed
by an assessment of the problems with attempting to directly extend Raney’s algorithm
to work for nearest integer continued fractions. In 2011, a direct extension of the al-
gorithm was attempted for the similar Hurwitz continued fraction with no success [5],
but an algorithm for the simpler nearest integer continued fraction might give a new
perspective on how to extend it to Hurwitz continued fractions.

3

2 Initial Definitions

2.1 Disambiguation

This thesis uses a few sets, functions and notations that are ambiguously defined within
mathematics. This section serves to explain which definitions and notations are used
within this thesis.

The set N is used to denote all non-negative integers; i.e., N = {0, 1, 2, 3, ...}.
For rounding real numbers x to integers, the following three methods are used:

• bxc = max{a ∈ Z | a ≤ x}

• dxe = min{a ∈ Z | a ≥ x}

• bxe is the element a ∈ {bxc, dxe} that minimises |x− a|. If |x− bxc| = |x− dxe|,
we set bxe to be equal to the a ∈ {bxc, dxe} for which |a| is smallest.

2.2 Continued Fractions

Continued fractions can be defined over many different fields. In this thesis, however,
we will only be looking at continued fractions for the set of real numbers.

Definition 2.1. Let x ∈ R. A generalised continued fraction of x is a tuple of sequences
({an}∞n=0, {bn}∞n=1) where an ∈ Z, bn ∈ Z\{0} for all indices n, and an 6= 0 for infinitely
many n, such that:

x = a0 +
b1

a1 +
b2

a2 +
. . .

If x ∈ Q, a finite continued fraction of x is a tuple of sequences ({an}Nn=0, {bn}Nn=1)
where an ∈ Z, bn ∈ Z\{0} for all indices n, and aN 6= 0, such that:

x = a0 +
b1

a1 +
b2

. . . +
bN

aN

Furthermore, a standard continued fraction is a generalised continued fraction for which
bn = 1 for every n.

We write the generalised continued fraction with sequences {an}∞n=0 and {bn}∞n=1 as
[a0; b1/a1, b2/a2, ...]. If the continued fraction is a standard continued fraction, we simply
write it as [a0; a1, a2, ...].

We write the finite generalised continued fraction with sequences {an}Nn=0 and {bn}Nn=1

as [a0; b1/a1, ..., bN/aN]. If the finite continued fraction is a finite standard continued
fraction, we write it as [a0; a1, ..., aN].

Remark. For any standard continued fraction [a0; a1, a2, ...] where ai = 0 for some i 6= 0,
the continued fraction can be rewritten to [a0; ..., ai−2, ai−1 + ai+1, ai+2, ...]. This can
easily be checked since

4

ai−1 +
1

0 +
1

ai+1 +
1

. . .

= ai−1 +

(ai+1 +
1

. . .

)−1−1 = ai−1 + ai+1 +
1

. . .

From here on out, the term continued fraction will always refer to a standard con-
tinued fraction.

Definition 2.2. A continued fraction [a0; a1, a2, ...] is called periodic if an index N ≥ 1
and a period p ≥ 1 exist such that for every i ≥ N , the following holds: ai = ai+p. If
[a0; a1, a2, ...] is periodic, we denote the continued fraction as [a0; ..., aN−1, aN , ..., aN+p−1].

Of the standard continued fractions, two in particular are very broadly used; the
regular continued fraction (RCF) and the nearest integer continued fraction (NICF)

Definition 2.3. Let α ∈ R\Q. Then the regular continued fraction [a0; a1, a2, ...] for α
is defined as follows:

• φ(x) = 1
x−bxc

• an = bφn(α)c

If α ∈ Q, then the regular continued fraction [a0; a1, ..., aN] is defined in the same way,
where N is the least index for which bφN (α)c ∈ Z.

Definition 2.4. Let α ∈ R\Q. Then the nearest integer continued fraction [a0; a1, a2, ...]
for α is defined as follows:

• ψ(x) = 1
x−bxe

• an = bψn(α)e

If α ∈ Q, then the regular continued fraction [a0; a1, ..., aN] is defined in the same way,
where N is the least index for which bφN (α)e ∈ Z.

Theorem 2.5. Suppose α ∈ R\Q. Let [a0; a1, a2, ...] be the RCF of α and let [a′0; a′1, a
′
2, ...]

be the NICF of α. Then the following holds:

For all n ∈ N>0

• an > 0

• a′n /∈ {−1, 0, 1}

• If |a′n| = 2, then sgn(a′n+1) = sgn(a′n).

Proof. A proof for this can be found in Section 39 of [6].

Remark. If α ∈ Q with RCF [a0; a1, ..., aN] and NICF [a′0; a′1, ..., a
′
N], the conditions on

an and a′n in Theorem 2.5 hold as well.

5

Definition 2.6. Given a standard continued fraction [a0; a1, a2, ...], we define two se-
quences {pi}∞i=−2 and {qi}∞i=−2 as follows:

p−2 = 0, q−2 = 1,

p−1 = 1, q−1 = 0,

pn+2 = an+2pn+1 + pn qn+2 = an+2qn+1 + qn

Theorem 2.7. Let [a0; a1, a2, ...] be a standard continued fraction. Then for every
n ∈ N, the following statement holds: [a0; ..., an] = pn

qn
.

Proof. First of all, it is easy to see that p0
q0

= a0 = [a0] and p1
q1

= a0 + 1
a1

= [a0; a1].

Suppose pn
qn

= [a0; ..., an] holds for a certain n ∈ N. This means that:

pn+1

qn+1
=
an+1pn + pn−1
an+1qn + qn−1

=
[an; an+1]pn−1 + pn−2
[an; an+1]qn−1 + qn−2

= [a0; ..., an−1, [an; an+1]] = [a0; ..., an+1]

Thus, by induction we can conclude that [a0; ..., an] = pn
qn

for every n ∈ N.

Remark. According to Proposition 1.1.2 of [4], the following holds: [a0; a1, a2, ...] =
limn→∞[a0; a1, ..., an]. Thus, [a0; a1, a2, ...] = limn→∞

pn
qn
.

Definition 2.8. Given x ∈ R. An improper continued fraction of x is a finite sequence
of numbers [a0; a1, ..., an, α] with a0, ..., an ∈ Z and α ∈ R, such that

x = a0 +
1

a1 +
1

. . . +
1

an +
1

α

2.3 Sequence Transducers

Raney’s algorithm extensively uses finite-state sequence transducers to generate new
continued fractions using other continued fractions. This section explains what a finite-
state sequence transducer is and how it can be used to generate sequences from other
sequences.

Definition 2.9. Given a finite, non-empty set Σ, we call any finite sequence of elements
of Σ a word of alphabet Σ. The set of all words of alphabet Σ is called Σ∗. We simply
write the word {σi}ni=0 as σ0σ1 · · ·σn. Furthermore, we write the empty word {} as ε.
The set of infinite sequences of elements of Σ is written as Σ∞.

Definition 2.10. Given two words V = V0 · · ·Vm and W = W0 · · ·Wn, the concatena-
tion V ‖W of V and W is defined as V ‖W = V0 · · ·VmW0 · · ·Wn.

Likewise, given a word V = V0 · · ·Vm and a sequence S = S0S1 · · · , the concatenation
of V and S is defined as V ‖ S = V0 · · ·VmS0S1 · · · .

6

Definition 2.11. Given a word W = W0 · · ·Wn ∈ Σ∗, a prefix of V is a word V =
V0 · · ·Vm ∈ Σ∗ for which m ≤ n and Vi = Wi for all 0 ≤ i ≤ m. We write this as V |W .

Likewise, a prefix V of a sequence S is a word in V = V0 · · ·Vm ∈ Σ∗ for which Vi = Si
for all 0 ≤ i ≤ m. We also write this as V | S.
Given a sequence S = S1S2 · · · and a word V = V1 · · ·Vm with V | S, we define S/V as
the sequence where prefix V has been removed. That is to say, S/V = Sm+1Sm+2 · · · .

Definition 2.12. Given an alphabet Σ, a base of Σ∞ is a set B ⊆ Σ∗ such that the
following holds:

• B is finite.

• Any sequence in Σ∞ can be written as a unique concatenation of elements of B.

Remark. Since every sequence in Σ∞ can be written as a unique concatenation of ele-
ments of B, no base B of Σ∞ may contain the empty word ε.

Definition 2.13. A finite-state sequence transducer is a tuple (Q,Σ,Γ, δ, q0) defined as
follows:

• Σ and Γ are finite alphabets. We call these the “input alphabet” and the “output
alphabet” respectively.

• Q is a finite, non-empty set of “states”.

• q0 is a state in the set Q. We call this state the “initial state”.

• δ is a partial function δ : Q × Σ∗ → Q × Γ∗ with a finite domain of defi-
nition (DOD), such that for every state q ∈ Q, the set Bq = {W ∈ Σ∗ :
(q,W) is in the DOD of δ} is a base of Σ∞.

Given a finite-state sequence transducer T = (Q,Σ,Γ, δ, q0) and an input sequence
S ∈ Σ∞, we can generate an output sequence S′ ∈ Γ∞ as follows:

1. The current state q is set to equal q0 and S′ is set to be an empty word ε ∈ Γ∗.

2. Since the set Bq is a base for Σ∞, a unique, non-empty word W = W0 · · ·Wn ∈ Bq
exists such that W | S.

3. The function δ is applied to (q,W) to result in a new tuple (q′,W ′) = δ((q,W)).

4. The word S′ is replaced by S′ ‖W ′, the sequence S is replaced by S/W , and q is
set to equal q′.

5. This process is infinitely repeated from step 2.

Sequence transducers can be schematically represented with a diagram where every
state in Q is represented by a circle, and the transition function δ is represented by
arrows in such a way that if δ((q,W)) = (q′,W ′), an arrow will point from state q to
state q′ with a label “W / W ′”. Furthermore, an arrow is added to signify which state
is the initial state. An example of this is shown in Figure 1.

7

q0 q1 q2

b/a
a/a

b/b

aa/a

ab/ba

b/b

a/b

Figure 1: Example of a finite-state sequence transducer.

8

3 Raney’s algorithm

It has been shown to be far from trivial to perform arithmetic operations on continued
fractions. Throughout history, several different algorithms have been devised to compute
different kinds of functions applied to continued fractions. Among these, a popular one
is the calculation of Möbius transforms of continued fractions:

Given α = [a0; a1, a2, ...] ∈ R and given a Möbius transformation µ(x) = ax+b
cx+d . Can

we find a continued fraction [b0; b1, b2, ...] such that [b0; b1, b2, ...] = β = µ(α)?

George N. Raney developed an algorithm to solve this problem for regular continued
fractions [7]. This section aims to explain how his algorithm works, so it can be expanded
upon for the nearest integer continued fraction.

3.1 Matrix representation of regular continued fractions

In his algorithm, Raney uses a different representation for RCFs than the typical se-
quence of integers defined in 2.1. For his representation, Raney defines two matrices:

L =

(
1 0
1 1

)
and R =

(
1 1
0 1

)
It is important to note that for any value n:

Ln =

(
1 0
n 1

)
and Rn =

(
1 n
0 1

)
Using these two matrices L and R, Raney is able to represent regular continued fractions
with infinite sequences of a finite alphabet. Since these two matrices will be used both
as matrices and as characters in an alphabet, some variation in notation is required to
make clear when these are used as matrices and when they are used as characters. In the
case of matrix multiplication, we will simply denote the product Ln1 ·Rn2 · · ·Lnk−1 ·Rnk

as Ln1Rn2 · · ·Lnk−1Rnk , while the word {L, n1
··· , L,R,

n2
··· , R, ..., L,

nk−1
··· , L,R,

nk
··· , R} is

denoted as ‘Ln1Rn2 · · ·Lnk−1Rnk ’.

Definition 3.1. Let v = ξ (α1) ∈ R2 with ξ > 0, α ≥ 0. We say that v accepts a
sequence S = ‘Ra0La1Ra2 · · · ’ ∈ {L,R}∞ if a sequence of vectors {vk}∞k=0 exists such
that

v =

k∏
i=0

Si · vk for all k ∈ N.

Theorem 3.2. Let v = ξ (α1) ∈ R2 with ξ > 0, α ≥ 0.

• If α is irrational with α = [a0; a1, a2, ...], then v only accepts the sequence
‘Ra0La1Ra2 · · · ’ ∈ {L,R}∞.

• If α is rational with α = [a0; a1, ..., an], then v only accepts the sequences
‘Ra0La1 · · ·LanR∞’ and ‘Ra0La1 · · ·Lan−1RL∞’ if n is odd or the sequences
‘Ra0La1 · · ·RanL∞’ and ‘Ra0La1 · · ·Ran−1LR∞’ if n is even.

Raney refers to A. Hurwitz [3]. Since this article is very old and not available in
English, a proof will follow of the first part of this theorem. The second part of the
theorem is proven quite similarly to the first, but is of little interest for this thesis, so
an explicit proof of this part is omitted.

9

Proof. Let v = ξ (α1) ∈ R2 with ξ > 0, α ≥ 0. Furthermore, let us define a function
d : R2\{(x0) : x ∈ R} → R as d (x1

x2
) = x1

x2
.

Suppose d(v) = α = [a0; a1, a2, ...]. As remarked after Theorem 2.7, the following holds:
α = limn→∞

pn
qn
. With these p and q sequences, it is important to note the following:(

pn−1 pn−2
qn−1 qn−2

)
Ran =

(
pn−1 pn
qn−1 qn

)
and

(
pn−2 pn−1
qn−2 qn−1

)
Lan =

(
pn pn−1
qn qn−1

)
Furthermore, we can note that(

p−1 p−2
q−1 q−2

)
=

(
1 0
0 1

)
.

From this, we can deduce the following two equations:(
pn−1 pn
qn−1 qn

)
= Ra0La1 · · ·Ran if n is even, and(

pn pn−1
qn qn−1

)
= Ra0La1 · · ·Lan if n is odd.

We will name these matrices
(pn−1 pn
qn−1 qn

)
= Pn if n is even, and

(pn pn−1
qn qn−1

)
= Pn if n is

odd.

Let k be any integer greater than or equal to 0.

Suppose k is even. Let w = (αk
1) ∈ R2 be the vector with αk = [ak; ak+1, ak+2, ...].

Then, we can conclude that

d (Pk−1w) = d

((
αkpk−1 + pk−2
αkqk−1 + qk−2

))
=
pk−1 + pk−2/αk
qk−1 + qk−2/αk

= [a0; ..., ak−1 +
1

αk
] = [a0; ..., ak−1, αk] = α

So a ξk ∈ R exists such that v = Pk−1ξkw = Ra0La1 · · ·Lak−1ξw.

Suppose k is odd. Let w =
(

1
αk

)
∈ R2 be the vector with αk = [ak; ak+1, ak+2, ...].

Then, we can conclude that

d (Pk−1w) = d

((
pk−1 + pk−2/αk
qk−1 + qk−2/αk

))
=
pk−1 + pk−2/αk
qk−1 + qk−2/αk

= [a0; ..., ak−1 +
1

αk
] = [a0; ..., ak−1, αk] = α

So a ξk ∈ R exists such that v = Pk−1ξkw = Ra0La1 · · ·Lak−1ξw.

Thus, for every k ∈ N, a vector vk ∈ R2 exists such that v = Ra0La1 · · ·Rakvk or
v = Ra0La1 · · ·Lakvk, so we can deduce that v accepts the sequence ‘Ra0La1Ra2 · · · ’.

Now suppose a vector 0 6= v ∈ R2
≥0 accepts the sequence ‘Ra0La1Ra2 · · · ’. This

means that vectors v′k exist such that v = Pkv
′
k for every k ∈ N. This means that for

every v′k, we can state that

d(v) = d(Pkv
′
k) = d

((
d(v′k)pk + pk−1
d(v′k)qk + qk−1

))
= [a0; ..., ak +

1

d(v′k)
] if n is even, and

d(v) = d(Pkv
′
k) = d

((
pk + d(v′k)pk−1
qk + d(v′k)qk−1

))
= [a0; ..., ak + d(v′k)] if n is odd.

10

Thus, if v accepts the sequence ‘Ra0La1Ra2 · · · ’, then α = [a0; a1, a2, ...].

Thus, we can conclude that v = ξ (α1) ∈ R2 with ξ > 0, α = [a0; a1, a2, ...] ≥ 0 only
accepts the sequence ‘Ra0La1Ra2 · · · ’ ∈ {L,R}∞.

With this result, we can now start representing regular continued fractions
[a0; a1, a2, ...] with sequences of matrices ‘Ra0La1Ra2 · · · ∈ {L,R}∞.

Now, if we want to find an RCF [b0; b1, b2, ...] for β = µ(α) with µ(x) = ax+b
cx+d , it

suffices to find the accepted sequence ‘Rb0Lb1Rb2 · · · ’ for
(
a b
c d

)
(α1) = ξ

(
β
1

)
, provided

β ≥ 0 and ξ > 0.

3.2 Balanced matrices

In his article, Raney defines three different types of matrices; row-balanced matrices,
column-balanced matrices and doubly-balanced matrices. These matrices are used in an
important theorem that forms the basis for Raney’s algorithm.

Definition 3.3. Let M =
(
a b
c d

)
∈ Z2x2 with a, b, c, d ≥ 0 and det(M) ≥ 1.

• M is called “row-balanced” if a > c and d > b.

• M is called “column-balanced” if a > b and d > c.

• M is called “doubly-balanced” if it is both row-balanced and column-balanced.

Given an n ∈ Z≥1, we denote the sets of row-balanced, column-balanced and doubly-
balanced matrices of determinant n with RBn, CBn and DBn respectively.

Suppose M =
(
a b
c d

)
∈ RBn, then we can define r(M) =

(
d−b
a−c
)
. Since M is row-

balanced, the integers d−b and a−c are both positive. This means we can create a unique
“generating word” for r(M); that is to say, a word WM ∈ {L,R}∗ such that r(M) =∏
i(WM)i ·

(
gcd(d−b,a−c)
gcd(d−b,a−c)

)
. With this wordWM , we can finally define a set of “immediate

offshoots” BM = {W ∈ {L,R}∗ : W -WM , but V |W ⇒ V |WM for every V ∈ {L,R}∗\{W}}.
Since every matrix M has a unique generating word WM , this means that by exten-

sion, it also always has a unique set BM .

Example 3.4. Consider the set DB3 = {A = (3 0
0 1) , A′ = (1 0

0 3) , B = (2 1
1 2)}. For these

matrices, we will find the sets of immediate offshoots. We start by finding r(M) for
every M ∈ DB3.

r(A) =

(
1
3

)
, r(A′) =

(
3
1

)
, r(B) =

(
1
1

)
Next, we find that r(A) = L2 (1

1) and r(A′) = R2 (1
1), thus we have:

WA = L2, WA′ = R2, WB = ε

This gives us the following immediate offshoots:

BA = {L3, L2R,LR,R}, BA′ = {R3, R2L,RL,L}, BB = {L,R}

Theorem 3.5. Let M ∈ RBn and W ∈ BM . Then a non-empty word W ′ ∈ {L,R}∗
and a matrix M ′ ∈ DBn exist such that MW = W ′M ′.

The proof of this theorem is quite long and technical and would take up several pages.
The proof can be found in [7] in sections 4 and 5.

11

3.3 Creating a transducer

Using Theorem 3.5, we can note the following: Suppose M ∈ DBn. Since M is row-
balanced, for every W ∈ BM a non-empty word W ′ ∈ {L,R}∗ and a matrix M ′ ∈ DBn
exist such that MW = W ′M ′. Using the definition of BM , it is easy to see that BM
is a base for the set of sequences Σ∞. Thus, for every sequence S ∈ Σ∞, we can find a
prefix WS ∈ BM and a sequence S′ ∈ Σ∗ such that S = WS ‖ S′. This means that

M
∏
i

Si = M ·
∏
i

(WS)i ·
∏
i

S′i

=
∏
i

(W ′S)i ·M ′ ·
∏
i

S′i
(2)

for a certain W ′S ∈ {L,R}∗.
Suppose now that v = ξ (α1) ∈ R2 with ξ > 0, α = [a0; a1, a2, ...] ≥ 0, M =

(
a b
c d

)
∈

DBn with n ≥ 1 and u = Mv ∈ R2. It is important to note that, since M ∈ Z2×2,
α ≥ 0 and ξ > 0, we can write u as u = ξ′

(
β
1

)
for certain ξ′ > 0 and β ≥ 0. Thus,

as stated at the end of Section 3.1, if we can find the accepted sequence for u, we can
deduce a regular continued fraction [b0; b1, b2, ...] for β = aα+b

cα+d . Using Equation (2) and
Theorem 3.5, we can describe a procedure for finding the accepted sequence for u, using
the accepted sequence S of v:

1. Since v accepts the sequence S, a unique W ∈ BM exists such that W |S. This
means that a vector v′ exists such that v = W · v′.

2. For u, the following holds: u = Mv = M ·W · v′. Since W ∈ BM , a non-empty
word W ′ and a doubly-balanced matrix M ′ exist such that M ·W = W ′ ·M ′, so
u = M ·W · v′ = W ′ ·M ′ · v′ = W ′ · u′ for a certain u′ = M ′ · v′. Thus, u accepts
the finite sequence W ′.

3. The vectors v, u are set to v := v′, u := u′, the matrix M is set to M := M ′ and
the sequence S is set to S := S′, where S′ is the sequence for which S = W ||S′.

4. The process is repeated from step 1., while every W ′ acquired in step 2. is con-
catenated to form an infinite sequence accepted by u.

With induction, it is easy to see that u accepts the sequence acquired from this process.
We can write this sequence as ‘Rb0Lb1Rb2 · · · ’ and with it deduce the regular continued
fraction [b0; b1, b2, ...] = β.

If we view every doubly-balanced matrix M as a state, and every equation M ·W =
W ′ ·M ′ as a transition, it becomes clear that this process can essentially be viewed as
a sequence transducer. Since the set DBn is finite for every n ∈ Z≥1, as stated in claim
(3.1) of [7], this sequence transducer is a finite-state sequence transducer.

Definition 3.6. Let g, n ∈ Z≥1 with g2|n and letM ∈ DBn where the greatest common
divisor of the elements is equal to g. We define the finite-state sequence transducer
Tn,g(M) = (Q,Σ,Γ, δ, q0) as follows:

• Q = {
(
a b
c d

)
∈ DBn| gcd(a, b, c, d) = g}

• Σ = Γ = {L,R}

• δ(q,W) with q ∈ Q,W ∈ Σ∗ is defined if and only if W ∈ Bq and is defined as
δ(q,W) = (q′,W ′) where q ·W = W ′ · q′.

12

• q0 = M

With this definition, it is clear that the transducers Tn,g(M) precisely execute the
process described above. The set Q is limited to Q = {

(
a b
c d

)
∈ DBn| gcd(a, b, c, d) = g}

rather than Q = DBn, because multiplication with L or R does not change the greatest
common divisor of the elements of a matrix.

Example 3.7. Let α = 1 +
√

7 = [3; 1, 1, 1, 4], β = 2α+1
α+2 . This means that the vector

v = (α1) ∈ R2 accepts the sequence ‘R3LRLR4 · · · ’. Since β = 2α+1
α+2 , we define the

matrix M = (2 1
1 2), so that Mv accepts the sequence corresponding to the RCF of β.

With this matrix M , we can define the transducer T3,1(M) shown in Figure 2.

2 1
1 2

3 0
0 1

1 0
0 3

LR/R
L/LR

R/R3

L3/L

L2R/RL2

R2L/LR2
R3/R
L/L3

R/RL
RL/L

Figure 2: Transducer T3,1 with initial state (2 1
1 2).

Using T3,1(M), we can transduce the accepted sequence for v into the accepted
sequence for Mv. This results in SMv = ‘RL2R7L2R7 · · · ’, so we can conclude that
β = 2α+1

2+α = [1; 2, 7]. We can compute that indeed [1; 2, 7] = 3+2
√
7

3+
√
7

= 2α+1
α+2 .

Using Raney’s proof of Theorem 3.5, we can determine the size of the set of states
Q for any transducer Tn,g. First of all, we can note that if g 6= 1, then the transducer
Tn,g is isomorphic to T n

g2
,1. After all, when gcd(M) = gcd(M ′) = g, thenMW = W ′M ′

holds if and only if (1
gM)W = W ′(1

gM
′). This means that it suffices to determine the

sizes of QTn,1 for every n.

In his proof of Theorem 3.5, Raney states that for every n, a finite number of
combinations (g, s, s′) exists such that g(g + s + s′) = n. Furthermore, he states that
a one-to-one correlation exists between (g, s, s′)-tuples and doubly-balanced matrices in
DBn. That is to say, #{(g, s, s′) : g(g + s+ s′) = n} = #DBn. The number of different
(g, s, s′)-tuples for any given n can be found using the formula

#{(g, s, s′) : g(g + s+ s′) = n} =
∑
d|n

(n
d
− d+ 1

)
If n has no square divisors, then QTn,1 = DBn. If n does have square divisors, then

DBn is strictly larger than QTn,1 . Since the set {QTn,g : g2 divides n} is a partition of
DBn, we can find the size of QTn,1

using the formula

13

#QTn,1
= #DBn −

∑
g2|n

#QT n
g2

,1
(3)

A list of sizes of DBn and QTn,1
for n ∈ {1, ..., 50} can be found in appendix A.

3.4 Reducing to the doubly-balanced case

The transducers created in 3.3 are very useful if the matrix representation of the Möbius
transformation is a doubly-balanced matrix, but the algorithm no longer holds up if this
is not the case. At the end of his article, Raney introduces a method to reduce the
general problem β = aα+b

cα+d to a problem β′ = a′α′+b′

c′α′+d′ where the matrix
(
a′ b′

c′ d′

)
∈ DBn

for a certain n ∈ Z≥1. This method is as follows:

Algorithm 3.8. Let α = [a0; a1, a2, ...], β = aα+b
cα+d ,M =

(
a b
c d

)
.

1. If a0 < 0; set M :=
(
a b+a0a
c d+a0c

)
, α := α− a0 = [0; a1, a2, ...] and β := β.

2. If det(M) < 0; set M :=
(
b a
d c

)
, α := 1

α = [0; a0, a1, ...] and β := β.

3. If α < 1, and ab < 0 or cd < 0; set M := ML, α := α
1−α = [a0; a1 − 1, a2, ...] and

β := β.
If instead α ≥ 1, and ab < 0 or cd < 0; setM := MR, α := α−1 = [a0−1; a1, a2, ...]
and β := β.
This step is repeated until both ab ≥ 0 and cd ≥ 0.

4. If c < 0 or d < 0; set M := −M , α := α and β := β.

5. If a < 0 or b < 0; let m = −min(bac c, b
b
dc). Set M := RmM , α := α, β := β +m

6. If det(M) = n but M /∈ RBn; two matrices P,Q exist with Q ∈ RBn, P =
(x y
z w) =

∏
i Vi for some V ∈ {L,R}∗, and M = PQ. Let T be the accepted

sequence corresponding to the RCF of β. Set M := Q, α := α and β = wβ−y
−zβ+x .

Here, the accepted sequence corresponding to the RCF of the new β is equal to
T/V .

7. If M ∈ RBn but M /∈ DBn; let S be the accepted sequence corresponding to the
RCF of α, let T be the accepted sequence corresponding to the RCF of β, and
let W ∈ BM such that W | S. As per Theorem 3.5, a word W ′ ∈ {L,R}∗ and
a matrix M ′ ∈ DBn exist such that MW = W ′M ′. Let (x1 y1

z1 w1
) =

∏
iWi and

(x2 y2
z2 w1

) =
∏
iW
′
i Set M := M ′, set α to correspond to the accepted sequence S/V

and set β to correspond to the accepted sequence T/V ′.

When all these steps have been executed, the matrix
(
a b
c d

)
corresponding to the new

problem β = aα+b
cα+d is doubly-balanced, so the original problem has been reduced to a

problem that can be solved with a transducer Tn,g from section 3.3.

Remark. Since steps 1, 3, 4, 5, 6 and 7 of Algorithm 3.8 do not change the determinant
of matrix M , and since step 2 changes the sign of the determinant of M if and only
if detM < 0, the determinant of the new matrix is the absolute value of that of the
original matrix.

14

3.5 Example

Let α = [1; 2, 3, 4, 1] and β = µ(α) = −37α+43
−73α+85 . The Möbius transformation µ has a

determinant of −6, so we will have to reduce this problem to a problem β′ = aα′+b
cα′+d with(

a b
c d

)
∈ DB6.

Let us define M =
(−37 43
−73 85

)
. Following the steps from Algorithm 3.8, we get the

following:

1. a0 = 1 ≥ 0, so M , α and β remain unchanged.

2. det(M) = −6 < 0, so we set M :=
(
43 −37
85 −73

)
and α := [0; 1, 2, 3, 4].

3. Repeated application of this step results in:

• M :=
(

6 −37
12 −73

)
, α = [0; 0, 2, 3, 4, 1] = [2; 3, 4, 1, 2].

• M :=
(

6 −31
12 −61

)
, α = [1; 3, 4, 1, 2].

• M :=
(

6 −25
12 −49

)
, α = [0; 3, 4, 1, 2].

• M :=
(−19 −25
−37 −49

)
, α = [0; 2, 4, 1, 2, 3].

4. c < 0 and d < 0, so we set M := (19 25
37 49).

5. a ≥ 0 and b ≥ 0, so M , α and β remain unchanged.

6. M /∈ RB6, but M = LRL18 (1 1
0 6) with (1 1

0 6) ∈ RB6, so we set M := (1 1
0 6) and

β := β/LRL18.

7. M /∈ DB6, but ML = L3 (2 1
0 3) with (2 1

0 3) ∈ DB6, so we set M := (2 1
0 3), α :=

[0; 1, 4, 1, 2, 3] and β := β/L3.

To construct the the transducer T6,1, we need to know the elements of DB6. Since
6 has no square divisors, all matrices in DB6 are states in T6,1. We can easily find the
following eight doubly-balanced matrices of determinant 6:

A =

(
6 0
0 1

)
A′ =

(
1 0
0 6

)
B =

(
3 0
0 2

)
B′ =

(
2 0
0 3

)
C =

(
3 1
0 2

)
C ′ =

(
2 0
1 3

)
D =

(
3 0
1 2

)
D′ =

(
2 1
0 3

)
Using Equation 3, we see that #QT6,1 = 8, so these are all the states of transducer T6,1.

Finding all transitions requires some work, but is easily accomplished. For M = A
and W = L2R ∈ BA we find:

AL2R =

(
6 6
2 3

)
= R

(
4 3
2 3

)
= R2

(
2 0
2 3

)
= R2LB′

Continuing this for every matrix and every immediate offshoot, we find that the
transducer T6,1 is as shown in Table 1 and Figure 3.

The states in the left column are the starting states, and the states in the top row are
the destination states of the transitions.

15

Table 1: Transitions of T6,1
A B C D D′ C ′ B′ A′

A L6/L, R/R6 L3R/RLR LR/R3 L4R/RL2 L2R/R2L L5R/RL5

B LRL/LR3 R/R L2/L LR2/RL2

C L3/LR R/R2 LR/RL L2R/RL4

D L/L R/R
D′ L/L R/R
C ′ R2L/LR4 RL/LR L/L2 R3/RL
B′ RL2/LR2 R2/R L/L RLR/RL3

A′ R5L/LR5 R2L/L2R R4L/LR2 RL/L3 R3L/LRL R6/R, L/L6

A A′

B

B′

C

C ′

D

D′

Figure 3: Schematic representation of transducer T6,1 without transition labels

16

Using the reduced problem β′ = 2α+1
3 with α = [0; 1, 4, 1, 2, 3], we find that β′ =

[0; 1, 7, 1, 1, 4, 1, 4, 1, 1, 6, 1, 17, 1, 6]. Tracing back steps 7 through 1 of the algorithm, we
deduce that the RCF for the original β is equal to [0; 1, 1, 22, 7, 1, 1, 4, 1, 4, 1, 1, 6, 1, 17, 1, 6].

This continued fraction evaluates to β =
3809+3

√
(39)

7490 , which is indeed equal to µ(α) =
−37α+43
−73α+85 .

17

4 Direct extension to nearest integer continued frac-
tions

This section serves to provide a first step to trying to extend Raney’s algorithm to
nearest integer continued fractions, followed by the big issues I have come across that
make it impossible to develop a direct extension of Raney’s algorithm to the NICF case.

4.1 Matrix representation for NICF

If we wish to extend Raney’s algorithm to the nearest integer chain fraction, it is evident
we need to make a number of additions to the types of matrices used. The original
algorithm only allows for positive integers in its continued fractions. Since nearest
integer continued fraction can contain negative numbers, the system of writing continued
fractions as a sequences of L and R matrices no longer suffices. The most intuitive
expansion of the set of L and R matrices would be the introduction of matrices L−1 =(

1 0
−1 1

)
and R−1 =

(
1 −1
0 1

)
. Furthermore, we will define Λ = {L,L−1, R,R−1}. Theorem

4.3 will prove that this new alphabet suffices and functions in the same way as {L,R}
does in Raney’s original algorithm.

Remark. The matrices L−1 and R−1 are the respective multiplicative inverse matrices
of L and R. As such, for any n ∈ N, (L−1)n = L−n and (R−1)n = R−n. Because of this
equality, we will write any word ‘(L−1)n’ as ‘L−n’ and ‘(R−1)n’ as ‘R−n’.

Lemma 4.1. The multiplicative group of Z2×2-matrices of determinant 1 is generated
by the set Λ.

Proof. The multiplicative group of Z2×2-matrices of determinant 1 is generated by the
set of all whole elementary matrices of size 2× 2 of determinant 1. These are precisely
all matrices (1 n

0 1), (1 0
n 1) with n ∈ Z. These are precisely the matrix products Rn and

Ln for n ∈ Z.

Definition 4.2. We call a sequence S ∈ Λ∞ simplified if no non-empty, finite, contin-
uous subsequence SNSN+1 · · ·SM−1SM exists such that

∏M
i=N Si = I2×2.

Remark. If a sequence S is simplified, then no L and L−1 can occur adjacent to each
other, and no R and R−1 can occur adjacent to each other. This means that S can be
written as S = ‘Ra0La1Ra2 · · · ’ for certain ai ∈ Z.

Theorem 4.3. Let v = ξ (α1) ∈ R2. If α is irrational and ξ > 0, then the only simplified
Λ-sequences Ra0La1Ra2 · · · that are accepted by v, are those for which α = [a0; a1, a2, ...].
Note: [a0; a1, a2, ...] is not necessarily an NICF.

Proof. Let v = ξ (α1) ∈ R2 with ξ 6= 0. Furthermore, let us define a function d :
R2\{(x0) | x ∈ R} → R as d (x1

x2
) = x1

x2
.

Suppose d(v) = α = [a0; a1, a2, ...] with a0 ∈ Z and a1, a2, ... ∈ Z\{0}. Like in the proof
for Theorem 3.2, we can note that, even for negative integers an(

pn−1 pn−2
qn−1 qn−2

)
Ran =

(
pn−1 pn
qn−1 qn

)
and

(
pn−2 pn−1
qn−2 qn−1

)
Lan =

(
pn pn−1
qn qn−1

)

18

Because of this, we can again say that(
pn−1 pn
qn−1 qn

)
= Ra0La1 · · ·Ran if n is even, and(

pn pn−1
qn qn−1

)
= Ra0La1 · · ·Lan if n is odd.

With this, we can repeat the entirety of the proof for Theorem 3.2 to conclude that
the only sequences ‘Ra0La1Ra2 · · · ’ accepted by v are those for which α = [a0; a1, a2, ...],
and therefore this also holds for simplified sequences in particular.

This theorem is not as strong as Theorem 3.2, since vectors can accept multiple
sequences now rather than only those corresponding to the nearest integer continued
fraction, but it does show that nearest integer continued fractions can be represented
with a sequence of elements of Λ.

Remark. One can trivially see that for every sequence S ∈ Λ∞ for which the correspond-
ing NICF converges to a value x 6= 0, a unique simplified sequence S′ ∈ Λ∞ exists such
that the continued fractions corresponding to S′ also converges to x, and such that a
sequence {ik}∞k=0 exists such that S′k = Sik and Sik+1 · · ·Sik+1−1 = I for every k ∈ N.
We call this sequence S′ the simplified sequence of S. This is simply the sequence for
which every continuous subsequence that derives to I is removed.

4.2 Creating transducers for NICF

Since we always use a single input and output alphabet and since every state in a
transducer for Raney’s algorithm is a valid initial state, the possible transducers for an
extended Raney’s algorithm are essentially defined solely by their sets of states and their
transitions. Neither of these can unambiguously be translated from standard Raney to
NICF.

The first problem already crops up when we try to define a set BM for a matrix
M ∈ Z2×2. In Raney’s algorithm, the elements of BM are used to define transitions
between states, so a direct translation from RCF to NICF would require an analogue
B′M ⊆ Λ∗ such that B′M is a base for Λ∞. In Raney’s algorithm, the set BM is defined
using the generating word WM , which is found by applying the Euclidean algorithm to
the coefficients of r(M) = (ab). Since we only used positive numbers, this resulted in a
unique word WM . If we can use negative numbers for the Euclidean algorithm, there
is no longer a unique way to compute gcd(a, b), which means that we can find different
WM and W ′M such that r(M) = WM

(
gcd
gcd

)
= W ′M

(
gcd
gcd

)
. This means that B′M cannot

be uniquely defined. Thus, unless we impose restrictions on the application of the
Euclidean algorithm, we cannot directly translate the method of finding transitions in
Raney’s algorithm to a method for finding transitions in an extended algorithm. It
should be noted, however, that the algorithm for finding the finite NICF for a fraction a

b
induces a very specific application of the Euclidean algorithm gcd(a, b). This application
seems like a good candidate for finding a specific B′M for every M .

Suppose we impose specific restrictions on the application of the Euclidean algorithm
such that we get a unique B′M for every matrix M ∈ Z2×2 (like the application induced
by the NICF algorithm, or something else entirely). We can typically assume that if
r(M) = (aa) for some matrix M , the result of the algorithm is WM = ε, and thus

19

B′M = Λ. We will find that the set of doubly-balanced matrices DBn will no longer
suffice for a transducer for transformations of determinant n.

Let M = (2 1
1 2) ∈ DB3. In this case, r(M) = (1

1), so B′M will be equal to Λ.
Take W = L−1 ∈ Λ. If MW = W ′M ′ for certain W ′,M ′ ∈ Z2×2, this means that
ML−1(M ′)−1 = W ′. We can check that ML−1(M ′)−1 /∈ Z2×2 for every M ′ ∈ DB3.
Thus, since DB3 ⊆ Z2×2, we can conclude that no M ′ ∈ DB3 exists such that MW =
W ′M ′ for some W ′ ∈ Z2×2. Thus, the set of doubly-balanced matrices as defined in
Definition 3.3 does not suffice as a set of states for most typical applications of the
Euclidean algorithm to define transitions.

It is also important to note that it is impossible to use the set of all matrices
(
a b
c d

)
∈

Z2x2 for which a > b, a > c, d > b and d > c, since this set is infinite and can therefore
not be used for a finite-state transducer.

In order to be able to extend Raney’s algorithm to NICF, a solution needs to be
found to either or both of these problems. If one wishes to retain the sets DBn as sets of
states, a set of restrictions must be found on the application of the Euclidean algorithm
such that MW = W ′M ′ can always be solved with a matrix M ∈ DBn, if such a set of
restrictions exists at all. This set of restrictions must be very non-typical, since WM is
is not allowed to be equal to ε for M = (2 1

1 2), and thus cannot be those induced by the
NICF algorithm. Otherwise, a new analogue for doubly-balanced matrices needs to be
found.

4.3 Validity of the transducer output

As stated in section 4.2, matrices of determinant 1 can no longer uniquely be written as
a product of matrices from our alphabet. This means that, unlike in Raney’s algorithm
for regular continued fractions, there will no longer be a unique transducer Tn,g for every
(n, g) pair. If multiple words W1,W2 ∈ Λ∗ exist such that

∏
i(W1)i =

∏
i(W2)i, then

any transducer T with a transition δ(M,W) = (M ′,W1) can be replaced by a transducer
T ′ where δ(M,W) = (M ′,W2), which would generate a different sequence. This means
that if T is a valid transducer for a certain set of matrices, then so is T ′ 6= T .

Considering that every α ∈ R has a unique NICF [a0; a1, a2, ...], this means that
a transducer obtained from the algorithm does not necessarily produce a nearest in-
teger continued fraction, but rather can produce any continued fraction with integer
coefficients.

Thus, in order to obtain a NICF from the algorithm, a method is required to trans-
form the output of any given transducer T into a Λ-sequence that directly corresponds
to a NICF.

4.3.1 Transforming a continued fraction into a nearest integer continued
fraction

As stated in Theorem 2.5, nearest integer continued fractions [a0; a1, a2, ...] adhere to
the following constraints:

• an /∈ {−1, 0, 1} for all n ∈ N>0.

• If |an| = 2, then sgn(an+1) = sgn(an) for all n ∈ N>0.

Suppose a continued fraction [a0; a1, a2, ...] does not adhere to both of these con-
straints, then we require a method to transform the continued fraction into a continued

20

fraction that does adhere to them.

Proposition 4.4. [a; 1, b, x] = [a+ 1;−b− 1,−x] and [a;−1, b, x] = [a− 1;−b+ 1,−x].

Proof.

[a; 1, b, x] = a+
1

1 +
1

b+ 1
x

= a+
1

b+ 1 + 1
x

b+ 1
x

= a+
− b− 1

x

−b− 1− 1
x

= a+ 1 +
1

−b− 1 + 1
−x

= [a+ 1;−b− 1,−x]

[a;−1, b, x] = a+
1

−1 +
1

b+ 1
x

= a+
1

− b+ 1− 1
x

b+ 1
x

= a+
b+ 1

x

−b+ 1− 1
x

= a− 1 +
1

−b+ 1 + 1
−x

= [a− 1;−b+ 1,−x]

Using Proposition 4.4, we can try to fix the continued fraction [a0; a1, a2, ...] as fol-
lows:

If an = 1 and ai /∈ {−1, 0, 1} for all i < n, let a′n−1 = an−1 +1, a′n = −an+1−1, a′k = ak
for every k < n − 1 and a′m = −am+1 for every m > n. From Proposition 4.4 we see
that [a′0; a′1, a

′
2, ...] = [a0; a1, a2, ...]. We call this transformation of continued fractions

“singularisation”.

Suppose that |ai| = 2 =⇒ sgn(ai+1) = sgn(ai) for all i ≤ n− 1. Since an > 0, this
means that an−1 6= −2, and therefore a′n−1 6= −1. Thus, a′k /∈ {−1, 0, 1} for all k < n in
the new continued fraction.

Likewise, if an = −1 and ai /∈ {−1, 0, 1} for all i < n, let a′n−1 = an−1 − 1,
a′n = −an+1 + 1, a′k = ak for every k < n − 1 and a′m = −am+1 for every m > n.
Using Proposition 4.4, we see that [a′0; a′1, a

′
2, ...] = [a0; a1, a2, ...].

Suppose again that |ai| = 2 =⇒ sgn(ai+1) = sgn(ai) for all i ≤ n−1. Since an < 0,
this means that an−1 6= 2, and therefore a′n−1 6= 1. Thus, a′k /∈ {−1, 0, 1} for all k < n
in the new continued fraction.

Likewise, we can introduce a rule to be able to correct occurrences of an = 2 and
an+1 < −1, or an = −2 and an+1 > 1.

Proposition 4.5. [a; 2, b, x] = [a+ 1;−2, b+ 1, x] and [a;−2, b, x] = [a− 1; 2, b− 1, x].

Proof. Using Proposition 4.4, we find:

[a; 2, b, x] = [a; 1, 1,−b− 1,−x] = [a+ 1;−2, b+ 1, x] and
[a;−2, b, x] = [a;−1,−1,−b+ 1,−x] = [a− 1; 2, b− 1, x]

21

Suppose that |ai| = 2 =⇒ sgn(ai+1) = sgn(ai) for all i ≤ n − 1 and suppose that
ak /∈ {−1, 0, 1} for all k ∈ N.

If an = 2 and an+1 < −1, let a′n−1 = an−1 + 1, a′n = −2, a′n+1 = an+1 + 1
and let a′k = ak for all k ∈ N\{n − 1, n, n + 1}. Using Proposition 4.5, we find that
[a′0; a′1, a

′
2, ...] = [a0; a1, a2, ...]. Since an−1 6= 1, we know that a′n−1 6= 2, so |a′n−1| =

2 =⇒ sgn(a′n) = sgn(a′n−1) holds. Furthermore, since an+1 < −1, we can say that
sgn(a′n+1) = sgn(a′n).

Likewise, if an = −2 and an+1 > 1, let a′n−1 = an−1 − 1, a′n = 2, a′n+1 = an+1 − 1
and let a′k = ak for all k ∈ N\{n − 1, n, n + 1}. Using Proposition 4.5, we find that
[a′0; a′1, a

′
2, ...] = [a0; a1, a2, ...]. Since an−1 6= −1, we know that a′n−1 6= −2, so |a′n−1| =

2 =⇒ sgn(a′n) = sgn(a′n−1) holds. Furthermore, since an+1 > 1, we can say that
sgn(a′n+1) = sgn(a′n).

On their own, these two methods work well enough, but when combined to try to
make an entire continued fraction adhere to both constraints from Theorem 2.5, these
methods shed light on a glaring issue with trying to convert a random continued fraction
to NICF-form.

Take the continued fraction [a0; ..., an,−3, 1,−2, 2, an − 1, an−1, ..., a0,−b0,−b1, ...],
where ak /∈ {−1, 0, 1} and |ak| = 2 =⇒ sgn(ak+1) = sgn(ak) for all k ≤ n. Applying
4.4 and 4.5, we get:

[a0; ..., an,−3, 1,−2, 2, an − 1, an−1, ..., a0,−b0,−b1, ...]
= [a0; ..., an,−2, 1,−2,−an + 1,−an−1, ...,−a0, b0, b1, ...]
= [a0; ..., an − 1, 2, 0,−2,−an + 1,−an−1, ...,−a0, b0, b1, ...]
= [a0; ..., an − 1, 0,−an + 1,−an−1, ...,−a0, b0, b1, ...]
...

= [b0; b1, b2, ...]

In essence, in this example the finite continued fraction [a0; ..., an,−3, 1,−2, 2, an −
1, an−1, ..., a0] evaluates to 0. If a continued fraction [a0, a1, a2, ...] with negative coeffi-
cients is not an NICF, the sequence {ai}∞i=0 may contain a finite, continuous subsequence
that evaluates to 0. Since these subsequences can be of arbitrary length, at no point
while rewriting [a0; a1, a2, ...] using whatever set of rewrite rules, can one say with cer-
tainty that no part of their current rewritten prefix [a′0; a′1, ..., a

′
n] may be part of a

subsequence that evaluates to 0. Because of this, the sequence [a0; a1, a2, ...] cannot be
used to give a certainly correct truncation of the corresponding NICF within finite time.

To combat this issue, an expansion of Raney’s algorithm for NICF would have to
directly generate a sequence corresponding to a NICF.

4.3.2 Simplifying Λ-sequences

Another issue with the output from a transducer with output alphabet Λ is that one
cannot automatically assume output sequences to be simplified. To be able to get
a continued fraction out of the output sequence, the sequence will first need to be
simplified. With simplification, a similar issue crops up as in section 4.3.1.

To simplify a Λ-sequence {Sn}n∈N, one can use the following algorithm:

1. Let n := 1

2. If Sn+1 = S−1n , let Sk := Sk+2 for all k ≥ n and let n := n−1. Else, let n := n+ 1.

22

3. Repeat step 2. indefinitely.

Like with the algorithms in section 4.3.1, since sequences of Λ-matrices that evaluate to
0 can be of arbitrary length, there is no way to say for certain that any section ‘S0 · · ·Sn’
corresponds to the section ‘S′0 · · ·S′n’ of the simplified sequence S′ of S.

Thus, in order to produce a simplified Λ-sequence, the generalised algorithm will
have to directly produce a simplified output sequence.

23

5 Roundabout algorithm

Rather than trying to solve the issues that come with directly adapting Raney’s algo-
rithm, one could attempt to circumvent these issues by taking a roundabout way to
implement Raney’s algorithm. Since there exist ways to convert RCF sequences into
NICF sequences and vice versa, it is easy to see that β = aα+b

cα+d can be computed by trans-
forming the NICF for α into a RCF, applying Raney’s algorithm to this RCF sequence,
and then transforming the output of Raney’s algorithm into an NICF sequence.

According to section 4.2.2 of [4], applying singularisation on a RCF in a specific order
gives precisely the corresponding NICF. Likewise, reverse singularisation can be applied
on an NICF to find the corresponding RCF. This can be applied without encountering
the problems found in section 4.3.1. This gives us a way to effectively compute β = aα+b

cα+d
for any NICF without errors. The issue with this approach, however, is its computability.

Rather than using a small, finite alphabet, singularisation directly uses the integers
ai of the continued fractions [a0; a1, a2, ...] it is applied to. This means that it effectively
uses the entirety of Z as its alphabet. This makes it impossible to create a finite state
transducer for this roundabout Raney’s algorithm, since either an infinite alphabet or
an infinite set of states would be required. One can place bounds on the size of the
integers ai to make the alphabet finite, but this still does not make it possible to create
a finite state sequence transducer for repeated singularisation over a whole CF sequence.

Take the continued fraction [a; 1, b]. Applying singularisation on 1 in this sequence
results in the sequence [a + 1,−b − 1]. Since transducers cannot retroactively alter
their output, this means that a and b must be processed at the same time as 1 by the
transducer to ensure that the input word a1b results in the output word (a+ 1)(−b−1).
Thus, we get the transition (q, a1b) 7→ (q′, (a+ 1)(−b− 1)) for some states q and q′.
Let us now consider the contined fraction [a; 1, ..., 1, b] with some arbitrary number of
1’s. Applying singularisation once on the first 1 results in [a+1,−2,−1, ...,−1,−b]. If we
use the same transition as above, this first singularisation would output (a+1)(−2) and
leave the input sequence as 1, ..., 1, b. As stated in [4], singularisation must be applied
to every first, third, fifth, etc. occurrence of 1 in a sequence of 1’s to obtain the NICF.
This means that singularisation must be applied to the first 1 in the remaining sequence
1, ..., 1, b, since this was the third 1 in the original sequence. This is impossible, however,
since we have no character in the remaining input sequence that precedes this 1. Thus,
we require a transition for the repeated singularisation of the entire sequence a, 1, ..., 1, b
at once.
If we require a different transition for every sequence a, 1, ..., 1, b of arbitrary length, the
transition function must be of infinite size. This, however, is not allowed in a finite
state sequence transducer, so it is impossible to create such a transducer for repeated
singularisation.

That is not to say that this roundabout Raney’s algorithm is not at all computable.
Unlike a finite state sequence transducer, a Turing machine is able to alter the contents of
its output tape at any point in time and thus is able to handle repeated singularisation.
Turing machines are more complex than finite state sequence transducers though, so
the roundabout algorithm cannot be computed as simply as a direct NICF-extension of
Raney’s algorithm could.

24

6 Discussion

In this thesis, we studied how Raney’s algorithm can be extended to be used for NICF.
We identified the important issues that would have made it unfeasible to find such an
extension within the scope of a Bachelor thesis. The question of how or if Raney’s
algorithm can be expanded to NICF (and subsequently to Hurwitz continued fraction)
remains open, and would require further research to be answered. It is important to note
that if a solution to the issue in section 4.2 is found, we effectively obtain an algorithm
that results in the correct sequence, albeit in infinite time. Although it running in
infinite time is not entirely desirable, it is nevertheless an algorithm that does result in
a correct NICF.

25

A Appendix

Sizes of the sets DBn and QTn,1 for determinants n from 1 to 50.

n #DBn #QTn,1

1 1 1
2 2 2
3 3 3
4 5 4
5 5 5
6 8 8
7 7 7
8 11 9
9 10 9
10 14 14
11 11 11
12 19 16
13 13 13
14 20 20
15 18 18
16 24 19
17 17 17
18 30 28
19 19 19
20 31 26
21 26 26
22 32 32
23 23 23
24 44 36
25 26 25

n #DBn #QTn,1

26 38 38
27 34 31
28 45 38
29 29 29
30 54 54
31 31 31
32 52 41
33 42 42
34 50 50
35 38 38
36 70 56
37 37 37
38 56 56
39 50 50
40 70 56
41 41 41
42 76 76
43 43 43
44 73 62
45 63 58
46 68 68
47 47 47
48 97 78
49 50 49
50 80 78

26

References

[1] H. Davenport. The Higher Arithmetic: An Introduction to the Theory of Numbers.
Dover Publications, 1983.

[2] M. Hall. On the sum and product of continued fractions. Annals of Mathematics,
48:966–993, 1947.

[3] A. Hurwitz. Über die angenäherte Darstellung der Zahlen durch rationale Brüche.
Mathematische Annalen, 44:417–436, 1894.

[4] Marius Iosifescu and Cor Kraaikamp. Metrical Theory of Continued Fractions.
Kluwer Academic Publishers, 2002.

[5] J. Luisterburg. Möbius Transformations of Complex Contin-
ued Fractions. M.Sc. thesis, Radboud University Nijmegen,
https://www.math.ru.nl/~bosma/Students/JorisLuijsterburg/, 2011.

[6] Oskar Perron. Die Lehre von den Kettenbrüchen. B. G. Teubner Verlag, 1913.

[7] George N. Raney. On Continued Fractions and Finite Automata. Mathematische
Annalen, 206:265–283, 1973.

27

	Introduction
	Initial Definitions
	Disambiguation
	Continued Fractions
	Sequence Transducers

	Raney's algorithm
	Matrix representation of regular continued fractions
	Balanced matrices
	Creating a transducer
	Reducing to the doubly-balanced case
	Example

	Direct extension to nearest integer continued fractions
	Matrix representation for NICF
	Creating transducers for NICF
	Validity of the transducer output
	Transforming a continued fraction into a nearest integer continued fraction
	Simplifying Lambda-sequences

	Roundabout algorithm
	Discussion
	Appendix

