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1 Introduction

In this chapter we will briefly look into the history of continued fractions. Subsequently,
the outline of this thesis is explained and finally we will look at some basic definitions
and notation that are used in this thesis.

1.1 History

The origin of real continued fractions can be traced back to the Euclidean algorithm,
which was introduced around 300 BCE. The Euclidean algorithm is a procedure for
finding the greatest common divisor of two natural numbers m and n, but generates as
a by-product a continued fraction of 7. Still, it is not clear whether Euclid and his
contemporaries recognised this phenomenon. Another early appearance can be found in
the 6th century, when Aryabhata used continued fractions to solve linear diophantine
equations. Although continued fractions often appear in the history of mathematics, it
was not until the end of the 17th century that the theory of continued fractions was
generalised. Before this date continued fractions only emerged in specific examples, e.g.,
Bombelli calculated a continued fraction of v/13 in 1579. In 1695, Wallis was the first to
build up the basic groundwork for the theory of continued fractions. Huygens used the
convergents of a continued fraction to find the best rational approximations for gear ratios,
which he used to build a mechanical planetarium. In the 18th century Euler, Lambert
and Lagrange made huge contributions to the theory of continued fractions. Euler showed
that every rational number can be expressed as a finite continued fraction. Lambert was
the first to prove that w is irrational by using continued fractions and Lagrange proved
that the continued fraction of a quadratic irrational number is periodic.

Along with real continued fractions, complex continued fractions have also been studied.
In 1887, A. Hurwitz generalised the nearest integer continued fraction expansion to the
complex numbers, where the partial quotients are Gaussian integers. Fifteen years later,
his brother J. Hurwitz devised two complex continued fraction expansions where the
partial quotients are to be taken from the set (1 + 4)Z[i]. Another famous complex
continued fraction is due to A. L. Schmidt, which he defined in 1975, but his approach is
fairly different from that of the brothers Hurwitz. In 1979, J. O. Shallit devised a complex
continued fraction expansion that generalises the regular continued fraction expansion.
It is notable that only some of the nice properties of real continued fractions also hold
for complex continued fractions.

To this day, the theory of continued fractions is a flourishing field in mathematics and
has multiple applications in other fields.

1.2 Thesis outline

In Chapter 2 of this thesis we will define what a complex continued fraction is and have
a quick look at the theory of complex continued fractions. In Chapter 3 we give the
definition of a complex continued fraction algorithm and we will extensively examine the
properties of these algorithms, such as convergence and periodicity. In Chapter 4 we will
see that the algorithm of A. Hurwitz fits in our general framework of complex continued



fraction algorithms. Additionally, we will study specific properties of this algorithm. In
Chapter 5 it is shown that also the algorithms of J. Hurwitz suit this framework, and
we will look at some special properties of his algorithms. In Chapter 6 the algorithm of
J. O. Shallit is defined. We will see that also this algorithm fits in our framework and we
will examine some particular properties of this algorithm. In Chapter 7 we will investigate
the relation between complex continued fraction algorithms and real continued fraction
algorithms.

1.3 Basic definitions and notation

In this section we will provide some useful definitions and notation. Most of this is
standard, but given for completeness.

Let N = {0,1,2,3,...} be the set of all natural numbers. Let Ny, be the set of natural
numbers which are strictly greater than 0. Let Z ={...,—2,—1,0,1,2,...} be the set of
all integers. Let Q = {g ‘ p € Z,q € Nog} be the set of all real rational numbers. Let R
be the set of all real numbers. Then we have N C Z C Q C R.

Let i be the imaginary unit, where i> = —1. Let Z[i] = {a + bi | a,b € Z} be the
set of the Gaussian integers. Let Q[i] = {% | p € Z[i], q € Z[i] \ {0}} be the set of

all complex rational numbers. Let C be the set of all complex numbers. Here we have
Z[i] € Q[i] € C. Moreover, we obtain Z C Z[i], Q@ C Q[i] and R C C.

Let z € C; we call z rational if z € Qi], and we call z irrational if z € C\ Q[i]. We
call z quadratic irrational if z is irrational and there exists A, B and C € Z[i] such that
Az? 4+ Bz + C =0, where A # 0.

Let 2Z = {2a | a € Z} and let (1+i)Z[i] = {(1 +4)a | a € Z[i]}. Note that (1 +14)Z[i] =
{a+bi|abeZ, a+b=0 (mod 2)}.

Let z € C, z # 0. Note that y? = 2 has two solutions in C, and if g is a solution, then
—yo also is a solution. We define the square root 1/z of z to be the number y such that
y*=zand y € {z € C| Re(z) > 0 or Re(z) =0AIm(z) > 0}. Of course, V0 := 0.

We can write any complex number z € C in the form z = x +yi, where x, y € R. We call
x the real part of z, and denote this by Re(z). Similarly, we call y the imaginary part of
z, and denote this by Im(z). The conjugate of z is denoted by Z and given by z = z — yi.
The modulus of z is denoted by |z| and given by |z| = \/22 + 3.

Let a, b € Z[i], b # 0. We define the greatest common divisor ged(a,b) of a and b up to
units. That is, we define ged(a, b) to be a Gaussian integer ¢ such that g | @ and g | b and
there is no h € Z[i] such that |h| > |g| and h | a and h | b. As {—1,1,—i,¢} is the set of
units in Z[i] we have that if g = ged(a, ), then also og = ged(a,b) for o € {—1,1, —i,i}.

For p € C, r > 0, we define B,(p) :={z € C ’ |z — p| < r}. We define B,(p) to be the
closure of B,(p), so B,(p) :={z € C| |z —p| <r}.

Let ¢, € C for every n € N. We say that lim, . ¢, = oo if lim,, é =0. Let z € C
and let A C C be a finite subset of C. We define d(z, A) := minge4 |z — al.



For x € R we define |z] to be the floor of z, that is: the largest integer a € Z such that
a < z. Note that |z — |z]| < 1. We also have the following: |z — [z + 1]| < 1.

We end this section with a proposition.
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Proposition 1.1. Let z € C. Then: z is quadratic irrational if and only if z
for some p, q, r, s € Zli], ¢ #0, s # 0 and r not a square.

Proof. Suppose z is quadratic irrational. Accordingly: let A, B, C' € Z][i] such that A # 0
and Az? + Bz + C = 0. Then we have by the quadratic formula:

—B+ VB? - 4AC —B —+vB? —4AC

z = or z = .

2A 2A

It follows that B? —4AC is not a square, otherwise z would be rational. So we can write
z= ’#F for some p, q, r, s € Z[i], ¢ # 0, s # 0 and r not a square.

For the other direction, let p, q, r, s € Z[i] such that ¢ # 0, s # 0 and r not a square.
Let z := %}. As q # 0 and 7 not a square, we have that z is irrational. Now consider
the polynomial s*z? — 2psz + (p* — ¢r). We see: s, —2ps, p*> — ¢*r € Z[i] and s* # 0.
Now:

+qvr\? + g/
s22% = 2psz + (p° — *r) = 32(#) ~2pst VT4 (7 — )
= p* 4+ 2pq/T + ¢ — 2p° — 2pg\/T + p* — ¢
=0.
As z is irrational we conclude by the last equation: z is quadratic irrational. O






2 Complex continued fractions

In this chapter we define what a complex continued fraction is. We will also study
these complex continued fractions by proving some results about their properties. As we
distinguish between a finite and an infinite complex continued fraction, we first give the
definition of a finite complex continued fraction.

Definition 2.1. Let n € N. A finite complex continued fraction is a tuple (A, E'), where

A = (ag,ay,...,a,) is a finite sequence with a;, € Z[i] for every k € {0,...,n}, and
E = (ey,€9,...,e,) is a finite sequence with e, € {—1,1,—i,i} for every k € {1,...,n}.
We will also use the notation [ag, e1/ay, . .., e,/a,] for a finite complex continued fraction.

The definition of an infinite complex continued fraction is similar.

Definition 2.2. An infinite complex continued fraction is a tuple (A, E), where A =
(ag,a, as, ...) is an infinite sequence with a;, € Z[i] for every k € N, and E = (e, e, .. .)
is an infinite sequence with e, € {—1,1,—1i,1} for every k € Nyo. We will also use the
notation [ag, €1/ay, ea/asg, .. .| for an infinite complex continued fraction.

In a finite or infinite complex continued fraction the ey, are called the partial numerators,
and the a; are called the partial quotients, for every k € N. We define the length of a
complex continued fraction as follows: |[ag, e1/a1, ..., e,/a,]| = n+1 for a finite complex
continued fraction, and |[ag,e1/a1,ea3/as,...]| = oo for an infinite complex continued
fraction. In order to perform calculations with complex continued fractions, one more
definition is needed.

Definition 2.3. Let n € N. A pseudo continued fraction is a tuple (A, E), where A =

(ag,as, . ..,a,) is a finite sequence with a,, € C, a;, € Z[i] for every k € {0,...,n—1}, and
E = (ey,e9,...,6e,) is a finite sequence with e, € {—1,1,—i,i} for every k € {1,...,n}.
We will also use the notation [ag, €1/a1,. .., e,/ay] for a pseudo continued fraction.

Definition 2.4. Let P be the set of all pseudo continued fractions. We inductively define
Val: P - CU{L}.

Val([ao]) = ay,

Val([ag, e1/a1, ..., en/a)) ap+ ¢ if V¢ {0, L},
Val([ag, e1/a1, ..., en/a,)) = 1 if Ve {0, L},
where V' := Val([ay, e2/ag, . .., e,/a,]).

The function Val can be thought of as a function giving a finite complex continued
fraction a value. We use the symbol L to denote ‘undefined’, as not all finite complex
continued fractions have a value in C. An example is given by [2,1/i,1/i]. To compute
Val([2,1/i,1/i]), it is required to compute Val([¢, 1/i]) first. As

1 1

Val([i,l/i]):i—l-w(m):i—F;:i—i:O,

we obtain: Val([2,1/7,1/i]) = L. The function Val gives rise to the following definition.

Definition 2.5. We call a pseudo continued fraction |ag,e1/aq,...,e,/a,] proper if
Val([a07 61/@17 ) en/an]) 7é L.



Note that if [ag, e1/aq, ..., e,/ay] is proper, then [ay, exi1/aki1, - - ., en/ay] is also proper
for every 0 < k < n. The following proposition clarifies why we call [ag, e1/a1,. .., €,/a)
a complex continued fraction.

Proposition 2.6. Let [ag, e1/aq, ..., e,/a,] be a proper complex continued fraction. Then
€1
Val([ag, e1/aq, ..., en/a,]) = ag +
e
a1+ 2
€n
L4+ =
a"I’L

Proof. We prove this by induction. By definition: Val([a,]) = a,. Now suppose for
0<k<n:

CL+2
Val([akt1, €xv2/Ari2; - - -5 €n/an]) = api1 +
€k+3
g2 +
€n
Qn,
As [ag,e1/ay, ..., e,/a,] is proper, we have Val([axi1, €xro/akra, ... en/an]) ¢ {0, L},
therefore:
Ch+1
Val(|ag, exy1/ags1, ... €n/a,|) = ap +
(lo; er4n /i fan)) Val([ags1, €xya/Ahios - - s €n/an))
e
— o+ k41 ’
Ch+2
Qp+1 + *
. €n
Qn
and this ends the proof. O
From this result we easily obtain the following consequence.
Proposition 2.7. Let [ag, e1/a1, ..., e,/a,] be a proper finite complex continued fraction.

Then: Val([ag, e1/a1, ..., en/a,)) € Qi].

Proof. As ay € Z[i] for every k € {0,...,n} and e, € {—1,1,—i,i} for every k €
{1,...,n}, this follows directly from Proposition 2.6. ]

Let [ag,e1/a1,€e3/as,...] be an infinite complex continued fraction. Note that for every
k € N we have that [ag,e1/a1,...,ex/ax] is a finite complex continued fraction. We
call [ag, e1/aq,. .., ex/ar] a prefir of [ag,e1/a1,ex/as,...|. Similarly, for a finite complex
continued fraction [ag, €1/aq, ..., e,/a,] we call [ag, e1/aq,. .., ex/a;] an prefiz for every

ke{0,...,n}.

From now on, we will sometimes drop the word ‘complex’ from ‘complex finite continued
fraction’ and ‘complex infinite continued fraction’ and write ‘finite continued fraction’
and ‘infinite continued fraction’ respectively.
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Definition 2.8. Let [ag,e1/ay, e2/as, .. .| be an infinite continued fraction. We define for
every k € N:

¢ := Val([ag, e1/aq, ..., ex/ax])
and call ¢, the k-th convergent of the continued fraction. For a finite continued fraction

lag,e1/a1, ..., e,/a,] we define ¢ in the same way, with the obvious restriction k < n.

Definition 2.9. Let [ag, e1/a1,ea2/as,...] be an infinite continued fraction. We induc-
tively define two infinite sequences (pg)r>—1 and (gx)x>—1, by

po1:i=1 Do 1= Qg Dk 1= QPr—1 + €kPk—2,
qg-1:=0 qo =1 Gk = apqr—1 + exqr—2-

For a finite continued fraction [ag,e1/aq, ..., e,/a,] we define the two finite sequences
(Pk)—1<k<n and (qx)_1<k<n in the same way, with the obvious restriction k& < n.

Now we will formulate some useful properties of the sequences (pi)r>—1 and (qx)g>—1.

Proposition 2.10. Let [ag,e1/a1,e2/as,...] be an infinite continued fraction, and let
(Pr)k>—1 and (qx)k>—1 as in Definition 2.9. Then for every n € N:

1. Pndn—-1 — Pn—-1Gn = (_1)71—1 : HZ:l €k,
ii. ged(pn, gn) = 1.

Proof. We prove this by induction. We find: pog_1 — p_1go =0—1=(=1)""- H2:1 Ch-
Now suppose ppgn—1 — Pn-1gn = (—1)" " - [[1_, ex. Then:

Prn+19n — Pnln+1 = (an—l—lpn + en-i-lpn—l)Qn - pn(an-HQn + en—HQn—l)
= —Cn1(Pnn-1 — Pn-1Gn)

n

= —en+1(—1)"_1 . Hek
k=1
n+1
= (=" [ ex

k=1

and this proves the first statement. For the second statement: suppose g|p, and
gl Gn. Then: ¢|pngn-1 — Pn-1¢n = (=1)" 1 - T}_, €k, so g|1. Therefore we conclude:
ged(pn, ) = 1. O

Proposition 2.11. Let [ag,e1/a1,...en/an] be a finite continued fraction, and let
(Pn)—1<n<m and (¢n)-1<k<m as in Definition 2.9. Then for every 0 < n < m:

1. Pndn—-1 — Pn—14n = (_1)n—1 : HZ:l €k,
ii. ged(pn, gn) = 1.

Proof. The proof is similar to the proof of Proposition 2.10 and is therefore left to the
reader. O

11



Note that it is possible that ¢, = 0 for some n > 0. Here is an example: consider
[2,1/i,1/i]. Then gy =1, ¢ =i and ¢ = 0. For completeness: py = 2, p; = 1 + 2i and
p2 = 1. We see that it makes no sense to consider 5—; in this case. Note that we already
found that Val([2,1/i,1/i]) = L. However, for a proper continued fraction, we have the
following result.

Proposition 2.12. Let [ag, e1/a1,e2/aq, . ..] be an infinite continued fraction and suppose
lag,e1/a1, ... ex/ag| is proper for every k € N. Let ¢ be the k-th convergent of this
fraction, and let pr and qi as in Definition 2.9. Then: ¢ = p’“ for every k € N.

Proof. According to the definitions we have co = Val([ao]) = ap = 9* = L and ¢ =

Val([ag, e1/a1]) = ag + & = wuteL — "1 Suppose ¢; = ¢+ for every j < k. We have to
J

prove: cpi1 = 7;:11

Claim: Val([ag, e1/a1, ..., ex/ak, exr1/ars1]) = Val([ag, e1/aq, . .. ek/(ak‘%6%+lﬂ)

Ak41

Proof of claim: This follows because Vallak, exy1/ari1] = ar + 255 = Val([ay, + 2=1]).

Note that for [ag,ei/ay, ..., ex/ak, exi1/ars1] and [ag, €1/a1, ..., ex/ax + e’““] both the
sequences (pj)_1<;j<k—1 and (¢;)—1<j<k—1 are the same. Together with the claim this gives:

Ck+1 = Val([ao, 61/a1, .. ek/a,C7 €k+1/ak+1])
::\kﬂ([a0761/a1,.. ek/(& +_ek+1)B

Ak+1
(ar + 2 )pr_1 + expr—2

- ag41
(@ + 2551 + exi—2
€k41
_ (arpr—1 + expr—2) + an 1 Pe—1
(k-1 + exde—2) + 2220 Qe
_ Qk41Pk T Cky1Dk—1
k+1Gk + Ck+1Gk—1
_ Pr+1
Qrs1’
and this ends the proof. n
Proposition 2.13. Let [ag,e1/aq,...,e,/a,] be a finite continued fraction and suppose
lag,e1/a1, ..., ex/ar| is proper for every k < n. Let ¢ be the k-th convergent of this

fraction, and let py and qx as in Definition 2.9. Then: ¢, = I;—: for every k < n.

Proof. This proof is similar to the proof of Proposition 2.12 and is therefore left to the
reader. O

Proposition 2.12 and Proposition 2.13 turn out to be false if we do not assume that
lag,e1/a1, ..., ex/a| is proper for every k. An example is given by [4,1/2,1/i,1/i,.. ]
and [4,1/2,1/i,1/1] respectively. In both cases we find ¢3 = Val([4,1/2,1/i,1/i]) = L,
and on the other hand: % = % = 4. Therefore we have c3 # %.

The following lemmas will be useful in the next chapter.

12



Lemma 2.14. Let [ag,e1/a1, ..., e,/a,) be a finite continued fraction. Let 0 < k <n—1.
Then Val([agi1, €kr2/aks2, - - ., en/an]) = 0 iff Val([an, en/an-1, ..., ex+2/ar+1]) = 0.

Proof. Note that in the following equations we have for every j € {2,...,n — k} that

Chk+j
#0.
Ck4j+1
. n
ap,
Therefore:
€k+2
Val([agt1, exr2/ari2, - -+ en/an]) = 0 & agia + =0
€r+3
Q42 +
€n
L4+ —
ap
€k+3 €42
< Qg2 + = -
€k+4 Ak41
Af+3 +
67’1
ap
€k+4 €k+3
= Ag+3 + - —
€k+5 Ck+2
Qg + —— Q42 +
. €n Ak41
L4 —
an
€En
& a, = —
€n—1
Ap—1 +
Cr42
Ag41
€n
0= —a, —
€n—1
An—1 +
€k+2
Ak+1
< 0= —Val([an, en/an_1, ..., eri2/ars1]),
as had to be shown. O
Lemma 2.15. Let n € Nogy and let [ag,e1/ay, ..., e,/a,] be a finite continued fraction.

Let (qx)-1<k<n as in Definition 2.9. Suppose q # 0 for every k € {0,...,n — 1}. Then:
qz—: = Val([an, en/an_1,-..,e2/a1]).

Proof. We prove this by induction. For n =1 it follows that & = 9 = a; = Val([a1]).
Now suppose the claim is true for n, so -~ = Val([a,, €n/an—1,...,€2/a1]). Note that

13



we have Val([an, en/an—1,... e2/a1]) ¢ {0, L}, as _2— 3 0. Therefore:

n+1  Gn+t1Qn + ent+1qn—1

dn dn

€En

= Qny1t ﬁ
dn—1

. €n+1

= Ont1 Val(lan, en/an_1,...,e3/a1])

= Val([ani1, €ni1/an, - .., e2/a1]),

and this ends the proof. n

We end this chapter by giving two important definitions regarding infinite complex con-
tinued fractions.

Definition 2.16. Let z € C and let [ag, e1/a1, e2/as, . . .| be an infinite continued fraction.
Let (¢, )nen be the convergents of [ag, e1 /a1, e2/as, . ..]. We say that this continued fraction
converges to z if

lim ¢, = z.

k—o0

Here we use the convention that |z — L| =1 for every z € C.

Definition 2.17. Let [ag, e1/a1,e2/as, . ..] be an infinite complex continued fraction. We
call this continued fraction periodic if there exists N € N and m € Ny such that
(@n,yeni1) = (Qpim, Entme1) for every n > N. We call a continued fraction purely periodic
if this holds with N = 0. We say that m is the length of the period if there exists
no 0 < k < m such that (a,,enr1) = (@nsk, €nirr1) for every n > N. We will use the
following notation for a periodic continued fraction: let [ag, €1/a1, €a/as, . ..] be an infinite
complex fraction such that (a,,€,11) = (Antmgs Enimer1) for every n > Ny. Then we will
denote this fraction by

[CLO, el/CLl) ceey eN()*l/afNofla e]\/()/a/]\fo? eN0+1/aNQ+17 sy eNoerofl/aNo#»mo*l? eN0+m0/]-

Remark 2.18. This definition of a periodic continued fraction generalizes both the def-
inition of a periodic continued fraction by A. Hurwitz and the definition of a periodic
continued fraction by J. Hurwitz. That is: if one of the brothers Hurwitz calls a continued
fraction periodic, then it is also periodic according to Definition 2.17.

14



3 Complex continued fraction algorithms

In this chapter we will define what a complex continued fraction algorithm is. Further-
more, we prove some general properties of a continued fraction algorithm and we will find
a relation with the greatest common divisor algorithm. We will also study convergence
and periodicity of continued fractions which are obtained by a complex continued fraction
algorithm.

3.1 Floor functions & sign functions

Before we can give a formal definition of a complex continued fraction algorithm, we will
first consider two special kinds of complex functions.

Definition 3.1. Let f : C — Z[i] be a function. We call f a floor function if | f(z)—z| < 1
for every z € C.

Definition 3.2. We call f : C — Z[i] a shift floor function if f is a floor function and
f(z+a) = f(z) + «a for every z € C, a € Z]i].

Example 3.3. Define f : C — Z[i] as follows: f(z) := [Re(z) + 3] + [Im(2) + 3 |i. Then
f is a floor function, and moreover, it is a shift floor function. For the proof of this, see
Proposition 4.3.

Lemma 3.4. Let f be a floor function. If z € Z][i], then f(z) = z.

Proof. Let z € Z[i]. By definition we have: f(z) € Z[i] and f(z) € {z ||z — 2| < 1}.
Therefore: f(z) € Z[i]N{z ||z — 2| < 1} = {z}, and we obtain: f(z) = . O

A floor function f gives rise to a tiling of the complex plane. For every a € Z[i] we define
the tile T of a by T := {z € C| f(2) = a}. As f is a function, every z € C lies in
exactly one tile. We have by definition that f(z) = « for every 2z € T. For every a € Zli]
we define the set US C C by U/ := {2z — a|z € T/}. We define

Ap= | Ul
a€Zfi]
and call Ay the fundamental domain of f.
Proposition 3.5. Let f be a floor function. Then
i. z— f(2) € Ay for every z € C,
i. Ay C By(0).

Proof. First, let 2 € C and let a := f(z). As z € T/, we have z — f(2) = 2 —a € UJ.
Therefore: z — f(z) € Ay.

For the second statement: let o € Z[i] and consider UJ. We have x € U/ iff z = z — «
for some 2z € TS. As 2z — a = 2z — f(z) for every z € T/, and |z — f(2)| < 1, we have

that |z| < 1, so @ € B;y(0). Therefore: U/ C B;(0). As « is arbitrary, we obtain:
Af — UaEZ[i]UC{ Q Bl(O) D

15



Proposition 3.6. Let f be a shift floor function. Then: Ay = {z € C | flz) =0y =T1/.

Proof. Let a € Z[i], then: z € Uj iff z € T iff f(2) = 0iff f(z )+a—aifff(z+a) = «aiff
z+a € T!iff z e Ul Consequently Uf Ul. As «is arbitrary: Ay = aEZ[z]U U({.
Now: Ul =T ={zeC | f(2) =0}, and therefore: Ay ={z € C| f(z) = 0}. O

Definition 3.7. We call any function g:C—{-1,1,—i,i} a sign functz’on.

Let f be a floor function and g be a sign function. We define V)¢ C C for every « € Z][i]
by V.9 = {% ’ ze€TS 2~ f(2) #0}. We define
= U Vdf’g
a€Zli]
and call I'y ; the fundamental codomain of f and g.

Proposition 3.8. Let f be a floor function and g be a sign function. Then:

0. Zf(]f()z) ey, for every z € C, z— f(2) #0,

ii. T, C C\ B1(0)

Proof. First let z € C such that z — f(z) # 0 and let o := f(z). Then by definition:
(z) € V.59 therefore: f(z) ely,.

For the second statement, let o € Z[i] and let x € V./9. Now we have that x = g(fz()z) for
azeC,z—f(2)#0. As |g(2)] = 1 and |z — f(2)| < 1 we have that |z| = Zg(zz)| > 1.
Therefore: V.S C C\ B;(0) and we conclude: 'y, = Uaezii VI C C\ By(0). O

Proposition 3.9. Let f be a floor function and g be a sign function. If g is a constant
function, then I'y, = {g |z € Ay, z #0}.

Proof. Suppose that ¢ is constant, say g(z) = p for every z € C.
First suppose x € I’y 4, then x = f( ) for some y € C, y — f(y) # 0. Consequently: as

y— f()EAf,Wehavethat:U— |zEAf,z7é0}

Nowsupposexe{g ’ZGAf,z#O} Thenx—pforsomeyeAf,y#O Asy e Ay,
there exists some z € C such thaty—z—f( ). Soa: — f() ey,

We obtain x € I'y; iff x € {g ! z € Ay, z # 0}, and this completes the proof. ]

Figure 1: Fundamental domain Ay, with f  Figure 2: Fundamental codomain I'y,,
as in Example 3.3. with f as in Example 3.3 and g(z) = 1
for every z € C.
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3.2 Definition of a complex continued fraction algorithm

Now we have defined what a floor function and a sign function is, we can give the definition
of a complex continued fraction algorithm.

Definition 3.10. A complex continued fraction algorithm is a floor function fi: C — Z]i]
and a sign function sg : C — {—1,1, —i,i}, together with the following sequence of
transformations

Zo = X

ap = ﬂ(ajn)

enr1 = sgla)
R En+1

Tntl 1S g er

These transformations recursively define a,, e,.1 and x,,; for n starting at 0. The
input of such an algorithm should be a complex number x € C. The algorithm halts if
ar = zy, for some k € N, and outputs the finite continued fraction [ag, €1/a, ..., ex/ax].
Otherwise the algorithm will not halt. However, we could say it then produces an infinite
list [ag,e1/ai1, ea/as, . ..], which is indeed an infinite continued fraction. In this case we
will say that the algorithm outputs an infinite continued fraction. We call (x,,)nen the
complete quotients of x under the continued fraction algorithm.

Remark 3.11. As we study infinite continued fractions, it is convenient to consider them
as one object. Therefore we say that a complex continued fraction algorithm can output
an infinite continued fraction, although this is not fully in accordance with the usual idea
of an algorithm.

This general definition of a complex continued fraction algorithm will serve as a framework
for specific complex continued fraction algorithms. When results are proven for this
general definition, they apply to any instance of a complex continued fraction algorithm.
In the following chapters we will look at some well-known algorithms concerning complex
continued fractions, and we will see that they fit in this framework. In the following
sections, we will prove results for this general definition of a complex continued fraction
algorithm.

Remark 3.12. A famous algorithm concerning complex continued fractions is due to
A. L. Schmidt [8]. Unfortunately, his algorithm is not an instance of a complex continued
fraction algorithm as given in Definition 3.10. In contrast, the idea of this algorithm is to
partition the complex plane in areas bounded by arcs of circles and line segments. Then
successively refine this partition, and consider the areas to which the input x € C belongs.
These areas correspond to rational convergents which are the output of the algorithm,
rather than a complex continued fraction.

3.3 General properties

In this section and in the following sections of this chapter, let CF be a complex continued
fraction algorithm. Let fl be the floor function and sg be the sign function of CF. Next,
we will prove some general properties of a complex continued fraction algorithm.

Proposition 3.13. Let z € Z[i], then CF(z) = [z].
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Proof. By Lemma 3.4 we have: 2y = z = fi(z) = fi(z9) = ag. Therefore 2y = ay and we
obtain CF(z) = [z]. O

Lemma 3.14. Let x € C, n € N and let x,,1 be the (n + 1)-th complete quotient and
ant1 be the (n+ 1)-th partial quotient of x under CF. Then

i |@na| > 1,
. An+1 7é 0.

Proof. As fl is a floor function, we have |z, — fi(x,)| < 1. Therefore it follows that
lent1] L > 1. For the second statement: suppose a,,1; = 0. Then we

|xn+1| =

[Tn—an]  |n—flzn)| L.
have 1 > |z,401 — fi(zpi1)| = |Tne1 — @ny1| = |Tpe1 — 0| = |21 > 1. So 1 > 1. Thisis a
contradiction and we conclude that a,; # 0. [l

The next result shows how the fundamental domain Ay and the fundamental codomain
I'g sy are related to the complex continued fraction algorithm CF.

Proposition 3.15. Let x € C, n € N and let x,, be the n-th complete quotient, a,, the
n-th partial quotient and x,.1 the (n+ 1)-th complete quotient of x under CF. Then

i Ty —a, € Ag,
1. Tpy1 € Fﬂ,sg-

Proof. We have x,,—a,, = ©,, — fi(x,,) and by Proposition 3.5: x, —a, € Ag. Furthermore:

x _ ent1 _ _sg(zn)
n+1 Tn—0an In_ﬂ(mn)

and by Proposition 3.8 we conclude that z,411 € I'p . O

Now we will see that the type of the output of CF depends on whether the input is rational
or irrational.

Proposition 3.16. If x € C is rational, then CF(z) is a finite continued fraction.

Proof. Let x € Qi], so we can set x = £, with r, s € Z[i]. Suppose for the sake of
contradiction: CF(z) is an infinite continued fraction. Let CF(z) = [ag, €1/a1, ea/as, .. ].
Now define four sequences in Z[i:

ro =T, Trtl := Snfnt,
S =8, Spi1 = Tp — Spby,
by, = ﬂ(h)v

Sn

fr1 = 59(;—2)-

Claim: For every n € N: x,, = Z—:, an, = b, and e, 11 = frni1.-

Proof of claim: We prove this by induction: zg =z = 1 = 2, ap = flzo) = ﬂ(g—g) = by
and e = sg(wo) = sg(22) = f1 Now:

o en+1 o fn—i—l o Snfn+1 o Tn+1
Tntl1 = = — b - )
Ty — Qp s Un Tn — Snbn Sn+1

Sn
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ni1 = fl(xpy1) = ﬂ(%) = byy1 and e, 40 = $9(Tpy1) = sg(::—i) = fni2, and the claim

follows. u

From the claim we obtain: x,,, = ::—*1 = S"Sf—ﬁl, for every n € N. As |z,.1| > 1 and
| fas1] = 1, we have |s,41| < |s,| for every n € N. Therefore, as s,, € Z[i|, we have that
there exists N € N such that sy,; = 0. So: 0 = sy = v — Snyby = 'y — Snay,
and consequently: xny —ay = Z—x — ay = 0. Therefore the algorithm terminates after N
transformations, and outputs a finite continued fraction. This contradicts our assumption

and we conclude: CF(z) is a finite continued fraction. O
Proposition 3.17. If x € C is irrational, then CF(x) is an infinite continued fraction.

Proof. Let x be irrational. Investigating the algorithm CF, we see that the algorithm
outputs a finite continued fraction iff z,, — fi(z,,) = 0 for some n € N. As x is irrational

and fi(xg) is rational, we have xo — fl(xo) # 0. Now suppose xy is irrational, then also

__sgzy)
Th+1 = xk*ﬂ(kxk)

n € N: z, — fi(z,) # 0 and we conclude: CF(z) is an infinite continued fraction. O

is irrational. Therefore xpy1 — fi(xxr1) # 0. Consequently, for every

Theorem 3.18. Let x € C, then:
i. x is rational iff CF(x) is a finite continued fraction,
ii. x is irrational iff CF(z) is an infinite continued fraction.
Proof. This follows directly from Proposition 3.16 and Proposition 3.17. [
Next we will see that CF and Val are closely related.
Proposition 3.19. Let x € QJi], then: Val(CF(z)) = x.
Proof. Let CF(x) = [ag, e1/aq, ..., en/an].
Claim: Val([an_k, €n—ks1/0n—ks1,- -, n/an]) = Tn_g, for every k € {0,...,n}.

Proof of claim: We prove this by induction. For k = 0 we have Val([a,]) = a,, = z,,. Now
assume that Val([an—k+1, €n—kt2/0n—k+2, - - s €n/an]) = Tp_jy1. Note that |z, x| > 1 for
every k € {1,...,n}. So: Val([an—g+1, €n—k+2/0n—k+2,---,€n/an]) € Q[i]\{0}. Therefore:

Cn—k+1
Val(|a,_, en_ Gpftls -y €n/0n|) = Qp_p +
([ g k+1/ s / ]) g Val([ankarla enfk+2/anfk+27 EI) en/a’n])
€n_
—ay .+ k41
Ln—k+1
= Tn—k
and this proves the claim. |
From the claim immediately follows: z = z¢y = Val([ag, €1/a1, ..., e,/a,]) = Val(CF(z)),
and this completes the proof. O]

Corollary 3.20. Let x € Q[i], then: CF(x) is proper.
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Proof. According to Proposition 3.19: Val(CF(z)) =z # L. O

In the remaining part of this section, we will more closely examine the complete quotients
&, which occur when we compute CF(x), for some z € C.

Proposition 3.21. Let x € C be irrational. Let CF(z) = [ag, e1/a1,e2/as, ...] and let x,
be the n-th complete quotient of CF(z). Then: x = Val([ag, e1/a1, ..., €n_1/0n_1,€n/Tp)
for every n € N.

Proof. This proof is by induction. We have x = z7 = Val([zg]). Now suppose x =

Val(lag, e1/a1, ..., €n—1/@n-1,€n/Tn]. A Tp1 = ;75— we have:
€n+1 €n+1
Val(|z,|) =z, = a, + =a, + ——— = = Val(la,, eni1/Tn )
([ ]) Tt Val([anrl]) ([ +1/ +1]>
Therefore:
x = Val([ap,e1/a1,...,en_1/an_1,€n/Ty])
= Val([GOa 61/a1, sy 6n—l/an—la en/anv en—ﬁ-l/wn—l—lb

and this completes the proof. O]

Proposition 3.22. Let € C be rational. Let CF(x) = [ag, e1/a1,. .., en/an] and let xy,
be the k-th complete quotient of CF(x). Then: x = Val([ag,e1/as, ..., ex_1/ak_1,ex/Tk]
for every k € {0,...,n}.

Proof. This proof is similar to the proof of Proposition 3.21 and is therefore left to the
reader. O

Corollary 3.23. Let x € C and n € N. Let x,, be the n-th complete quotient, let e, be
the k-th partial numerator and a; be the k-th partial quotient of x under CF, for every
k <mn. Then: [ag,e1/ay,...,en 1/ 1,€n/Ty,] is proper.

Proof. According to Proposition 3.21 and Proposition 3.22 we have that

Val(lag, e1/a1, ... en_1/An_1,€n/Ty)) = # L
and therefore we conclude: [ag, e1/a1,...,en_1/an_1,€n/Ty] is proper. O

Proposition 3.24. Let x € C be irrational and let CF(x) = [ag, e1/a1,ea/as,...]. Let x,
be the n-th complete quotient of CF(x). Then: CF(x,) = [an, €ni1/ani1,€nia/anie, .. .|
for every n € N.

Proof. Let n € N, and let y := x,. Let CF(y) = [bo, f1/b1, f2/b2,...] and let y; be the
k-th complete quotient of y under CF.

Claim: y = Tpak, bp = apir and fri1 = €, 541 for every k € N.

Proof of claim: We prove this by induction. By assumption: y, = =z, therefore by =

fllyo) = fi(z,) = an and f1 = sg(yo) = sg(xy,) = €,41. Now suppose yp = Tpik, bp = Gpik
and fk—i—l = €Cntk+1- Then:

Jr1 o Cntk+1
Uk — bk Tpik — Qnir

Yk+1 = = Tp+k+1,
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and
b1 = flyr1) = A(Tniks1) = QGnana,
and
Jerr1 = 89(Urkt1) = $9(Tntkt1) = €nthrita,

and this proves the claim. [ |

By the claim we conclude:

CF(x,) = CF(y) = [bo, f1/b1, fo/b2, .. ] = [an, €ns1/ani1, €nt2/anya, - ]
and this ends the proof. O

Proposition 3.25. Let x € C be rational and let CF(x) = [ag, e1/a1, ..., en/an]. Let xy
be the k-th complete quotient of CF(x). Then: CF(xy) = [ag, €xi1/ahs1,- -, €nfay] for
every k € {0,...,n}.

Proof. This proof is similar to the proof of Proposition 3.24 and therefore left to the
reader. O

Let z € C be irrational and let CF(x) = [ag, e1/a1,e2/as,...]. By Proposition 3.21
we have: x = Val([ag,e1/a1,...,en1/an-1,€n/xs]). According to Proposition 3.24 it
follows that CF(x,) = [an,€nt1/0ni1,€nt2/0nia,...]. This justifies to write CF(z) =
lag,e1/a1,...,en1/an_1,€,/CF(x,)]. Obviously, with the same reasoning we obtain a
similar result for z rational.

3.4 Greatest common divisor algorithm

In this section we will discover a relation between a continued fraction algorithm and a
greatest common divisor algorithm.

Example 3.26. Consider 7—61i and 26 — 36i. Note that ged(7 — 611,26 — 367) = 7 — 3i.
CF,s is a continued fraction algorithm, which we will define in Section 6.1. When we
compute CFs(=8L) we find: CFyg(==8%) = [1 —i,1/1 — 2i,1/2 4 4]. This continued
fraction gives rise to the following equations of the form x = a + (zx — ai), for k €

{0,1,2}:

76l _ 1 _ ., 17+
56-56i — L — 11 556
26-36i _ 1 o: , T-3i

e = L= 204

1747 .
7o = 2T

When we multiply each of the lines above of the form g = a + 5 by d we obtain:
7—61i=(1—1)(26 —36i) + (17 + 1),
26 — 360 = (1 — 20)(17 + i) + (7 — 34),
17+i=(24)(7— 30).
These equations look like those of a greatest common divisor algorithm. On the last line,

we find 7 — 3¢, which is a greatest common divisor of 7 — 617 and 26 — 36¢. This is not a
coincidence, as is shown by Proposition 3.27.
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Proposition 3.27. Let CF be a complex continued fraction algorithm. Let r, s € Z]i],
and s # 0. Let CF(Z) = |ag,e1/ar, ..., en/a,]. Now define two finite sequences (ry)o<r<n
and (sk)o<k<n as follows:

To =T, Tk+1 ‘= Sk€E+1,

Sp ‘= S, Sk+1 = Tk — SpQg.
Then: ged(r, s) = sp.
Proof. Claim 1: For every k € {0,...,n}: ged(r, s) = ged(r, s).

Proof of claim 1: We prove this by induction. By assumption: ged(r,s) = ged(rg, So)-
Now suppose ged(r, s) = ged(rg, sg). Let g = ged(ry, si), so g|r, and g|sg. Therefore
g|rer1 = spery1 and g|spy1 = rx — Spax. Now suppose h € Z[i] such that h |7, and
h|sk+1. Then h|sgegr and h|rp —sgag. Consequently: h | sgag, therefore: h|ry—spax+
Skag = . S0 h|r, and h | s, therefore h| ged(rg, sg) = g. We conclude: ged(r,s) = g =
ged(Tka1, Sk1)- [ ]

Claim 2: Let 2 be the k-th complete quotient of CF(%). Then for every k € {0,...,n}:

— Tk

Proof of claim 2: We prove this by induction. By assumption: xo =z = £ = 2. Now:
0

o Cg+1 €41 SECk+1 Tkl
T+1 = =

r - )
Tp =Gk =Gk Tk~ SpAk Skl

and this proves the claim. [ |

As ™ —a, =z, —a, = 0, it follows that r, = s,a,. Therefore: s, |r,. As s, |s, we have

that s, | ged(ry, $p). Consequently: s, = ged(ry, s,) = ged(r, s). O

We will now see that a complex continued fraction algorithm gives rise to a greatest com-
mon divisor algorithm. Let r, s € Z[i], s # 0. Compute CF(%) = [ag, e1/a1,. .., en/a,].
Then compute the sequence (s, ..., $s,), which is defined in Proposition 3.27. Finally,
return s,. From Proposition 3.27 it follows that s,, = ged(r, s).

3.5 Convergence

In this section we will prove that the complex continued fraction of an irrational number
x which is obtained by a complex continued fraction algorithm, converges to z. Before
this, we prove some lemmas which will be useful in this and in the next section. The
following two results are subsequent to the ideas of Section 3 of [2].

Lemma 3.28. Let R := {e™™/%|m € {0,...,11}}, the set of all 12th roots of unity in
C. Then:

i. for every z € C, for every a € Z[i] \ {0}: if |z| =1 and |z —a| =1 then z € R,
ii. for every p € R there exists an a € Z[i] \ {0} such that |p —a| =1,

iii. for every p € R, for every a € Z[i] \ {0}: if |p—a| =1, then p—a € R.
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Figure 3: The complex plane with the unit circle and the set R. The other circles are
circles with centre ¢ and radius 1, with ¢ € {1,—1,i,—i,14+ 4,1 —i,—14+4,—1 —i}.

Proof. We prove the first statement. Let z € C such that |z| = 1, accordingly: z is on the
unit circle. Let a € Z[i]\ {0}, ifa ¢ {1,—1,¢, —i, 1+, 1 —i, =1+, —1—1i,2, -2, 2i, —2i}
then |z — a] > 1. We consider the cases a = 2, a = 1 + i and a = 1, the other cases are
similar. Define for every o € Z[i] the circle S, := {2 € C| |z — a| = 1}.

If a=2then |z|=1and |z —a| =1iff z € Sy N S,. So z € {1} and therefore: z € R.

If a =1+ then |z] =1 and |z —a| = 1iff 2z € SyNS,. Therefore z € {1,i} and
consequently: z € R.

If a =1then |z] =1and |z —a| =1iff z € SyNS,. As |a|] = 1 we know that there
are exactly two points in Sy N S,, say p and ¢q. Suppose p is in the upper half plane.
As [1 =0 = |1 —p| = |p — 0] = 1, we have that the triangle formed by 0, 1 and p
is equilateral. Therefore we have that angles of this triangle measure %”. From this it
follows that p = e?™/6 ¢ R. With the same reasoning: ¢ = ¢'"/6 ¢ R. As z € {p,q} we

conclude: z € R.

Now we prove the second statement. By symmetry, we only consider two cases: p = 1 and
p = €™/%. The other cases are similar. For p = 1 we choose a := 1+ i, then |p — a| = 1.
For p = €™/% we see that 4 fulfils the property: |p — a| = [e™/6 —i| = [e™/6] = 1.

Finally we prove the third statement. Again, by symmetry, we only consider two cases:
p=1and p = €™/ The other cases are similar. Let p = 1 and a € Z[i] \ {0} such that
|p—a| =1. Thena € {2,1+4,1—i}. Wesee: p—a € R foreverya € {2,1+41i,1—1i}. Now
let p = ™% and a € Z[i] \ {0} such that |[p—a| = 1. Now there is only one possibility for
a, namely: a =1i. We see: p—a = €™/ —j = ¢!'™/6 ¢ R This completes the proof. [

We notice that the set R from Lemma 3.28 is precisely the set of points that are both at

unit distance from 0 and at unit distance from a for some a € Z[i] \ {0}. This fact will
be useful in the following proposition.
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Proposition 3.29. Let z € C be irrational, and let (z,+1)nen be the complete quotients
of z under CF. Then not: lim,_, |z,| = 1.

Proof. Let CF(z) = [ag, e1/a1,e2/as,...]. Let R asin Lemma 3.28. Suppose for the sake of
contradiction: lim, o |2,| = 1. As |z, —a,| = %
1. Since a,, € Z[i] \ {0} for every n > 1, we have that lim,,_,, d(z,, R) = 0. So, for every
n € N there exists p, € R such that lim,_,o |2, — pn| = 0. As lim,,_, |2, — a,| = 1 and
lim, o0 |20 — pn| = 0 we have that lim,, . |a, — p,| = 1. As Z[i] and R are discrete,
we conclude that there exists ng € N such that |a, — p,| = 1 for every n > ng. By
Lemma 3.28 we have that p, — a, € R for every n > ng. Now define for every n € N:
B, := p,—a, and C, := z, — p,. Then for every n > ny: B, € R and 2, —a, = B, +C,,
and lim,,_,.. C,, = 0. Then:

we also have that lim,, . |2, —a,| =

N _ En+1 _ En+1 _ En+1 _CnenJrl
T —an Ba4+Cn By, Bu(Ba+C)

We have that ‘Bncrcn| < |1‘92‘L\’ so lim,, o % =0. As B, € R, also Bin € R, therefore
for every n > ng:
€n+1 —Chrény1
= and Cpy1 = 241 — =
Pn+1 Bn n+1 n+1 Pn+1 Bn<Bn + Cn)
Consequently:
C C
Conil = o= &L 1),

| B + Cy B |20 — @

Therefore |C), 11| > |C,| for every n > ng, but we also have that lim,,_,, C,, = 0. Therefore
we obtain a contradiction and we conclude it is not the case that lim,_, |2,| = 1. O

The following result is a direct consequence of Proposition 3.29.

Proposition 3.30. Let z € C be irrational and let (z,.1)nen be the complete quotients
of z under CF. Then: lim, o [[}_, 2k+1 = 00.

Proof. According to Proposition 3.29: not lim, .. |zn41| = 1. As |z,01| > 1 for every
n € N, it follows that

Ve > 03N eNVn> N [|zp] <1+¢]

or, equivalently:
Je>0VNeN3In>N [|zn+1| > 1—1—5].

Therefore there exist infinitely many indices n such that |z,.1| > 1+ &g, for a g9 > 0.
We conclude: limy, o [T 2111 = 0. O

The following lemmas will be a powerful tool in both this and the following section. They
will be useful to write down identities involving the quantities x, x,1 and xoq, — p,.

Lemma 3.31. Let x € C, n € N, and let x,41 be the (n + 1)-th complete quotient of x
under CF. Let p, and q, be as in Definition 2.9 with respect to CF(x). Then:

P — Tn+1Pn + €nt+1Pn—-1
0= .
Tn+1dn + €nt+1qn—1
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Proof. This proof is by induction on n. For n = 0 we have

€1 Tiap+er  Tipo+ep

1 x T1qo +e1q-1
Again, using Definition 2.9 and the equality x,, 1 = xi”j;n, we obtain:

Tn+1Pn + €n4+1Pn—1 _ xn-i—l(a'npn—l + enpn—Q) + €n+1Pn—1
Tn+1Gn + En+1q9n—1 Tp41 (anQn—l + enQn—Q) + En+19n—1
(anpn—l + enpn—2) + EntlPnol

Tn+1
) + €n4+1Gn—1
Tn+1

(anQn—l + €ndn—2
(an + Zutl )pnfl + EnPn—2

Tn+t+1

(an + ontl )qn—l + €nGn—2

Tn+1
TnPn—-1 + €EnPn—2

Tndn—-1 + €ndn—2 .

]

Lemma 3.32. Let x € C, n € N, and let x,41 be the (n + 1)-th complete quotient of x
under CF. Let p, and g, be as in Definition 2.9 with respect to CF(x). Then:

Toqn—1 — Pn—1
Xoqn — Pn

Tp+1 = —En41

Proof. According to Lemma 3.31 we have xo(Zn11¢n + €nsi1Gn-1) = Tns1Pn + €nt1Pn—1-
Rearranging the terms gives: z,1(20¢n — Pn) = —€n+1(T0¢n—1 — pn—1) and the claim
follows. [

Lemma 3.33. Let x € C, n € N, and let (zg41)7_y be the first n + 1 complete quotients
of x under CF. Let p, and g, be as in Definition 2.9 with respect to CF(x). Then:

n

n €k+1
Loqn — Pn = —-1)"- .
0 ( ) ,!;[0 Tk+1

Proof. According to Lemma 3.32:

n n n n
_ ToQr—1 — Prk—1 _ Tod-1 — P-1 i |
Thtt = || =Gk T g — Tontl = ,
k=0 k=0 09k = Pk 0fn = Pn 35, 09n = Pn

and we conclude:

o [ e
P/ I —— 1 R G ) U H iady
[Ti—ozkn oo Th+1

[]

The next proposition will be of great value in the remaining part of this section. Recall
that |[ag,e1/a1,...,en/an]| = n+ 1 and |[ag, e1/a1,e2/as,...]| = co. We will use the
convention oo — 1 = oo.
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Proposition 3.34. Let x € C, let 0 < n < |CF(x)| and let g, be as in Definition 2.9
with respect to CF(x). Then: ¢, # 0.

Proof. First, let n = |CF(z)| — 1. As CF(z) is proper by Corollary 3.20, we obtain by
Proposition 2.12: Val(CF(z)) = ¢, = £ € Q[i], and therefore g, # 0.

Now let 0 < n < |CF(z)| — 1. By Lemma 3.33 we have: x¢g, — p, = (—1)" - [[;_, ;’;:11

Assume that g, = 0. Then |p,| = [(—=1)" - [][;_, iﬁﬁ' - IH?:;IkHI' As [zpia] > 1 for

every k € {0,...,n} we have 0 < m < 1. Therefore: 0 < |p,| < 1, which leads to
=0

a contradiction as p, € Z[i]. We conclude: ¢, # 0. O

Proposition 3.35. Let xz € C, let 0 < n < |CF(x)| and let p, be as in Definition 2.9
with respect to CF(x). Then: if |x| > 1, then p, # 0.

Proof. First, let n = |CF(x)| — 1. Suppose for the sake of contradiction that p, = 0.
Then: 0 = £ = ¢, = Val([ag, €1/a1, ..., en/a,]) = x, so x = 0. This is a contradiction as
we assumed that |z]| > 1.

Now let n < |CF(z)|—1. According to Lemma 3.33 we have: zog,—p, = (=1)"-[[;_, ;Zill
Ck+1

Th+1

Asn > 0 and |24 > 1 for every k € {0,...,n} we

Now suppose for the sake of contradiction that p,, = 0. Then |zoq,| = |(—=1)"][,_,

1 S . _ 1
7. O: = = .
[Tli—o Ths1l |Qn| [TTh——1 Tht1

have that 0 < m < 1. Therefore: 0 < |g,| < 1, which leads to a contradiction as

qn € Z]1]. O
The following result will be useful in proving convergence.

Proposition 3.36. Let x € C be irrational and let q, be as in Definition 2.9 with respect
to CF(x). Then: lim,_, g, = co.

Proof. Suppose for the sake of contradiction, not: lim,, ., ¢, = co. Consequently, (¢, )nen
has a finite accumulation point, therefore there exists ) € Z[i] such that ¢, = @ for an
infinite number of indices n (as ¢, € Z[i], which is discrete). So, with the use of Lemma
3.33 there are an infinite number of indices n such that |z¢Q — p,| = m < L
Investigating this last inequality, it follows that there exists P € Z[i] such that there are
infinite number of indices such that p,, = P and ¢, = ). So there are an infinite number
of indices n such that |zoq, — pn| = |2o@ — P|. However, 1 < |x,11| = %, or
|20¢n_1 — Pn_1| > |T0Gn — pn| for every n € N, and we obtain a contradiction.

The following result shows that it makes sense to consider the prefixes of a continued
fraction obtained by a complex continued fraction algorithm.

Theorem 3.37. Let z € C, let a, be the n-th partial quotient and let e, be the n-th
partial numerator of CF(x). Then for every k < |CF(2)|: [ao,e1/a1,...ex/ay] is proper.

Proof. First let k = |CF(2)| — 1. Then CF(z) = [ag,e1/a1,...ex/ai], and according to
Corollary 3.20 we obtain: [ag, e1/aq, ... ex/ag] is proper.

Now let k < |CF(z)| — 1. Suppose for the sake of contradiction that [ag,e1/ai, ... ex/ak]
is not proper. Examining Definition 2.4 and Definition 2.5 we find that there exists
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j € {0,...,k — 1} such that Val([a;j+1,€j12/aj42,...,€ex/ag]) = 0. Observe that it is
the case that [a;,ej+1/a41,...,€ex/ax] is a finite continued fraction, so we can com-
pute (¢n)_1<n<k—; using Definition 2.9. By Proposition 3.34 we obtain: ¢, # 0 for
every n € {0,...,k — j}. Therefore: qq’“—‘j # 0. On the other hand we have that

k—j—1
Val([ajt1, €j42/Aj12, - .., ex/ag]) = 0, therefore, by applying Lemma 2.14 we find that
Val([ag, ex/ak—1,-..,ej+2/a;41]) = 0. According to Lemma 2.15 we have that qqu—fjl = 0.

i
Hereby we obtain a contradiction.

In either case we find that [ag, e1/aq, . .. ex/ag] is proper and this completes the proof. [

In Definition 2.8 we defined ¢, to be the convergents of a finite or infinite contin-

ued fraction. In Proposition 2.12 and Proposition 2.13 we proved that ¢, = Z—:, if
lag, e1/ay, . ..ex/ag] is a proper continued fraction. In Theorem 3.37 we saw that that
lag, e1/a1, ... e, /ax] is proper if it is a prefix of the output of a continued fraction algo-

rithm. As from now on we will mainly focus on continued fractions obtained by continued
fraction algorithms, we will call 5—,’2 the convergents of a continued fraction, instead of c.
The benefits are that we can refer to p, and ¢ individually, and that we have an easy
way to compute the k-th convergent, using Definition 2.9.

Now we prove that a continued fraction obtained by a complex continued fraction algo-
rithm converges to the input of the algorithm.

Theorem 3.38. Let x € C be irrational and let (’;—:)neN be the convergents of x under
CF. Then: lim,, Z—: =z.

Proof. According to Lemma 3.33 we have

n

€k+1
oG — po = (—1)" - [] :
o " ( ) o Tkl

with g = x. As g, # 0 for every n € N, we can rewrite this to

Pn (__1)n . = €k+1

To— — = .
an n 5 Th+1
Therefore:
’x Pnl| 1
o— —| = .
dn |n| - | HZ:O T1]

As lim,,_, ¢, = 00 (Proposition 3.36), and lim, . [[;_, zk41 = oo (Proposition 3.30),

we conclude:

Pn
Ty — —

an

and the claim follows. O

lim
n—oo

=0,

From this last result we can prove that the algorithm CF is injective.

Proposition 3.39. Let x, y € C. If CF(x) = CF(y), then z = y.
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Proof. Suppose CF(x) = CF(y). If both CF(z) and CF(y) are finite continued fractions,
then x and y are rational and by Proposition 3.19:

x = Val(CF(z)) = Val(CF(y)) = v.

Now suppose CF(x) and CF(y) are infinite continued fractions. Then x and y are irra-

tional. Let 22 be the n-th convergent of CF(z), and 2 be the n-th convergent of CF(y).
n

Then we have that p, = r, and ¢, = s,, and Consequently p” = Zz for every n € N.

Therefore by Theorem 3.38:

. DPn . Tp
r=lim — = lim — =y
n—o0 (, n—oo S,

and this completes the proof. O]

The following result gives a simple criterion for a convergent of a continued fraction to
be a better approximation than the previous one.

Proposition 3.40. Let x € C, n € Ny and let f‘q)—: be the n-th convergent of x under CF.
[f|qz—;l‘ <1 then |J;— —| < ‘x p"”‘.

dn—1

Proof. According to Lemma 3.32 we have

204n—1 — Pn—1

Tn+1l = —Cp+1
Xoqn — Pn
Therefore:
Xodn — Pn _ En+1
ToGn—1 — Pn—1 Tp+1 ’
and as ] < 1 and |%= 1‘ < 1 we obtain:
z— b B 1
e
‘l‘ - %Tl An |xn+1’
and this completes the proof. O

We will now define a quantity which more or less estimates the quality of the convergents
of a continued fraction.

Definition 3.41. Let € C, n € N and let 2* be the n-th convergent of CF(z). We
define 0, := ¢, (gnx — pn). We will call 6, the relatwe error of x and 2=

Writing x — q il 2 clarifies why we call 6, the relative error of x and p” Note that by
Lemma 3.33 we have

n+1

n Ck

—
k=1 "k

The following result shows an alternative way to express 6,,.

28



Lemma 3.42. Let z € C, n € N and let Z—: be the n-th convergent and z,.1 be the
(n + 1)-th complete quotient of CF(x). Then:
(=" - TTi5 en

qn—1"
qn

0, =

Tni1 + €ntt

Proof. Applying Lemma 3.31 and Proposition 2.10 gives us:

p
en = Qi( 0 — _n>
qn
qn—
_ 2 ($n+1pn tent1Pn-1  Pn Tnt1 + Ent qn1 >

n dn—1
Ln+14n + Cn+1Gn—1 dn Tn+1 + 6n+1 Zn

—€n+1

q—n(pHanl - pnfchn)
Tp+1Gn + €nt1qn—1
_€n+1<_1)n_1 ) szl €k
Tn+1Gn + €n+1qn-1
. (_1)n‘ Zii €k
dn—1"
qn

=q-

T+ €1
and this completes the proof. n

This last result will be useful in the next section.

3.6 Periodicity

In this section we will examine the relation between periodic continued fractions and
quadratic irrational numbers. First we will see that if a continued fraction of a number
x obtained by a complex continued fraction algorithm is periodic, then z is quadratic
irrational. Thereafter we will study the converse of this assertion. First we prove two
lemmas.

Lemma 3.43. Let x € C be irrational, and let CF(x) = [ag, e1/a1,ez/as,...]. Let z,, be
the m-th complete quotient of x under CF. Let n € N and let ‘Z—: be the k-th convergent
of [an, €ni1/ani1, €nia/anio,...]. Then: limg_ o Z—: =x,.

Proof. According to Proposition 3.24: CF(z,,) = [an, €nt1/Ani1, €nta/Ani2, .. .]. By The-
orem 3.38 we conclude: limy_,o 5—: =x,. O

Lemma 3.44. Let x € C be irrational and let x,, be the n-th complete quotient of x under
CF. If CF(x) is purely periodic with period length m, then xo = x,,.

Proof. Let CF(z) = [ag, e1/a1,€2/as, ...] and suppose CF(z) is purely periodic with period
length m. Let & be the k-th convergent of [ag,e1/a1, €2/as,...] and let £ be the k-th
convergent of [am,, €mi1/Ami1, €mia/Amaa, ... As CF(z) is purely periodic with period
length m we have: a,, = a,1m, €nt1 = €pims1 for every n € N. Therefore: p, = 7, and
qr = S and consequently: fl’—: = Z—’; for every k € N. By Lemma 3.43 we obtain:

Pk Tk

o = lim — = lim

=X
k—o0 Qk k—o0 Sk m

and this completes the proof. O
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Now we can prove the following result concerning purely periodic continued fractions.

Proposition 3.45. Let x € C be irrational. If CF(x) is purely periodic, then z is
quadratic irrational.

Proof. Let m be the period length of CF(z). According to Lemma 3.44: xy = x,,. By
Lemma 3.31 we have:
TmPm—1 + EmPm—2 ToPm—1 + EmPm—2

o = = .
Tmdm—1 + Emdm—2 ToGm—1 + Emdm—2

Therefore:
qulxg + (emGm—2 — Pm-1)To — €mPm—2 = 0.

Asm > 1 we have that p,,—1, Pm—2, Gm-1, gm—2 and e,, are all well-defined. As g,,,_1 € Z]i],
emGm—2 — Pm-1 € Z[i], emPm—2 € Z[i], gm-1 # 0 and x; is irrational, we conclude: zg is
quadratic irrational. O

In order to give a more general result, we need two more lemmas.

Lemma 3.46. Let x € C, a € Z[i] and e € {—1,1,—i,i}. If x is quadratic irrational,
then £ + a is quadratic irrational.

Proof. As x is quadratic irrational, it follows by Proposition 1.1 we can write x = p+‘;ﬁ7
with p, ¢, r, s € Z][i] where ¢ # 0, s # 0 and r is not a square. Then:
2 2
e es es(p — T a —q°r esp+a —q°r)—es
€= .- (229 qQ\/_)Jr (z; q2): p+alp? - ¢'r) — esqyr
x p+ayr P —q¢*r P? —¢*r p* —¢*r

When we set P := esp + a(p? — ¢°r), Q := —esq, S := p* — ¢*r we obtain:

P
E + a = M)
x S
where P, Q, r, S € Z[i] and Q # 0, S # 0 and r is not a square. Again by Proposition
1.1 we obtain: £ + a is quadratic irrational. n

Lemma 3.47. Let x € C be wrrational, and let x,, be the n-th complete quotient of x
under CF. If x, is quadratic irrational, then also xq is quadratic irrational.

Proof. Let x, be quadratic irrational. We have z,, = #, Or: Tp_1 = 2%+ Gp_1.
From Lemma 3.46 follows: x,_; is quadratic irrational. By repeating this argument we
obtain: xy is quadratic irrational. O

Theorem 3.48. Let © € C be irrational. If CF(x) is periodic, then x is quadratic
wrrational.

Proof. Let n € N be the least number such that [a,, €,:1/0n i1, €nt2/Anya, .. ] is purely
periodic. According to Proposition 3.24 we have: CF(x,) = [an, €nt1/Ani1, €nia/Ania, - - ..
By Proposition 3.45 follows that z,, is quadratic irrational. By Lemma 3.47 we conclude:
xp is quadratic irrational. O
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From here we will study the converse of Theorem 3.48. First we will consider some
equivalent formulations of the phrase ‘CF(x) is periodic’. In order to do so, we prove two
lemmas.

Lemma 3.49. Let © € C be irrational and let (z,)nen be the complete quotients of x
under CF. If there exist r, s € N, r < s such that x, = x,, then CF(x) is periodic.

Proof. Let CF(x) = [ag, e1/a1,€e2/as, .. .].
Claim: For every n € N: @1, = Tsin, Gran = Qs a0d €141 = €sini1-

Proof of claim: We prove this by induction. For n = 0 we have z, = x, by assumption,

a, = fllx,) = filxs) = as and e, 41 = sg(z,) = sg(xs) = €s11. Now suppose Ty, = Tsin,
Gpin = Ggip AN €111 = €54py1. LThen:

o €r4n+1 o €s+n+1 o
Lrign+1 = - = Ts4n+1
xr—i—n - ar—i—n $s+n - as-l—n
and
Arynt1 = ﬂ(xr+n+1) = ﬂ(xS-i-n—i-l) = Qs4n+1

and

rint1t1 = $9(Trint1) = 89(Tsint1) = €spntitt,
as had to be shown. [ |

Let m := s — r. By the claim immediately follows that (a,, €n11) = (Gnim,€nime1) for
every n > r. We conclude: [ag, €1/a1,es/as, .. .| is periodic. ]

Lemma 3.50. Let x € C be irrational and let x,, be the n-th complete quotient of x under
CF. Let CF(z) = |ag, e1/a1,€ea/as,...]. Suppose CF(x) is periodic, let m be the length of
the period and let N € N be such that [an,eni1/an11,€N12/AN+12, - .| is purely periodic.
Then for everyn > N: x, = Tpim-

Proof. We prove this by induction. Let n = N. Let y := x,,. Then CF(y) = CF(z,) =
[an, €ns1/ni1, €nia/anie, .. .| is purely periodic with period length m. Therefore we have
by Lemma 3.44: yy = vy, where y; is the k-th complete quotient of y under CF. In
a similar way as in Proposition 3.24 we obtain y,, = 2,1, and therefore we conclude:
Tp =Y0 = Ym = Tptm-

Now suppose ,, = &, for some n > N. As CF(z) is periodic with period length m we
have: a, = apim, €ni1 = €nimr1, and therefore:

Cnt+1 Entm+1

Tn1 = = = Tntm+1
Tn — Qn Tn+m — Qpntm

and this ends the proof. O

Proposition 3.51. Let x € C be irrational and let x,, be the n-th complete quotient of x
under CF. Then the following are equivalent:

i. CF(z) is periodic,

1. there exist N € N, m € Nyg such that x, = x4, for everyn > N,
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iii. {z, | n €N} is finite,
w. there exist r, s € N, r < s such that x, = .

Proof. We prove (i) = (ii) = (iii) = (iv) = (i).
(i) = (ii) This follows directly by Lemma 3.50.
(ii) = (ili) Let N € N, m € Ny such that x, = x,4, for every n > N. Then:
{2, | n € N} = {z, | n < N +m}, which is finite.
(iii) = (iv) This follows by the pigeonhole principle.
(iv) = (i) This follows directly by Lemma 3.49.
[

The following result is a partial converse of Theorem 3.48. The proof partially follows
the proof of the main theorem of [10].

Theorem 3.52. Let x € C be quadratic irrational. Let (0,)nen be the relative errors of
x under CF. If there exists 6 > 0 such that |0,_1] < 0 and |0,| < 0 for infinitely many
indices n, then CF(x) is periodic.

Proof. Let CF(z) = |ag,e1/a1,€e3/as,...] and let (z,)neny be the complete quotients of
x under CF. As x is quadratic irrational, let A, B, C' € Z[i] such that A # 0 and
Az? + Bz + C = 0. Define D := B> —4AC.

Claim 1: For every n € N we can construct a polynomial f,(z) := A,2% + B,z + C,
with coefficients A,,, B, C, € Z[i], A, # 0, |B? — 4A,C,| = |B2 — 4A4,Cy|, such that
fn(zn) =0.

Proof of claim 1: We prove this by induction: as x = x(, we define Ay := A, By := B,

Co := C and fo(z) := Apz% + Byz + Cy. Then: fo(xg) = 0. Now suppose f, is defined,
with A, # 0 and |B2 — 4A,C,| = |B2 — 44,Cp|. Then:

0= fal@n)tni = (Anlan + 25)° + Bulan + 255) + Ca) i

Tn+1 Tn+1

= (Anai + Bnan + Cn)xiJrl + €n+1 (2Anan + Bn)xn—i-l + eiJrlAn

= fn(an)miﬂ + ent1fy(an)Tni1 + eiﬂ%f’/(an).

Therefore we define A, == fulan), Bui1 = enpiifolan), Coyr = €215/ (ay,) and
foi1(2) == Apy122 + Bujrz + Cpyy. Tt is clear that A, q, Bny1, Coy1 € Zli]. By the
above equation we immediately see that f,1(2,51) = 0. It holds that

B2 1 —4A,11C0 1 = €2 (24,004 B, ) —4(Ana2 +Bhan+Cn) Anel = €2 1 (Bi—4A,C,),

s0 | B2 —4A4,:1Chia| = |B2 — 4A,C,| = |B§ — 440Cp|. We have by definition: Ay # 0.
Suppose A,, # 0. As z,, is irrational, and f,(z,) = 0 it follows that also the other root
of f, is irrational. As a, is rational, we have f,(a,) # 0 and therefore A,,; # 0. This
proves the claim. |

Define the discriminant D,, := B2—4A,,C,, for every n € N. We see that |D,,| = |Do| = |D|
for every n € N. Let y € C be the other root of A2? + Bz + C. Define y, := y and for
every n € N: g, := —2L

Yn—an

Claim 2: The following hold for every n € N:
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fn(yn) = 07
1.
T F Yns

1il.
Yn+1Pn + €nt+1Pn—1

Yo = )
Ynt+1Gn + €nt1Gn—1
1v.
Yodn—1 — Pn—1
Yn+1 = —En+1
Yoldn Dn

Proof of claim 2: By definition we have: fo(yo) = 0. Suppose that f,(y,) = 0, then:
0 = fulyn)viis = Antr¥iii + BasiUns1 + Copt = fag1(Yns1). This is obtained in a
similar way as in Claim 1. Further, we have z¢y # yo. Suppose z, # y,, then z,,1 =
—entl 4 il — . The proofs of the last two assertions are very similar to the proofs

Tn—0an

of Lemmgni’) 31 and Lemma 3.32 and are therefore left to the reader. [ |

Now we will calculate 2,11 — yn,1 and ;”i - Z”“ for n > 1:

_ Yoldn—1 — Pn—1 LoGn—1 — Pn-1
Tpil — Ynpl = €py1————— — €y ————————
yOQn — DPn ToGn — Pn
(Yoqn—-1 — Pn—-1)(0qn — Pn) — (Z0@n—-1 — Pn—1)(Yoqn — Dn)
(0Gn — Pn)(Yogn — Dn)
(o — Y0)(Pngn—1 — Pn-1Gn)

(ZoGn — Pn)an(yo — £*)

(zo — yo)(=1)" - Z? €k

= €n+1

= €n+1

9 (yo _ pn) )
and:
€n+l  Entl (o = yo) (=1)" - [Ti ex
= s :(xn_an)_(yn_an):xn_yn: pnlkl .
Tn+l  Yn+1 On—1(y0 — nfl)
As lim,, oo (xo— fzﬁ) = 0 it follows that there exists € > 0 and N € N such that |y,— —| <€

for every n > N. Now define p := M Note that by definition: p > 0. As |0,] < §
and |0,-1] < ¢ for infinitely many n, We obtain:

Tt — Yosn| = [T — Yo > |20 — Yo =,
|0l lyo — 22| o€

Entl  Entl ‘ _ |20 — Yol [0 — yo|

Top1 Ynarl |Onallyo — Z:_:H de

for infinitely many n. By the quadratic formula we obtain:

Bni1+vVDui1 —Bpp1 — VDt

v = gl =| Y 201

_ ’ V Dn+1
An+1

)
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and

En+1 €nt1| ‘ 24511 2An+1 ‘\/ n4+1
Tnt1l  Yntl Bui1+vVDni1i —Bns1i — VD Crt1

It follows that for infinitely many indices n: ‘ Y "“‘ > p and ‘ . "“‘ > p. Note that
|v/Dpyi1| = ]\/_| as |Dp41| = |D|. Consequently: |A,1] < @ and |Ch41| < |—\pr| for

infinitely many indices n. Also |Bi1] < |B2,,| < |D| + [4A,41Chi1] < |D] + %. So
for an infinite number of indices there are only a finite number of possibilities for A, .1,
B, 11 and C, 1. Therefore there exist k, [, m € N, k <[ < m such that f, = f; = f..
Consequently there exist r, s € {k,l,m}, r < s such that z, = =5 and by Lemma 3.49
we conclude: CF(z) is periodic. O

The next theorem gives us a criterion for a continued fraction of a quadratic irrational
number to be periodic.

Theorem 3.53. Let x € C be quadratic irrational and let ( ) N
and (,)nen be the complete quotients of x under CF Let e >0 and 77 > 1. If there are
infinitely many indices n such that both ‘xnﬂ +enid ! < n, then CF(x)
18 periodic.

be the convergents

Proof. According to Theorem 3.52 all we have to show is there exists ¢ > 0 such that
10,-1] < ¢ and |60,| < § for inﬁnitely many indices n. Let M be an infinite subset of N
such that both |xm+1 + emp1? | < n for every m € M. By applying
Lemma 3.42 we obtain:

1 _
m:{xm+1+€m+1 i 1|>5
m

m

for every m € M. Now define ¢ := %772 + n, then for every m € M we have that
0] <1 <.

Claim: For every m € M: |0,,_1]| < 0.

Proof of claim: Let m € M and consider the following equations: zy — Z% = Z”Ti and
zo — b = 277”. Combining these gives:

em—l e_m + Pm Pm—1 _ 9_m + (_1)m—1 H;n 1€J‘

Gt Gh O Gn1 05 Gm—1m
Therefore: .
—_ 0m<q’“)2 + Ity e
Gm Gm =
Consequently:

2
b < [0 (202

m m

As |21 < we have:

1
O] < |Om|n® +1 < gn2 +n=>4.
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So for every m € M we have that both |6,,_1| < ¢ and |6,,,| < 6. From Theorem 3.52 now
immediately follows that CF(x) is periodic. O

This last theorem has three corollaries, which are more convenient criteria for a continued
fraction of a quadratic irrational number to be periodic.

Corollary 3.54. Let x € C be quadratic irrational and let (z_z)neN be the convergents of
x under CF. If ‘qz—;l‘ < 1 for every n € N, then CF(z) is periodic.

Proof. According to Proposition 3.29: not lim, o |Zpi1] = 1. As |z,41] > 1 for every
n € N, it follows that

Ve > 03N € NVn > N [|z,41| <1+¢],

or, equivalently:
e>0VNeNIn>N anﬂl > 1+5].

Therefore there exist infinitely many indices n such that |z,1] > 1+ &g, for some g5 > 0.
As |‘J:‘1;1| < 1 for every n € N, there exist infinitely many indices n such that both

}q’;—;l‘ < 1 and |x,41] — ‘q’;:’ > gp. From Theorem 3.53 now immediately follows that

CF(z) is periodic. O

Corollary 3.55. Let x € C be quadratic irrational and let (x,),en be the complete
quotients of x under CF. If there exists p > 1 such that |x, 1| > p for every n € N, then
CF(x) is periodic.

Proof. Aslim,, . ¢, = 0o, we have that for an infinite number of indices n that |"Z;1| < 1.

Therefore there exist infinitely many indices n such that both |z, 1| — ‘q’;” ‘ > p—1and

}‘1’;—;1‘ < 1. From Theorem 3.53 now immediately follows that CF(z) is periodic. O

Corollary 3.56. Let x € C be quadratic irrational and let (%)neN be the convergents of
=] < p,

x under CF. Let 0 < p < 1. If there are infinitely many indices n such that
then CF(z) is periodic.

Proof. As |z,41] > 1 for every n € N, we have that there exist infinitely many indices

n such that both |z,,1| — q2;1| > 1—p and q’é—;l‘ < 1. From Theorem 3.53 now

immediately follows that CF(x) is periodic. O

We end this section with an interesting result about the roots that occur in the proof of
Theorem 3.52.

Proposition 3.57. Let x € C be quadratic irrational and let A, B, C' € Zl[i] such that
A#0and Az> + Bt +C = 0. Lety € C, y # x such that Ay*> + By + C = 0. Let
€n+41

CF(z) = [ap, e1/a1,e2/aq,...], let yo :=y and let yp41 = P for every n € N (just as
in Claim 2 of Theorem 3.52). Then:

qn—1

n

nlggo (Ynt1 + €ng1 ) =0.
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Proof. By Proposition 2.10 we have:
(=" Tlzi e

& . Pn—1 _ Pndn—1 — Pn—14n o

Qn qn—1 qn—19n qn—19n
By Claim 2 of Theorem 3.52 we obtain:
P
dn—1 Yo — qn_fi
yn—l-l - _en+1 ° ° Dn .
qn Yo — q_n
Combining this leads to:
pn . CGD"NTTE g en ne n
o gn—1 Yo — qn + Qn—lq: ; o dn—1 (_1) . Hk:l €k
Yn+1 = —€ny1 - : Dn = —C€p41° —— 1+ Dn .
n Yo — 2 Gn (Yo — &2 )dn—1Gn

A little more mathematical gymnastics gives us:
n+1

-1 o1 ((=1)"" - TTios e (=1)" - TTils ex
Ynt1 T Eny1 ° = —€p41- ( Pn o=l ) - pnk 12 ’
n dn (yO - q_n)Qn—IQn (yO - q_n>q”
We have [(—=1)" - [[1Z) ex] = 1. By Proposition 3.36 it follows that lim, . ¢2 = oo.

Moreover, as lim,, o, 2 = xq and yy # zo, there exist € > 0, N € N such that \yo—z—:| > e

for every n > N. Therefore:

. _1 n n+1
by _ gy CD e
n—oo (yo — q_n)qn,

lim (yn+1 + ént1
n—oo qn

and this ends the proof.
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4 A complex continued fraction algorithm
by A. Hurwitz

In this chapter we will study one particular complex continued fraction algorithm, which
was found by A. Hurwitz in 1887 [3]. We will define the algorithm and we will look at
some special properties of this algorithm. First we define the function fi.

Definition 4.1. Define fiyy : C — Z[4] as follows: flay(2) := [Re(2) + 5] + [Im(z) + 3]i
for every z € C.

The following two propositions show that fi,y has some specific properties.

Proposition 4.2. For every z € C: |fiyy(z) — 2| < \%

Proof. Let z € C. Let z := Re(2), y := Im(2), a := |z + 1] and b := [y + 3]|. Then:

flan(2) = a + bi, with a, b € Z. Furthermore: |z —a| < 1 and |y — b| < 1. Therefore:
|2 = flan(2)] = |(2 + yi) — (a + bi)]
= [(z = a) + (y = b)i]
= V(& —a?+(y—0b)?
<GP+
_ 1
2
and we conclude: [flay(2) — 2| < \/Li O

Proposition 4.3. The function fiyy is a shift floor function.

Proof. From Proposition 4.2 follows: |flay(2) — 2| < \/Li < 1 for every z € C, so fly, is a

floor function. Now, let z € C and « € Z[i]. Let x := Re(z), y := Im(z), a := Re(a) and
b:=Im(a). Then a, b € Z and therefore:

flan(z+a) = [Re(z +a) + 1] + [Im(z + ) + 1]
=lz+a+3]+|y+b+3li
=lz+i]+a+|y+i]i+bi
= |Re(z) + 3] + [Im(z) + 5 |i + a + bi
= flan(2) + .

We conclude: fly is a shift floor function. [
Definition 4.4. Define sgpy : C — {—1,1, —i,i} as follows: sgay(z) := 1 for every z € C.
We have that sgay is a sign function. Let us investigate Ag, and I'g,, o,

Proposition 4.5. Ay ={z€C| —1 <Re(z) <1, -1 <Im(z) < 3}.
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Proof. As flpy is a shift floor function, we have by Proposition 3.6:

Ay = {2 € C| flan(2) = 0}
:{zE(CHRe(z)—i—% %
={z€C| =3 <Re(z) <}, -3 <Im(z) < i}

and this completes the proof. O]
Proposition 4.6. I, s, = {2 | 2 € Ag,,. 2 # 0}

Proof. As sgay(z) = 1 for every z € C, this follows directly from Proposition 3.9. O

Figure 4: Fundamental domain Ag, . Figure 5: Fundamental codomain I'g,,, s, .-

We have defined a floor function and a sign function, therefore we can now define the
algorithm.

Algorithm 4.7 (A. Hurwitz, 1887).
input: x¢€C,
output: a finite or infinite complex continued fraction, which is generated by

To =
Qp, = flay(zn)
ent1 = San(Tn)
o En+1
e

We will refer to this algorithm as CFay, and denote the result of the algorithm on z € C
by CF/_\H (I)

Proposition 4.8. CFay is a complex continued fraction algorithm.

Proof. By Proposition 4.3 we have that fl,y is a floor function. We can easily verify that
Sgan 1s a sign function. From this it follows that CFay is a complex continued fraction
algorithm. O

According to Proposition 4.8 we have that CFay is a complex continued fraction algorithm.
Therefore all the results of Chapter 3 apply to CFay. In the remaining part of this chapter
we will look at specific properties of CFap.
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Proposition 4.9. Let v € C. Let x,.1 be the (n + 1)-th complete quotient of x under
CFan(z). Then: |zni1] > V2.

Proof. According to Proposition 4.2 we have that |z — flag(2)] < \/Li for every z € C.
Therefore: |z,,1| = | 1 ‘ = ‘ L ‘ > /2. O

Tn—0an Tn—flan (Tn)

Proposition 4.10. Let x € C and let a,, be the n-th partial quotient of x under CFan.
Ifn>1 then a, ¢ {—1,1,—1,i}.

Proof. Let n > 1. Let T4* be the tile of a € Z[i] under flpy. Then we have that
I A Lppsgny = 0 for o € {=1,1, —i,i}. As x,, € T, 5, We conclude: z,, ¢ T for
a € {—1,1,—1i,i}. Therefore a, ¢ {—1,1, —i,i}. ]

Theorem 4.11. Let x € C, and let 5—: be the k-th convergent of x under CFay. Then
for every 0 < n < |CFan(x)| — 1:

i | <1

it. if n > 1: either

Qn—2‘ < \/5*1 or (Infll < \/57)71

dn—1 - 2 dn - 2 :

Proof. The first statement is proven by induction. We have that |q;—01\ < 1. Now suppose
[ < 1, [222] < 1. Suppose for the sake of contradiction that %] < 1. As
- = a, + =2, we have that %~ € Bi(a,). As || < 1anda, ¢ {0,-1,1,—i,4}
it follows that a, € {1 +4,1 —4,—1+44,—1 —i}. Now one can show that this leads to
a contradiction by examining possible orders of the partial quotients. For details of the
proof, see [3, pp. 195-196].

For the proof of the second statement, see [2, p. 3566]. O

Now we prove an interesting result concerning the relative errors which occur under the
complex continued fraction algorithm CFap.

Proposition 4.12. Let x € C. Let 0,, be the n-th relative error of x under CFay. Then:
10, < 14+ /2.

Proof. If CFau(z) is finite and n = |CFap(x)| — 1, then 6,, = 0 < 1 + /2. Now suppose
n < |CFau(x)| — 1. Combining Lemma 3.42, Proposition 4.9 and Theorem 4.11 gives:

IV ‘xn—s—l +€n+1qn_1| > |xn+1| - |qn—1‘ > \/5_ 1.

Therefore:

—14++2.

1
0, <
(2 71
O

Remark 4.13. Proposition 4.12 can be strengthened by replacing the constant 1 + v/2
with the constant 1. We do not prove this here, as for now, we are only interested in
existence of an upper bound for |6,|. For the proof, see [5].
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Theorem 4.14. Let x € C be quadratic irrational. Then: CFan(z) is periodic.

Proof. By Proposition 4.12 we have that |6,| < 1 4 v/2 for every n € N. By Theorem
3.52 we conclude: CFap(x) is periodic. O

Let x € C, let x,,41 be the (n + 1)-th complete quotient and 5—: be the n-th convergent
of x under CFay. Note that Theorem 4.14 is a consequence of Corollary 3.54, as we have
that [#=1[ < 1 for every n € N. It also follows from Corollary 3.55, as we have that

|Zns1]| > V/2 for every n € N. Finally, also Corollary 3.56 implies Theorem 4.14, as we
have that || < @ for infinitely indices n.
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5 Two complex continued fraction algorithms
by J. Hurwitz

In this chapter we will study two complex continued fraction algorithms, which were
found by J. Hurwitz in 1902 [4]. We will define the algorithms and we will look at some
special properties of the algorithms. We will also find a specific relation between the two
algorithms.

5.1 Complex continued fraction algorithm of the first kind

Consider the complex plane, where we identify every complex number 2z = x+yi, where z,
y € R, with the point (x,y). We define the lines [, := {z|Re(z) = Im(z) + k} and my, :=
{z|Re(z) = —Im(z) + k}, for every k € Z. Define L := {log11 | k € Z} U{maxs1 | k € Z}.
Now L divides the complex plane in an infinite number of squares, and the centre points
of these squares are precisely the numbers in (1 + ¢)Z[i]. We define S, to be the square
with centre point «, for every o € (1 + 4)Z[i]. That is: S, contains all the points in
the interior of the square, and we will later determine which points on the border of the
square belong to S,. Now we will give each square a type, except for Sy. Consider S,
with a € (14 4)Z[i]. Then:

if Re(a) = Im(a) > 0 then the type of S, is 1+,
if Re(a) = —Im(«v) > then the type of S, is 1 —1i,
if Re(a) = — Im(« ) then the type of S, is —1+14,
if Re(a) = Im(a) < then the type of S, is —1—1,
if Re(a) > Im(«) and Re(a) < Im(c) then the type of S, is 2,
if Re(a) < Im(a) and — Re(a) < Im(ar) then the type of S, is 2i,
if Re(a) < Im(ar) and — Re(a) > Im(ar) then the type of S, is -2,
if Re(a) > Im(a) and —Re(a) > Im(ar) then the type of S, is —2i.

Now every square has a type, except for Sy. We did not yet decide which points on the
border of the square belong to S,. For Sjp: every edge belongs to Sy. To the squares
with type 1 +4, 1 —¢, —1 4+ ¢ and —1 — 7 belong three edges, and the one edge that does
not belong to S, is the edge which is enclosed by the two vertices of S, which have the
least distance to 0. To the squares with type 2, —2, 2¢ and —2¢ belong two edges, those
who intersect in the vertex that has the greatest distance to 0. A vertex belongs to S,
if the two intersecting edges of that vertex belong to S,. We will regard S, as a subset
of C, for every o € (1 4 i)Z][i]. Then we have: for every z € C there exists precisely one
€ (1 +414)Z[i] such that z € S,,.

Definition 5.1. Define fi); : C — Z[i] as follows:

f(2) = z if z € ZJi],
HIE = otherwise, where a € (1 4 4)Z[i] such that z € S,.

Proposition 5.2. The function fl;y, is a floor function.

Proof. Let z € C. First suppose z € Z[i], then fly;(2) = 2, so [fljy1(2) — 2] < 1. Now
suppose z ¢ Z[i] and let « such that fi;;(z) = . Then z € S,, and as S, C {z||z—a| <
1} and S, N{z||z — a| = 1} C Z[i] we conclude: |fl;(2) — 2| < 1. So in either case
|fun(2) — 2| < 1, therefore: fi)y; is a floor function. O
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N N
N

N
N

Figure 6: The squares S, in C, for every edge is indicated to which square S, it belongs.

Note that fl; is not a shift floor function, as flyy; (3 +1) =2 # 1 = flyy,(3) + 1. It is
even not the case that flyy,(z + ) = flj;(2) + «, for every z € C, a € (1 +4)Z[i]. This
is illustrated by flyy (B2 +2) =24 2i # 3+ = flyy, (252) + 2.

Definition 5.3. Define sg;y; : C — {—1,1,—i,i} as follows: sgyy;(2) := —1 for every
z e C.

Proposition 5.4. Ay = {z € C| fly,(z) = 0}.

Proof. Let T the tile and U"™ the corresponding set of o € Z[i] under fl;,y;. Now let
a € Zli]. If a ¢ (14 i)Z[i] then TI"™ = {a}, so U™ = { 0}. If a € (1 +i)Z[i] then we
have that U/ C UM as {z — | 2 € Sa} € So. Therefore
A= U UPeu J o Ube=UPmu{op =1
a€(1+i)Z[i] a€l+(1+4)Z[i]

and this completes the proof. O
Proposition 5.5. Iy, o = {2 | 2 € Ap,,, 2z # 0}

Proof. As sgyu(z) = —1 for every z € C, this follows directly from Proposition 3.9. [

S
‘ | L

Figure 7: Fundamental domain Ag, . Figure 8: Fundamental codomain I'g, .-

42



As we have a floor function fl},;; and a sign function sg,y; we can define the algorithm.

Algorithm 5.6 (J. Hurwitz, 1902).
input: x € C,
output: a finite or infinite complex continued fraction, which is generated by

Zo = T

Qn = flpi(zn)

ent1 = Sgyu1(Tn)
_ €n+1

Tn+1 — Tn—an

We will refer to this algorithm as CF;u;, and denote the result of the algorithm on z € C
by CFJHl([E).

Proposition 5.7. CF,4; is a complex continued fraction algorithm.

Proof. By Proposition 5.2 we have that fi;,;; is a floor function. We see that sg,4; is a sign
function. From this it follows that CF,y; is a complex continued fraction algorithm. [J

As CF y; is a complex continued fraction algorithm, all the results of Chapter 3 apply
to this algorithm. In a continued fraction obtained by CF,y; we have that every partial
numerator is equal to —1. In this section we will omit the partial numerators from

lag,e1/a1, ..., e,/a,] and [ag, €1/aq, ea/as, .. .| if this fraction is a result of CFyi(z). We
will write [ag, a1, ..., a,] and [ag, a1, ag, . . .] respectively.
Proposition 5.8. Let z € C and let CFyu1(2) = [ag,a1,az,as,...,a,, CFu1(z,01)]-
Then:
CFyn1(i2) = [iag, —iay,iag, —ias, . .., (—=1)"ia,, CFu((=1)" " tizni1)],
CFJHl(—Z) = [—007 —ap, —Qz, —ag, ..., —0n, CFJHl(_Zn—H)]a
CFni(—iz) = [—iag,iar, —iag,ias, ..., (—1)" Yia,, CFu1((—1)"izn41)],
CFJHI(E) — [a_Oa a_h a_27 a_37 s aa'_na CFJH1(2n+1>]-
Proof. As CFy1(2) = [ag,a1,a9,as, ..., a,, CFu1(z,41)], we have for every k < n that
ZE = ap — Zk1+1. Therefore we have also the following equations: iz, = iay — —izlk_,_l’
—2k = —0k — and —izp = —tay — Z.Zklﬂ. This proves the validity of the first three
statements. For the last statement, observe that if fi;,(zx) = ag, then fi;4;(Zx) = ax.
We have ZT;% = (Zkilak) = Zr+1, and the statement follows. ]

The following are two results about the partial quotients under the algorithm CFy;.

Proposition 5.9. Let z € C be irrational, let CFyq1(z) = |ag, a1,a2,...]. Then: ai €
(14 2)Z[i] for every k € N.

Proof. Let k € N. As z is irrational, we have that zj is irrational. Accordingly: zj ¢ Z]i]
and therefore ay = fly;(2) = o, where a € (1 + 9)Z[i] such that z € S,.

Proposition 5.10. Let z € C be rational, let CFyu1(2) = [ag, a1, ..., a,]. Letr, s € Z]i]
such that z = and gcd(r, s) = 1. Then:
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i. ar € (L4 1)Z[i] for every k < n,
. an & (L+9)Z[E) iff 1 +i4r and 1 +i1s.

Proof. Let k < n. Regarding the algorithm, it is not the case that x; — fljs(z) = 0
(otherwise the algorithm would halt at this point). So: z, ¢ Z[i] and considering the
floor function fi;s we see that ax = fljy;(2) € (1 +9)Z[i].

For the second statement, define the following sequences.

To =T, Tk+1 ‘= Sk€k+1,

Sp ‘= S, Sk+1 = T — SgQyg.

From the proof of Proposition 3.27 we know: z; = £ and ged(ry, sk) = ged(r, s) =1 for
every k < n. We also have [s,| =1, as s, = ged(r, s).

First suppose that 1 +i{7r and 1 +i+ts. We will now prove: 14 ¢{r, and 1 +1i1 s, for
every k < n. We have 1+ i {19 and 1+ i { so by assumption. Now suppose 1 + i { 7
and 1+ 4 1 s Then rp; = sgexs1, so 1+ 4 1 rpyeq. Also: spyy = 1, — Spag, where
ag € (1 +1)Z[i], so 1 +if sgp1. As ap, =z, = =, and [s,| = 1, we conclude: 1+i{ ay.
Therefore: a,, ¢ (1 + 7)Z][i].

Now suppose 1+ | 7 or 1 +4 | s. Note that not both 14+ | r and 144 | s, otherwise
144 | ged(r,s) = 1. We will prove: 1+ it 1 + s for every k& < n. By assumption
we have 1+ i 1 ro + so. Now: rgpiq + Spy1 = Sk€ps1 + Tk — Spak, where a € Z[i], so
L+t 7k41 + Skt1. As |sy| =1, we have 1+ | r, and therefore 1 + ¢ | a,. We conclude:
an € (1 +14)Z[i).

By combining this we obtain: a, ¢ (14 ¢)Z[i] iff 1 +i{r and 1 +i¢s. O

The following result will be useful in proving periodicity for quadratic irrationals for
CFJh1.

Proposition 5.11. Let z € C be irrational, and let % be the k-th convergent of x under
CFyn1. Then for every n € N: |q:;_;1| < 1.

Proof. This follows by proving that q:—’_ll is in the interior of W, for every n € N. (W,
is defined in Section 5.2). This is achieved by examining possible orders of the partial
quotients. As a,, # 0 for every n € Ny(, we have that ‘qy‘f—:| > 1 for every n € Nyg. For

details of the proof, see [4, pp. 246-248]. m
Theorem 5.12. Let x € C be quadratic irrational. Then: CFyyi(x) is periodic.

Proof. By Proposition 5.11 we have that |qz—;1| < 1 for every n € N. By Corollary 3.54
we conclude: CFjy;(x) is periodic. O

5.2 Complex continued fraction algorithm of the second kind

Consider the set (1+14)Z[i], and let B, := {z € C | |z — a| < 1} for every a € (1 +14)Z[i].
We will use the same distribution of types for B, as in Section 5.1. For example: Bs;
has type 2, Bs_o; has type 1 — ¢, and so on. Now we will define W, C C for every
a € (14 1)Z][d]:
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WO = BO

W, = By \ Ba-1-i for every « of type
Wy := Ba \ Ba_14i for every a of type
Wy = By \ Bas1-i for every a of type
W, = By \ Bas14i for every a of type
W, = (BaU{a —1})\ (Ba—14+i U Ba—1—;) for every « of type
Wy = (BaU{a —i})\ (Ba_1-iUByy1-;) for every « of type
W, = (Ba U {CY + 1}) \ ( at1+i U Bay1- 1) for every « of type
Wy = (BaU{a+i})\ (Ba_14i U Bar14s) for every a of type

Now we have that for every z € C there exists precisely one a € (1 + 4)Z[i] such that

z e W,.

1+7,
1—1q,
—1 +71,
—1—3q,
27
21,
—2,
—21.

Figure 9: The areas W, in C.

We now define the following function.

Definition 5.13. Define fi ), : C — Z[i] as follows:

if z € Z]1],

z
Tia(2) = { a otherwise, where o € (1 4 4)Z[i] such that z € W,.

Proposition 5.14. The function flyy, is a floor function.

Proof. Let z € C. First suppose z € Z[i], then flj,(2) = z, so |fl(z) — 2| < L
Now suppose z ¢ Zl[i] and let « such that fl;,(z) = a. Then z € W,, and as W, C
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{z||z —a] <1} and W, N {z ||z — a| = 1} C Z[i] we conclude: |flj,(z) — 2| < 1. So in
either case |fljo(2) — 2| < 1, therefore: fi, is a floor function. O

Note that flj, is not a shift floor function, as again, fl,(5 +1) =2 # 1 = flyp(3) + 1.
Also, it should be clear that in general it is not the case that flj,(z + @) = fljy(2) + «
for z € C, a € (1 +1)Z[i].

Definition 5.15. Define sg), : C — {—1,1, —i,i} as follows: sg;4o(2) := —1 for every
z e C.

Let us investigate Ag,,, and I'g,, s,
Proposition 5.16. Ay, = {z € C| fl,(z) = 0}.

Proof. This proof is similar to the proof of Proposition 5.4 and is therefore left to the
reader. O

Proposition 5.17. Ty, s, = {2 | 2 € Agy,,, 2 # 0}

Proof. As sgyu(2) = —1 for every z € C, this follows directly from Proposition 3.9. [

Figure 10: Fundamental domain Ag . Figure 11: Fundamental codomain g, o,

We have defined a floor function and a sign function, therefore we can now define the
algorithm.

Algorithm 5.18 (J. Hurwitz, 1902).

input: 1z €C,

output: a finite or infinite complex continued fraction, which is generated by

o T
an fona ()
En+1 8Gym2(Tn)
Tpt1 %

We will refer to this algorithm as CF,y,, and denote the result of the algorithm on z € C

by CFJHQ(.T).

Proposition 5.19. CF,y, s a complex continued fraction algorithm.



Proof. By Proposition 5.2 we have that fi;, is a floor function. Of course, sg,;, is a sign
function. From this it follows that CF,y, is a complex continued fraction algorithm. [

As CF 5 is a complex continued fraction algorithm, all the results of Chapter 3 apply to
CFyn2. Let z € C, we have that all the partial numerators of CFyyp(z) are equal to —1,
and therefore we will omit these partial numerators from CFjyy(2). The following results
show that CF,y, and CF u4; have some similar properties.

Proposition 5.20. Let z € C and let CFy(2) = [ag,a1,az,as, ..., a,, CFpa(zn11)]-

Then:
CFu2(i2) = [iag, —iay,iay, —ias, . .., (—1)"ia,, CFua((—1)"izug1)],
CFJHz(—Z) = [—CZO, —a1, —Q2, —Aa3, ..., —0n, CFJHz(—Zn+1)]
CFp2(—iz) = [—iag, iay, —iay, ias, . .., (—1)" Yiay,, CFyua((—1)"i2ne1)],
CFi2(2) = [0, a1, G2, a3, - . ., Gn, CFyn2(Z01)]-
Proof. This proof is similar to the proof of Proposition 5.8. m
Proposition 5.21. Let z € C be irrational, let CFy42(2) = |ag, a1, as,...]. Then: ay €

(14 4)Z[i] for every k € N.
Proof. This proof is similar to the proof of Proposition 5.9. ]

Proposition 5.22. Let z € C be rational, let CFy2(2) = [ag, aq,...,a,). Letr, s € Z]i
such that z = £ and ged(r, s) = 1. Then:

i. ar € (L4 1)Z[i] for every k < n,
. an & (L+9)Z[) iff 1l +i4r and 1 +its.
Proof. This proof is similar to the proof of Proposition 5.10. ]

Proposition 5.23. Let x € C be irrational, and let % be the k-th convergent of x under
CF 2. Then for every n € N: |qz—;1| < L.

Proof. This follows by proving tha s and 2 q € S,, for every n € N|
where S,, as defined in Section 5.1. This is again achieved by exammlng possible orders
of the partial quotients. If qq: € I'p, 50, » then q" ! ‘ < 1. For details of the proof, see

[4, pp. 260-261]. O

Theorem 5.24. Let x € C be quadratic irrational. Then: CF () is periodic.

Proof. By Proposition 5.23 we have that |qz—;1| < 1 for every n € N. By Corollary 3.54
we conclude: CF () is periodic. ]

Remark 5.25. Theorem 5.24 cannot be found in [4], as J. Hurwitz does not prove that
CFu2 () is periodic for x € C quadratic irrational. This theorem is partly a consequence
of Proposition 3.29, which may have been unknown in 1902.
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5.3 Correspondence between the two algorithms

In this section we will see that there is an interesting correspondence between the algo-
rithms CFJHl and CFJHQ.

Theorem 5.26. Let x € C be irrational and let n € N. Let CFyu1(x) = [ag, a1, a9, .. .].
Let z—z be the n-th convergent of CFyu1(z). Then: CF (=) = [an, apn_1, ..., a1].

dn—1

Proof. This follows as we can show that q;]fl e W,, for every n € N. For details of the

proof, see [4, pp. 260-262]. O

Theorem 5.27. Let € C be irrational and let n € N. Let CFyp(x) = [ag, a1, a9, .. .].
Let B~ be the n-th convergent of CFya(x). If ay ¢ {1+i,1 —i,—1+41i,—1 — i} then

n

Chm () = an, ap-1, ... aa.

Proof. This follows because qg: € S,, for every n € N. For details of the proof, see [4,

pp. 260-262)]. O

Note that Theorem 5.26 and Theorem 5.27 are false when we assume z to be rational.
Consider I, we have CFyu1 (1) = CFyu2(%) = [2,2,3]. Then: ¢ =2 and g3 = 5, so == g
Now we obtain: CFyua(2) = CFyni(2) = [2, —2] # [3,2].

5.4 Description of the output of the algorithms

In this section we try to convince the reader that there exists a finite automaton which
accepts the output of CF,y1, for rational input. We will also examine this property for
other complex continued fraction algorithms.

Let z € Q[i] and let fi;4;(2) = [ao, a1, ..., a,]. We consider [ag, a4, ..., a,] as a word over
the alphabet Z[i]. It seems that there exists a finite automaton which precisely accepts the
set {CFym1(z) | z € Q[i]} C Z[i]*. Such an automaton could be found by considering the
tiles obtained by fl;,;; and the intersection of these tiles with the fundamental codomain
['f1,0.50, - This gives subsets of tiles, and therefore subsets of the fundamental domain
Ag,,, and subsequently subsets of I'g, 4,,,,- Iterating this process gives again new subsets
of tiles. It looks like there are only finitely many subsets of Ag =~ which appear in this
manner. The states of the automaton should correspond with the subsets of Ag,  ~that
are found. It seems that the corresponding automaton for CF,y; has 27 states.

In the same fashion it is likely that this is also possible for CF,y,, with an automaton
that has only 11 states. For CFay it seems that such an automaton exists as well and
the number of states of this automaton is presumably 60. In Chapter 6 we will define
the complex continued fraction algorithm CFjs. In [9] is shown that there exists a finite
automaton with 25 states which precisely accepts the set {CFs(z) | z € Q[i]}.

This topic asks for a rigorous approach, which unfortunately goes beyond the scope of
this thesis. We refer the reader who is interested in this subject to [1].
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6 A complex continued fraction algorithm
by J. O. Shallit

In this chapter we will look at a complex continued fraction algorithm devised by J. O.
Shallit [9]. We will define the algorithm, try to investigate whether continued fractions
obtained by this algorithm are periodic for quadratic irrational numbers, and look at
some specific properties of the algorithm.

6.1 The algorithm

In this section we will define the algorithm. The floor function of this algorithm is due
to E. E. McDonnell [6].

Definition 6.1. Define fliis : C — Z[i] as follows: Let z € C, and let x := Re(z) and
y :=Im(2), and let a := |z| and b := |y|. Then:

a+ bi if (x—a)+(y—0)<1
flis(z) =< a+14+bi if(r—a)+y—0b>landz—a>y—0>
a+(b+1)i if(z—a)+(y—b)>1landz—a<y—b.

Proposition 6.2. The function fls is a shift floor function.

a+bi a+1+bi

Figure 12: The set G,p, which is partitioned in the subsets 1,4, 1l and 111,,. The
circles have radius 1.

Proof. Let z € C, let x := Re(2), y := Im(2), a := |z] and b := |y]. We define
Gap ={w e C|a<Re(w) <a+1, b<Im(w)<b+1}. Then we have: z € G,;. We
define three subsets of G, :

Ia,b = {ZeGa,b ‘ (m—a)+(y—b)<1},
Ha’b::{ZGGa’b‘(m—a)+(y—b)21anda:—aZy—b},
M, :={2€Gay | (x—a)+(y—b)>1andz—a<y— b}
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We see that 1, 1,5, 111, is a partitioning of G, see also Figure 12.

Suppose (x —a) + (y — b) < 1 (the first case in the function definition of fi)g). Then we
have that z € I, and fi)s(2) = a + bi, and it follows that |z — fl;5(2)| < 1.

Suppose (r —a) + (y —b) > 1 and x —a > y — b (the second case in the function
definition of flig). Then we have that z € Il and fl;s(z) = a+ 1+ bi, and it follows that
|2 = flis(z)] < 1.

Finally, suppose (x —a) + (y —b) > 1 and x — a < y — b (the third case in the function
definition of flig). Then we have that z € IIl,;, and fi;5(2) = a + (b + 1)i, and it follows
that |z — flis(2)| < 1.

In every case we have |z — fi)s(2)| < 1 and we conclude: flj5 is a floor function.

For the second part of the proof, let z € C, o € Z[i] and o = p + ¢i, where p, q € Z.
Now, let z = Re(z+a), y =Im(z+a), a = |z] and b = |y]. Let 2’ = Re(z), v = Im(z),
a = |2'] and ¥ = |¢/]. Then we have a = @' +p, b =b +q, x —a = 2/ —d and
y—b =1y —1b. Consequently, following the three different cases: fl;s(z+«a) = fljs(2) + a.
We conclude: fl;g is a shift floor function. O

Definition 6.3. Define sg,g : C — {—1,1, —i,i} as follows: sgs(z) := 1 for every z € C.

We have that fi)5 is a shift floor function and sg,g is a sign function. Therefore we can
define a complex continued fraction algorithm, but first we investigate the fundamental
domain Ag  and the fundamental codomain I'g g .

Proposition 6.4. A, = {z € C | Re(z) > —Im(z),Re(z) < —Im(z) + 1,Re(z) >
Im(z) + 1,Re(z) < Im(z) — 1}.
Proof. As fi)5 is a shift floor function, we have by Proposition 3.6:

AﬂJs = {Z eC | ﬂJS(z) = 0}

Considering the definition of fljg and the subsets I,;, 11,4, 111, of G, from the proof
of Proposition 6.2 we obtain the following. If z € Iy, then fiig(z) = 0. If z € 114,
then flig(z) = 0. If z € Ill;_y, then flig(z) = 0. Also: if z ¢ Iyo UIl_; o UIIly_y,
then fljs(z) # 0. Therefore: Ag = Ioo UII_; o UIlly_;, and this set is equal to the set
{z € C| Re(z) > —Im(z),Re(z) < —Im(2) + 1,Re(z) > Im(2) + 1,Re(z) < Im(z) — 1},
which completes the proof. O

Proposition 6.5. 'y, = {1 | z € Ap, 2z # 0}.

Proof. As sg)s(z) = 1 for every z € C, this follows directly from Proposition 3.9. O
it ¢
71 1 71 1
it .
—1+
Figure 13: Fundamental domain Ag,.. Figure 14: Fundamental codomainI'g s

20



Algorithm 6.6 (J. O. Shallit, 1979).
input: x€C,
output: a finite or infinite complex continued fraction, which is generated by

o = X

an = ﬂJS(xn>

Ent1 = 50s5(Tn)
. €nt1

:L‘n—&—l Tr—an,

We will refer to this algorithm as CFjs, and denote the result of the algorithm on z € C
by CFjs(x).

Remark 6.7. During the writing of my thesis, I implemented this algorithm in Magma.
For rational or quadratic irrational input, the output of the algorithm is exact. The
examples in Section 6.3 were generated with this implementation of the algorithm.

Proposition 6.8. CF s is a complex continued fraction algorithm.

Proof. By Proposition 6.2 we have that fi)g is a floor function. It is obvious that sg,g is
a sign function. Now it follows that CF s is a complex continued fraction algorithm. [J

As CF s is a complex continued fraction algorithm, all the results of Chapter 3 apply to
this algorithm.

6.2 Convergence

In this section we look at some aspects of convergence for the algorithm CFs.

Proposition 6.9. Let x € C be irrational and let (z,41)nen be the complete quotients of
x under CFys. Then not: lim,,_, |T,1| = 1.

Note that Proposition 6.9 is a special case of Proposition 3.29. Therefore, we already
have a proof of Proposition 6.9. However, we will give another proof which provides a bit
more insight.

Proof. Suppose for the sake of contradiction: lim, o [Zn41] = 1. As 2,11 € Igy g, for
every n € N, this is only possible if lim, o d(,41,{1, —i}) = 0. Now consider D; :=
B%(l) and D_; := B%(—i). Accordingly, there exists N € N such that x,,1 € D;UD_;
for every n > N. Let T, be the tile of a € Z[i] under fi;s. Note that, if 2,41 € D; then
Tne1 € TYUT, ;. Likewise, if .1 € D_; then x,,.1 € Ty ;UT 5, UT_;. See also Figure
15. Consider n > N; we distinguish five cases.

— 1 _ 1 1
L Ifznir € DN, then |:En+2| T J@nt1—ang1] T |21 > 1/3 3.
1 1 —
II. If Tnt1 € D1 N Tlfi, then Tt = m = m As Tnt1 ~ 1, thus
Tny2 = m ~ % = —1, we conclude: x,,.» € D_;. Now:
Tpyo +1= +- s

o —14d e — 14

1+ izp —i—1
xn+1_1+i

(g1 — 1)

C Tp — 1440
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Figure 15: The complex plane with the tiling obtained by fl;s. The fundamental codomain
['fq 59, 18 indicated in grey. Also the unit circle and the areas Dy and D_; are included.

. a1 —1 .
So: |Tpyo +1| = —|alx+41—1—1+|i|7 and because x,11 € T1_; we have |r,,1 — 1 +i] < 1.
n

Therefore: |z,42 + 9| > |Tp41 — 1.

II. If x,yy € D_;NT_4_; then z,,5 = ! = L As z,,41 =~ —i, thus

. . Tpt1—0nt1 Tpp1—(—1-4)"
T2 = 50—y B 1= 1, we conclude: x,,5 € Dy. Now:

1 .’L'n_|_1+1+’i
xn+2_1:xn+1+1+i_azn+1+1+i
=z =11
B $n+1+1+’i
. —Tp+1 — 0
_l'n+1+1+7:'
|2 rt1+4]

So: |xpie — 1] = and because ,+1 € T-1_; we have |z, + 1+ < 1.

[©7414+144]°
Therefore: |z,42 — 1| > x40 + 1.

V. If 2,01 € D_;NT o, then x,,0 = ! = 1 As x,,1 ~ —i, thus

Tn41—0nt1 Tpt1—(—21)"
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Tpig = m ~ % = —1, we conclude: x,,.» € D_;. Now:
i . Tpg1t 20
Tn+2 1 = . : .
Tpa1 + 20 Tpa1 + 20
1+ ixn_i_l —2
Tni1 +2i
ixn—i—l -1
| + 21
So: |, 0ti| = %, and because x, 11 € T_g; we have |z, 142i| < 1. Therefore:
n

|xn+2 + Z| > |In+1 + Z|

_ 1 _ 1 1

V. If Tpnt1 € D_,NT_;, then |I’n+2| = Temri—ana] - o= (0] > 3T 3.
Considering these cases, we see that the cases I and V will not occur, as x,.0 € D1UD_;.
Therefore, forn = N, N+ 1, N +2,... we will have a sequence of the cases II, IIl and IV.
However, this contradicts that lim,, . d(zn41, {1, —i}) = 0, as can be verified from the
last line of the cases II, III and IV. Therefore we conclude: not lim,, o |z,41]| = 1. O

We will later see that in general, for x € C irrational, it is not the case that ’q’;—*l| <1
for every n € N, where (zﬁ)n oy are the convergents of CFys(x). However, we have the
following two results. In this chapter we will omit the partial numerators from CFs(x) =

lag, e1/a1, ea/as, . ..], as they are all equal to 1, and write CFs(z) = [ag, a1, as, . . .].

Proposition 6.10. Let x € R be irrational. Let (z’—:)neN be the convergents of CFs(x).
Then: ‘qz—;l‘ <1 for every n € N.

Proof. Let x € R and let CFys(x) = [ag, a1, as,...]. We have that a, € Nyg as z, €
{z ‘ x € Rz > 1} for every n € Nyy. We prove the statement by induction, first:
0 = 2= < 1. Now suppose 0 < q’(‘]—‘l < 1. Then: qg“ = Qpy1 + q’;‘l > 1, consequently:

n n

0< qgﬁ < 1. This completes the 5roof. n

Proposition 6.11. Let x € R be irrational. Let (%)%N be the convergents of CFjs(ix).
Then: ‘q’;—;l‘ < 1 for every n € N.

Proof. Let z € R and let CFys(iz) = [ag, a1, as, . ..]. We have that a, € {in|n € Z,n < 2}
as r, € {iz ‘ x € R,z < —1} for every n € Nyy. We prove the statement by induction,

first: |qq‘—01‘ < 1. Then: ‘q’;—:l‘ = |an+1 + qz;l‘ > laps1| — |q’;;1‘ > 1, as |ap| > 2.

qu1| < 1 and this completes the proof. =

Consequently: |

6.3 Periodicity?

In this section we try to investigate whether CFs(x) is periodic for x quadratic irrational.
Let z € C be irrational. By Theorem 3.48 we have that if CFs(z) is periodic, then z is
quadratic irrational. We formulate the converse of this result.

Conjecture 6.12. If z € C is quadratic irrational, then CFs(z) is periodic.
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The following examples seem to suggest that Conjecture 6.12 is true.

Example 6.13. Here we compute CFs(2) for some values z € C, where z is quadratic
irrational. The partial numerators are omitted, as they are all equal to 1.

CFys(3+1i+ V9 + 6i) = [6 + 2]
CFs(W1+11i) =242, T—4,1,2+4,4,2+14,1,1 — 4,4 + 4

CF js(LHTEVR2) — (1 _9j —1—2i,6 —i,—1 — 21, —4, 1 + 4,1 4, 5]

Unfortunately, I did not succeed in proving Conjecture 6.12. However, we have the
following result.

Proposition 6.14. Let z € C be quadratic irrational. Let z, be the n-th complete quotient
and let % be the n-th convergent of z under CFs. If either

i ‘q’;—;l| <1 for everyn € N, or
ii. |zni1| > p for every n € N, for some p > 1, or
114, ‘q’;—;l{ < o for infinitely many indices n, for some o < 1,
then CF,s(z) is periodic.
Proof. This is just Corollary 3.54, Corollary 3.55 and Corollary 3.56. n

Let us investigate the assumptions in Proposition 6.14. In Proposition 6.23 we will see
that in general, the first assumption is false. For the second assumption: note that |z| —1
can be arbitrarily small for z € I'g_ 4. Therefore there is no obvious reason to expect
that there exists p > 1, such that |z,,1| > p for every n € N. The third assumption seems
reasonable, as lim,,_,o, ¢, = c0. However, we did not prove anything about the growth of
lgol, |q1], |g2], - - - and it is not clear why this assumption would be true in general.

Although I cannot prove Conjecture 6.12, the statement is true if we assume some more
about the input z.

Proposition 6.15. Let z € C be quadratic irrational. If z is either real or purely imagi-
nary, then CFs(z) is periodic.

Proof. Suppose z is either real or purely imaginary. Let (z—")n y Pe the convergents of z

under CFjs. By Proposition 6.10 and Proposition 6.11 we have that |qz—;1} < 1 for every
n € N. Therefore by Corollary 3.54: CFs(2) is periodic. ]

Now I will explain how I tried to prove Conjecture 6.12 and why I did not succeed in
this. Theorem 3.52 seems a good starting point for proving this conjecture; in fact, this
is how A. Hurwitz and J. Hurwitz prove periodicity for their algorithms. So, I reduced
proving periodicity to proving a property about the sequence (6,,),en. Now we prove two
more results.

Proposition 6.16. Let x € C be irrational. Let 0,, be the n-th relative error of x under
CFjs. If lim, o 0, = 00, then CFs(z) is not periodic.
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Proof. Suppose lim,, ., #,, = 00, then by Lemma 3.42 we have: lim,, . 2,11+ q’;;l | =0.
As |2n41] > 1 for every n € N and || < 1 for infinitely many indices n, we have
that there exists a subsequence (k,)nen of N such that lim,, o |2k, 11| = 1. Therefore:
as |zg, 41| > 1 it follows that the set {xy,41 | n € N} is infinite. Consequently: the set

{z,, | n € N} is infinite. By Proposition 3.51 we conclude: CFs(z) is not periodic. ~ O

Corollary 6.17. Let x € C be wrrational. Let 0,, be the n-th relative error of x under
CFs. If CFys(x) is periodic, then there exists § > 0 such that |0,| < § for infinitely many
indices n € N.

Proof. Suppose CFjs(z) is periodic. By Proposition 6.16 follows not: lim, . 0, = oc.
This implies there exists § > 0 such that |#,| < ¢ for infinitely many indices n € N. [

Let x € C be quadratic irrational and let #,, be the n-th relative error of x under CFjs.
By Corollary 6.17 we see that it is necessary that there exists § > 0 such that |6,| < 0
for an infinite number of indices n for CF;s(z) to be periodic. By Theorem 3.52 it follows
that it is sufficient that there exists § > 0 such that both |6,_;| < § and |6,| < ¢ for an
infinite number of indices n for CFs(x) to be periodic.

By Proposition 6.16 we have: CF;s(x) is periodic implies that not: lim,,_, 6, = oo, for
x quadratic irrational. We now formulate a weakening of Conjecture 6.12.

Conjecture 6.18. Let x € C be quadratic irrational. Let 6, be the n-th relative error of
x under CF,s. Then not: lim,,_, 0, = co.

However, also this conjecture seems hard to prove, and I did not succeed in this. I tried
to prove Conjecture 6.18 by contradiction: I supposed both x € C quadratic irrational
and lim,, ,., 0, = co. When we do this, we get the following.

Proposition 6.19. Let x € C be quadratic irrational. Let 6, be the n-th relative error
of x under CFs. Suppose lim,,_, 0,, = co. Then:

: : dn—1 _
7. limy, oo (an + Z—n) =0,

)=-1

qn

it. limy, o0 (@
n—00 n+1qn

1

[ Zr+1 =0
gdn ’

1. 1im,, oo
. limy, oo (Tt — Yna1) = 0,
. n
v. lim,, oo szo Trpt1Yk+1 = 0,

where Z’—: is the n-th convergent and x,.1 is the (n + 1)-th complete quotient of x under
CFys. We set yg to be the other root of the polynomial that x satisfies, and y,41 =
for CFys(z) = [ao, a1, as,...] (just as in Claim 2 of the proof of Theorem 3.52).

Yn—an’

Proof. i. This directly follows from Lemma 3.42 and the assumption lim,,_,, 6,, = oc.

dn—1
. 1 qn71| _ {l‘n+1+ n ‘ ‘ q'n,fl} AR E L -1y
ii. We have |1—|— P E— < |Tny1t 7| SO limy, o0 (1"' Tnil Gn ) 0.
- 13 1 Gn-1) -1 n \ — _
Therefore: lim,,_, (xn+1 ™ ) = —1 and we conclude: lim, o (Zp41 qn_l) =—1.
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iii. By Lemma 3.33 we have: 0,, = %, and the statement follows.
=0

iv. By Proposition 3.57 we have: lim,_,o0(yn11 + 22=2) = 0. Then it follows by (i) that

qn
hmn—mo(xn—‘rl - yn+1) = 0.

v. We have: x, —y, = (X, — an) — (Yo — ap) = xnlﬂ - yn1+1 — y;:il_yiil’ and there-
fore: @, 1Yns1 = —%. Consequently: [,y Zxt1ypt1 = (—1)" - m";é—ffy’o"“
According to (iv) we have: lim, o [[}_y Zkt1Yk+1 = 0.

]
While some of the statements above may seem curious, I cannot show that any of them
leads to a contradiction. For example, by (ii) it follows that lim,,_,, ‘anqul } =1, while

|Zp41] > 1 for every n € N, and ‘qq_:’ > 1 for an infinite number of indices n. By (iv)

it follows that lim, oo (Zp11 — Yns1) = 0. We have that |z,1] > 1 for every n € N, and
therefore (v) seems peculiar, but again, I could not find a contradiction.

Although it looks like CFjs(x) is periodic for every = quadratic irrational, as the many
examples I calculated show, I am not able to prove this. We know that CFay, CF 41 and
CF,n2 do have this property, and this is a hint that it applies to CF,s too. However, in
proving periodicity for CFay, CFq; and CFyyy we used the fact that |q’;—;1| < 1 for every
n € N, which does not apply to CFjs. I have to conclude: Conjecture 6.12 and Conjecture
6.18 are still open questions.

6.4 Specific properties of the algorithm

In this section we will look at some specific properties of CF;s and we will see that CFjg
lacks a property that is shared by CFan, CFyy1 and CFyp,.

The main theorem in [9] gives a complete description of the output of CFs(z), where z
is rational. More precisely: a context-free grammar G over the alphabet Z[i] is given.
Let L(G) be the language of G and consider CFs(2) = [ag, a1, . .., a,] as a word over the
alphabet Z[i]. The main theorem states that L(G) = {CFs(2) | z € Q[i]}. We will bring
this theorem into practice in the following two propositions.

Proposition 6.20. For every n € Ny there exists z € Q[i] such that, if f;—’: is the m-th
convergent of CFs(z), then:

. _(_A\n Pn _ n-1]| __

iogn = (=0)", B =0, | %= | =n, and

i, |z — 2ol = 22| |,

qn—1 n dn
Proof. Let n € Nyy. Consider z := Val(|—i,—2i,...,—2i,—i,2+2i]). Then, by Theorem
Z1
11.3.3 in [9] we have: CFs(2) = [—i, —2i,...,—2i, —i,2+2i]. We compute the convergents
“1

(:Z_:)mgn—&-l of CFJS(Z)

Claim: We have that p, 1 = (—4)" and ¢,_; = n(—)"" 1.
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Proof of claim: We prove this by induction. We have py = ag = —i = (—i)! and ¢y =
1 = 1(—4)% Moreover: p; = ajag +1=—1=(—i)? and q; = a; = —2i = 2(—i)'. Now,
suppose py—o = (=)™, pro1 = (=)™, g2 = (m — 1)(=9)""? and g1 = m(—i)™" 1
Then for 2 <m <n—1:
Pm = QmPm—1 + Pm—2 = _Qi(_i)m + (_i)m_l = 2(_i)m+1 o (_i)m—H
— (—i)m+17
Gm = UmGm-1 + Gm—2 = —2im(—i)™ "+ (m — 1)(=i)™ % = 2m(—i)™ — (m — 1)(—i)™
= (m+1)(=)",

and the claim follows. [ |

For p,, and ¢, we have the following:

Pn = GnPp—1 + oz = —i(=0)" + (=0)" = (= )"H (=)™ =0,
Gn = nGn1 + Gna = —in(=i)"" + (n — )( )" =n(=1)" = (n = D(=1)" = (=)™
Therefore: ¢, = (—i)", &2 =0, |12 1| = ‘”

’ qn
of the proof.

} = n and this completes the first part

Now we compute p,+1 and g,41:

DPn+1 = Qn41Pn + Pn—1 = (2 + Qi) 0+ ( ) ( )
Gnt1 = Q1o + Gt = (24 20)(=0)" 4+ 1(=0)" = (2 + (2 + n)i)(—0)".

As a consequence we obtain:

. . . . Pn+1 (—Z)n 1
z = Val(|—i,—2¢,...,—2i,—1,2 + 21|) = = . — = -
o2 2 S R B[R E PR
n—1
Therefore:
ST E—
| )
B 1
B |2+(2+n)'|’
R
(-1 2+ 2—|—n 2+ (24 n)i)
_|n—|—21—2—n[_|22—2| 1
a2+ 2+n)d n 12+ (2 + n)il
2\/5‘
= — |z — —
n
and this completes the proof. n

Let z € Q[i], and let £2 be the n-th convergent of CF,s(z). According to Proposition 6.20
we see that it is not the case that |q*;—‘1| < 1 for every n < |CFs(z)|. This is in contrast to
the convergents of CFan(2). It is even the case that |“2| can be arbitrary small. Also,
Pn+1

qn+1
convergents of CFap(2).

is not always a better approximation to z than Iﬂ which is again in contrast to the

o7



Remark 6.21. Note that, in a sense, CFAH(m) is much simpler than CFJS(M),
for n € Nyy. From Proposition 6.20: CFJs(m) = [—4,—2i,...,—2i,—3,2 + 2i].
—_— —
n—1
: 1 _ 1 1
Now we will compute CFAH(m)- As |2Jr \ < |m\ = 75 < 3 we have
that ag = ﬂAH(m) = 0. Therefore z; = +0 24+ (24 n)i, and a; =

24+(24n)i

flag(2 + (24 n)i) = 24 (24 n)i. As z; = ay, the algorithm terminates and we obtain:
CFAH(m) [O, 1/(24(24+n)7)]. With the same reasoning we find: CF jy; (

The next result shows that the relative error 6,, can be arbitrary large and arbitrary small
for specific z € Q[].

2+(2+n)i) -

Proposition 6.22. For every n € N\ {0,1} there exists z € Q[i] such that, if 0,, is the
m-th relative error of CFys(z), then |0,_1| = %ﬁ and |0,,| = #g

Proof. Let n € N\ {0, 1} and consider z := Val([—i, —2i,...,—2i, —i,n + ni]). Then, by
-1
Theorem 11.3.3 in [9] we have: CFs(z) = [—i,—2i,...,—2i,—i,n + ni]. Note that the
21

first n + 1 partial quotients coincide with the number constructed in Proposition 6.20,
therefore we have:

Pn—1 = <_i)n7 pn =0,
dn—1 = n(_i)n_17 Gn = (_Z) .
Now we can compute p, 1 and g, 1:
Dn+t1 = Qny1Pn + Pn—1 = (n + TLZ) -0+ (_Z>n = (_i )
Gni1 = Qni1qn + @uo1 = (n+ni)(—=)" +n(—=i)"" = n(1 4+ 2)(—i)".
Therefore we obtain:

. . Prnt1 <_i)n 1
z = Val(|—i,—2¢,...,—2i,—i,n + ni = : — = —.
( T )= Gny1 n(1+20) (=)™ n(l+ 29)

Then:

Prn—
gl

01 = quz—l(z
_ .2 n—1\2 1 i(1424)
=n"((=)"") (n(1+2i) + n(1+2i))
=n*((=0)")" i

—1.i-1
=n(-1)"" 15

We also have:
N 2 n _ A\ 2 1 0 S n 1
On = ¢, (2 = 2) = ((=0)")" GGrrzy — o) = D s

Therefore:

li-1] _ nv2 and |9 |_ 1 _ 1

(On-a] = "2l T Vs T pi42i T a5
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and this completes the proof. Note that |z — Z”:H = Ul n\é; = %5 and on the

|q72171| T oon
1
other hand: |z — 22| = Il _ =5 _ 1 Therefore V2|2 =B = |z — Br=l) G Brojg g
q lg2 | 1 nv5 q qn—1 q
n n n n— n
better approximation than z"—‘i. O
n_

Recall that for CFan(z) we have that |6,] < 1+ /2 for every z € C, for every n. For
CFyu1(2) and CFyp(2) it is not clear whether |0,| can be arbitrary large for given z € C.

Let z € C and let (z—z)n o be the convergents of CFs(2). The following result shows that
in general it is not the case that |q’;—;1’ < 1 for every n € N. We will see that it is even
possible that |q’;—;1} > 1 for infinitely many indices n. Note that CFan, CFyy1 and CF o
do have the property that |q’;—;1} < 1 for every n € N.

Proposition 6.23. There exists z € C such that, if (Z_Z)neN

CFjs(z), then there are infinitely many indices n such that |q§_:| < 1.

are the convergents of

Proof. Consider z := 1+ y/4i —2. We calculate the continued fraction CFs(z) using
Algorithm 6.6. Then: zy =z =1+ /41 — 2 and ag = fi)5(20) = 2 + i. Therefore:

I 1 2~ (1+i)E -2
o—ap  1+V&i—2—(2+1) 4 ’

and a; = flig(z1) = —2i. Next:

1 1 3 — 21i — (3 + 4i)v/di — 2
2o = = =
2T L —ay —22‘—(14;11')\/42'—2 —(=2i) 25 ’

21 =

and as = flig(z2) = —i. Finally:

1 1
25 = = :1+\/4Z—2:Z0

29 — Qg 372117(32241‘)\/4%2 (=)

As z3 = zp, the continued fraction of z is periodic with period length 3, and we obtain
CFs(z) = [2 4 4, —2i, —i]. Now define the complex valued function f : C\{2, %2} — C
as follows:

f(z)=—i 1 :
z) = —i+ =ag +
1 ? 1

2 4 ar +
1 ! 1
241+ — ap + —
z z

We exclude % and % from the domain of f because f would not be defined on these
numbers. We can convince ourselves that these are the only two numbers where f would
be undefined. Define D := {z € C||z| < 1, Re(z) > 0, Im(z) < 0}. Note that =2 ¢ D
and %8 ¢ D.

25

Claim 1: f(D):={f(z) €C |z€ D} C D.

29



Proof of claim 1: Suppose z € D, then:

1
€ {z € C||z| > 1, Re(z) > 0, Im(2) > 0},
1

2+z+;e{zec\ Re(z) > 2, Im(z) > 1},

1
—1€{z€<CHz|<1, Re(z) > 0, Im(z) <0} = D,
2404
z

1
_2i+—1€{zeC‘0§Re(2)§1, -3 <Im(z) < -2},

2404 -
z
1
€{z€C|Re(z) >0, z€ Y},
1+ 1
2414 -
z
1 1 1 1 1 1
here Y := — =< = — >z >z
where fveClly—gl<3ly sz lv—35l=35h
1
f(z)=—i+ N e€D.
—21 +
24+ -
z

We conclude: if z € D, then f(z) € D, therefore: f(D) C D. It may be convenient to
make some drawings here. |

Claim 2: For every k € N: 2022 — f(daki2),

93(k+1)+1 93k+1

Proof of claim 2: Let £ € N, then:

q3(k41)42 1 1 3k+2
DETVEE a3(k+1)+2 1 =ax+ - =)
q3(k+1)+1 1 1 q3k+1
a3(k+1)+1 + 1 ar + 1
a3(k+1) + Grga ao + Grps
4q3k+1 43k+1

[ |
We calculate (g, )nen. For the first three terms this gives: ¢o = 1, ¢y = —2i and ¢ = —1.
Therefore we have g—f ==L ==

—; = 3, and we get: Z—f € D. By applying the preceding two

claims we obtain: Z;":—ﬁ € D for every k € N. As z € D implies that |z] < 1 we conclude:
%’“—+2|<1f0r every k € N. m

q3k+1

Remark 6.24. Let z € C be irrational. During the writing of this thesis the question
arose if it is possible to rewrite CFp1(2) = [ag, —1/a1,—1/as,...] to [bo,1/b1,1/bs, .. ],
such that [bg, 1/b1,1/ba,...] = CFs(z). This was motivated by the idea that this could be
helpful proving periodicity for CF,s(z), for z quadratic irrational. Also, the tiling obtained
by fl;s is strongly related to the tiling obtained by fi,,;. Despite several attempts, I did
not succeed in finding a procedure to rewrite CFu1(z) to CFys(2).
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7 Real continued fraction algorithms

In this chapter we will consider real continued fractions as a special case of complex
continued fractions. We will define what a real continued fraction algorithm is, and we
will see that a complex continued fraction algorithm is in fact also a real continued fraction
algorithm. Finally we will define some well-known real continued fraction algorithms and
we will find relations with the complex continued fraction algorithms of A. Hurwitz,
J. Hurwitz and J. O. Shallit.

First we give the definition of a real continued fraction and prove a proposition about
finite real continued fractions.

Definition 7.1. A finite real continued fraction is a finite complex continued fraction
lag,e1/a1, ..., e,/a,] where e, € {—1,1} for every k € {1,...,n} and a;, € Z for every
ke{0,...,n}.

Definition 7.2. An infinite real continued fraction is an infinite complex continued frac-

tion [ag, e1/a1,e2/as,...] where e, € {—1,1} for every k € Ny and a; € Z for every
ke N.
Proposition 7.3. Let [ag,e1/aq,...,e,/a,] be a proper finite real continued fraction.

Then: Val([ag,e1/aq, ..., ex/a,]) € Q.
Proof. We prove this by induction. We have: Val([a,]) = a, € Z, so Val([a,]) € Q.

Now suppose Val([agi1, €xt2/akt2, ..., en/an]) € Q. As [ag,e1/ay, ..., e,/ay] is proper we
have:
Ck+1
Val(|ag, e Aksly - -y €nlan|) = ap + ,
([ : kH/ e / D : Val([ak—i-h €k+2/ak+2; e 76n/an])

with exy1 € {—1,1} and ay € Z. Therefore Val([ay, €xr1/ak11,- -, €n/a,]) € Q and this
completes the proof. O

In the remaining part of this chapter, let CF¢ be a complex continued fraction algorithm,
let fic be the associated floor function and sg- be the associated sign function.

Lemma 7.4. If v € R, then flo(z) € Z.

Proof. Let € R, suppose fiz(x) ¢ Z. As fiz(x) € Z][i], we have |Im(flz(z))| > 1. On
the other hand: Im(xz) = 0. Therefore: 1 < |Im(fl(x)) — Im(z)| = |Im(flc(z) — z)| <
|fic(x) — x| < 1. So we obtain a contradiction and conclude: fiz(z) € Z. O

Proposition 7.5. Let x € R. Suppose sgc(R) C {—1,1}, then CFc(x) is a real continued
fraction.

Proof. We assume that x € R is irrational. For rational x the proof is similar. Let
CFc(x) = [ag, e1/a1, ea/as, .. .|, and let x be the k-th complete quotient of x under CFc¢.

Claim: x € R, a; € Z and ex4; € {—1,1} for every k € N.

Proof of claim: We prove this by induction. By assumption we have zp = z € R. By
Lemma 7.4 we have that fiz(x¢) € Z, so ay = flo(z9) € Z. By assumption we have
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e1 = sge(xg) € {—1,1}. Now suppose zx € R, a € Z and €1 € {—1,1}. Then

also rpy1 = l,ik_*;k € R, as exy1, 7, ax € R. Then, again by Lemma 7.4 we have
a1 = flo(zr41) € Z. We also have ejo = sge(xr41) € {—1,1}. [ |

By the claim we obtain: a, € Z and e,1 € {—1,1} for every n € N. Therefore we
conclude: CF¢(z) is a real infinite continued fraction. O

Suppose sgc(R) C {—1,1}, by Proposition 7.5 it follows that CF¢(x) is a real continued
fraction for every x € R. So, in a sense, CF¢ is also a ‘real continued fraction algorithm’.
We will soon make this more precise. First we will give a definition of a real floor function
and a real sign function.

Definition 7.6. Let f : R — Z be a function. We call f a real floor function if | f(z)—z| <
1 for every x € R. We call any function g : R — {—1, 1} a real sign function.

Now we give a definition of a real continued fraction algorithm.

Definition 7.7. A real continued fraction algorithm is a real floor function fl and a real
sign function sg, together with the following sequence of transformations:

Zo = x
Qp, = ﬂ(xn)
€nt+1 = Sg(xn)
R En41
Tap1 =

The input of such an algorithm should be a real number x € R. The algorithm outputs
either a finite list [ag,e1/aq,...,e,/a,] if x, —a, = 0 for some n € N. Otherwise, it
outputs an infinite list [ag, €1/a1, ea/as, .. ].

In the remaining part of this chapter, let CFr be a real continued fraction algorithm,
let flz be the associated real floor function and sgz be the associated real sign function.
From Definition 7.7 we immediately see that CFg(x) is a finite or infinite real continued
fraction for every z € R. The following result gives a condition on CF¢ and CFg for

CF¢(z) to be equal to CFg(x).

Proposition 7.8. Let z € R. If fi(w) = flg(w) and sgc(w) = sgg(w) for every w € R,
then CF¢(z) = CFg(2).

Proof. We assume z € R is irrational, if z is rational, the proof is similar. Let x := 2
and y := z. Let CF¢(z) = [ag, €1/a1, ea/as, .. .| and let x, be the n-th complete quotient
of CFe(z). Similarly, let CFr(y) = [bo, f1/b1, f2/b2,...] and let y, be the n-th complete
quotient of CFg(y).

Claim: xp = yi, ar = by and ey = fro1 for every k € N.

Proof of claim: We prove this by induction. By assumption we have g = x = y = .
Also: ag = fic(xo) = flg(yo) = bo and e; = sgc(x0) = sgr(vo) = fi- Now suppose

Ty = Y, ar = by and epy1 = fry1. Then: zpy = xikf;k = yikfblk = Yp41. Also:
a1 = flo(Tr41) = fle(Yrs1) = by and epso = sgc(Th1) = 5 (Ynr1) = frro- u
Now it immediately follows from the claim that CF¢(z) = CFgr(2). O
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We will now see that a complex continued fraction algorithm gives rise to a real continued
fraction algorithm.

Proposition 7.9. Suppose sgc(R) C {—1,1}. Define f : R — Z by f(z) = flc(2) for
every z € R. Define g : R — {—1,1} by g(2) = sgc(z) for every z € R. Then: f, g,
together with the transformations in Definition 7.7, is a real continued fraction algorithm.

Proof. All we have to check is that f is a real floor function and ¢ is a real sign function.
As we have that |f(z) — z| = |flc(2) — 2| < 1 for every z € R, we have that f is a real
floor function. It is clear that ¢ is a real sign function and this ends the proof. O

We will now define (variants of) three well-known real continued fraction algorithms.

Algorithm 7.10 (Regular continued fraction).
input: x € R,
output: a finite or infinite real continued fraction, which is generated by

Zo = T

an = |2n] (= flrep(wn))

€nt1 = 1 (= 89rcr(Tn))
R €n+41

Tn+1 Tr—n,

We will refer to this algorithm as RCF, and denote the result of the algorithm on z € R
by RCF(z).

Remark 7.11. Algorithm 7.10 gives the regular continued fraction representation of a real
number z. This is the most common continued fraction representation that can be found
in the literature.

Proposition 7.12. RCF is a real continued fraction algorithm.

Proof. In this algorithm we have flgcp(x) = |x]. As for every z € R: |z — |z]| < 1 it
follows that flgcr is a real floor function. We have sggep(z) = 1 for every o € R and it
follows that sgrcp is a real sign function. Consequently: RCF is a real continued fraction
algorithm. ]

Algorithm 7.13 (Nearest integer continued fraction).
input: x € R,
output: a finite or infinite real continued fraction, which is generated by

o =

an = |z, + %J (= flnice(7n))

ent1 = 1 (= sgnicr(Tn))
. €n+1

:Cn+1 —  Zhn—an

We will refer to this algorithm as NICF, and denote the result of the algorithm on x € R
by NICF(x).

Remark 7.14. Algorithm 7.13 gives a variant of the nearest integer continued fraction
expansion of x. This is a well-known expansion that is common in the literature. In
Algorithm 7.13 all the partial numerators are assigned the value 1, where in the nearest
integer continued fraction expansion of x, the partial numerators are chosen from {—1, 1},
such that the partial quotients a,, are positive for every positive index n.
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Proposition 7.15. NICF is a real continued fraction algorithm.

Proof. Let x € R. We have |fiyce(z) — 2| = |z + 3] — 2| < 1 < 1. Furthermore we
have sgyce(z) = 1. Tt follows that fly,cg is a real floor function and sgycg is a real sign
function. Therefore: NICF is a real continued fraction algorithm. O

Now we will consider a less well known real continued fraction algorithm. First, we define
the following function.

Definition 7.16. Define for every 8 € 27 the interval I3 C R as follows:
Ig =[-1,1] it =0,

Iy =B-18+1] if 8>2,
Is =[—1,8+1) if B<—2.

We define flgcp : R = Z as follows:

foce(z) = x ifx € Z,
ECEM 7 B otherwise, where 3 € 27Z such that = € I;.

Algorithm 7.17 (Even continued fraction).
input: x € R,
output: a finite or infinite real continued fraction, which is generated by

T =

Qp, = flecp(zn)

ent1 = —1 (= sgecr(wn))
P €n41

R

We will refer to this algorithm as ECF, and denote the result of the algorithm on z € R
by ECF(x).

Remark 7.18. Algorithm 7.17 is a variation of the continued fraction expansion with even
partial quotients. In Algorithm 7.17 all the partial numerators are assigned the value —1,
where in the even continued fraction expansion of x, the partial numerators are chosen
from {—1,1}, such that the partial quotients a,, are positive for every positive index n.

Proposition 7.19. ECF is a real continued fraction algorithm.

Proof. Let x € R, suppose x € Z, then flecp(z) = x, so |flecp(x) — 2| < 1. Now suppose
x & 7, let B € 27 such that x € [f—1, f+1]. Then we have flgcg(z) = S and consequently:
|flece(z) — x| < 1. Therefore: flecr is a real floor function. It is clean that sggcp is a real
sign function. We conclude: ECF is a real continued fraction algorithm. O

We have just defined three real continued fraction algorithms, namely RCF, NICF and
ECF. In the previous chapters we defined the complex continued fraction algorithms
CFan, CFyq1, CFygo and CFys. Note that the image of the sign functions of every of
these four algorithms is either {—1} or {1}. Therefore, by Proposition 7.5 we have
that CFap(x), CFyp1(z), CFyha(x) and CFjs(z) are real continued fractions if z € R. The
following propositions show some interesting relations between the real continued fraction
algorithms and the complex continued fraction algorithms we have defined.

64



Proposition 7.20. Let x € R. Then RCF(x) = CF;s(z).

Proof. According to Proposition 7.8 we only have to show: fi;5(z) = flrcr(2) and sg;s(2) =
Sgrce(2) for every z € R. Now, let z € R, then let z := Re(z), y := Im(z) = 0. Let
a:=|z|,b:=|y] =0. Then: (x —a)+(y—b)=z—|z/]+0—-0) =2z—|z] <1
So according to Definition 6.1 we have: fijs(z) = a + bi = |x| = |2| = flrce(2). By
definition: sg;5(z) = 1 = sgrcp(2) and this completes the proof. O

Proposition 7.21. Let x € R. Then NICF(z) = CFan(2).

Proof. According to Proposition 7.8 we only have to show: flay(2) = flyice(2) and
sgan(2) = sgnice(z) for every z € R. Now let z € R, then we have that fiyy(z) =
[Re(z) + 4] 4+ Im(z) + 1]i = [z + 3] + [0+ 3]i = |2+ 3] = fluce(z). We also have
sgan(2) = 1 = sgnice(2) and this ends the proof. O

Proposition 7.22. Let x € R. Then ECF(z) = CFy1(x) = CFypa(x).

Proof. We will show: fljyy;(2) = flgce(2) = flpa(2) and sgyu1(2) = sgece(2) = sgyua(2) for
every z € R. Let z € R. Then: sg;y;(2) = —1 = sggcp(2) = —1 = sgj40(2). Let a € 2Z

and let S, be as defined in Section 5.1 and W, be as defined in Section 5.2. Let I, be as
in Definition 7.16 and let P :=R\ Z.

Claim: S,NP=1,NP=W,N P for every a € 27Z.

Proof of claim: Let a € 2Z. Then S,NP = (a—1,a+1)\{a}, I,NP = (a—1,a+1)\{a}
and W,NP = (a—1,a+ 1)\ {a}. This proves the claim. [ |

Now, let z € R. Suppose z € Z, then flecp(2) = 2 = fiju(2) = 2 = flju(2). Now suppose
z ¢ 7Z; note that in this case: z € P. By applying the claim and using the fact that if
z € P, then z € S,, for some « € 27, we have:

flece(2) = a, where a € 27 such that z € I,
= «a, where a € (1 +1)Z such that z € S,

= flyn (2).

Similarly, by applying the claim and using the fact that if z € P, then 2z € W, for some
«a € 27, we have:

flece(2) = a, where a € 2Z such that z € I,
= «, where a € (1 +4)Z such that z € W,

= flina(2)-

Therefore: fl;41(2) = flece(2) = flia(2). By Proposition 7.8 we conclude: CFgcp(z) =
CFJH1<JJ> = CFJHQ(J}). ]

According to the last three results we have that CF s is a generalisation of RCF, CFay
generalises NICF and both CF,y; and CF,y, are generalisations of ECF.
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