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1 Introduction

Consider the following situation: there is a municipality which consists of several houses,
where every house needs to have electricity to be livable. that is why a big power station
is being build. Every house will be connected to the power station via cables. A single
house can be connected either directly or via other houses. The construction of these
cables have to be paid by the residents. Some connections will be more expensive
than others for several reasons. Think about the different distances and accessibility
of the houses. that is why the residents want the construction of the cables to be in
the cheapest way possible. Furthermore, the municipality needs to worry about the
allocation of these costs. They want to divide the minimal costs among the houses such
that every house pays a fair amount. This problem is related to a well-known problem
called: Minimum Cost Spanning Tree problem or mcst problem in short.
There are two problems that need to be solved. The first problem is connecting every
house to the power station such that the costs are minimal. This problem belongs to
the field of operations research, a discipline that looks at methods to improve decision-
making. In this case, the construction company needs to decide which cables to place
to have the minimal costs. The solution to this problem is called a Minimum Cost
Spanning Tree or mcst in short. The second problem is deciding how to allocate the
costs among the houses in a fair way. This belongs to the field of game theory. To be
more specific, cooperative game theory, since the houses can cooperate to minimize their
costs. In general, cooperative game theory talks about players that can form different
coalitions instead of cooperating houses.
The first problem can be solved using algorithm. An algorithm needs to give back the
cheapest set of cables such that every house is connected. Two well-known algorithm
that are used to solve mcst problems were introduced by Prim [9] and Kruskal [8]. The
second problem can be solved using cooperative game theory. The allocation problem
can reformulated as a cooperative game which is called the mcst game. Fair allocations
will be the core elements of the mcst game. Core elements are the allocations among
the houses where the total cost of the allocation equals the cost of the mcst and the cost
of each group of houses is higher than the sum of the allocated cost of each house in the
group.
Finding these core elements can be difficult when the amount of houses increase. Using
the algorithms for finding a mcst can be helpful for finding a fair allocation. Bird [1]
introduced an allocation method that uses Prim’s algorithm and is called the Bird rule.
Granot and Huberman [6] proved that this allocation lies in the core of the mcst game.
The other allocation method uses Kruskal’s algorithm and is called the Equal Remaining
Obligations rule [10].
This thesis will also dive in a variation of a mcst problem. Consider the following
situation: there is a municipality which consists of several villages where every village
consists of several houses. Every house needs to have electricity to be livable and that is
why a big power station gets build. Every house will be connected to the power station
via cables. To get an optimal electricity supply, the municipality chooses to connect
every house in a village with each other. Every house still needs to be connected to the
power station which can be done directly or via other houses. The construction of the
cables has to be paid by the residents. That’s why the construction of the cables has to
be in the cheapest way possible such that every house will be supplied of electricity and
the houses in every village are connected with each other. Furthermore, the municipality
needs to worry about the allocation of these costs. They want to divide the minimal
costs among the houses such that every house pays a fair amount while keeping the
villages in mind. This problem is called the Minimum Cost Village Spanning Tree
problem or mcvst problem in short.
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Also here, there are two problems that need to be solved. The first problem is finding
the cheapest way to connect all the houses to the power station while making sure that
every village is connected when only using the cables within the village. The solution
to a mcvst problem is called a Minimum Cost Village Spanning Tree or mcvst
and can be found using algorithms. Prim’s and Kruskal’s algorithm are used as a basis
and changed in such a way that the villages are kept in mind. The second problem
is allocating the costs among the houses. This time there are villages involved which
might impact the way we look at which allocation is fair. This allocation problem can
again be solved by defining a mcvst game. The Bird rule and the Equal Remaining
Obligation rule will be used to find core elements. These rules will be using the adapted
algorithms such that the villages are taken into account.
Before diving into minimum cost village spanning trees, prior knowledge is needed. This
thesis starts with preliminaries about graph and game theory in chapter 2. Then mcst
problems and games are mathematically explained in chapter 3. The different algorithms
and the allocation methods attached to it will be discussed. After that, mcvst problems
and games will be discussed in chapter 4.
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2 Preliminaries

This chapter talks about the basic notions of graph theory and game theory. The master
thesis of Moor [4] has been used as inspiration for graph theory and the paper of Borm
[2] for game theory.

2.1 Graph theory

A graph G is a pair (V,E), where V is the set of vertices and E the set of edges.
Both sets are finite and each edge e ∈ E connects two vertices u, v ∈ V which is denoted
as {u, v}. In this case, u and v are called the endpoints of e. A subgraph G′ = (V ′, E′)
of a graph G = (V,E) is a graph such that V ′ ⊂ V and E′ ⊂ E.
A graph is called complete if for every pair of vertices u, v ∈ V with u ̸= v, there exists
an edge e ∈ E with u and v as its endpoints. A complete graph is denoted as (V,EV )
with EV = {{u, v}|u, v ∈ V, u ̸= v}.
Let G = (V,E) be a graph, a path is a finite sequence of edges that joins a sequence
of distinct vertices. In other words, a path (e1, e2, ..., en−1) is a sequence of edges in
E for which there exists a sequence of distinct vertices (v1, v2, ..., vn) in V such that
ei = {vi, vi+1}. This can also be called a path between v1 and vn since it connects the
two vertices through v2, ..., vn−1. A path where v1 = vn is called a cycle. G is called
connected if there exists a path between every pair of vertices in V.
A graph is called a tree if it’s connected and does not contain a cycle. Consequently, a
tree has #V −1 edges. Let G = (V,E) be a graph, a spanning tree of G is a subgraph
G′ = (V ′, E′) with V ′ = V,E′ ⊂ E and G′ a tree.

Figure 1: Complete graph of 4 vertices Figure 2: A path from vertex 2 to 4

Figure 3: Spanning tree
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2.2 Game theory

Let N = {1, 2, ..., n} be a finite set of players and 2N the set of all subsets of N . The
elements of 2N are called coalitions that the players can form. A cost game assigns
a cost to each coalition S ∈ 2N . Mathematically, a cost game is a pair (N, c) where
c : 2N → R is called the characteristic function with c(∅) = 0. The value c(S) for
every coalition S ∈ 2N is called the cost of coalition S. Consider a cost game (N, c)
where the players want to allocate the total cost c(N) in a fair way among each other.
An allocation x ∈ RN is a vector that assigns the cost xi to player i ∈ N for every player
in N . To get a fair allocation, x ∈ RN must satisfy two properties:

1. Efficiency:
∑

i∈N xi = c(N);

2. Coalition rationality:
∑

i∈S xi ≤ c(S) for every coalition S ∈ 2N .

The core of a cost game are all the allocations that satisfy these two properties. For-
mally, the core C(c) of a cost game (N, c) is defined as

C(c) = {x ∈ RN |
∑

i∈N xi = c(N),
∑

i∈S xi ≤ c(S) for all S ∈ 2N}.

Example 2.1. Let (N,c) be a cost game such thatN = {1, 2, 3}, c({1}) = 4 , c({2}) = 8,
c({3}) = 6, c({1, 2}) = 9, c({1, 3}) = 8, c({2, 3}) = 10 and c({1, 2, 3}) = 11. The fair
allocations x ∈ R3 are the core elements of this cost game. This means that the following
restrictions must hold for these allocations:

x1 ≤ 4, x2 ≤ 8, x3 ≤ 6
x1 + x2 ≤ 9 =⇒ x3 ≥ 2
x1 + x3 ≤ 8 =⇒ x2 ≥ 3

, x2 + x3 ≤ 10 =⇒ x1 ≥ 1
x1 + x2 + x3 = 11

This results in C(c) = Conv{(4, 3, 4), (4, 5, 2), (1, 8, 2), (2, 3, 6), (1, 4, 6)}.

Figure 4
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3 Minimum Cost Spanning Tree Problems and Games

This chapter discusses the mcst problems and games in more detail. It revolves around
the algorithms to find the minimum cost such that every house is connected to the
source and how we allocate the minimal cost in a fair way. Here, the master thesis of
Moor [4], the paper of Borm [2] and the article from Borm, Hamers and Hendrickx [3]
have been used as inspiration.

3.1 Mcst problem

The first part of the mcst problem is all about finding the minimum cost spanning tree.
This means, finding the cheapest way to connect every house to the power station. From
now on, this thesis talks about vertices instead of houses and the source instead of the
power station.

Definition 3.1. A mcst problem is a triple T = (N, ⋆, t), where N = {1, 2, ..., n}, ⋆ is
the source and t : EN∪{⋆} → R+ is the cost function that gives a non-negative cost to
each edge in EN∪{⋆}. For here on out, N ∪ {⋆} is written as N⋆.

A solution to a mcst problem is called a mcst (minimum cost spanning tree) which
must satisfy the following restrictions:

i. (N⋆, R) is a tree;

ii. t(R) = min{t(S) : (N⋆, S) is a tree} where t(S) =
∑
s∈S

t(s)

Remark. A mcst does not have to be unique since the costs of different edges can be
the same. This means that a mcst problem might have more solutions with the same
minimum cost.

Example 3.2. Suppose that there are three houses that need electricity from the power
station. The houses are connected to the power station via cables which can be done
either directly or via other houses. The cost of every cable can be seen in figure 5. The
vertices represent the houses and the star represents the power station. Figure 6 shows
a mcst which has a total cost of 18. So the minimal cost to connect every house to the
power station is 18.

Figure 5: mcst problem Figure 6: mcst

It was easy to find a mcst in this example, but it becomes harder when the amount
of vertices increase. This is where algorithms come into play. The two well-known
algorithms to solve mcst problems are Prim’s and Kruskal’s algorithm.
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3.1.1 Prim’s algorithm

Given a mcst problem T = (N, ⋆, t), Prim’s algorithm starts by looking at all outgoing
edges from the source and takes the edge with the minimal cost. Let I be the set of
vertices that are connected to the source. The set I only contains ⋆ at the start of the
algorithm. When this first edge is chosen, a vertex is added to set I. The algorithm
continuous by looking at all edges e = {i, j} with i ∈ I and j /∈ I. The edge with the
minimum cost is chosen and the endpoint is added to I. It must be checked that every
chosen edge does not introduce a cycle with the edges already chosen. The algorithm
stops when all vertices are connected to the source.

Algorithm 3.1. Let T = (N, ⋆, t) be a mcst problem. Then the output is an edge set
R ⊂ EN⋆ of an mcst obtained as followed:

1. Initialise R = ∅ and I = {⋆};

2. Find a minimal cost edge ej = {i, j} with i ∈ I and j /∈ I in such a way that
joining ej to R does not introduce a cycle;

3. Join ej to R, j to I ;

4. If I ̸= N⋆, go back to step 2.

Example 3.3. Reconsider example 3.2 and use Prim’s algorithm to solve it. The
algorithm starts with the source and adds edge {⋆, 2} to R and 2 to I. Then it looks at
all the outgoing edges from I and adds minimum cost edge {1, 2}. Lastly, it adds edge
{1, 3} since it is the cheapest edge that does not create a cycle. It connects the last
remaining vertex to the source. This returns a mcst with edge set {{⋆, 2}, {1, 2}, {1, 3}}.
It becomes more clear when looking at figure 7.

Figure 7
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3.1.2 Kruskal’s algorithm

Given a mcst problem T = (N, ⋆, t), Kruskal’s algorithm keeps adding the minimum
cost edge that has not been chosen. In every step, the cheapest edge is only chosen if it
does not introduce a cycle with the edges already chosen. The algorithm stops when all
vertices are connected to the source.

Algorithm 3.2. Let T = (N, ⋆, t) be a mcst problem. Then the output is an edge set
R ⊂ EN⋆ of an mcst obtained as followed:

1. Initialise R = ∅;

2. Find a minimal cost edge e ∈ EN⋆\R in such a way that joining e to R does not
introduce a cycle;

3. Join e to R;

4. If (N⋆, R) is not connected, go back to step 2.

Example 3.4. Lets look at example 3.2 again and use Kruskal’s algorithm to solve it.
The algorithm just starts with adding the cheapest edge which is {1, 2} to R. Then it
looks at the next cheapest edges which is {1, 3} and adds it. Lastly, edges {⋆, 2} and
{2, 3} will be the two next cheapest edges but {2, 3} will create a cycle so {1, 2} is added.
This results in a mcst with edge set {{⋆, 2}, {1, 2}, {1, 3}}. It becomes more clear when
looking at figure 8.

Figure 8

Theorem 3.5. Let T = (N, ⋆, t) be a mcst problem. Then Prim’s and Kruskal’s algo-
rithm give back an edge set R such that (N⋆, R) is a mcst.

The proof that Prim’s and Kruskal’s algorithm work, is given in Prim [9] and Kruskal
[8] respectively.
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3.2 Mcst game

The second part of the mcst problem is about allocating the minimal cost of a mcst.
Here, the vertices are considered to be the players which can form coalitions. These
coalitions will be given a certain cost given by a mcst game. Before the cost of each
coalition is known, a mcst game has to be defined.

To every mcst problem T = (N, ⋆, t) is a mcst game (N, cT ) associated where cT (S)
represents the value of the mcst of the graph (S⋆, ES⋆):

cT (S) = min{t(R) : R ⊂ ES⋆ and (S⋆, R) is a tree}.

Here, cT (S) is the minimal cost such that all players in coalition S are connected to the
source. You can see this as the cost of the mcst of the mcst problem (S, ⋆, t|ES⋆ ).

Example 3.6. Reconsider example 3.2 and determine the mcst game associated to this
mcst problem. The mcst game (N, cT ) is:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
cT (S) 8 7 9 12 14 14 18

Lets first start by looking at the coalition with only player 1. It can only be connected
to the source by edge {⋆, 1} which costs 8. This goes the same way with player 2 and
3 which cost 7 and 9 respectively. When looking at a coalition of two players, it’s
important to understand that you cannot use all the edges. The coalition of {1, 2} can
only use the edges {⋆, 1}, {⋆, 2} and {1, 2}. The cheapest way to connect player 1 and 2
to the source using these edge is by using {⋆, 2} and {1, 2}. That is why coalition {1, 2}
costs 5+7 = 12. Doing this for the coalitions {1, 3} and {2, 3}, it gives back the cost 14
for both. The cost of the coalition of all vertices {1, 2, 3} (= N) is the cost of the mcst
in figure 6 which is 18.

3.2.1 Bird rule

Every time an edges is added in Prim’s algorithm, a new player is connected to the
source. This is used in the Bird rule to allocate the cost. When an edge causes a new
player to be connected to the source, the new player gets the cost of that edge. It
becomes more clear when looking at Prim’s algorithm, where the Bird rule is added.

Algorithm 3.3. Let T = (N, ⋆, t) be a mcst problem. Then the output is an edge set
R ⊂ EN⋆ of an mcst and its corresponding Bird allocation βR(T ) obtained as followed:

1. Initialise R = ∅ and I = {⋆};

2. Find a minimal cost edge ej = {i, j} with i ∈ I and j /∈ I in such a way that
joining ej to R does not introduce a cycle;

3. Join ej to R, j to I and assign the cost βj(T ) = t(ej) to j ;

4. If I ̸= N⋆, go back to step 2. .

Remark. When the algorithm is finished, we have an edge set R and an allocation β(T ).
Since R does not have to be unique and β(T ) is dependent R, β(T ) does not have to be
unique. When the algorithm is finished, the Bird allocation is written as βR(T ) since
then R is known.
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Example 3.7. Reconsider 3.2 and use Prim’s algorithm with Bird rule to find the mcst
and allocate the minimum cost. The algorithm starts with adding edge {⋆, 2} to R which
connects player 2 to the source. This means that β2(T ) = 7. Then it adds edge {1, 2}
which connects player 1 to the source and β1(T ) = 5. Lastly, edge {1, 3} is added and
the last vertex is connected to the source. This causes β3(T ) = 6 and makes the Bird
allocation vector complete with βR(T ) = (5, 7, 6). It might become more clear when
looking at figure 9. The vertices that are connected to the source are made white.

Figure 9

3.2.2 Equal Remaining Obligation rule

The equal remaining obligation rule means that every players has to pay a total of one
unit of all chosen edges by Kruskal’s algorithm. This could be in fractions where a
player has to pay 1

4 for one edge and 3
4 for another. Determining what fraction of an

edge each player pays will be as followed. Whenever a new edge is added by Kruskal’s
algorithm, a new player is added to a component of players. All players in the newly
formed component have to pay an equal part of the new edge that has been added. A
obligation vector oblk is used where k stands for the k-th step. We talk about the k-th
step when the k-th edge is added. In every step of Kruskal’s algorithm, oblki keeps track
of how many players are connected to player i including itself. If player i is connected
to the source, oblki = 0. Else, oblki will equal one over the amount of players that player
i is connected with including itself. Furthermore, Ok(T ) is the cost contribution vector
at step k of a mcst problem T . This vector keeps track of what every player has to pay
at step k. The cost contribution is notated as OR(T ) when the algorithm is finished
and an edge set R is returned.

Example 3.8. Reconsider 3.2 and use Kruskal’s algorithm with the equal remaining
obligation rule to find the mcst and allocate the minimum cost. It starts with R = ∅,
obl0 = (1, 1, 1) and O0(T ) = (0, 0, 0). The algorithm begins with adding edge {1, 2} to
R which connects player 1 and 2 to each other. Since they are not yet connected to the
source: obl11 = obl12 = 1

2 and because player 3 is not connected to everything: obl13 = 1.
Since obl0 − obl1 = ( 12 ,

1
2 , 0), players 1 and 2 have to pay half of t({1, 2}) = 5 and

player 3 has to play nothing. Furthermore, O1(T ) = O0(T ) + (obl0 − obl1)t({1, 2}) =
(0, 0, 0) + ( 12 ,

1
2 , 0)5 = (21

2 , 2
1
2 , 0).

The next edge that will be added is {1, 3} which connects all players to each other
and nodboy is connected to the source. This means that obl2 = ( 13 ,

1
3 ,

1
3 ) which leads

to obl1 − obl2 = ( 12 ,
1
2 , 1) − ( 13 ,

1
3 ,

1
3 ) = ( 16 ,

1
6 ,

2
3 ). This means that player 1 and 2 have

to pay 1
6 of t({1, 3}) = 6 and player 3 has to pay 2

3 of 6. This gives us O2(T ) =
(2 1

2 , 2
1
2 , 0) + ( 16 ,

1
6 ,

2
3 )6 = (31

2 , 3
1
2 , 4).

Lastly, edge {⋆, 2} will be added. All the players will be connected to the source,
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which causes obl3 = (0, 0, 0) such that obl2 − obl3 = ( 13 ,
1
3 ,

1
3 ). Every player has to pay

equal part of t({⋆, 2}) = 7 which is 1
3 · 7 = 2 1

3 . This leads to the final cost contribution
vector O3(T ) = OR(T ) = (3 1

2 , 3
1
2 , 4) + ( 13 ,

1
3 ,

1
3 )7 = (5 5

6 , 5
5
6 , 6

1
3 ).

Figure 10

Theorem 3.9. Let T = (N, ⋆, t) be a mcst problem and (N, c) the corresponding mcst
game. Then the Bird allocation vector and the cost contribution vector are elements of
the core C(c).

The proof that the Bird allocation vector and the cost contribution vector are core
elements, is given in Granot and Huberman [6] and Tijs, Brânzi, Moretti and Norde [10]
respectively.
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4 Minimum Cost Village Spanning Tree

This chapter discusses the mcvst problems and games in more detail. It revolves around
the algorithms to find the minimum cost such that every house is connected to the source
while taking the villages into account. Furthermore, allocating the the minimal cost in
a fair way with the restriction of the villages is analyzed.

4.1 Mcvst problem

The first part of the mcvst problem is about finding the minimum cost village spanning
tree. This means finding the cheapest way to connect every vertex to the source while
keeping villages into account.

Definition 4.1. Amcvst problem is a quadruple TV = (N, ⋆, t,V), whereN = {1, 2, ..., n},
⋆ is the source and t : EN⋆ → R+ is the cost function that gives a non-negative cost to
each edge in EN⋆ . The village set V is a partition of N which means that for V must
hold that:

i. V ̸= ∅ ∀V ∈ V;

ii.
⋃
V ∈V

V = N ;

iii. V ∩W = ∅ for all V ̸= W in V.

Furthermore, a solution for this problem has to be defined. These solutions are called
minimum cost village spanning trees or mcvst in short. For a mcvst must hold that all
the villages are connected. This means that a graph can only be valid to be a mcvst if
it meets this requirement.

Definition 4.2. Let TV = (N, ⋆, t,V) be a mcvst problem, a graph (N⋆, R) is called a
valid solution if:

i. (N⋆, R) is a tree;

ii. (V,R ∩ EV ) is connected ∀V ∈ V.

Now the solution for a mcvst problem can be defined.

Definition 4.3. Let TV = (N, ⋆, t,V) be a mcvst problem, a graph (N⋆, R) is a mcvst
if:

i. (N⋆, R) is a valid solution;

ii. t(R) = min{t(S) : (N⋆, S) is a valid solution} where t(S) =
∑
s∈S

t(s).

Remark. A mcvst problem TV = (N, ⋆, t,V) is the same as a mcst problem when the
village set only consists of one village (i.e., V = {N}) or when the village set consists of
#N villages (i.e., V = {{i}|i ∈ N}).
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Example 4.4. Suppose that we have eight houses (N = {1, 2, ..., 8}), a source ⋆ and
three villages with houses 1,3,4 in one village, 2,5,8 in another village and 6,7 in the
remaining village or in short V = {{1, 3, 4}, {2, 5, 8}, {6, 7}}. We define the cost function
t : EN⋆ → R+ as t(e) = 0 ∀e ∈ EN⋆ . One can easily check that V satisfies the condi-
tions in Definition 4.1. This leads to a mcvst problem TV = (N, ⋆, t,V) which looks as
followed:

Figure 11

For simplicity, the vertices, which are the houses, have been rearranged in Figure 11
such that the once that belong in the same village are close together. Now we have
to find a valid solution for this mcvst problem. It is easier to first make sure that the
houses in each village are connected and then connect the villages with each other and
the source. Keep in mind that you don’t create any cycles as we are still trying to find
a spanning tree. Looking at the following two graphs, it is easy to see which one is a
valid solution.

Figure 12

We can see in Figure 12 that the graph on the left is not a valid solution as it does not
meet both criteria in Definition 4.2. First of all, there is a cycle with the vertices ⋆, 4
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and 7. Secondly, the village {2,5,8} is not connected. The graph on the right however,
is a valid solution as it is a spanning tree and the vertices in each village are connected.

4.1.1 Prim’s algorithm

Given a mcvst problem TV = (N, ⋆, t,V), the first algorithm is inspired by Prim’s algo-
rithm. Also here, let I be the set of vertices that are connected to the source. When
the first edge {⋆, i} is chosen, a vertex is added to the set I. This vertex must lie in
a village. Define V (i) as the village that contains vertex i. The algorithm continues
by only looking at the cheapest edge with one endpoint in V (i) ∩ I and one endpoint
in V (i)\I. It keeps taking these edges until V (i) ∩ I = V (i). This means that the
graph (V (i), R∩EV (i)) is connected. Then it repeats this process by first looking at the
cheapest edge {j, ℓ} with j ∈ I and ℓ /∈ I and then taking the cheapest edges from V (ℓ)
in the same way as above. The algorithm stops when I = N⋆.

Algorithm 4.1. Let a mcvst problem (N, ⋆, t,V) be the input. Then the output is an
edge set R ⊂ EN⋆ of an mcvst obtained as followed:

1. Initialise R = ∅ and I = {⋆};

2. Find a minimal cost edge ej = {i, j} with i ∈ I and j /∈ I in such a way that
joining ej to R does not introduce a cycle;

3. Join ej to R, j to I ;

4. Find a minimal cost edge el = {k, l} with k ∈ V (j) ∩ I and l ∈ V (j)\I in such a
way that joining el to R does not introduce a cycle;

5. Join el to R and l to I ;

6. If I ∩ V (j) ̸= V (j), go back to step 4 ;

7. If I ̸= N⋆, go back to step 2.

Remark. To proof that this algorithm works, it’s important to note that the edges
are chosen in an order. Therefore, let π : {1, 2, ...,#N} → N be a bijection where
π(a) = b means that b is the a-th vertex that was connected to the source. This results
in (eπ(1), eπ(2), ..., eπ(n)) being the sequence of edges in the order that they have been
chosen by algorithm 4.1. It also follows that vertex π(i) is the i-th vertex that was added
to I. Furthermore, the edge set R that the algorithm returns is not unique since there
could be more than one edge with the same minimal cost in step 2 and 4. Therefore it
is better to write πR instead of π since π is dependent of R.

Example 4.5. Reconsider the mcvst problem in example 4.4 but with the cost function t
higher than zero for every edge in EN⋆ . This leads to the mcvst problem TV = (N, ⋆, t,V)
with V = {{1, 3, 4}, {2, 5, 8}, {6, 7}}. For clarity, vertices within the same village have
the same colour and the edges have the mixed colour of the colours of the two endpoints.
The source ⋆ and its outgoing edges are black. This leads to the following graph:

15



Figure 13

Step 1 of the algorithm is setting R = ∅ and I = {⋆}. It continues with step 2 and
3 where for the first edge ej = {i, j} must hold that i = ⋆ and j /∈ I which means that
j ∈ N . The cheapest edge that also meets these criteria is {⋆, 7}. This edge will be
added to R and vertex 7 to I since 7 is connected to the source.

Figure 14

Step 4 looks at the village V (7). The next edge that will be added to R is {6, 7}
since 7 ∈ V (7)∩I and 6 ∈ V (7)\I. Vertex 6 is added to I which causes I∩V (7) = V (7).
Since I ̸= N⋆, the algorithm will return to step 2. The cheapest edges with only one
endpoint in I are {3, 7} and {5, 6}. Let’s add edge {5, 6} to R such that vertex 5 is
added I and village V (5) will be used in step 4.
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Figure 15

The algorithm continues with first adding edge {2, 5} to R and then {2, 8}. Vertices
2 and 8 are added to I which causes I ∩ V (5) = V (5). The algorithm will go back to
step 2 since I ̸= N⋆. The edge that will be added to R is edge {2, 3} and vertex 3 to I.
Step 4 uses village V (3) such that first edge {3, 4} and then {1, 3} are added to R. This
means that vertices 4 and 1 are added to I such that I = N⋆. The algorithm returns
the edge set R = {{⋆, 7}, {6, 7}, {5, 6}, {2, 5}, {2, 8}, {2, 3}, {3, 4}, {1, 3}}.

Figure 16

The cost of the mcvst (N⋆, R) is t(R) = 61. This means that every mcvst of TV has
the same minimal cost of 61. Note that the minimal cost is higher than when looking
at the mcst of this problem by removing the villages. The cost of the mcst is 55 which
can be seen in figure 17.
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Figure 17

Theorem 4.6. Let TV = (N, ⋆, t,V) be a mcvst problem. Then algorithm 4.1 returns
an edge set R such that (N⋆, R) is a mcvst.

The proof of Prim’s algorithm for mcst problems in Hein [7] has been used as inspi-
ration for this proof.

Proof. That (N⋆, R) is a valid solution is clear since algorithm 4.1 makes sure that there
are not any cycles and it only stops when (N⋆, R) and all villages are connected. The
proof that t(R) = min{t(S) : (N⋆, S) is a valid solution} goes by contradiction.
Suppose that t(R) ̸= min{t(S) : (N⋆, S) is a valid solution}. Let (eπ(1), eπ(2), ..., eπ(n))

be the sequence of chosen edges in this order by algorithm 4.1. Let R be the edge set
such that (N⋆, R) is a mcvst and it contains eπ(1), eπ(2), ..., eπ(k) where k is the largest
possible integer. Let Ik := {⋆, π(1), π(2), ..., π(k)} be the vertex set I before π(k + 1) is
connected to the source. Then eπ(k+1) := {i, π(k + 1)} with i ∈ I will be the first edge

that algorithm 4.1 adds to R that is not in R. There are two cases for i and π(k + 1):

• Case 1,V (i) = V (π(k + 1)) =⇒ There is a path i⇝ π(k + 1) in R within V (i).
Let {j, ℓ} be the first edge on this path with j ∈ Ik and ℓ /∈ Ik;

Define edge set S := (R ∪ {{i, π(k + 1)}})\{{j, l}}. S is the same as R except for one
village. An edge is removed and a new edge is added to this village. The new edge makes
sure that the village is still connected by how it is defined. This means that (N⋆, S) is
a valid solution.

• Case 2,V (i) ̸= V (π(k+1)) =⇒ There is a path i⇝ π(k+1) in R. Let {j, ℓ} be
the first edge on this path with V (j) ̸= V (l), j ∈ Ik and ℓ /∈ Ik.

Define edge set S := (R∪{{i, π(k+1)}})\{{j, l}}. The villages in S remain unchanged
such that they are all connected. The one thing that is different form R is an edge with
endpoint in different villages. The new edge makes sure that the graph is still connected
by how it is defined. This means that (N⋆, S) is a valid solution.
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Figure 18: Case 1

Figure 19: Case 2

In both cases, we have defined an edge set S such that (N⋆, S) is a valid solution.
This will be used when considering three possibilities for t({i, π(k + 1)}) and t({j, ℓ}):

1. t({i, π(k + 1)}) < t({j, ℓ}), then by constructing S we have replaced an edge in R
with a cheaper edge. This means that t(R) > t(S), which cannot be possible since
R is a mcvst;

2. t({i, π(k+1)}) = t({j, ℓ}), then t(R) = t(S) which means that S is an mcvst. Since
eπ(k+1) = {i, π(k + 1)} and {j, l} cannot be any of the edges eπ(1), eπ(2), ..., eπ(k),
it follows that S contains eπ(1), eπ(2), ..., eπ(k+1). This contradicts the definition of

edge set R which contains eπ(1), eπ(2), ..., eπ(k) for k the largest possible integer;

3. t({i, π(k + 1)}) > t({j, ℓ}), then the cost of edge {j, l} is smaller. Algorithm 4.1
will select {j, ℓ} at step k+1, which contradict the definition of edge {i, π(k+1)}.

Since all possibilities lead to contradictions, our assumption must be false. This means
that t(R) = min{t(S) : (N⋆, S) is a valid solution} which means that (N⋆, R) is a
mcvst.

4.1.2 Kruskal’s algorithm

Given a mcvst problem TV = (N, ⋆, t,V), the second algorithm is inspired by Kruskal’s
algorithm. The cheapest edge will again be taken from from EN⋆ , but it also takes
villages into account. The algorithm starts by taking the minimal cost edge {i, j} and
looks at its vertices. If the vertices belong in the same village (i.e., V (i) = V (j)), the
next edge that will be taken, is the cheapest edge within the village V (i). The algorithm
keeps taking the cheapest edges in this village until (V (i), R∩EV (i)) is connected. If the
vertices belong in a different village (i.e., V (i) ̸= V (j)), both villages will be connected
separately in the same way as before. Then it continues with taking the cheapest edge
and connects the corresponding villages.

Algorithm 4.2. Let T = (N, ⋆, t) be a mcst problem. Then the output is an edge set
R ⊂ EN⋆ of an mcst obtained as followed:

1. Initialise R = ∅;

2. Find a minimal cost edge eij = {i, j} ∈ EN⋆\R in such a way that joining eij to
R does not introduce a cycle;
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3. Join eij to R;

4. If V (i) = V (j), do step 5 to 7 for x = i. If V (i) ̸= V (j), do step 5 to 7 for x = i
and for x = j where (V (x), EV (x) ∩R) is not connected ;

5. Find a minimal cost edge e ∈ EV (x)\R in such a way that joining e to R does not
introduce a cycle;

6. Join e to R;

7. If (V (x), EV (x) ∩R) is not connected, go to step 5 ;

8. If (N⋆, R) is not connected, go back to step 2.

Example 4.7. Reconsider the mcvst problem in example 4.5 and use algorithm 4.2 to
find the mcvst. Step 1 sets R = ∅ and continues to step 2 which looks at the cheapest
edge of EN⋆ . The edge {3, 4} is added to R and step 5 to 7 will be done with village
V (3) = V (4).

Figure 20

The next edge e ∈ EN⋆ much hold that e ∈ EV (3)\R which are {1, 3} and {1, 4}. The
cheapest of the two is edge {1, 3} and will be added to R. The graph (V (3), EV (3) ∩R)
is connected and (N⋆, R) is not connected. The algorithm will return to step 2 and adds
the cheapest edge in EN⋆\R. The edge added to R is {2, 3} which means that step 5 to
7 will be done with village V (2).
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Figure 21

The algorithm continues with first adding edge {2, 5} to R and then {2, 8}. The
algorithm goes back to step 2 since (N⋆R) is not connected. The two cheapest edge
that can be added to R are {3, 7} and {5, 6}. In this case, lets add edge {3, 7} to R
such that step 5 to 7 are done with village V (7). Edge {6, 7} will be added to R and
the algorithm will go back to step 2 since (N⋆R) still is not connected. The last edge
that will be added to R is {⋆, 7} such that (N⋆R) is connected.

Figure 22

Theorem 4.8. Let TV = (N, ⋆, t,V) be a mcvst problem. Then algorithm 4.2 returns
an edge set R such that (N⋆, R) is a mcvst.

The proof of Kruskal’s algorithm for mcst problems in Goodaire and Huberman [5]
has been used as inspiration for this proof.

Proof. That (N⋆, R) is a valid solution is clear since algorithm 4.2 makes sure that there
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are not any cycles and it only stops when (N⋆, R) and all villages are connected. The
second thing that we need to check is that R has minimal cost.
Let R be an edge set such that (N⋆, R) is a mcvst. If R = R then (N⋆, R) is a mcvst.
If R ̸= R, then there exists one or more edges in R that are different from the edges
in R. Define the set D = {e ∈ R|e /∈ R} and let a = {i, j} ∈ D be the edge such that
t(a) = min

e∈D
t(e). There are two cases for edge a.

• Case 1, the vertices i and j lie within the same village (V (i) = V (j)).

The set R ∪ a contains a cycle within village V (i). It holds that every edge in this
cycle has a cost lower or equal than t(a) since the algorithm keeps taking the edge with
minimal cost. Furthermore, there exists an edge b = {k, l} in this cycle that is not
contained in R since (N⋆, R) is a mcvst (it does not contain a cycle). Furthermore, k
and l lie within village V (i) and one of the vertices may equal i or j. Consider the edge
set R2 = (R\{b}) ∪ {a}. This is a valid solution and t(R2) ≥ t(R) since t(a) ≥ t(b).

• Case 2, the vertices i and j lie in different villages (V (i) ̸= V (j)).

The set R∪a contains a cycle with two or more edge with endpoints in different villages.
It holds that every edge in this cycle has a cost lower or equal than t(a) since the
algorithm keeps taking the edge with minimal cost. Furthermore, there exists an edge
b = {k, l} in this cycle that is not contained in R since (N⋆, R) is a mcvst (it does
not contain a cycle), where k and l lie in different villages. Consider the edge set
R2 = (R\{b}) ∪ {a}. This is a valid solution and t(R2) ≥ t(R) since t(a) ≥ t(b).

Figure 23: Case 1
Figure 24: Case 2

Continuing this process with R2 to find a valid solution R3, the new edge set keeps
getting more edges similar to the once in R (we keep removing an edge from R and add
an edge from R). This eventually ends up with the edge set R such that:

t(R) ≤ t(R2) ≤ t(R3) ≤ ... ≤ t(R)

Since R has a minimal cost because (N⋆, R) is a mcvst, all the inequalities have to be
equalities. This means that R has minimal cost such that (N⋆, R) is a mcvst.
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4.2 Mcvst game

The second part of the mcvst problem is about allocating the minimal cost for a mcvst
problem. A mcvst game has to be defined to determine the cost of the coalitions. An
intuitive way is to define it the same way as with mcst games.

Definition 4.9. Let TV = (N, ⋆, t,V) be a mcvst problem. For every coalition S ,
VS = {V ∩ S : V ∈ V} be the village set of S. The associated intuitive mcvst game
(N, cTV ) is

cTV (S) = min{t(R) : R ⊂ ES⋆ and (S⋆, R) is a valid solution with village set VS}

∀S ⊂ N,S ̸= ∅ and cTV (∅) = 0.

Remark. Note that every mcvst of TV has the same value as cTV (N). This follows from
the fact that VN = V, which means that cTV (N) looks for the minimal cost edge set R
such that (N⋆, R) is a valid solution with village set V. The same is done when looking
for a mcvst of TV

This might seem like a well-defined mcvst game to find fair allocations, but there is
a flaw with this definition.

Example 4.10. Consider the following mcvst problem TV = (N, ⋆, t,V) with N =
{1, 2, 3, 4} and V = {{1, 2}, {3, 4}}:

Figure 25

The mcvst game (N, cTV ) is:

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
cTV (S) 4 6 8 7 22 6 11 12 13 19

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
cTV (S) 24 29 18 24 36

To find a fair allocation x ∈ R4 for this problem becomes impossible with the as-
sociated intuitive mcvst game. This becomes clear when looking at the core elements
C(cTV ). The fair allocations must satisfy several restrictions including

x1 ≤ 4, x2 ≤ 6, x3 ≤ 8, x4 ≤ 7
x1 + x2 + x3 + x4 = 36.
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It can be easily seen that an allocation cannot satisfy all these restrictions which means
that C(cTV ) = ∅. This means that in this example, there does not exist a fair allocation
when using the intuitive mcvst game. The problem with this game is that the villages
are not taken into account. In this example, the edges with endpoints in the same
village have much higher costs than the edges with endpoints in different villages. Let
(N⋆, R) be a mcvst of TV , the edge {1, 2} must be added to the mcvst. If not, the
graph (V (1), R|EV (1)

) is not connected. This means that when looking at the singleton
coalition {1}, the cost of edge {1, 2} must be taken into account. This is something that
the intuitive mcvst game does not do. Therefore a new mcvst game must be defined.

4.2.1 Complete mcvst game

A possibility to avoid this problem is by looking at the complete village of every player
in a coalition. This can be done by looking at all the villages that contain at least one
player that is also in the coalition. New sets need to be defined to obtain these villages.
For a given mcvst problem TV = (N, ⋆, t,V), all the villages that contain at least one
player of a coalition S ⊂ N is CS := {V (i) ∈ V : i ∈ S}. Furthermore, all the players
contained in these villages are TS :=

⋃
V ∈CS

V .

Definition 4.11. Let TV = (N, ⋆, t,V) be a mcvst problem. The associated complete
mcvst game (N, ccTV ) is

ccTV (S) = min{t(R) : R ⊂ ET⋆
S
and (T ⋆

S , R) is a valid solution with village set CS}

∀S ⊂ N,S ̸= ∅ and ccTV (∅) = 0.

Remark. From this definition can be easily seen that for all coalitions S ⊂ N with
S = TS holds that ccTV (S) = cTV (S) where cTV is the associated intuitive mcvst game.

Example 4.12. Reconsider the mcvst problem used in example 4.10. The associated
complete mcvst game (N, ccTV ) gives:

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
ccTV (S) 22 22 19 19 22 36 36 36 36 19

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
ccTV (S) 36 36 36 36 36

It can be easily seen that (9, 9, 9, 9) ∈ C(ccTV ) which means that this is a fair
allocation. One downside of the complete mcvst game is that it does not take the
differences in coalitions into account. This can be seen when looking at the coalitions
{1, 3} and {2, 4}.
C{1,3} = {V (1), V (3)} = {{1, 2}, {3, 4}} and T{1,3} = {1, 2, 3, 4} =⇒ ccTV ({1, 3}) = 36
C{2,4} = {V (2), V (4)} = {{1, 2}, {3, 4}} and T{2,4} = {1, 2, 3, 4} =⇒ ccTV ({2, 4}) = 36

Although the coalitions are disjoint, the values are the same. In the table can be seen
that eight collations have the same value as ccTV (N). To avoid this problem, the intuitive
and the complete mcvst games can be combined.

4.2.2 Combined mcvst game

A new mcvst game has to be defined that considers both the villages and the coalitions.
Reconsider example 4.10 and again look at the coalitions {1, 3} and {2, 4}. First use
the associated intuitive mcvst game. For coalition {1, 3}, the edges {⋆, 1} and {1, 3} are
used such that cTV ({1, 3}) = 6. Keep in mind that the coalition {1, 3} is different from
the edge {1, 3}. For coalition {2, 4}, it’s {⋆, 2} and {⋆, 4} such that cTV ({2, 4}) = 13.
Define R0 := {{⋆, 1}, {1, 3}} and R0 := {{⋆, 2}, {⋆, 4}}.
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Figure 26: S = {1, 3} Figure 27: S = {2, 4}

Figure 28: Edge sets of cTV (S)

Secondly, use the associated complete mcvst game. For both coalitions, the edge
set R = {{⋆, 1}, {1, 2}, {1, 3}, {3, 4} is used to get ccTV ({1, 3}) = ccTV ({2, 4}) = 36.
However, this time the coalitions need to be taken into account. This is done by putting
a restricting on the edge sets used for the complete mcvst game. Still, the edge set with
minimal cost needs to be found but it must contain R0 and R0 for coalitions {1, 3} and
{2, 4} respectively. For coalition {1, 3} can be seen that R0 ⊂ R, which means that the
value of this coalition is 36. For coalition {2, 4} holds that R0 ̸⊂ R. This means that we
need to look at the minimal cost edge set R such that R0 ⊂ R ⊂ ET⋆

{2,4}
and (T ⋆

{2,4}, R)

is a valid solution with village set C{2,4}. This leads to R = {{⋆, 2}, {⋆, 4}, {1, 2}, {3, 4}}
such that the value of this coalition is 43.

Figure 29: S = {1, 3} Figure 30: S = {2, 4}

Figure 31: Edge sets of ccTV (S) with restriction

Definition 4.13. Let TV = (N, ⋆, t,V) be a mcvst problem. For every coalition S ⊂ N ,
let R0 be the edge set such that t(R0) = cTV (S) = min{t(R) : R ⊂ ES⋆ and (S⋆, R)
is a valid solution with village set VS}. The associated combined mcvst game (N, scTV ) is

scTV (S) = min{t(R) : R0 ⊂ R ⊂ ET⋆
S
and (T ⋆

S , R) is a valid solution with village set
CS}

∀S ⊂ N,S ̸= ∅ and scTV (∅) = 0

Remark. (1) From the definition can be concluded that for all coalitions S ⊂ N with
S = TS holds that scTV (S) = cTV (S) where cTV is the associated intuitive mcvst game.
This follows from the fact that (S⋆, R0) = (T ⋆

S , R0) is a valid solution with village set
CS where t(R0) = cTV (S) = cTV (TS).
(2) From the definition can also be concluded that ccTV (S) ≤ scTV (S) for all S ⊂ N
where ccTV is the associated complete mcvst game. This follows from the fact that there
is an extra restriction on the possible edge sets R that satisfy t(R) = scTV (S).
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Example 4.14. Reconsider the mcvst problem used in example 4.10. The associated
combined mcvst game (N, scTV ) is:

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
scTV (S) 22 24 20 19 22 36 41 42 43 19

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}
scTV (S) 36 41 36 42 36

It can be easily seen that just like with the associated complete mcvst game, (9, 9, 9, 9) ∈
C(scTV ) which means that this is a fair allocation. The question can be asked: ”How
important is it to take the coalitions into account?” Let’s compare the cores of example
4.12 and 4.14. For the allocations x ∈ R4 in C(scTV ) must hold that x2 ≤ 24. However,
since for x must also hold that x1 + x2 ≤ 22, follows that x2 ≤ 22. This is also the
case with x3 + x4 ≤ 19 =⇒ x3 ≤ 19 and

∑
i∈S xi ≤ 36 for all scTV (S) ≥ 36 since∑4

i=1 xi ≤ 36. This means that in this case C(scTV ) = C(ccTV ). It can be proven that
this is the case for every mcvst problem TV .

Lemma 4.15. Let TV = (N, ⋆, t,V) be a mcvst problem and ccTV , scTV the associated
complete and combined mcvst games respectively. Then C(ccTV ) = C(scTV ).

Proof. Suppose that x ∈ C(ccTV ). It follows from N = TN that ccTV (N) = scTV (N).
This means that

∑
i∈N xi = ccTV (N) = scTV (N). Furthermore, for all S ⊂ N holds

that ccTV (S) ≤ scTV (S), what leads to x ∈ C(scTV ).
Suppose that x ∈ C(scTV ). It follows from ccTV (N) = scTV (N) that

∑
i∈N xi =

scTV (N) = ccTV (N). Furthermore, for all S ⊂ N with S = TS holds that
∑

i∈S xi ≤
scTV (S) = ccTV (S). From the definition of scTV follows that for all S ⊂ S with TS = TS

holds that scTV (S) ≤ scTV (S). This implies that
∑

i∈S xi ≤ scTV (S) = ccTV (S) ≤
scTV (S), what leads to x ∈ C(ccTV ).

From Lemma 4.15 can be concluded that it is not necessary to take coalitions into
account. Therefore it becomes redundant to use the more complex associated combined
mcvst game to find fair allocation when the associated complete mcvst game gives back
the same set of fair allocations.

4.2.3 Bird rule

Every time an edges is added in algorithm 4.1, a new player is connected to the source.
This is again used in Bird rule to allocate the cost for a mcvst problem.

Algorithm 4.3. Let (N, ⋆, t,V) be a mcvst problem. Then the output is an edge set
R ⊂ EN⋆ of an mcvst and its corresponding Bird allocation βR(TV) obtained as followed:

1. Initialise R = ∅ and I = {⋆};

2. Find a minimal cost edge ej = {i, j} with i ∈ I and j /∈ I in such a way that
joining ej to R does not introduce a cycle;

3. Join ej to R, j to I and assign the cost βj(TV) = t(ej) to j ;

4. Find a minimal cost edge el = {k, l} with k ∈ V (j) ∩ I and l ∈ V (j)\I in such a
way that joining el to R does not introduce a cycle;

5. Join el to R and l to I and assign the cost βl(TV) = t(el) to l ;

6. If I ∩ V (j) ̸= V (j), go back to step 4 ;
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7. If I ̸= N⋆, go back to step 2.

Remark. Again, we have an edge set R and an allocation β(TV). Since R does not have
to be unique and β(TV) is dependent R, β(TV) does not have to be unique. When the
algorithm is finished, the Bird allocation is written as βR(TV) since then R is known.

Example 4.16. Reconsider example 4.10 and use algorithm 4.3 to find a fair allocation.
The first edge that will be added to R is {⋆, 1} which connects player 1 to the source.
This means that β1(TV) = t({⋆, 1}) = 4. The second edge that will be added is {1, 2}
which gives β2(TV) = t({1, 2}) = 18. The third edge that will be added is {1, 3} which
gives β3(TV) = t({1, 3}) = 2. Lastly, edge {3, 4} is added and β4(TV) = t({3, 4}) = 12.
This gives the Bird allocation βR(TV) = (4, 18, 2, 12).

Figure 32

It can be easily checked that this is a core element of the associated complete mcvst
game ccTV .

•
4∑

i=1

βR
i (TV) = 36 = ccTV (N);

• βR
i (TV) ≤ ccTV ({i}) for all i ∈ N ;

• βR
1 (TV) + βR

2 (TV) ≤ ccTV ({1, 2});

• βR
3 (TV) + βR

4 (TV) ≤ ccTV ({3, 4}).

Note that for all S ⊂ N with ccTV (S) = 36 holds that
∑
i∈S

βR
i (TV) ≤ 36 since

4∑
i=1

βR
i (TV) =

36. With these results follow that (4, 18, 2, 12) ∈ C(ccTV ).
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Theorem 4.17. Let TV = (N, ⋆, t,V) be a mcvst problem and (N⋆, R) be the mcvst ob-
tained by Algorithm 4.3 with corresponding Bird allocation vector βR(TV). Let (N, ccTV )
be the associated complete mcvst game. Then βR(TV) is an element of the core C(ccTV ).

Proof. Let (N⋆, R) be a mcvst with R = {ei}i∈N obtained by Algorithm 4.3 such that
βR
i (TV) = t(ei), i ∈ N . Here, edge ei means that one of the endpoints equals i.

What is needed to prove:

1.
∑
i∈N

βR
i (TV) = cc(N);

2.
∑
i∈S

βR
i (TV) ≤ cc(S) ∀S ⊂ N .

The equation follows immediately from the definition of ccTV (N):∑
i∈N

βR
i (TV) =

∑
i∈N

t(ei) = cTV (N) = ccTV (N)

where cTV is the associated intuitive mcvst game.

For the in inequality, let S ∈ 2N\{∅}. Consider a valid solution (T ⋆
S , F ) such that

F ∈ ET⋆
S

and ccTV (S) =
∑
e∈F

t(e). Define G := {ei ∈ R|i ∈ N\TS} and note that

F ∩ G = ∅ since every edge e ∈ G has at least one endpoint that is not contained
in T ⋆

S . Furthermore (N⋆, F ∪ G) is a valid solution. To see this, look at the graph
(N\TS , G). This graph does not contain any cycles since G takes edges from R and
(N⋆, R) is a valid solution. From the definition of TS follows that N\TS is a finite union
of villages. This means that all the villages in (N\TS , G) are connected since G contains
all the edges with both endpoints in N\TS . G also contains all the edges from R that
lie between these villages. Since #G = #N\TS and G does not contain any cycles, it
follows that G must contain at least one edge with one endpoint in T ⋆

S . This means that
(T ⋆

S ∪N\TS , F ∪G) = (N⋆, F ∪G) is a valid solution. Hence,

ccTV (N) ≤
∑

e∈F∪G

t(e) =
∑
e∈F

t(e) +
∑
e∈G

t(e) = ccTV (S) +
∑

i∈N\TS

βR
i (TV)

and, consequently,∑
i∈S

βR
i (TV) ≤

∑
i∈TS

βR
i (TV) = ccTV (N)−

∑
i∈N\TS

βR
i (TV) ≤ ccTV (S)

Corollary 4.17.1. Let TV = (N, ⋆, t,V) be a mcvst problem and let (N, sc) be the cor-
responding combined mcvst game. Let βR(TV) ∈ RN be a corresponding Bird allocation
vector. Then βR(TV) is an element of the core C(scTV ).

Proof. This follows from Lemma 4.15 and Theorem 4.17.

4.2.4 Equal Remaining Obligation rule

The equal remaining obligation rule stays almost the same as stated in 3.2.2. This means
that the definition of the obligation vector and the cost contribution vector remains
unchanged. The only thing that is different is that in this case, algorithm 4.2 is used to
determine the cost contribution vector. By doing this, the equal remaining obligation
rule takes the villages into account.
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Example 4.18. Reconsider example 4.10 and use algorithm 4.2 with the equal remain-
ing obligation rule to find a fair allocation. It starts with R = ∅, obl0 = (1, 1, 1, 1)
and O0(TV) = (0, 0, 0, 0). The algorithm begins with adding edge {1, 3} to R which
connects player 1 and 3 to each other. This means that obl1 = ( 12 , 1,

1
2 , 1) such that

obl0 − obl1 = ( 12 , 0,
1
2 , 0). Furthermore, O1(TV) = (0, 0, 0, 0) + ( 12 , 0,

1
2 , 0)2 = (1, 0, 1, 0).

The second edge that is being added is {1, 2}. This means that obl2 = ( 13 ,
1
3 ,

1
3 , 1)

such that obl1 − obl2 = ( 16 ,
2
3 ,

1
6 , 0). Furthermore, O2(TV) = (1, 0, 1, 0) + ( 16 ,

2
3 ,

1
6 , 0)18 =

(4, 12, 4, 0).

The third edge that is being added is {3, 4}. This means that obl3 = ( 14 ,
1
4 ,

1
4 ,

1
4 ) such

that obl2−obl3 = ( 1
12 ,

1
12 ,

1
12 ,

3
4 ). Furthermore, O3(TV) = (4, 12, 4, 0)+( 1

12 ,
1
12 ,

1
12 ,

3
4 )12 =

(5, 13, 5, 9).

The last edge that will be added is {⋆, 1} which connects all players to the source.
This means that obl4 = (0, 0, 0, 0) such that obl3 − obl4 = (14 ,

1
4 ,

1
4 ,

1
4 ). Furthermore,

O4(TV) = (5, 13, 5, 9) + ( 14 ,
1
4 ,

1
4 ,

1
4 )4 = (6, 14, 6, 10).

This leads to the final cost contribution: OR(TV) = (6, 14, 6, 10).

Figure 33

It can be easily checked that this is a core element of the associated complete mcvst
game ccTV .

•
4∑

i=1

OR
i (TV) = 36 = ccTV (N);

29



• OR
i (TV) ≤ ccTV ({i}) for all i ∈ N ;

• OR
1 (TV) +OR

2 (TV) ≤ ccTV ({1, 2});

• OR
3 (TV) +OR

4 (TV) ≤ ccTV ({3, 4}).

Note that for all S ⊂ N with ccTV (S) = 36 holds that
∑
i∈S

OR
i (TV) ≤ 36 since

4∑
i=1

OR
i (TV) =

36. With these results follow that (6, 14, 6, 10) ∈ C(ccTV ).

In this thesis, it won’t be proven that every cost contribution vector of a mcvst
problem TV is a core element of the associated complete mcvst game.
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