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Abstract

In this literature study, we study the notion of zk-SNARKs. These are statistical zero-
knowledge proofs that are complete, knowledge sound, and succinct. To define these
terms, we also introduce the big O. To build a SNARK, we will need a private infor-
mation retrieval scheme, a probabilistically checkable proof, and an extractable hash
function. We also build a Merkle tree, so that we can compute a Merkle tree commit-
ment. With these concepts, we are ready to build a SNARK. In the end, we know what
it means for a cryptographic protocol to be a zk-SNARK and we know exactly how to
build one.
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1 Introduction

1.1 Outline

In this literature study, we explain the concept of zk-SNARKs, which is a concept
in cryptography and uses the concept of zero-knowledge proofs. This means we have
notions of mathematics, but also some of computer science. Since zk-SNARKs are a
fairly new subject manner, there is still little mathematical writing about this subject.
In fact, the idea behind zero-knowledge proofs was only introduced in the 1980s and the
abbreviation zk-SNARK was just introduced by Bitansky et al in 2012. The goal of this
thesis is thus to translate the notions of computer science, to a more mathematical one.
Therefore, this thesis is set up so that a common mathematics student without extra
knowledge of computer science will understand everything that is written.

Since zk-SNARKs can be a hard concept to grasp, we will explain everything in layers.
We will begin small and fill in more and more details as the thesis processes. We will first
look at the idea behind zk-SNARKs in Section 2 and remain informal. In Section 4 we
will fill in the details of the definition of zk-SNARKs and we will define them formally.
After we exactly know what it means for a cryptographic scheme to be a zk-SNARK,
we will see an example of a SNARK in Section 5. Note that we left out the ‘zk’-part
here. As this is again a hard concept, we will also begin small and fill in the details one
by one.
Moreover, in the last section, we will find an appendix. Here, all the minor definitions
that were needed during this thesis are written down.
In the end, we will have a full understanding of zk-SNARKs; we know the exact sys-
tems and requirements behind them and we will know how we can set up a SNARK
ourselves.

1.2 Situation

zk-SNARKs are a form of non-interactive zero-knowledge proofs, where the zk in zk-
SNARK refers to the zero-knowledge part. A zero-knowledge proof is a protocol where
a prover wants to prove to the verifier that his statement is true. The zero-knowledge
part refers to the notion that no information will leak, except for whether the statement
of the prover is true or not.
Whereas the first zero-knowledge proofs depended on some interaction between the
verifier and the prover, a zk-SNARK is non-interactive. This means that explicit com-
munication between the prover and the verifier is not allowed.

In our study, we will look at NP-problems, so at statements that can be verified in
polynomial time. In Section 3.1 we will learn what polynomial time means, but for now,
assume that the verifier can verify the statement in a relatively short amount of time.
Moreover, a function is called a problem if it will only output a 0 or a 1. In our case, if
the verify finds that a statement is true, it will output a 1, and else a 0.
It is also known that we can build a SNARK for every NP-problem. For example, see [5].
Outside of the zero-knowledge part, this succinctness is a remarkable part of zk-SNARKs.
With succinctness, we mean the notion that a verifier can verify the statement in a rel-
atively short amount of time, even if the making of the proof took a long time to
do.

In some literature, you will also find zk-SNARGs or zk-STARKs. These are very similar
concepts, but there is a slight difference. In [3] we can find the definition of a zk-
SNARG where the requirement of knowledge soundness is just replaced by computational
soundness. We will explain the meaning of knowledge soundness in Section 4.
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As we will later see, zk-SNARKs require a trusted set-up phase, which we will call the
generation of a common reference string. This string ensures us that indeed a trusted
set-up has taken place. zk-STARKs do not require this phase, they use publicly verifiable
randomness instead.

Of course, there are also practical applications of zk-SNARKs. We will not dive into
these applications, but it is good to know that zk-SNARKs are for example used in
cryptocurrency, for instance, Zcash and Monero use the notion of zk-SNARKs.
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2 Idea behind zk-SNARKs

We begin by looking at the idea behind zk-SNARKs.
The situation is as follows: we have two people, Alice and Bob, and Bob wants to prove
to Alice that a statement is true, without revealing any information about the proof.
In other words, he wants to prove to Alice that he has certain knowledge. Alice has
to verify that the proof of Bob is valid. Due to their respective roles in this process,
Alice is often called the verifier and Bob is often called the prover. In this process,
they will use three algorithms: the generation of a common reference string, the proof
algorithm, and the verify algorithm. We will also have one additional algorithm called
the simulator.

2.1 Algorithms

Generation common reference string: Before the whole process begins, Alice has
to generate a common reference string, which is a random string. To do this, she needs
a decidable binary relation R (9.1) and a security parameter λ ∈ N, so λ determines
how difficult it is to break the process for an outsider. She inputs 1λ, which is the
concatenation of λ times 1. She gets a common reference string, a verification status,
and a trapdoor (9.2) as output. She sends this common reference string to Bob, which
he needs for his proof algorithm. Later on, she needs the verification status, which she
does not send to anyone. The trapdoor is later used in the simulator algorithm.
This part was just the set-up phase for the whole process. The generation of the common
reference string is done so that both Alice and Bob can assume that a trusted set-up
has taken place. Moreover, at this stage, Alice does not know what Bob wants to prove,
but she has generated everything so that Bob can prove some statement and so that
Alice can check this proof.

Proof algorithm: Bob takes as input the common reference string, generated by Alice,
a statement, and a witness (9.3). He chooses this statement and its witness such that
the pair is in the relation R. His algorithm will then output some proof. He sends an
encrypted version of this proof, together with the statement, back to Alice.
He chooses this statement himself, in this stage of the process. The statement, and
therefore its witness, was not known beforehand. After he has sent his statement and
his proof to Alice, he can not change them. Furthermore, when we will later build a
SNARK in Section 5.2, Bob will use Merkle trees to encrypt his proof. He could encrypt
his proof in other ways, but we will only study this case.

Verify algorithm: Alice uses her generated verification status, together with the en-
crypted proof of Bob, to check whether the statement of Bob is true or false. If she
accepts the proof, the verify algorithm will output a 1 and otherwise it will output a
0.

Simulator algorithm: The simulator is used by outsiders, so people outside of Alice
and Bob. It uses the trapdoor and the common reference string, created by Alice,
and the statement, created by Bob, to also output a valid proof. People who use the
simulator to interact with Alice will likewise get an accepted proof if Bob’s proof is
accepted, and the proof will not be accepted if Bob’s proof is not accepted. And so,
these outsiders can learn what Bob learns from Alice; they learn if the statement of Bob
is true or false.

5



In the end, we have the following scheme:

Here, G is the algorithm of Alice to generate a common reference string, String is the
common reference string itself, Ver is the verification status, and Trap is the trapdoor.
Furthermore, Proof is the proof algorithm of Bob, s is his statement, w is the witness of
s, and π is his proof. As said before, Bob has to choose s and w such that (s, w) ∈ R;
w is not a valid witness for statement s if (s, w) /∈ R.
Moreover, Verify is the verify algorithm of Alice, and c is defined as:

c =

{
1 if Alice accepts π

0 otherwise

Lastly, Simulator is the simulator algorithm, which also generates a proof π.

We will later see that Alice will verify the encryption of proof π step by step. She will
request only parts of the encryption of π so that the verification process will take less
time. This means that Bob can not change his proof over time; he has to commit to π
and its encryption, and as a result to the divided parts of the encryption of π. However,
he does not have to reveal the values of the divided parts beforehand. The values will
only be revealed when Alice requests them. However, Alice will not request every value,
so some values remain hidden.
The encryption will be done using a private information retrieval scheme, which will be
explained in Section 6.1.

2.2 Informal requirements

In the case of zk-SNARKs, there are several requirements for the algorithms mentioned
above. These requirements are informally implemented in the name zk-SNARK since it
is an abbreviation. zk-SNARK stands for:

• Zero-knowledge: No information leaks in the process

• Succinct: Proofs are short, it is easy to verify that a given argument proves the
statement

• Non-interactive: There is no back-and-forth communication between Alice and
Bob

• Arguments: Alice is only protected against adversaries without a huge amount
of computer power
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• of Knowledge: Bob has actual proof of his arguments, he is the one with knowl-
edge

We will later see how these requirements are defined formally, and how this is imple-
mented in the scheme from Section (2.1).
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3 Functions

To define the requirements for zk-SNARKs formally, we first need to know what it means
for a function to be negligible, where we will use the so-called big O notation.

3.1 Big O

To measure the runtime of an algorithm or to compare the runtimes of multiple algo-
rithms, we use the big O notation. The runtime of an algorithm is sometimes also called
the execution time of an algorithm.
Let f and g be two functions. Informally, f ∈ O(g), if f does not asymptotically grow
much faster than g. This is sometimes also denoted as f = O(g). Below, O(g) is defined
formally.

Definition 3.1. Let g : N → R+. Then O(g) = {f : N → R+| ∃ c ∈ R+ and ∃ n0 ∈ N
such that ∀n ≥ n0 : f(n) ≤ c · g(n)}

For example, 3(n)(n + 4) ∈ O(n2). Indeed, take c = 6 and n0 = 4, then
∀n ≥ n0 = 4 : 3(n)(n+ 4) = 3n2 + 12n ≤ c · n2 = 6n2.

For a polynomial expression, we can often quickly see the asymptotic upper bound, as
adx

d + ad−1x
d−1 + ...+ a1x+ z0 ∈ O(xd). We see that the coefficients ad, ..., a1, z0 do

not influence the asymptotic upper bound, and the same is true for the lower variables
xd−1, ..., x.

The most simple runtime is constant time, which is expressed as f(n) = O(1). This
simply means that the runtime is not dependent on the length of the input of the
algorithm.

A common runtime is exponential time, which is expressed as f(n) = 2O(n). So, in
other words: ∃ c ∈ R+ and ∃ n0 ∈ N such that ∀n ≥ n0 : f(n) ≤ 2c·n. Note that we can
now also write: f(n) ≤ mn for some m > 0. This is because 2c·n = (2c)

n

and if we set
m = 2c we get our desired expression.
In conclusion, f(n) = 2O(n) is equivalent to f(n) ∈ O(mn), with m > 0.

A different common runtime is polynomial time, which is expressed as
f(n) = poly(n) = 2O(log(n)). This simply means that f(n) is bounded by some polyno-
mial expression with variable n.
This is because f(n) = poly(n) means that ∃ c ∈ R+ and ∃ n0 ∈ N such that
∀n ≥ n0 : f(n) ≤ 2c·log(n). Here, we can use any logarithmic base greater than 1.
Note that we can write n as 2log2(n). And so, nc = (2log2(n))

c

= 2c·log2(n). Substituting
this in our equation, we get that f(n) = poly(n) means that ∃ c ∈ R+ and ∃ n0 ∈ N
such that ∀n ≥ n0 : f(n) ≤ nc.

Another common runtime is polylogarithmic time, which is expressed as
f(n) = poly(log(n)). This is sometimes shortened as f(n) = polylog(n).
Using our knowledge of polynomial time, we see that f(n) = polylog(n) means that
∃ c ∈ R+ and ∃ n0 ∈ N such that ∀n ≥ n0 : f(n) ≤ (log(n))c = logc(n).

As we see, the big O defines an asymptotic upper bound, but we can also define an
asymptotic lower bound. This is known as the big Ω.

Definition 3.2. Let g : N → R+. Then Ω(g) = {f : N → R+|∃ c ∈ R+ and ∃ n0 ∈ N
such that ∀n ≥ n0 : c · g(n) ≤ f(n)}.
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3.2 Negligible functions

Now that we are familiar with the big O notation, we can define what it means for a
function to be negligible.

Definition 3.3. A function f : N → R+ is negligible in λ ∈ N, if ∃ c ∈ N such that
f(λ) ∈ O(λ−c), where λ is the security parameter.
This is denoted by f = negl(λ).
Furthermore, a function f is overwhelming in λ ∈ N if 1 − f(λ) is negligible, so if
∃ c ∈ N such that (1 − f(λ)) ∈ O(λ−c)
This is denoted by f = 1 − negl(λ)

If we combine this with our knowledge of the big O, we get the following:
A function f : N → R+ is negligible if ∀c ∈ N ∃ N ∈ Z such that ∀x > N :
|f(x)| < 1

xc
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4 Details of zk-SNARKs

4.1 Formal requirements

To define a zk-SNARK on the system outlined in Section 2.1, there are some require-
ments. These requirements are:

• Completeness: A verifier will accept a prover’s proof of a statement overwhelmingly
when the prover has a valid witness.

• Knowledge soundness: When an argument is valid, there is an extractor (9.4) that
can compute a witness successfully.

• Succinctness: The verification algorithm and the proof algorithm only need poly-
nomial time.

• Statistical Zero-knowledge: Only whether a statement is true or false will leak in
the process.

We will now define these requirements formally. We have the same situation as in Section
2. We have a generation algorithm G, a verification algorithm, and a proof algorithm.
This means that we still have the same scheme as before:

The requirements are formally defined as follows:

Completeness: ∀λ ∈ N, ∀R and ∀(s, w) ∈ R:

P[Verify(Ver, s, π) = 1 and (s, w) ∈ R | G(1λ, R) 7→
(String, Ver, Trap) and Proof(String, s, w) 7→ π] = 1− negl(λ)

As we can see, in this requirement we can just follow the scheme; the generator algorithm
of Alice needs a security parameter λ and relation R and outputs a common reference
string String, a verification status Ver and a trapdoor Trap, however, this trapdoor
is not further used in this requirement. Now, Bob uses the common reference string,
and his own statement s and its witness w to make a proof π, where (s, w) ∈ R. In
other words, w is a valid witness for s. Since (s, w) ∈ R, we want Alice to accept the
statement and the proof.
So, the requirement is that Alice overwhelmingly accepts the statement s with its proof
π, using her verification status, when the above circumstances are present.

Knowledge soundness: ∀A, an adversary (9.5), ∃ ϵA, an extractor, where A and ϵA
are both probabilistic Turing machines (9.6), we have:

P[Verify(Ver, s, π) = 1 and (s, w) ̸∈ R | G(1λ, R) 7→
(String, Ver, Trap) and A∥ϵA(String) 7→ ((s, π), w))] = negl(λ)
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Again, we follow the scheme. Alice uses the security parameter λ and the relation R to
generate the common reference string String, the verification status Ver and the trapdoor
Trap. Now, there is an adversary that makes a valid proof π for a statement s, so Alice
accepts this proof. Moreover, we have an extractor that will compute a witness w for
this statement s. Since proof π for the statement s will be accepted, we require that
this witness is valid. Or in other words, the probability that (s, w) ̸∈ R is negligible.
Summarised, this means that the probability that an adversary has a valid proof for a
statement, but the statement and its witness are not in the language R, is negligible.
Following the above description, we can also write:

P[Verify(Ver, s, π) = 1 and (s, w) ∈ R | G(1λ, R) 7→
(String, Ver, Trap) and A∥ϵA(String) 7→ ((s, π), w))] = 1− negl(λ)

Succinctness: Verify runs in poly(λ+ |s|) time and Proof runs in poly(λ) time.

Statistical Zero-knowledge: ∀λ ∈ N, ∀R, ∀(s, w) ∈ R and ∀A, where A is again
an adversary that is a probabilistic Turing machine, the following distributions are
statistically close (9.7):

F1 = [Proof(String, s, w) 7→ π1 | G(1λ, R) 7→ (String, Ver, Trap)]
F2 = [Proof(String, Trap, s) 7→ π2 | G(1λ, R) 7→ (String, Ver, Trap)]

So, once more Alice uses the security parameter λ and the relation R to generate a
common reference string String, a verification status Ver and a trapdoor Trap. In F1,
Bob makes a proof π1 for his statement s and its witness w. In F2 the simulator makes a
proof π2 for the same statement s, but now using the trapdoor. In this proof algorithm,
the trapdoor is used as a statement and s is used as the witness of the trapdoor.
Now, we have statistical zero-knowledge if the distribution F1, so the distribution where
Bob makes a proof, is statistically close to the distribution F2, so the distribution where
the simulator makes a proof. Looking at the definition of statistically close, this means
that the variation distance of these two distributions is negligible. So, the difference
between the values of the probabilities of F1 and F2 is negligible, for every event in the
distributions.
And so, only whether a statement is true or false can leak in this process and no other
information will be leaked.
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5 Building a SNARK

These algorithms are still quite vague, so we will now look at a more detailed description
of our four main algorithms. We will show an implementation of these algorithms that
uses Merkle trees. These Merkle trees will allow us to compute a succinct commitment
for π so that the verification and the proof algorithms will be succinct. We will ignore
the zero-knowledge part.
Note that this is just one example of how to build a SNARK, there are also other ways
to build SNARKs. For example, Anca Nitulescu used lattices to build a SNARK, which
is based on Learning With Errors, see [3].

5.1 Hashes

In computer science, hashes are often used to encrypt data. The definition of a hash is
the following:

Definition 5.1. A cryptographic hash function h takes an input M and returns a
hash value h(M) of a fixed length n.

Usually, this input M exists of bits. In this case for h we have: h: {0,1}∗ → {0,1}n.
Here, {0,1}∗ means that the input is of arbitrary length, and the input only consists of
strings of the numbers 0 and 1, {0,1}n means the output is of length n, and the output
only consists of the numbers 0 and 1.
Simply put, we can see a hash function as a function that will encrypt its input to an
output with a fixed length.

For a hash function to be safe, we often demand the hash to be collision-resistant.
Informally, this means that it is hard to find multiple inputs where the output of the
hash will be the same. This is formally defined as:

Definition 5.2. A hash function h is collision-resistant if for all A, an algorithm of
polynomial size, and for all k ∈ N we have:

P[x ̸= y and h(x) = h(y)|A(h) 7→ (x, y)] ≤ negl(k)

Note that we need an algorithm of polynomial size. This means that the size of A grows
as the input h becomes bigger, but it can not asymptotically grow faster than some
polynomial expression with variable h.

5.2 Merkle Trees

To build a Merkle tree we will need a proof π, this is the proof we want to encrypt.
For the encryption, we use a collision-resistant hash h: {0,1}g(n) → {0,1}n, with n ∈ N.
Note that this means that g is a function in n. We will divide π into |π|

g(n) pieces, here

|π| is the size of π. This means that every piece is of length g(n), as the sum of the
length of the pieces should be equal to the length of π. Because, if l is the length of a

piece, we get: |π|
g(n) · l = |π|, and so l = |π| \( |π|

g(n) ) = g(n).

Since we have pieces of length g(n), we can apply our hash function h on each of the
pieces, since h takes inputs of length g(n). This will give us the encryption of the
pieces, where the encrypted pieces are of length n. Now, we take some encrypted pieces
together, by just concatenating the hash values such that we get a string of length g(n).
We again apply our hash function h and so forth. We iterate this until we reach one
single string of length n.
This will give us a tree of encrypted pieces, which is called the Merkle tree of π.
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If we need to, we will pad with zeroes. For example, if we want to split 111 into two
parts, we get 11 and 10, where we used an extra 0 at the end so that we still have two
strings of the same length.

As an example, we split π into 9 pieces and we take g(n) = 3. We then get the following
picture:

h12 = h(h9h10h11)

h9 = h(h0h1h2)

h0 = h(π0) h1 = h(π1) h2 = h(π2)

h10 = h(h3h4h5)

h3 = h(π3) h4 = h(π4) h5 = h(π5)

h11 = h(h6h7h8)

h6 = h(π6) h7 = h(π7) h8 = h(π8)

Here, π0 are the first g(n) bits of π, π1 are the second g(n) bits of π, et cetera. We
apply the hash on these pieces and get the hash values h0, h1, ..., h8. Since g(n) = 3,
we take the first three encrypted pieces together and apply our hash again, resulting in
h9 = h(h0h1h2). We do the same for the middle three and last three encrypted pieces.
Now we get the hash values h9, h10 and h11, we combine these to get h12 = h(h9h10h11).
Since we end up with a single string (of length n), we end the process.

Now, if |π| = ( g(n)n )d+1, for some d ∈ N, we will get a tree of depth d.
Often, g(n) = 2n. In that case, we will get a binary tree, since every vertex in the three
is of length n and we take a hash over a concatenation of length g(n) = 2n, so we should
concatenate 2 vertices each time. As a result, in the case of g(n) = 2n, the depth of the
Merkle tree is d = log2(π).

To build our SNARK, we use a specific labelling strategy.
We associate a vertex in the tree with the path from the root to this vertex. So, for a
vertex of distance j from the root we have: i = i1...ij , where il is the l-th vertex in the
tree and the root is labelled with the empty string ∅. We will label the tree as below,
but we can choose whatever labelling system we like.

∅

i1

i4 i5 i6

i2

i7 i8 i9

i3

i10 i11 i12

Let d ∈ N and let k ∈ N. Then, for a Merkle tree of depth d and a hash function
h: {0,1}k2 → {0,1}k, we label the vertices as follows:

• Let i = i1...id be a leaf of the tree, so this leaf is the i-th k-bit block of proof π.
We say a block is of k-bit if the block consists of k bits. We hash the value of this
k-bit block and denote it by li.

• Let i = i1...in be a vertex that is not a leaf. We will label it by h(i = li1...iik), so
as the hash of the concatenation of the values of its k children.

• The root is labelled by h(l1l2...lk), so again as the hash of the values of its k
children. We also denote this as lϵ and it is called the root hash, top hash, or
master hash.
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Following this system, we get the following labelling:

lϵ = h(l1l2l3)

l1 = h(l4l5l6)

l4 = h(i4) l5 = h(i5) l6 = h(i6)

l2 = h(l7l8l9)

l7 = h(i7) l8 = h(i8) l9 = h(i9)

l3 = h(l10l11l12)

l10 = h(i10) l11 = h(i11) l12 = h(i12)

Now that all the vertices are labelled, we define a Merkle tree commitment as the pair
(d, lϵ). We also define an opening openi as the set of all the labels of all the vertices
and their siblings of the path from the root to the vertex i. So, in the example above,
open5 = {lϵ, l1, l2, l3, l4, l5, l6}.

5.3 Our algorithms

We will now show how to build a SNARK, where more details like specific parameters
and requirements will be filled in later. We have the same four algorithms as before, but
we will leave out the simulator since the simulator can copy the algorithms of Bob.

Generation common reference string: As before, Alice has an algorithm G. In our
example, this algorithm consists of two main steps:

1. the verification status

2. the common reference string, linked to the verification status

For the first step, Alice first generates a vector r = (r1, r2, ..., rq), consisting of strings
of coins needed for the verification process, where a coin is a random bit. We can see
the random generation as a coin toss, so for example if the coin lands on heads, ril = 1,
and if the coin lands on tails, ril = 0, for an i ∈ [q] = {1, 2, ..., q} = {k ∈ N | k ≤ q},
l ∈ N, and ril is the l-th bit in the string ri.
Then, she again generates a string of coins K, where K will be later used for encryption.
In this section, we will not see how this K is implemented, as this is a detail we will fill
in in Section 7.1. Lastly, she generates a hash function h.
Now, the verification status is set as the triple Ver := (h, r, K).

For the second step, Alice first computes r(j) = (r
(j)
1 , r

(j)
2 , ..., r

(j)
q ), where j ∈ N and

∀i ∈ [q]: r
(j)
i is defined as first j bits of ri. She defines the set r∗ = {r(j)| j ∈ N}. She

then computes Cr∗ = {Cr(j) | Cr(j) is an encryption of r(j), j ∈ N}.
Now, the common reference string is set as the pair String := (h, Cr∗).

This concludes the generation of the verification status and the common reference string.
In a small overview, we get the following:

1. Generate r = (r1, r2, ..., rq) for verifying, generate K for encrypting, and generate hash
h.
Ver := (h, r, K)

2. Compute r(j) = (r
(j)
1 , r

(j)
2 , ..., r

(j)
q ), set r∗ = {r(j)| j ∈ N}, and compute

Cr∗ = {Cr(j) | Cr(j) is an encryption of r(j), j ∈ N}.
String := (h, Cr∗).
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Proof algorithm: Now that Alice has generated a common reference string, Bob can
make his proof. This is again done in two main steps:

1. Generating a simple proof π

2. Transforming this proof using a Merkle tree

For the first step, Bob chooses a statement s with witness w and makes a proof π for
this statement. How he does this exactly, we will see in Section 7.2. He also computes
a Merkle tree commitment (d, lϵ) for this proof.

For the second step, Bob computes a database and stores every opening for every point
where the proof π is needed for the verification process. This collection of points is
defined as the set opena. He then encrypts opena as Copena

. In this process, he will use
a private information retrieval scheme, which we will explain in Section 6.1.
The final proof of Bob is now set as the triple Π = (d, lϵ, Copena

).

In a small overview, we get the following:

1. Make proof π for statement s and witness w. Compute (d, lϵ)

2. Compute opena = {Opening of π}, compute encryption Copena
.

Π := (d, lϵ, Copena
)

Verify algorithm: Now that Bob has generated his proof Π, Alice has to verify this
proof. She first has to verify the specific parameters, which will be explained in Section
7.3. She also decrypts Copena

and verifies its openings. To verify the openings, she
checks if her verify algorithm accepts the values of points of π in the database. If the
verify algorithm accepts these values, she also accepts the proof Π of Bob. Otherwise,
she will reject his proof.

Again, in a small overview, we get the following:

1. Verify the parameters

2. Decrypt Copena

3. Verify the openings

This concludes the general idea of building a SNARK using Merkle Trees. We will now
focus on filling in the details of this process.

15



6 Details building a SNARK

To meet the requirements for a SNARK in our construction, we use specific algorithms.
We will explain these algorithms in this section, so we can fill in the details of Section
5.

6.1 Private information retrieval

For our construction, we first need a computational polylogarithmic private information
retrieval scheme. This is a scheme where someone can access data from a database,
without revealing what data is accessed.

A private information retrieval scheme is a triple of algorithms (PEnc, PEval, PDec).
Here, PEnc is an encryption algorithm, PEval is an evaluation algorithm and PDec is a
decryption algorithm.

Let DB be a database with 2n data points, with n ∈ N, and where each data point is
an element of {0,1}j , with j ∈ N. Let i ∈ {0,1}n be a query (9.8) to database DB, and
let λ be the security parameter. Then, we have the following:

• The encryption algorithm will encrypt i, using the security parameter λ and ran-
domness W . So: PEncW (1λ, i) 7→ C, where C is the encryption of query i.

• The evaluation algorithm will generate a string x, where DB[i] is in some way
incorporated in x, so PEval(DB, C) 7→ x.
Moreover, PEval(DB, C) = poly(λ, 2n, j).

• The decryption algorithm will decrypt string x so that DB[i] will be the output.
Again, randomness W is used. So, we get: PDecW (x) 7→ DB[i].

For this triple to be a private information retrieval scheme, we have the following three
requirements:

Correctness: If we encrypt some query i with our encryption algorithm, then use our
evaluation algorithm, and lastly use our decryption algorithm, we will get the original
query:

P[PDecW (x) = DB[i] | PEncW (1λ, i) 7→ C and PEval(DB, C) 7→ x] = 1.

Succinctness: PEncW (1λ, i) = poly(λ, n, j) and PDecR(x) = poly(λ, n, j). In
addition, the size of C and the size of x are bounded.

Semantic security: The encryption is semantically secure for multiple queries.
This is defined as follows: for all algorithms A of polynomial size, for all security parame-
ters λ ∈ N, and for all pairs of queries i = (i1, ..., iq) ∈ {0,1}poly(λ),
î = (̂i1, ..., îq) ∈ {0,1}poly(λ), with q ∈ N, we have:

P[A(PEncW (1λ, i)) = 1] − P[A(PEncW (1λ, î)) = 1] ≤ negl(λ)

Since i is a vector, we have that PEncW (1λ, i) = (PEncW1
(1λ, i1), ... , PEncWq

(1λ,

iq)), and the same is true for î.
In other words, only negligible information can be retrieved from the encryption of i
and î.

For our construction, we also required this private information retrieval scheme to be
polylogarithmic, so this whole scheme should be done in polylog(n) time.
This concludes the definition of a private information retrieval scheme.
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6.2 Probabilistically checkable proofs

Secondly, we need a probabilistically checkable proof, where a universal relation RU is
used.

Definition 6.1. A universal relation is defined as the set
RU = {(s, w)| w is a witness for statement s}. Here, s is defined as s = (M, x, t),
with |w| ≤ t for every witness w, M is a Turing machine, and M will accept (x, w) in
t steps or less.

We can also define a subset Rc ⊆ RU :

Definition 6.2. A subset Rc of RU is defined as the set Rc = {(s, w)| w is a witness
for statement s, such that t ≤ |x|c}.

Again, s is defined as s = (M, x, t), just as in the definition of a universal relation.

A probabilistically checkable proof for a universal relation RU is now defined as a triple
of algorithms (Ppcp, Vpcp, Epcp). Here, Ppcp is the proof algorithm, Vpcp is the verify
algorithm, and Epcp is an extractor.

Let (s, w) ∈ RU , with s a statement and w a witness for s. Then, we have the
following:

• The proof algorithm will generate a proof π for input (s, w), so: Ppcp(s, w) 7→ π.
We have that |π| = poly(t), where |π| is the size of π.
Furthermore, Ppcp(s, w) = poly(|s|, t).

• The verify algorithm will verify proof π for the pair (s, w), where π is made by
Ppcp. For this, the verify algorithm needs a pair (s, r), where r ∈ {0,1}O(log(t)).
So, we get that:

V π
pcp(s, r) =

{
1 if proof π is accepted

0 otherwise

Here, we have V π
pcp(s, r) = poly(|s|), and V π

pcp(s, r) uses O(log(t)) random bits
and polylog(t) locations in proof π.

• The extractor will compute a witness w for the pair (s, π), such that (s, w) ∈ RU .
So, Epcp(s, π) 7→ w. We also have Epcp(s, π) = poly(|s|, t).

For this triple to be a probabilistically checkable proof, we have the following two re-
quirements:

Completeness: A valid proof for a statement with a valid witness will be accepted
overwhelmingly:

∀(s, w) ∈ RU , ∀λ ∈ N: P[V π
pcp(s, r) = 1] = 1 − negl(λ)

Soundness: A pair (ŝ, ŵ) /∈ RU will be accepted negligibly:

If ∃ ϵ > 0, such that ∀s: P[V π
pcp(s, r) = 1] ≥ 1 − ϵ,

then the extractor will compute a witness w for the pair (s, π), such that (s, w) ∈ RU .
So, Epcp(s, π) 7→ w. We also have Epcp(s, π) = poly(|s|, t).

This concludes the definition of a probabilistically checkable proof.
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6.3 Extractable collision-resistant hashes

Lastly, we need an extractable collision-resistant hash function. We have already seen
the definition of a hash function and what it means for a hash function to be collision-
resistant in Section 5.1, so now we only need to define what it means for a function to
be extractable.

Informally, a function f : X → Y is extractable if ∀x ∈ X such that we can compute
y = f(x), there is an extractor that can compute x = f−1(y).
More precisely, a function f : X → Y is extractable if for any adversary A that can
produce a valid evaluation of f , meaning it can find the value f(x) = y, for a given x,
there is an extractor ϵA that can produce a preimage of y, so ϵA can find an x̂, such
that f(x̂) = y. Note that this ϵA did not know the original pre-image x.
This is formally defined as:

Definition 6.3. Let H = {Hk}k∈N be a set of functions, with ∀k ∈ N :
Hk : {0, 1}l(k) → {0, 1}k. Then, H is extractable if for all algorithms A of poly-
nomial size, and for all polynomials m, there exists an extractor ϵA of polynomial size,
such that for all security parameters λ ∈ N, and for all z ∈ {0, 1}m(k), we have:

P[A(h, z) 7→ y, ∃ x such that h(x) = y, ϵA 7→ x̂, h(x̂) ̸= y] ≤ negl(λ)

Here, h ∈ H = {Hk}k.

In other words, if we have y = f(x), the probability that an extractor finds an x̂ such
that y ̸= f(x̂) is negligible, where z is any auxiliary input.
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7 Back to building

Now that we know what a private information retrieval system, a probabilistically check-
able proof, and an extractable collision-resistant hash function are, we can fill in the
details of Section 5.3, where we began building our SNARK.

Let RU be a universal relation, as defined in Section 6.2. For this universal relation, we
have a probabilistically checkable proof. Remember that this is a triple of algorithms
(Ppcp, Vpcp, Epcp).
Let (s, w) ∈ RU , where again s = (M, x, t). We require that for all proofs π: |π| ≤ t2.
We also require that the verifier Vpcp uses O(1) queries and f(t) = O(log(t)) coins.
We also require our private information retrieval system (PEnc, PEval, PDec) to be
succinct. Lastly, we need a set {Hk}k∈N of extractable collision-resistant hash functions,

where ∀k ∈ N : Hk: {0, 1}k
2 → {0, 1}k.

Remember our scheme from before, but leaving out the simulator part:

Note that we now have k ∈ N as our security parameter, instead of the λ ∈ N we used
before.

7.1 Generation common reference string

As we can see, the first thing that happens in the scheme is the generation algorithm of
Alice. This will be done in two steps:

1. The generation of the verification status

2. The generation of the common reference string

Generation verification status: Let q ∈ Ω(log (k)). Remember that Ω(log(k)) de-
fines an asymptotic lower bound for q. Alice generates r = (r1, ..., rq), where r1, ..., rq
are strings of coins and ∀i ∈ [q] : ri ∈ {0, 1}log2(k). r will later be used in the verifica-
tion algorithm Vpcp.
After, Alice also generates a string of coins K ∈ {0, 1}poly(k). K will later be used as
the randomness when encrypting q · log2(k) queries in the private information retrieval
scheme. She also randomly chooses an extractable collision-resistant hash function
h ∈ {Hk}k∈N.
The verification status is now set as the triple Ver := (h, r, K).

Generation common reference string: Let j ∈ [log2(k)]. Then r(j) = (r
(j)
1 , ..., r

(j)
q ),

where r is the vector of strings of coins Alice just generated and ∀i ∈ [q] : r
(j)
i are the

first j bits of ri. Alice computes the set r∗ = {r(j) | j ∈ [log2(k)]}.
Then, we need an encryption of r(j) using the private information retrieval scheme. So,
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PEncK(1k, r(j)) 7→ Cr(j) . Alice then computes Cr∗ = {Cr(j) | j ∈ [log2(k)]}.
Lastly, the common reference string is set as the pair String := (h, Cr∗).

So, in a small overview we get:

1. Generate strings of coins r = (r1, ..., rq), for q ∈ Ω(log(k)), ri ∈ {0, 1}log
2(k). Generate

a string of coins K ∈ {0, 1}poly(k) and a hash h.
Ver := (h, r, K)

2. Compute (r
(j)
1 , ..., r

(j)
q ), for j ∈ [log2(k)]. Compute r∗ = {r(j) | j ∈ [log2(k)]} and

Cr∗ = {Cr(j) | j ∈ [log2(k)]}, where Cr(j) is an encryption of rj using the private
information retrieval scheme.
String := (h, Cr∗)

This concludes the first part of our scheme; the generation algorithm of Alice. The
common reference string String is sent to Bob.

7.2 Proof algorithm

Now that Alice is finished with her generation algorithm, we move on to the proof
algorithm of Bob.

Just as in Section 5.3, we do this in two steps:

1. Generating a proof π

2. Transforming this proof using a Merkle tree

Generating a proof π: First, Bob needs to choose his statement s and its witness w,
for which (s, w) ∈ Rc. Recall that Rc ⊆ RU and that RU is a universal relation. In
Section 6.2 we specified what this means:
A universal relation is defined as the set
RU = {(s, w)| w is a witness for statement s}. Here, s is defined as s = (M, x, t),
with |w| ≤ t for every witness w, M is a Turing machine, and M will accept (x, w) in
t steps or less.
And so, here we have that the statement s is defined as s = (M, x, t). SinceRc ⊆ RU , we
also require that t ≤ |x|c. Moreover, we require that f(t) = O(log(t)) ≤ log2(k).

Now Bob makes a probabilistically checkable proof for the pair (s, w), so
Ppcp(s, w) 7→ π. The size of this proof π should be |π| = kd+1. Remember that
we also required that |π| ≤ t2, and so we should have that kd+1 ≤ t2.
Now that Bob has a proof π, he can build a Merkle tree for this proof. He builds a
Merkle tree of depth d, using the extractable collision-resistant hash h that Alice also
used, and computes the root hash lϵ. Now he has the Merkle tree commitment (d, lϵ)
for his proof π.

Transforming Bob’s proof using a Merkle tree: Firstly, Bob needs to compute a
database DB. This database consists of 2f(t) = 2O(log(t)) data points, where for every
data point pf(t) in the database we have p(f) ∈ {0, 1}f . Again, p(f) are the first f bits
of p.
Later, the verification algorithm Vπ

pcp of Alice will query this database, so it will request
information from the database. Naturally, Bob wants to make sure that this verification
algorithm will accept his proof. And so, at every point that Vπ

pcp(s, p(f)) will request,
he stores the opening openp(f) for the proof π. Remember that the opening of a point
is the set of vertices in the path from the root to this point in the Merkle tree of π and
all the siblings of these vertices.

20



Using the encryption algorithm and the evaluation algorithm of the private informa-
tion retrieval scheme, Bob will now compute the encryption of these openings. So,
PEncK(1k, p(f)) 7→ Cp(f) and PEval(DB, Cp(f)) 7→ Copen

p(f)
.

The final proof of Bob is now set as the triple Π := (d, lϵ, Copen
p(f)

).

So, in a small overview we get:

1. Choose (s, w) ∈ Rc. Make a probabilistically checkable proof π for (s, w). Make Merkle
tree of π of depth d and compute the root hash lϵ.

2. Compute database DB of 2f points p(f). For every point that Vπ
pcp(s, p(f)) will request,

store openp(f) . Encrypt p(f) as Cp(f) using the private information retrieval scheme and
evaluate Cp(f) as Copen

p(f)
, also using the private information retrieval scheme.

Π := (d, lϵ, Copen
p(f)

)

This concludes the second part of the scheme; the proof algorithm of Bob. Statement s
and its proof Π are now sent to Alice.

7.3 Verify algorithm

Now that Bob has made his proof, we move on to the last part of our scheme; the
verification algorithm of Alice. This is done in two small steps:

1. Verify the parameters

2. Decrypt the openings and verify them

Verify the parameters: Remember that we required that t ≤ |x|c, since
(s, w) ∈ Rc ⊆ RU , where RU is a universal relation. Moreover, before the whole process
began, we required that |π| ≤ t2. So first, Alice has to check that kd+1 ≤ t2 ≤ |x|2c. If
this is not the case, she immediately rejects proof Π of Bob. On the other hand, if the
parameters are correct, she moves on to the next step.

Decrypt the openings and verify them: Using the private information retrieval
scheme, Alice decrypts Copen

p(f)
, so PDecK(Copen

p(f)
) 7→ openp(f) . Now she checks all

openings openp(f) . So, for every point in the path from p(f) to the root in the Merkle

tree, she has to check that the hash of the concatenation of p(f) and his siblings gives
the value of the parent of p(f). If this is not the case, she rejects proof Π of Bob.
Alice also has to check the opened values. So, if π

∣∣
f(p) is the value in the location f (p),

then she has to check if V
π
∣∣∣
f(p)

pcp (s, f (p)) = 1, because then V
π
∣∣∣
f(p)

pcp has accepted π
∣∣
f(p) .

If this is not the case, she also rejects proof Π of Bob.

So, in a small overview we get:

1. Verify that kd+1 ≤ t2 ≤ |x|2c, if this is not the case reject s and Π

2. Decrypt Copen
p(f)

, verify opened paths and check V
π

∣∣∣∣
f(p)

pcp , if one or more are incorrect,

reject s and Π

3. Accept s and Π

Now we are at the end of our scheme. If at this point Alice has not rejected proof Π she
will accept Π and Bob has proven statement s.
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8 Afterthoughts

I really enjoyed working on this thesis. Beforehand, I also enjoyed my Mathematics
bachelor’s, but I was especially interested in mathematics that could explain the the-
oretical side of computer science. Moreover, cryptography always intrigued me, so as
you can imagine, I truly liked learning about the cryptographic protocol that is a zk-
SNARK. I was very motivated to work on this thesis and I still am. I would love to learn
more about cryptography and I would have loved to do more research on zk-SNARKs.
Unfortunately, time was a constraint. I would have liked to maybe look at more ways
to build a SNARK or to look at the applications, but unfortunately, I did not have the
time.
I do, however, feel like I met the goal of this thesis. My goal was to be able to explain
zk-SNARKs generally, but also in detail, to a fellow mathematics student. The process
of translating computer science to mathematics was at times quite challenging. A lot
of articles assumed prior knowledge and used terms that I as a mathematics student
did not know. And so, during the writing of this thesis, I had to do a lot of searching
and really had to think about what was written in my used sources. However, now that
we are at the end, I feel like I can explain zk-SNARKs to my fellow students, as I am
confident they will understand this thesis.

Overall, I am happy with the end result and I am curious as to what I will learn in my
future academic career.

22





9 Appendix

In this appendix, we find all the minor definitions that were needed in this thesis.

9.1 Definitions in Section 2.1 (Algorithms)

In Section 2.1 we needed the definition of a binary relation, the definition of a trapdoor
function, and the definition of a witness:

Definition 9.1. R is a decidable binary relation if it is

1. decidable: there is an efficient algorithm to see if a statement holds

2. a binary relation: it is a relation in the mathematical sense, and it is a relation
between two elements

Moreover, an algorithm A is efficient if:

1. A(n) = poly(n) and A consists of finite procedures

2. the output of A is always correct

3. anyone can do the steps of A themselves, and if they follow the steps of A strictly,
the output will be correct

Definition 9.2. A function f is a trapdoor function when:

1. it is easy to compute y = f(x)

2. it is hard to compute x = f−1(y)

For example, the multiplication of the factorisation of large prime numbers is a trapdoor
function. It is easy to choose some prime numbers and to multiply them, but it is hard
to factorise the product without knowing the factorisation beforehand.

Definition 9.3. A witness w of a statement s is some information, that makes the
statement s easy to verify.

Let’s for example have as a statement: ‘2349 is not a prime number’. Then a witness
w could be that 3 is a factor of 2349. Now, it is easy to check that 2349 is not a prime
number since you just have to compute 2349 ÷ 3 = 783.

9.2 Definitions in Section 4.1 (Formal requirements)

In Section 4.1 we needed the definition of an extractor, the definition of an adver-
sary, the definition of a probabilistic Turing machine, and the definition of statistically
close.

Definition 9.4. An extractor is a function ϵ that can compute a witness for a given
input x.

Definition 9.5. An adversary A is a (malicious) entity that tries to break the cryp-
tographic system.

Definition 9.6. An algorithm, or function, A is a probabilistic Turing machine if:

1. A is a Turing machine

2. A ∈ poly(λ)

Where λ ∈ R is the security parameter.
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We will not dive into Turing machines in this thesis. For now, it is good to know that
they are some kind of computational device. If one wants to learn more about Turing
machines, one can look in the Stanford Encyclopedia of Philosophy [8].

Definition 9.7. Let F1 and F2 be distributions over the same finite domain D. The
variation distance over these distributions is defined as:

∆(F1, F2) =
1
2

∑
d∈D |P[F1 = d]− P[F2 = d]|.

Now, two distribution families {F1i}i∈N and {F2i}i∈N are statistically close if

∆(F1i , F2i) = negl(i).

9.3 Definitions in Section 6.1 (Private information retrieval)

In Section 6.1 we only needed one definition, which was the definition of a query.

Definition 9.8. A query is an order given to a database, such that a specific action is
taken. This action can retrieve information stored in the database if needed.
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