Coloring Hyperholes and Ring Graphs

Master's Thesis in Mathematics

Author:
Els Hoekstra

Supervisor:
Dr. Wieb Bosma Radboud University

Second reader:
Prof. Dr. Kristina Vušković
University of Leeds

Acknowledgements

First and foremost, I would like to thank my supervisor Wieb Bosma for the amount of time he invested in me and his support during this thesis. For the weekly meetings, which were always fun and helped me to continue with the thesis. I want to thank him for his guidance, his positive feedback towards my thesis and his willingness to read all of the versions I sent him. For his patience and understanding when I needed a break and for believing in me.

I also want to thank Kristina Vušković. Her enthusiasm for the course 'Graph Theory: Structure and Algorithms' led me to a subject in graph theory. Thank you for giving me the subject of this thesis, I truly enjoyed doing this research. I want to give thanks to Kristina Vušković for being a second reader, for taking the time to look at my thesis in detail and attending my presentation.

Two persons whom I am also grateful for, are my study advisors Bram Arens and Ina de Vries. To Bram Arens, who helped me go trough a tough period in my study by taking the time for weekly calls. For helping me to take the step to change the subject of my thesis into one which is better suited for me. To Ina de Vries who guided me throughout the study.

A special thanks goes to my friends and family for their support. They sympathised with me in my ups and downs, they were enthusiastic in major breakthroughs and stood with me when things got rough. The endless study sessions with my friends helped me to stay focused and have a great start. Extra thanks for Jimmy who understood and supported me when I was passionate to continue with my thesis, even in the weekends. And an extra thanks for Timo, Jasper, Paul and Willemijn who willingly checked my thesis on (textual) errors.

Contents

Introduction 3
Definitions and notation 4
1 Coloring circular-arc graphs 6
1.1 Interval graphs 6
1.2 Introduction to circular-arc graphs 6
1.3 Coloring circular-arc graphs in general 7
1.4 Proper circular-arc graphs 9
1.5 Perfect circular-arc graphs 11
2 Chromatic polynomial for hyperholes 12
2.1 Fundamental theorems for chromatic polynomials 13
2.2 Hyperpaths 14
2.3 Hyperholes 16
2.4 Magma program and computation time 23
2.5 Chromatic polynomial for classes of hyperholes 24
3 Coloring rings 27
3.1 Recognizing rings 27
3.2 Coloring even rings 31
3.3 Coloring odd hyperholes 32
3.4 Coloring odd rings 34
Bibliography 42
Appendix 44
Preliminary algorithms 44
Algorithms for hyperholes 46
Algorithms for rings 47

Introduction

In 1959, S. Benzer researched the internal structure of chromosomes [1]. In this genetic analysis, the question arose whether or not mutations were in linear order. It could be tested whether two different mutations overlap and based on this an intersection graph can be constructed. If this intersection graph is a linear interval graph, then the mutations are in linear order.
V. Klee first introduced circular-arc graphs in 1969 [11]. Circular-arc graphs are intersection graphs of arcs laying on a circle. See Figure 1 for an example. A fast recognition algorithm was searched for to detect circularity in genetics. Circular-arc graphs were extensively researched by A. Tucker and others. Tucker first discovered a polynomial time recognition algorithm for circular-arc graphs in 1980 [24].

In 2014 G. Durán, L.N. Grippo and M.D. Safe wrote a survey on structural results relating to circular-arc graphs [7]. Most results and important open problems contained characterizations of circular arc graphs through forbidden induced subgraphs, none of the results or problems were related to the coloring of circular-arc graphs.

This thesis discusses the coloring of circular-arc graphs.
An application for coloring circular-arc graphs is found in scheduling of transport [23]. Every hour the schedule for busses repeats. The time it takes to complete a route can be represented as an arc on a circle. See for an example Figure 1, where route A is driven from a quarter past the hour till 15 minutes later. For cost efficiency we want the least possible number of bus drivers to work the shifts. Every chauffeur receives a different color and we can color the arcs on the circular-arc model by who drives the route. This coloring is proper and we want to use the least possible number of colors.

Another application is in the design of compilers where a variable is used in a certain amount of time and allocated to a register [23]. In while loops or for loops the same variables are used in every round. The least number of registers necessary is related to an optimal coloring of a circular-arc graph. Other applications are phasing of traffic lights [8] [19] and can be found in genetics [20].

Figure 1: Bus schedule. The arcs represents a route, a color represents a bus driver. On the right its intersection graph.

In this thesis we start with an introduction to circular-arc graphs. We first prove that the coloring problem for circular-arc graphs is NP-complete [6] and then describe two polynomial time algorithms to color proper [17] and perfect [25] circular-arc graphs. This is all discussed in Chapter 1]

Then we focus on hyperholes. Hyperholes can be described as holes (or irreducible cycles of length ≥ 4) where every vertex is blown up to a clique. See Figure 2 for an example and Definition 2.12 for the definition of hyperholes.

Figure 2: On the left a circular-arc model of the hyperhole on the right.
A recursive relation for the chromatic polynomial of a hyperhole is discovered and proved in Chapter 2 We describe a fast algorithm to determine the chromatic polynomial of a hyperhole in section 2.4 and give the chromatic polynomial for the class of hyperholes where at least one vertex is blown up by a clique of size one (like the hyperhole in Figure 2) in section 2.5

In 2020, F. Maffray, I. Penev and K. Vušković [14] discovered a polynomial time algorithm to color odd rings. Rings form a subclass of circular-arc graphs and are subgraphs of hyperholes with extra conditions. See Figure 1 for an example and Definition 3.1 for the definition of a ring. The possibility to color rings in polynomial time was an answer to an open problem in [2]. We describe the algorithms from [2][14] in Chapter 3. The implementations are new, and have led to the correction of some minor errors in the description [3].

Definitions and notation

Before we start, we need to agree on some definitions and notation. This section will provide the necessary terminology which is used throughout the paper. Some definitions, such as those of chromatic polynomials and rings, will be introduced in the designated chapters.

All the graphs in this paper are finite, nonempty, simple (i.e., unweighted, undirected, without self-loops nor multiple edges between the same pair of vertices) graphs. We denote $V(G)$ for the set of vertices of G and $E(G)$ for the edges. The letter n represents the number of vertices in G and the letter m the number of edges. The complement graph of G is denoted as $\bar{G}=(V(G), \overline{E(G)})$. The complement graph has all the same vertices as the graph itself and e is an edge in \bar{G} if and only if e is not an edge in G. A graph is connected if for every pair of vertices there exists a path connecting them. The most common finite, nonempty, simple graphs are complete graphs (i.e., graphs with an edge between every vertex, notation: K_{n}), edgeless graphs $\left(\overline{K_{n}}\right)$, paths (i.e., graphs with vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $E=\left\{\left\{v_{i}, v_{i+1}\right\}: 1 \leq i \leq n-1\right\}$, notation: P_{n}), cycles (i.e., graphs where $\left(v_{1}, \ldots, v_{n}\right)$ is a path and $\left\{v_{1}, v_{n}\right\}$ is also an edge, notation: $\left.C_{n}\right)$ and trees (i.e., connected graphs with no cycles).

A coloring for a graph G is a map from the vertices of G to \mathbb{N}. It assigns to every vertex a color. We say that $c: V(G) \rightarrow \mathbb{N}$ is a proper coloring for G if and only if for all edges $\{v, w\} \in E(G)$ it holds that $c(v) \neq c(w)$. From now on we only consider proper colorings. For an integer $r \in \mathbb{N}$ we say G is r-colorable if there is a coloring of $V(G)$ that uses at most r colors. The chromatic number $\chi(G)$ of G is the smallest such integer.

We denote $G[S]$ for the subgraph induced by the subset $S \subseteq V(G)$. The vertex set of $G[S]$ is equal to S and the edges are all edges of G with both endpoints in S. The graph $G \backslash S:=G[V(G) \backslash S]$
is the graph where the vertices of S are removed. We say S is a clique of G if all vertices in $G[S]$ are connected. A clique C is said to be maximal in graph G if there is no vertex v in G, such that $G[C \cup\{v\}]$ is a clique. The size of the largest clique in G is denoted as $\omega(G)$. A cutset of a graph G is a (possibly empty) subset $S \subseteq V(G)$ of the vertices of G such that $G \backslash S$ is disconnected. A cliquecutset is a cutset S for which $G[S]$ is a clique. We define a clique-cut-partition as a triple (A, B, C) such that A, B are nonempty, (A, B, C) is a partition for the vertices of G, no vertex in A is connected to a vertex in B and the last condition is that C is a clique-cutset for G.

Two graphs G and H are isomorphic if there exists a bijection between the vertices $f: V(G) \hookrightarrow$ $V(H)$ such that $\{v, w\} \in E(G)$ if and only if $\{f(v), f(w)\} \in E(H)$. The notation for two isomorphic graphs G, H is $G \cong H$. We say that G contains a graph H if there is a subset $S \subseteq V(G)$ such that $G[S]$ and H are isomorphic.

The neighbors of a vertex $v \in V(G)$ are all vertices in G that are connected to the vertex v. We will denote the neighborhood of vertex v in graph G by $N_{G}(v)$. So $N_{G}(v):=\{w:\{v, w\} \in E(G)\}$. We will define $N_{G}[v]:=N_{G}(v) \cup\{v\}$; i.e., the neighborhood of v with the vertex v itself included. Let S be a subset of $V(G)$, then a vertex $v \notin S$ is complete to S if $S \subseteq N_{G}(v)$ and anticomplete if $S \cap N_{G}(v)=\emptyset$. A subset $A \subseteq V(G)$ is called complete (resp. anticomplete) to S if all vertices in A are complete (resp. anticomplete) to S.

A simplicial vertex v is a vertex whose neighborhood is a clique. A simplicial elimination ordering for a graph G is an ordering for a (subset of the) vertex-set $\left\{v_{1}, \ldots, v_{t}\right\} \subseteq V(G)$ such that vertex v_{i} is simplicial in $G \backslash\left\{v_{1}, \ldots, v_{i-1}\right\}$. Irreducible cycles are cycles without chords. Holes are irreducible cycles of length ≥ 4. The graph G is called chordal if it contains no holes. It is well known a graph G is chordal if and only if G has a simplicial elimination ordering that uses all the vertices (e.g. [13]).

The notation for adding an edge $e_{\nu w}=\{v, w\} \in E(G)$ to the graph G is $G+e_{\nu w}$. It is also possible to merge two vertices $v, w \in V(G)$. The new vertex $x_{v w}$ (or $v w$) has the combined neighborhood: $N_{G}\left(x_{v w}\right):=\left(N_{G}(v) \backslash\{w\}\right) \cup\left(N_{G}(w) \backslash\{v\}\right)$. The notation for merging two vertices in G is: $G / v w$. The vertex-set will be $V(G / v w)=\left(V(G) \cup\left\{x_{v w}\right\}\right) \backslash\{v, w\}$.

Perfect graphs G are graphs such that $\chi(H)=\omega(H)$ for every subgraph H of G. Notice that a perfect graph G can not contain an odd cycle.

A matching M of a graph G is a subset of its edges such that no vertex in G is an endpoint of two or more edges in M. An augmenting path of a matching M in graph G, is a path P in G such that edges in P alternate being in M, starting and ending with an edge not in M.

Chapter 1

Coloring circular-arc graphs

1.1 Interval graphs

Definition 1.1. A graph $G=(V, E)$ is an interval graph if there exist a set $\mathscr{I}:=\left\{I_{v}\right\}_{v \in V}$ of open intervals $I_{v}=(a, b)$ on the real line with $a<b$ and a bijection $f: V \rightarrow \mathscr{I}$ such that for $v \neq w$

$$
\{v, w\} \in E \Longleftrightarrow f(v) \cap f(w) \neq \emptyset .
$$

We call $\left\{I_{v}\right\}_{v \in V}$ an interval representation of G.
An example is given in Figure 1.1 There is a simple lineair-time algorithm to recognize interval graphs [12], given by N. Korte and R. Möhring.

Figure 1.1: On the left an interval model of the interval graph on the right.

Theorem 1.2. [13] Interval graphs are chordal.
Proof. [13] Take an interval graph $G=(V, E)$ with interval representation $\left\{I_{v}\right\}_{v \in V}$ where $I_{v}=\left(a_{v}, b_{v}\right)$. Assume $(1, \ldots, k)$ is a hole in graph G, then without loss of generality: $a_{1}<b_{1} \leq a_{3}<b_{3}$. Because $I_{2} \cap I_{1} \neq \emptyset$ and $I_{2} \cap I_{3} \neq \emptyset$, we have $a_{2}<b_{1} \wedge a_{3}<b_{2}$. Now make an interval

$$
J:=\bigcup_{i \in\{4, \ldots, k\}} I_{i} .
$$

This is an interval, because i is connected to $i+1$. This interval has overlap with I_{1} and with I_{3}, but not with I_{2} which is impossible.

With the above theorem, we can color interval graphs in polynomial time, because we can color any chordal graphs in polynomial time (See ColorChordal, Algorithm 13 in appendix). In this thesis we will focus more on circular-arc graphs.

1.2 Introduction to circular-arc graphs

Definition 1.3. A graph $G=(V, E)$ is a circular-arc graph if there exist a set $\mathscr{A}:=\left\{A_{v}\right\}_{v \in V}$ of open $\operatorname{arcs} A_{v}=(a, b)$ on a circle with circumference r (the arc is from a to b in the clockwise direction with $a, b \in[0, r)$) and a bijection $f: V \rightarrow \mathscr{A}$ such that for $v \neq w$

$$
\{v, w\} \in E \Longleftrightarrow f(v) \cap f(w) \neq \emptyset .
$$

We call $\left\{A_{v}\right\}_{v \in V}$ a circular-arc representation of G.
Interval graphs are examples of circular-arc graphs. The opposite is false, because circular-arc graphs can have holes where interval graphs must be chordal. See Figure 1.2 for an example of a circular-arc graph and its model.

Figure 1.2: On the left a circular-arc model of the graph on the right

In 1980 a recognition algorithm was given by Tucker that could recognize circular-arc graphs in $\mathscr{O}\left(n^{3}\right)$ time [24]. This algorithm has been simplified to an $\mathscr{O}\left(n^{2}\right)$ time algorithm [5] and further optimized to an $\mathscr{O}(n)$ time algorithm [15]. If a graph G is a circular-arc graph, then all algorithms will produce a circular-arc representation of G.

1.3 Coloring circular-arc graphs in general

The question that arises is whether we can color a circular-arc graph G in polynomial time. A vertex coloring of G corresponds uniquely to an arc coloring of its circular-arc model. We will often use an arc coloring when we want to color the vertices.

ARC-COLORING PROBLEM

Given: A family A of arcs and an integer $k \in \mathbb{N}$
Question: Can we color the arcs with k colors such that intersecting arcs have different colors?
M.R. Garey, D.S. Johnson, G.L. Miller and C.H. Papadimitriou proved in 1980 that the arc-coloring problem is NP-complete:

Theorem 1.4. [6] The Arc-coloring problem is NP-complete.
Proof. We give the proof from [6] which is a reduction proof from the word problem for products of symmetric groups (WPPSG). We start by defining the WPPSG problem.

WPPSG PROBLEM

Given: $K \in \mathbb{N}, m$ subsets $X_{1}, \ldots, X_{m} \subseteq\{1, \ldots, K\}$ and a permutation $\pi \in S_{K}$
Question: Can π be written as $\pi=\pi_{m} \cdot \ldots \cdot \pi_{1}$ where π_{i} is a permutation of $\{1, \ldots, K\}$ that leave all elements in $\{1, \ldots, K\} \backslash X_{i}$ fixed.

The WPPSG problem is proven to be NP-complete in the same article [6].
Recall $\pi_{i+1} \cdot \pi_{i}$ is the permutation that first applies π_{i} and then π_{i+1}. Let $X_{l_{i}[1]}, \ldots, X_{l_{i}[r(i)]}$ be all the sets that contain i, i.e. there are $r(i)$ different sets that contain i. First, we define a map f from the WPPSG problem to the Arc-Coloring problem:

$$
\left\{\begin{array} { l }
{ K \in \mathbb { N } } \\
{ \pi \in S _ { K } } \\
{ X _ { 1 } , \ldots , X _ { m } } \\
{ \quad \text { with } \forall i \exists j [i \in X _ { j }] }
\end{array} \mapsto \left\{\begin{array}{l}
K \text { colors } \\
\operatorname{Arcs} F:=\bigcup_{i=1}^{K}\left(F_{i} \cup C_{i}\right) \text { with } \\
F_{i}:=\left(i, K+l_{i}[1]\right) \cup\left\{\left(K+l_{i}[j-1], K+l_{i}[j]\right): 2 \leq j \leq r(i)\right\} \\
C_{i}:=\left(K+l_{i}[r(i)], \pi^{-1}(i)\right) .
\end{array}\right.\right.
$$

The arcs in F are in the interval $[0, K+m)$. If there exists an i such that $i \notin X_{j}$ for all j, then either $\pi(i) \neq i$, we make $f\left(K, X_{1}, \ldots, X_{m}, \pi\right)=\left(\cup_{i=1}^{2}(0,1), k=1\right)$ for which the answer is 'no'. Or, $\pi(i)=i$ so as new input, we decrease all integers larger than i with 1 .

We can compute f in polynomial time. What is left to do, is to prove

$$
\pi=\pi_{m} \cdot \ldots \cdot \pi_{1} \Longleftrightarrow f\left(K, X_{1}, \ldots, X_{m}, \pi\right) \text { is } K \text {-colorable. }
$$

Let $K \in \mathbb{N}, X_{1}, \ldots, X_{m} \subseteq\{1, \ldots, k\}, \pi \in S_{K}$ be the input of f such that F, K is the output. An example where some arcs are already colored, can be found in Figure 1.3 We want to see when we can color this graph with K colors.

First we make a model F^{\prime} of arcs that will help us to properly define a permutation. This model F^{\prime} will have a one-to-one correspondence with F. The arcs in C will be split into two parts and placed in $F^{\prime}: F_{i}^{\prime}:=F_{i} \cup\left(K+l_{i}[r(i)], 0\right) \cup(0, i)$ and $F^{\prime}:=\cup_{i=1}^{K} F_{i}^{\prime}$. With this construction, for $0 \leq p<K+m$, the point $p+\frac{1}{2}$ is in K arcs, none of those arcs are in the same set F_{i}^{\prime}. Now we can define properly $\sigma_{p}(j)=i$ to be the j-th color assigned to the unique arc in F_{i}^{\prime} that contains the point $p+\frac{1}{2}$. For every p, σ_{p} is a map from $\{1, \ldots, K\}$ to itself and therefore a permutation. Without loss of generality, for $i \leq K$ we set $\sigma_{0}(i)=i$. To be able to go back to F, we need

$$
\begin{equation*}
\sigma_{K+m}(i)=\pi(i) \tag{1.1}
\end{equation*}
$$

Figure 1.3: Example [6]. $K=5, \pi=(12453), X_{1}=\{1,3\}, X_{2}=\{3,4,5\}, X_{3}=\{2,5\}, X_{4}=$ $\{1,2,4\}, m=4$. On the left $F=\cup_{i=1}^{5}\left(F_{i} \cup C_{i}\right)$, on the right F^{\prime}

Notice that for the points $p \leq K$ the permutation σ_{p} is already fixed: $\sigma_{p}(i)=\sigma_{0}(i)=i$. This can be easily seen with induction to p. If σ_{p} is known, we can make σ_{p+1}. Sometimes an arc continues and therefore the assigned color is fixed, i.e. $\sigma_{p}(j)=\sigma_{p+1}(j)$. At other times we can choose between the colors that are not assigned by the obligation. We have

$$
\sigma_{p+1}(j)\left\{\begin{array}{l}
=\sigma_{p}(j) \quad \text { if } p, p+1 \in A \in F_{\sigma_{p}(j)}^{\prime} \text { for some } A \\
\in\left\{\sigma_{p}(j) \mid(a, p+1) \in F_{\sigma_{p}(j)}^{\prime} \text { for some } a\right\} \quad \text { otherwise. }
\end{array}\right.
$$

By construction, when $p \in\{K+1, \ldots, K+m\}$, the set of integers to choose from in the second case is always X_{p-K}. Therefore, $\sigma_{p+1}=\pi_{p-K} \cdot \sigma_{p}$. All others should stay the same. In our example, $X_{6-5}=X_{1}=\{1,3\}$ and thus $\sigma_{6}(1) \in\{1,3\}$. In total, we have

$$
\pi(i) \stackrel{\sqrt{1.1}}{=} \sigma_{K+m}(i)=\pi_{m} \cdot \ldots \cdot \pi_{1} \cdot i d_{\{1, \cdot K\}}
$$

And therefore

$$
\pi=\pi_{m} \cdot \ldots \cdot \pi_{1} \Longleftrightarrow f\left(K, X_{1}, \ldots, X_{m}, \pi\right) \text { is } K \text {-colorable. }
$$

The arc-coloring problem is in NP, because in $\mathscr{O}\left(n^{2}\right)$ time, we can check if the colors assigned to the endpoints of each edge in G are different. We keep track of the used colors in linear time. Both tests are polynomial and if successful the graph can be colored with K colors.

Theorem 1.4 tells us a polynomial time algorithm to color circular-arc graphs in general is not known. However, through the WPPSG-problem, there exists an $\mathscr{O}(n \cdot k!\cdot k \log k)$ time algorithm to answer the question of whether a circular-arc graph with n vertices is k-colorable [3]. This algorithm is polynomial (even linear) if k is fixed. The following problem is therefore in P :

ARC-K-COLORING PROBLEM

Given: A family A of arcs.
Question: Can we color the arcs with K colors such that intersecting arcs have different colors?
Some subclasses of circular-arc graphs have polynomial time algorithms to color the graphs from the subclasses optimally where the number of colors needed is not fixed. In the next two sections, we will discuss examples of such subclasses.

1.4 Proper circular-arc graphs

Definition 1.5. A graph $G=(V, E)$ is a proper circular-arc graph if there exists a circular-arc representation $A=\left\{A_{1}, \ldots, A_{n}\right\}$ of G such that no arc in A contains another arc, i.e.

$$
\forall A_{i}, A_{j} \in A \quad\left[i \neq j \Rightarrow \neg\left(A_{i} \subseteq A_{j} \vee A_{j} \subseteq A_{i}\right)\right]
$$

There is also a notion of unit circular-arc graphs in the literature (first introduced by Tucker [22]). These are graphs that have a circular-arc representation where all arcs have the same length. All unit circular-arc graphs are proper circular-arc graphs.

There exists a $\mathscr{O}\left(n^{2}\right)$ time algorithm for recognizing proper circular-arc graphs and creating an associated proper circular-arc representation [21].
J.B. Orlin, M.A. Bonuccelli and D.P. Bovet gave a $\mathscr{O}\left(n^{2} \log n\right)$ time algorithm to optimally color proper circular-arc graphs [17]. First they translate the problem of proper coloring a circular-arc graph G with k colors (if possible) to a linear integer programming problem. Normally, there is no polynomial time algorithm known to determine a feasible solution for a linear integer programming problem. With this set of equations we can have a $\mathscr{O}\left(n^{2}\right)$ time algorithm to solve it. A short description how this is done, can be found in Theorem 1.7. After a solution to the system is given, we can color the vertices.

Theorem 1.6. [17] Let $G=(V, E), n:=\# V$ be a proper circular-arc graph with an associated proper circular-arc representation $A=\left\{A_{1}, \ldots, A_{n}\right\}$ such that $A_{i}=\left[a_{1}, b_{i}\right]$ and $a_{1}<\ldots<a_{n}$. Then G may be k-colored if and only if there is a feasible solution to the following system with $r:=n \bmod k$ and x_{0}, \ldots, x_{n} are integer valued variables:

$$
\begin{aligned}
& \qquad \text { for } i=1, \ldots, n\left\{\begin{array}{l}
0 \leq x_{i}-x_{i-1}
\end{array}\right. \\
&\left\{\begin{array}{l}
x_{0}=0 \\
x_{n}=r \cdot\lceil n / k\rceil
\end{array}\right. \\
& \text { for } S:=\left\{A_{i+1} \ldots A_{j}\right\} \text { is a maximal }\left\{\begin{array}{l}
x_{j}-x_{i} \leq r \\
\text { clique in } G \text { and } i<j .(|S|=j-i) \\
(j-i)-\left(x_{j}-x_{i}\right) \leq k-r
\end{array}\right. \\
& \text { for } S:=\left\{A_{i+1} \ldots A_{j}\right\} \text { is a maximal }\left\{\begin{array}{l}
x_{n}+x_{j}-x_{i} \leq r \\
(n+j-i)-\left(x_{n}+x_{j}-x_{i}\right) \leq k-r
\end{array}\right. \\
& \text { clique in } G \text { and } i>j .(|S|=n+j-i) \quad
\end{aligned}
$$

Proof. This proof is inspired by and sometimes incorporates proofs of [17]. First we notice that every maximal clique S of G is of the form $S=\left\{A_{i}, A_{i+1} \ldots, A_{j}\right\}$ for some i, j. This holds because
a maximal clique has one or more common points on the circle and therefore, it is easy to see that $a_{j}:=\max _{l}\left\{a_{l}: A_{l} \in S\right\}$ or $b_{i}:=\min _{l}\left\{b_{l}: A_{l} \in S\right\}$ is a common point that induces the clique:

$$
a_{j} \in \bigcap_{A \in S} A \quad \vee \quad b_{i} \in \bigcap_{A \in S} A
$$

for otherwise A_{i} and A_{j} do not overlap. If this common point is equal to 0 , then $S=\left\{A_{i}: a_{i}>\right.$ b_{i} or $\left.a_{i}=0\right\}$. If this common point is greater than 0 , we can rotate the circle and fix the arcs such that the common point is equal to 0 and apply the same argument.
(\Leftarrow)
Assume there exists a feasible solution to the system described in Theorem 1.6. We define the set

$$
W:=\left\{A_{i}: x_{i}-x_{i-1}=1\right\}
$$

We will interpret for $i<j, x_{j}-x_{i}=\left|W \cap\left\{A_{i+1}, \ldots, A_{j}\right\}\right|$ and for $i>j x_{n}+x_{j}-x_{i}=\left|W \cap\left\{A_{i+1}, \ldots, A_{j}\right\}\right|$. Thus $|W|=x_{n}-x_{0}=r \cdot\lceil n / k\rceil-0$. We use $l(i)$ to denote the integer such that W has $i-1 \operatorname{arcs} A_{j}$ with $a_{j}<a_{i}$. The intuition is that the arc A_{i} is the $l(i)$-th arc in W. Consider the coloring c of $G[W]$ with the colors $1, \ldots, r$ such that $c\left(A_{i}\right):=l(i) \bmod r$. Thus, we sequentially color the arcs. The 'last' arc in W has color r. Let $c\left(A_{i}\right)=c\left(A_{j}\right)$ with $i<j$.
i If $b_{i} \in A_{j}$, then $A_{l(i)}, A_{l(i+1)} \ldots, A_{l(j)}$ is in a maximal clique S with $|S \cap W| \geq r+1$ for otherwise $c\left(A_{i}\right) \neq c\left(A_{j}\right)$. But this is in contradiction with the assumption we had a feasible solution ($|S \cap W|=x_{j}-x_{i-1} \leq r$ must hold). Thus $b_{i} \notin A_{j}$.
ii If $a_{j} \in A_{i}$, then A_{j}, \ldots, A_{i} is in a maximal clique. An analogous argument will conclude $a_{j} \notin A_{i}$. Therefore, $A_{i} \cap A_{j}=\emptyset$, so the coloring c is proper. Analogously we can color $G[V \backslash W]$ with $k-r$ colors.

$$
(\Rightarrow)
$$

Assume the graph G can be colored with k colors.
Claim 1. G can be colored with k colors in such a way that each color class has either $\lceil n / k\rceil$ or $\lfloor n / k\rfloor$ colors. Proof of Claim 17 [17] We will prove this with induction to k. Assume $k=2$. If n is even, then we can color the arcs of G alternately. If n is odd and a color class C is of size $\geq(n+2) / 2$, then there exists an i such that $A_{i}, A_{i+1} \in C$. It follows $C^{\prime}=\left\{\ldots, A_{i-4}, A_{i-2}, A_{i}, A_{i+1}, A_{i+3}, \ldots\right\}$ nor $A \backslash C^{\prime}$ has two overlapping arcs and consequently are proper coloring classes of size $\lceil n / 2\rceil$ and $\lfloor n / 2\rfloor$ respectively. If $k>2$ we can iterative recolor $G[C \cup D]$ with C, D the color classes of smallest and largest size.

Let c be a k-coloring of G such that every color class has $\lceil n / k\rceil$ or $\lfloor n / k\rfloor$ colors and let $r=$ $n \bmod k$. If $r=0$, then $x_{i}=0$ for every i, is a feasible solution. If $r>1$, then we take a union of coloring classes $W:=\bigcup_{|C|=\lceil n / k\rceil} C$ and assign $x_{i}:=\left|\left\{A_{1}, \ldots, A_{i}\right\} \cap W\right|$. This is a feasible solution.
Theorem 1.7. [17] A proper circular-arc graph G can be colored with $\chi(G)$ colors in $\mathscr{O}\left(n^{2} \log n\right)$ steps.
Proof. Let G be a graph. In $\mathscr{O}\left(n^{2}\right)$ time an associated proper circular-arc representation is given if possible [22]. If such representation does not exist, it will output false. Otherwise, for a given k, we can create the constraints as described in Theorem1.6. A feasible solution to the system can be determined in $\mathscr{O}\left(n^{2}\right)$ steps: First a directed, weighted graph G^{\prime} is made with the vertices v_{0}, \ldots, v_{n-1} and for every constraint $x_{j}-x_{i} \leq w_{i j}$ we construct the edges are $\left(v_{i}, v_{j}\right)$ with weight $w_{i j}$. If for every i, the shortest distance from v_{0} to v_{i} is positive, then we assign the distance $d_{0 i}$ the the variable x_{i}. Otherwise, there is no feasible solution to the system. There are at most $2 n$ points that induce different cliques and therefore at most $5 n$ edges. Thus, these distances can be computed in $\mathscr{O}\left(n^{2}\right)$ time by the Bellman-Ford method [17].

Using binary search, we can determine k in $\mathscr{O}(\log n)$ steps. At every step, we compute if the solutions for a k. In total, we need $\mathscr{O}\left(n^{2} \log n\right)$ steps.

When we have a feasible solution of minimal k to the system, we can determine the coloring of G in $\mathscr{O}(n)$ steps. First we color $G\left[\left\{A_{i}: x_{i}-x_{i-1}=1\right\}\right]$ with $1, \ldots,(n \bmod k)$ colors by sequentially color its arcs. We color all other arcs sequentially with the colors $(n+1 \bmod k), \ldots, k$.

1.5 Perfect circular-arc graphs

Perfect cirucular-arc graphs are circular-arc graphs which are perfect, i.e. $\chi(H)=\omega(H)$ for every induced subgraph H. These graphs can be recognised in $\mathscr{O}\left(m n \log \log n+m^{2}\right)$ time [4]. If the graph is a perfect circular-arc graph, we will also obtain a circular-arc model representing the graph. For perfect circular-arc graphs there also exists a polynomial time algorithm to compute its coloring [25]. We will only give a short description of the algorithm.

Theorem 1.8. Perfect circular-arc graphs can be colored in $\mathscr{O}\left(n^{2} m\right)$ time.
Proof. The following is a short description of the algorithm given in [25]. Let G be a perfect circulararc graph and $A=\left\{A_{1}, \ldots, A_{n}\right\}$ the associated arc model such that $A_{i}=\left(a_{i}, b_{i}\right)$ and the length of arc A_{i} is greater than or equal to the length of arc A_{j} for all $j>i$. Recall a circular-arc representation of G can be found in $\mathscr{O}(n)$ time [15] and an ordering can be realized in $\mathscr{O}(n \log n)$ time (e.g. by merge sort). We will color the arcs one at a time.

Assume the algorithm already gave a coloring c for the vertices $\left\{v_{1}, \ldots, v_{l}\right\}$ and now we want to create a coloring c^{\prime} for the vertices $\left\{v_{1}, \ldots, v_{l+1}\right\}$. We define $H:=G\left[\left\{v_{1}, \ldots, v_{l}\right\}\right]$ and $H_{0}:=$ $G\left[N_{H}\left(v_{l+1}\right)\right]$.

All arcs that have overlap with A_{l+1} contain point a_{l+1} or b_{l+1}, because the length of the arc A_{l+1} is smaller than or equal to those of the arcs representing H (and also H_{0}). Therefore H_{0} can be covered by two cliques (namely, the cliques induced by a_{l+1} or b_{l+1}) and so $\overline{H_{0}}$ is bipartite.

We construct a matching M in $\overline{H_{0}}$ by $\{v, w\} \in M$ if and only if $c(v)=c(w)$. This is a correct matching, because c is a proper coloring of H_{0} and H_{0} can be covered by two cliques, so every color in c is assigned to at most two vertices. Hsu [10] proved the following statement:

Claim 1. If H_{0} has used $\omega(G)$ colors, then M is not a maximum matching in $\overline{H_{0}}$.
In $\mathscr{O}\left(n^{2}\right)$ steps we can find an augmenting path (or correctly state M is maximal) [25]. If M is maximal, we assign a random color to v_{l+1} not assigned yet to its neighbors. Thus $\left.c^{\prime}\right|_{V(H)}=c$ and $c^{\prime}\left(v_{l+1}\right) \notin c\left(V\left(H_{0}\right)\right)$. If M is not maximal, we found P : an augmenting path.

If this path is an edge $\{v, w\} \in E\left(\overline{H_{0}}\right)$, then $c_{v}:=c(v) \neq c(w)=: c_{w}$ and no other vertices in H_{0} are colored with c_{v} or c_{w}. Define

$$
T_{H, w}^{c_{c} c_{w}}:=\left\{u:\left(c(u)=c_{v} \text { or } c(u)=c_{w}\right) \text { and } \exists P_{w u}=\left(w, p_{2}, \ldots, u\right) \text { a path from } w \text { to } u\right\} .
$$

The new coloring c^{\prime} will be equal to c, but with one small change: the colors of the component $T_{H, w}^{c_{c} c_{w}}$ are switched in c^{\prime}. If $c^{\prime}(v) \neq c(v)$, then there exists a shortest path $P_{v w}$ from w to v and $P_{w v} \cup\left\{v_{l+1}\right\}$ is an odd cycle. This contradicts G being perfect. Therefore, we can expand the coloring c^{\prime} by assigning $c^{\prime}\left(v_{l+1}\right):=c(w)$.

If this augmenting path P consists of more than one edge, we can shorten the path in $\mathscr{O}(n+m)$ steps by switching colors and changing the matching M until we have an edge. There are two color switch possibilities. It depends on the edges in $\overline{H_{0}}$ which one we apply. We need to do this at most $\mathscr{O}(n)$ times.

The details and the complete proof can be found in [25].

Chapter 2

Chromatic polynomial for hyperholes

This chapter is all about finding the chromatic polynomial of a hyperhole. Therefore, we need to know what a chromatic polynomial is and what a hyperhole is. The definitions are in line with [18] and [14].

Definition 2.1. The chromatic function of a graph G is the function $P_{G}: \mathbb{N} \rightarrow \mathbb{N}$ that gives the number of ways of coloring the vertices of a graph G with input the number of available colors.

Notice that $P_{G}(\chi(G))>0$ and for all $x \in\{0, \ldots, \chi(G)-1\}$ we have $P_{G}(x)=0$. The vertices in the graph are interpreted as fixed on a piece of paper or as labeled. In Figure 2.1 we see two different colorings of the graph using the colors \{red, blue, yellow\}.

Figure 2.1: Two different colorings of the same graph

There are three important families of graphs where the chromatic function is known that we are going to use to calculate the chromatic function of a hyperhole. The chromatic function can be computed for these families using induction on the number of vertices. We will only give a proof sketch.

Lemma 2.2. The chromatic function of an edgeless graph $\overline{K_{n}}$ on n vertices is

$$
P_{\overline{K_{n}}}(\lambda)=\lambda^{n} .
$$

Proof. The graph is edgeless, so if we want to color a vertex it does not matter how another vertex is colored for it to be a proper coloring. Therefore $P_{\overline{K_{n}}}(\lambda)=\lambda^{n}$.

Lemma 2.3. The chromatic function of a path P_{n} on n vertices is

$$
P_{P_{n}}(\lambda)=\lambda(\lambda-1)^{n-1}
$$

Proof. Take a path $P_{n}=\left(v_{1}, \ldots, v_{n}\right)$. For the first vertex v_{1} we have λ options to color this vertex. The second vertex v_{2} has only $\lambda-1$ options to be colored, because it cannot be colored with the same color as the one before. Do this inductively and we see that $P_{P_{n}}(\lambda)=\lambda(\lambda-1)^{n-1}$.

Lemma 2.4. The chromatic function of a complete graph K_{n} on n vertices is

$$
P_{K_{n}}(\lambda)=\lambda(\lambda-1) \cdots(\lambda-(n-1))=\prod_{i=0}^{n-1}(\lambda-i) .
$$

Proof. All vertices have to be colored differently. At the first vertex we can choose from λ colors, the second from $\lambda-1$ colors, etcetera.

2.1 Fundamental theorems for chromatic polynomials

A trick can be used to calculate a chromatic function for any graph. The trick is to add or delete edges from the graph until we find a graph of which we know the chromatic function.
Theorem 2.5. Let $G=(V, E)$ be a graph and $u, v \in V$ be two vertices with no edge between them. Then

$$
P_{G}(\lambda)=P_{G+e_{u v}}(\lambda)+P_{G / u v}(\lambda)
$$

Proof. The number of colorings in graph G is equal to the number of colorings of graph G where the vertices u and v have a different color plus the case where the vertices u and v have the same color. The first one is exactly $P_{G+e_{u v}}(\lambda)$. By adding an edge, the colors of u and v have to be different. The second one is $P_{G / u v}(\lambda)$. Merging the vertices u and v is analogous to assigning the same color to u and v.

Corollary 2.6. Let $G=(V, E)$ be a graph and $u, v \in V$ be neighbors. Then

$$
P_{G}(\lambda)=P_{G-e_{u v}}(\lambda)-P_{G / u v}(\lambda)
$$

Proof. We will use Theorem 2.5 on the graph $G-e_{u v}$:

$$
\begin{array}{lll}
P_{G-e_{u v}}(\lambda) & =P_{G-e_{u v}+e_{u v}}(\lambda)+P_{G / u v}(\lambda) \\
P_{G-e_{u v}}(\lambda) & =P_{G}(\lambda) \quad+P_{G / u v}(\lambda) \\
P_{G-e_{u v}}(\lambda)-P_{G / u v}(\lambda) & =P_{G}(\lambda) . &
\end{array}
$$

Theorem 2.7. The chromatic function of a simple graph is a polynomial with integer coefficients: $P_{G}(\lambda)=\lambda^{n}-a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\ldots+(-1)^{n} a_{2} \lambda^{2}-(-1)^{n} a_{1} \lambda$ where n is the number of vertices in G and for all $i \leq n$ we have $a_{i} \in \mathbb{N}_{\geq 0}$.

Proof. We will give a proof with induction to the number of edges. The theorem holds for an edgeless graph, because $P_{\overline{K_{n}}}(\lambda)=\lambda^{n}$. Assume it holds for a simple graph with m edges. Take a simple graph G with $m+1$ edges and n vertices. We use Corollary 2.6 to delete an edge $e_{u v} \in E(G)$. Note $G / u v$ has strictly fewer edges than G and hence we can apply the induction hypothesis two times:

$$
\begin{aligned}
P_{G}(\lambda) & \stackrel{\text { 2.6 }}{=} P_{G-e_{u v}}(\lambda)-P_{G / u v}(\lambda) \\
& \stackrel{I H}{=} \lambda^{n}-a_{n-1} \lambda^{n-1}+\ldots+(-1)^{n+1} a_{1} \lambda-\left(\lambda^{n-1}-a_{n-2}^{\prime} \lambda^{n-2}+\ldots \lambda^{2}+(-1)^{n} a_{1}^{\prime} \lambda\right) \\
& =\lambda^{n}-\left(a_{n-1}+1\right) \lambda^{n-1}+\left(a_{n-2}+a_{n-2}^{\prime}\right) \lambda^{n-2}+\ldots+(-1)^{n}\left(a_{1}+a_{1}^{\prime}\right) \lambda
\end{aligned}
$$

All a_{i} and a_{i}^{\prime} are in \mathbb{N}. With induction we have proven our theorem.
From now on we say chromatic polynomial instead of chromatic function.
When a graph has a clique-cut-partition (A, B, C), we can use it to calculate the chromatic polynomial of the whole graph by calculating the chromatic polynomial of two parts $G[A \cup C]$ and $G[B \cup C]$. Recall, C is a clique and A is anticomplete to B.

Theorem 2.8. If (A, B, C) is a clique-cut-partition of a graph G, then

$$
P_{G}(\lambda)=\frac{P_{G[A \cup C]}(\lambda) \cdot P_{G[B \cup C]}(\lambda)}{P_{G[C]}(\lambda)} .
$$

Proof. There are $P_{G[C]}(\lambda)$ number of ways to color the common part $G[C]$. If we fix the colors of this part, we have $P_{G[A \cup C]}(\lambda) / P_{G[C]}(\lambda)$ ways to color $G[A]$ and $P_{G[B \cup C]}(\lambda) / P_{G[C]}(\lambda)$ for $G[B]$. It brings a number of colorings equal to

$$
P_{G}(\lambda)=P_{G[C]}(\lambda) \cdot \frac{P_{G[A \cup C]}(\lambda)}{P_{G[C]}(\lambda)} \cdot \frac{P_{G[B \cup C]}(\lambda)}{P_{G[C]}(\lambda)}=\frac{P_{G[A \cup C]}(\lambda) \cdot P_{G[B \cup C]}(\lambda)}{P_{G[C]}(\lambda)}
$$

To simplify notation, we will remove the ' P ' to denote the chromatic polynomial of a graph G. From now on, we will write $G(\lambda)$ for the chromatic polynomial of G with variable λ. The notation for G can be a drawing of the graph or letters that represent a special graph.

2.2 Hyperpaths

We can visualise a hyperpath by taking a path and blowing up each vertex to a nonempty clique of arbitrary size.

Definition 2.9. A hyperpath $G=(V, E)$ is a graph whose vertex set can be partitioned into $k \geq 3$ nonempty cliques $X_{1}, X_{2}, \ldots, X_{k}$ such that for all $i \in\{2, \ldots, k-1\}, X_{i}$ is complete to $X_{i-1} \cup X_{i+1}$, anticomplete to all X_{j} with $j \notin\{i-1, i, i+1\}$ and X_{1} is anticomplete to X_{k}. We say that G is a k-hyperpath and the length of G is equal to k. Another notation for G is $\left[X_{1}, \ldots, X_{k}\right]_{P}$ where X_{i} are subsets of $V(G)$, or as $\left[x_{1}, \ldots, x_{k}\right]_{P}$ where $x_{i}:=\# X_{i}$.

Figure 2.2 contains an example of a hyperpath. The hyperpath is equal to $[1,4,3,2,3,1]_{P}$. Notice hyperpaths are examples of interval-graphs and an interval model of the hyperpath is given on the left of Figure 2.2 To simplify our drawings, we will use a circle with a number n to denote a clique of size n. We will use an ' $=$ '-sign to denote that two (sub)graphs are complete to each other.

Figure 2.2: On the left an interval-graph model of the hyperpath $[1,4,3,2,3,1]_{P}$ as shown in the middle. On the right a schematic model of the same hyperpath. The length of the hyperpath is equal to 6.

With the following proposition (Proposition 2.10), we can calculate that its chromatic polynomial is

$$
\begin{aligned}
& {[1,4,3,2,3,1]_{P}(\lambda) } \\
= & \lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)(\lambda-4)(\lambda-5)(\lambda-6) \\
& \cdot(\lambda-3)(\lambda-4)(\lambda-2)(\lambda-3)(\lambda-4)(\lambda-3) \\
= & \lambda(\lambda-1)(\lambda-2)^{2}(\lambda-3)^{4}(\lambda-4)^{4}(\lambda-5)(\lambda-6) .
\end{aligned}
$$

Proposition 2.10. Let $G=\left[x_{1}, \ldots, x_{k}\right]_{P}$ be a hyperpath. To simplify notation, we define $x_{0}:=0$. The chromatic polynomial is

$$
\left[x_{1}, \ldots, x_{k}\right]_{P}(\lambda)=\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)
$$

Proof. We will prove it with induction on the length of the path.

BASE:

Let $G=\left[X_{1}, X_{2}, X_{3}\right]_{P}$ be a hyperpath of length three and define $x_{i}:=\# X_{i}$, then $\left(X_{1}, X_{3}, X_{2}\right)$ is a clique-cut-partition of P. Theorem 2.8 gives us

$$
G(\lambda)=\frac{G\left[X_{1}, X_{2}\right](\lambda) \cdot G\left[X_{2}, X_{3}\right](\lambda)}{G\left[X_{2}\right](\lambda)}
$$

Because X_{1} is complete to X_{2} and X_{2} is complete to X_{3}, we know that $G\left[X_{1}, X_{2}\right], G\left[X_{2}, X_{3}\right], G\left[X_{2}\right]$ are cliques. Lemma 2.4 gives us

$$
\begin{aligned}
\frac{G\left[X_{1}, X_{2}\right](\lambda) \cdot G\left[X_{2}, X_{3}\right](\lambda)}{G\left[X_{2}\right](\lambda)} & =\frac{\left(\prod_{j=0}^{x_{1}+x_{2}-1}(\lambda-j)\right)\left(\prod_{j=0}^{x_{2}+x_{3}-1}(\lambda-j)\right)}{\prod_{j=0}^{x_{2}-1}(\lambda-j)} \\
& =\frac{\left(\prod_{j=0}^{x_{1}+x_{2}-1}(\lambda-j)\right)\left(\prod_{j=0}^{x_{2}-1}(\lambda-j)\right)\left(\prod_{j=x_{2}}^{x_{2}+x_{3}-1}(\lambda-j)\right)}{\prod_{j=0}^{x_{2}-1}(\lambda-j)} \\
& =\left(\prod_{j=0}^{x_{1}-1}(\lambda-j)\right)\left(\prod_{j=x_{1}}^{x_{1}+x_{2}-1}(\lambda-j)\right)\left(\prod_{j=x_{2}}^{x_{2}+x_{3}-1}(\lambda-j)\right) \\
& =\prod_{i=1}^{3} \prod_{j=x_{i-1}}^{x_{i-1}+x_{i}-1}(\lambda-j)=\prod_{i=1}^{3} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right) .
\end{aligned}
$$

INDUCTION STEP:
We want to calculate the chromatic polynomial of $G=\left[X_{1}, \ldots, X_{k+1}\right]_{P}$. We define $x_{i}:=\# X_{i}$. Assume the chromatic polynomial of $\left[X_{1}, \ldots, X_{k}\right]_{P}$ is equal to $\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)$ where $x_{i}:=\# X_{i}$ and $\# X_{0}:=0$. We know that $\left(\left[X_{1}, \ldots, X_{k-1}\right]_{P}, X_{k+1}, X_{k}\right)$ is a clique-cut-partition. The following steps are analogous to the base case, so we will withhold some steps.

$$
\begin{aligned}
{\left[X_{1}, \ldots, X_{k+1}\right]_{P}(\lambda) } & \stackrel{\boxed{2.8}]}{=} \frac{\left[X_{1}, \ldots, X_{k}\right]_{P}(\lambda) \cdot G\left[X_{k}, X_{k+1}\right](\lambda)}{G\left[X_{k}\right](\lambda)} \\
& \stackrel{I H}{=} \frac{\left(\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)\right) \cdot G\left[X_{k}, X_{k+1}\right](\lambda)}{G\left[X_{k}\right](\lambda)} \\
& =\left(\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)\right) \cdot \prod_{t=x_{k}}^{x_{k}+x_{k+1}-1}(\lambda-t) \\
& =\prod_{i=1}^{k+1} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)
\end{aligned}
$$

Corollary 2.11. The chromatic number of a hyperpath $\left[X_{1}, \ldots, X_{k}\right]_{P}$ is equal to the maximum cliquesize:

$$
\chi\left(\left[X_{1}, \ldots, X_{k}\right]_{P}\right)=\max _{i<k}\left(\left\{x_{i}+x_{i+1}\right\}\right) \quad \text { with } x_{i}:=\# X_{i} .
$$

Proof. The proof is derived from colorings of even rings (Lemma 3.2 of [14]). Let $m:=\max _{i<k}\left(\left\{x_{i}+\right.\right.$ $\left.\left.x_{i+1}\right\}\right)$ and $c:=\{1, \ldots, m\}$. Vertices of X_{i} can be colored with the colors $\left\{1, \ldots, x_{i}\right\}$ if i is odd and with $\left\{m-x_{i}+1, \ldots, x_{i}\right\}$ if i is even. This is a proper coloring, because $x_{i}<m-x_{i+1}+1$ and $x_{i+1}<$ $m-x_{i}+1$ as from how m is defined. By Proposition 2.10 the graph $\left[X_{1}, \ldots, X_{k}\right]_{P}$ can not be colored with less colors. If m is maximal at $x_{i}+x_{i+1}$, then $\left(\lambda-x_{i}-\left(x_{i+1}-1\right)\right)=(\lambda-(m-1))$ is a factor of $\left[X_{1}, \ldots, X_{k}\right]_{P}$. Therefore, $\left[X_{1}, \ldots, X_{k}\right](m-1)=0$.

In Figure 2.3 we color the hyperpath $[1,4,3,2,3,1]_{P}$ with the colors $\{$ blue, light blue, green, dark green, purple, yellow, orange $\}$

Figure 2.3: A coloring of the hyperpath $\left[X_{1}, \ldots, X_{k}\right]_{P}$

2.3 Hyperholes

Like hyperpaths we have hyperholes, i.e., a hole (or irreducible cycle of length ≥ 4) where the vertices are blown up to cliques [2]. For these types of graphs, we wish to determine the chromatic polynomial.

Definition 2.12. A hyperhole $G=(V, E)$ is a graph whose vertex set can be partitioned into $k \geq 4$ nonempty cliques $X_{1}, X_{2}, \ldots, X_{k}$ such that for all $i \in\{1, \ldots, k\}, X_{i}$ is complete to $X_{i-1} \cup X_{i+1}$ and anticomplete to all X_{j} with $j \notin\{i-1, i, i+1\}$. Here, i is taken modulo k. We say that G is a k-hyperhole and the length of G is equal to k. Another notation for G is $\left[X_{1}, \ldots, X_{k}\right]_{H}$ where X_{i} are subsets of $V(G)$, or as $\left[x_{1}, \ldots, x_{k}\right]_{H}$ where $x_{i}:=\# X_{i}$.

From now on when discussing hyperholes we will take indices modulo k for k the length of that hyperhole. Notice hyperholes have circular-arc models, see Figure 2.4 for an example of a hyperhole and a circular-arc model of the hyperhole. How such model can be constructed, is discussed in Chapter 3

Figure 2.4: On the left a circular-arc model of the hyperhole in the middle. On the right a schematic model of the same hyperpath of length 6 .

The final symbol we want to introduce is the ' $\sim l$ ' 'symbol. Like the ' $=$ '-symbol, this new symbol is used between two cliques. For cliques X_{i} and X_{j} we write $X_{i} \leadsto{ }_{l} X_{j}$ if exactly l vertices in X_{i} are complete to X_{j} and all other vertices of X_{i} are anticomplete to X_{j}. See Figure 2.5 for an example where $X_{i} \cong K_{4}$ and $X_{j} \cong K_{3}$ and $l=1$.

Figure 2.5: Schematic figure on the right represents the graph on the left.
The remainder of this section is dedicated to proving the Chromatic Theorem for hyperholes (Theorem 2.13), stated below.

Theorem 2.13. Let $G=\left[x_{1}, \ldots, x_{k}\right]_{H}$ be a hyperhole of length $k \geq 4$. Without loss of generality, assume $x_{k} \geq x_{1}$. Indices are not taken modulo k and we define $x_{0}:=0$. Then the chromatic polynomial of G can be calculated recursively:

$$
\begin{aligned}
{\left[x_{1}, \ldots, x_{k}\right]_{H}(\lambda)=} & \left(\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)\right) \\
& +\left(\sum_{i=1}^{x_{1}}(-1)^{i}\binom{x_{1}}{i}\left(\prod_{j=0}^{i-1}\left(x_{k}-j\right)\right)\left(\prod_{j=x_{2}+i}^{x_{1}+x_{2}-1}(\lambda-j)\right)\right. \\
& \left.\cdot\left(\prod_{j=x_{k-1}+i}^{x_{k-1}+x_{k}-1}(\lambda-j)\right) \cdot\left[i, x_{2}, \ldots, x_{k-1}\right]_{H}(\boldsymbol{\lambda})\right)
\end{aligned}
$$

In order to prove the Chromatic Theorem for hyperholes, we wish to prove a lemma that will allow us to remove multiple edges at the same time. Recall that we denote $e_{u v}$ for an edge between the vertices u and v. The notation for removing an edge $e_{u v}$ of the graph G is $G-e_{u v}$ and for contracting the vertices u, v is $G / u v$.
Lemma 2.14. Let G be a graph and let $X=\left\{x_{1}, \ldots, x_{t}\right\}$ be a clique in G with vertices that have the same neighbors: $N_{G}\left[x_{1}\right]=\ldots=N_{G}\left[x_{t}\right]$. Let $v \in N_{G}\left[x_{1}\right] \backslash X$, then

$$
G / v x_{1} \cong\left(G-e_{v x_{1}}\right) / v x_{2} \cong \ldots \cong\left(G-e_{v x_{1}}-\ldots-e_{v x_{t-1}}\right) / v x_{t} .
$$

Proof. We will denote $V\left(G / v x_{i}\right):=V(G) \cup\left\{v x_{i}\right\} \backslash\left\{v, x_{i}\right\}$. First we prove $G / v x_{1} \cong\left(G-e_{v x_{1}}\right) / v x_{2}$ by making a bijection f between the vertices. We take $\left.f\right|_{\left.V\left(G / v x_{1}\right) \backslash\left\{v x_{1}, x_{2}\right\}\right)}:=i d$; the idendity map. And $f\left(v x_{1}\right)=v x_{2}, f\left(x_{2}\right)=x_{1}$. This is a bijection and we have:

$$
\begin{align*}
\left\{w, v x_{1}\right\} \in E\left(G / v x_{1}\right) & \Leftrightarrow\{w, v\} \in E(G) \vee\left\{w, x_{1}\right\} \in E(G) \tag{2.1}\\
& \Leftrightarrow\{w, v\} \in E(G) \vee\left\{w, x_{2}\right\} \in E(G) \tag{2.2}\\
& \Leftrightarrow\left\{w, v x_{2}\right\} \in E\left(\left(G-e_{v, x_{1}}\right) / v x_{2}\right) \tag{2.3}
\end{align*}
$$

The second line (2) holds because $N_{G}\left[x_{1}\right]=N_{G}\left[x_{2}\right]$. The last line (3) holds because x_{1} is connected to x_{2} in G, so the removing of the line $\left\{v, x_{1}\right\}$ does not affect the edges in $\left(G-e v, x_{1}\right) / v x_{2}$. For every other edge $\{s, t\} \in E\left(G / v x_{1}\right)$ it is clear that it is also an edge in $\left(G-e v, x_{1}\right) / v x_{2}$. Thus f is an isomorphism. The proof of the other isomorphisms is analogously.

The next proposition is the first concrete step towards proving Theorem 2.13
Proposition 2.15. Let $H=\left[x_{1}, \ldots, x_{k}\right]_{H}$ with $x_{i} \in \mathbb{N}$ be a hyperhole of length $k \geq 4$. The following holds:

Before we prove Proposition 2.15, we will prove the following lemma.
Lemma 2.16. The following holds, where $x_{i}=\# X_{i}$:

Proof. Consider the graph G visualised on the left side of the equation and a vertex v of X_{1} that is complete to $X_{k}=\left\{w_{1}, \ldots, w_{t}\right\}$. We use Corollary 2.6 to remove the edges one by one between v and X_{k}, starting at w_{1}.

$$
\begin{aligned}
G(\lambda) & =\left(G-e_{v w_{1}}\right)(\lambda)-\left(G / v w_{1}\right)(\lambda) \\
& =\left(G-e_{v w_{1}}-e_{v w_{2}}\right)(\lambda)-\left(\left(G / v w_{1}\right)(\lambda)+\left(\left(G-e_{v w_{1}}\right) / v w_{2}\right)(\lambda)\right) \\
& \vdots \\
& =\left(G-e_{v w_{1}}-\ldots-e_{v w_{t}}\right)(\lambda)-\left(\left(G / v w_{1}\right)(\lambda)+\ldots+\left(\left(G-e_{v w_{1}}-\cdots-e_{v w_{t-1}}\right) / v w_{t}\right)(\lambda)\right) \\
& \stackrel{L}{ }=\frac{2.14}{=}\left(G-e_{v w_{1}}-\ldots-e_{v w_{t}}\right)(\lambda)-x_{k} \cdot\left(G / v w_{1}\right)(\lambda)
\end{aligned}
$$

We can use Lemma 2.14 because X_{k} is a clique and the neighbors of two vertices in X_{k} are the same. This is exactly the equation in the Lemma.

We can now prove Proposition 2.15 .
Proof. Take a hyperhole $H=\left[x_{1}, \ldots, x_{k}\right]_{H}=\left[X_{1}, \ldots, X_{k}\right]$ with $x_{i}=\# X_{i} \in \mathbb{N}$ of length $k \geq 4$. Notice that the leftmost graph G of Lemma 2.16 is the same as hyperhole H if we take $i=x_{1}$ and $j=0$. For the next part of the proof, we will use Lemma 2.16 for x_{1} number of times. Every time on the left-most graph:

We already know the chromatic polynomial of any hyperpath. Therefore, the next step is to simplify the right side of the equation in Lemma 2.15 To do so, we use a property from Pascal's Triangle.

Lemma 2.17. For all $n \in \mathbb{N}_{\geq 0}$ and for all $0 \leq k \leq n$ this holds:

$$
\binom{n+1}{k+1}=\sum_{i=k}^{n}\binom{i}{k}
$$

Proof. We will prove this with induction to n.
BASE:
Assume $n=0$, then $k=0$ as well. And $\binom{1}{1}=\binom{0}{0}=\sum_{i=0}^{0}\binom{i}{0}$. Therefore the base case holds.

INDUCTION STEP:
Assume for some n we have that $\binom{n+1}{k+1}=\sum_{i=k}^{n}\binom{i}{k}$ holds for every $k \leq n$. If $k=0$, then $\sum_{i=0}^{n+1}\binom{i}{0}=$ $(n+1) \cdot 1=\binom{n+1}{1}$; if $k=n+1$, then $\binom{n+2}{n+2}=\sum_{i=n+2}^{n+2}\binom{i}{n+2}$. Now take $k>0$ and $k<n+1$, then

$$
\begin{aligned}
\binom{n+2}{k+1} & =\binom{n+1}{k+1}+\binom{n+1}{k} \\
& \stackrel{I H}{=} \sum_{i=k}^{n}\binom{i}{k}+\sum_{i=k-1}^{n}\binom{i}{k-1} \\
& =\left(\sum_{i=k}^{n}\binom{i}{k}+\binom{i}{k-1}\right)+\binom{k-1}{k-1} \\
& =\left(\sum_{i=k}^{n}\binom{i+1}{k}\right)\binom{k-1}{k-1} \\
& =\left(\sum_{i=k+1}^{n+1}\binom{i}{k}\right)\binom{k}{k} \\
& =\sum_{i=k}^{n+1}\binom{i}{k}
\end{aligned}
$$

So the property stated in the lemma holds for every $n \geq 0$ and every $0 \leq k \leq n$.
Proposition 2.18. Let $x_{k} \geq x_{1}$ and $x_{i}=\# X_{i}$, then the following holds:

Proof. The following proof is a twofold. We will first prove another claim before we finish the proof itself.

Claim 1. The following holds where $x_{i}=\# X_{i}$:

Proof of Claim 17. We will prove this with induction to i : the number of vertices in X_{1} that are complete to X_{k}. The proof has the same idea as the inductive proof for the Binomial Theorem [9].

BASE:
Assume $i=0$, so no vertices are complete to X_{k}. This is trivial as the left part of the equation is the same as the right side.

INDUCTION STEP:
Assume the Claim 1 holds for all graphs that have exactly $i-1$ vertices in X_{1} that are complete to X_{k}. Consider a graph that has exactly i vertices in X_{1} complete to X_{k}. The first step is to use Lemma 2.16

$$
\mathrm{IH}\left(\sum_{l=0}^{i-1}(-1)^{l}\left(\prod_{j=0}^{l-1}\left(x_{k}-j\right)\right)\binom{i-1}{l}\right.
$$

$$
=\left(\sum_{l=0}^{i-1}(-1)^{l}\left(\prod_{j=0}^{l-1}\left(x_{k}-j\right)\right)\binom{i-1}{l}\right.
$$

$$
+\left(\sum_{l=1}^{i}(-1)^{l}\left(\prod_{j=0}^{l-1}\left(x_{k}-j\right)\right)\binom{i-1}{l-1}\right.
$$

$$
=\left(\sum_{l=1}^{i-1}(-1)^{l}\left(\prod_{j=0}^{l-1}\left(x_{k}-j\right)\right)\binom{i}{l}\right.
$$

(λ).

With the principle of induction, we have proven the claim. Now that we have proven the claim, we can use it for the first line of the following equation.

At the moment, we have created a lot of cliques, so we can use the clique-cut-partition theorem for chromatic polynomials (Theorem 2.8) to simplify the right side of the equation in Lemma 2.18 even more. We can now prove the Chromatic Theorem for hyperholes. For convenience the statement of the Chromatic Theorem for hyperholes is stated below.

Theorem 2.13. Let $G=\left[x_{1}, \ldots, x_{k}\right]_{H}$ be a hyperhole of length $k \geq 4$. Without loss of generality, assume $x_{k} \geq x_{1}$. Indices are not taken modulo k and we define $x_{0}:=0$. Then the chromatic polynomial of G can be calculated recursively:

$$
\begin{aligned}
{\left[x_{1}, \ldots, x_{k}\right]_{H}(\lambda)=} & \left(\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)\right) \\
& +\left(\sum_{i=1}^{x_{1}}(-1)^{i}\binom{x_{1}}{i}\left(\prod_{j=0}^{i-1}\left(x_{k}-j\right)\right)\left(\prod_{j=x_{2}+i}^{x_{1}+x_{2}-1}(\lambda-j)\right)\right. \\
& \left.\cdot\left(\prod_{j=x_{k-1}+i}^{x_{k-1}+x_{k}-1}(\lambda-j)\right) \cdot\left[i, x_{2}, \ldots, x_{k-1}\right]_{H}(\boldsymbol{\lambda})\right)
\end{aligned}
$$

Proof. Take a hyperhole $G=\left[X_{1}, \ldots, X_{k}\right]_{H}=\left[x_{1}, \ldots, x_{k}\right]_{H}$ of length $k \geq 4$. With help of Lemma 2.15 and Lemma 2.18, we know

Using Proposition 2.10 we calculate the following where $x_{0}:=0$:

$$
\left[x_{1}, \ldots, x_{k}\right]_{P}(\lambda):=\prod_{i=1}^{k} \prod_{j=0}^{x_{i}-1}\left(\lambda-x_{i-1}-j\right)
$$

Let G^{\prime} be the graph on the right-most side of the next equation, Y be the i vertices in the middle of the graph and $X_{1}^{\prime}:=\left\{v_{1}^{1}, \ldots, v_{1}^{x_{1}-i}\right\}$. Then $\left(X_{1}^{\prime}, V(G) \backslash\left(X_{1}^{\prime} \cup X_{2} \cup Y\right), X_{2} \cup Y\right)$ is a clique-cut-partition. We apply the Clique-cut-partition Theorem for chromatic polynomials (Theorem 2.8) two times and insert the chromatic polynomial for a complete graph (Lemma 2.4):

$$
\frac{\left(\sum_{j=0}^{x_{1}+x_{2}-1}(\lambda-j)\right)\left(\sum_{j=0}^{x_{k}+x_{k-1}-1}(\lambda-j)\right)\left(\sum_{j=0}^{x_{k-1}+i-1}(\lambda-j)\right)}{\left(\sum_{j=0}^{x_{2}+i-1}(\lambda-j)\right.}
$$

With one more step, we have proven our statement.

2.4 Magma program and computation time

When we find the representation $X:=\left[X_{1}, \ldots, X_{k}\right]_{H}$ of a hyperhole, we can convert Theorem 2.13 into a Magma program.

Algorithm 1. ChromaticPolynomialHyperhole(X).

```
#INPUT: Representation of a hyperhole in integers: X:= [|\mp@subsup{X}{1}{}|,\ldots,|\mp@subsup{X}{k}{}|]
#OUTPUT: The chromatic polynomial of the hyperhole
P<x> := PolynomialRing(Integers());
ChromaticPolynomialHyperhole := function(X);
    #Rotate the graph such that the smallest clique is X }\mp@subsup{X}{1}{
    min, i := Min(X);
    Rotate(~}\mp@subsup{~}{~}{\prime},-i+1)
    if |X| eq 3 then
            #The hyperhole with vertex partition X is a complete graph
            g := 1;
            for i:=0 to X[1]+X[2]+X[3]-1 do
                g*:=(x-i);
            end for;
            return g;
    else
        f:= 1;
            #Chromatic Polynomial for hyperpath [ }\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{k}{}\mp@subsup{]}{P}{
            for i:=1 to |X| do
                if i eq 1 then
                    n:=0;
            else
                n:=X[i-1];
            end if;
            for j:=n to (n+X[i]-1) do
                f*:=(x-j);
            end for;
            end for;
            for i:=1 to X[1] do
                h := (-1)^i * Binomial(X[1],i);
                for j := 0 to (i-1) do
                h*:= (X[|X|] - j);
            end for;
            for j := X[2]+i to X[1]+X[2]-1 do
                h*:= (x-j);
            end for;
            for j := X[|X|-1]+i to X[|X|]+X[|X|-1]-1 do
                h*:= (x-j);
            end for;
            Y := X;
            Exclude(~Y, Y[1]);
```

```
        Y[|Y|] := i;
        h1 := $$(Y); #Recursive call to the algorithm
        f+:= h*h1;
        end for;
        return f;
    end if;
end function;
```

We can calculate the chromatic polynomial of a hyperhole by using Corollary 2.6recursively. Let $G=\left[X_{1}, \ldots, X_{k}\right]_{H}$ be a hyperhole of length k and $e_{u v}$ an edge. We define $x_{i}:=X_{i}$. Then

$$
P_{G}(\lambda)=P_{G-e_{u v}}(\lambda)+P_{G / u v}(\lambda)
$$

The standard algorithm in Magma uses this principle. In total G has $\sum_{i:=1}^{k} \frac{x_{i}^{2}-x_{i}}{2}$ edges in all cliques X_{1}, \ldots, X_{k} combined and $\sum_{i:=1}^{k} x_{i} \cdot x_{i+1}$ edges between the cliques. Notice that the algorithm in Magma uses a lot of memory as for every edge in G two graphs must be saved. As an example we take the graph $G:=[1,2,1,3,5,2,1]_{H}$, drawn in Figure 2.6

Figure 2.6: Graph $[1,2,1,3,5,2,1]_{H}$ colored with $\chi(H)=8$ colors.

The chromatic polynomial for G is equal to

$$
\begin{aligned}
& {[1,2,1,3,5,2,1]_{H}(\lambda)=} \\
& \lambda^{15}-50 \lambda^{14}+1138 \lambda^{13}-15626 \lambda^{12}+144640 \lambda^{11}-955238 \lambda^{10}+4646270 \lambda^{9} \\
& -16935214 \lambda^{8}+46589063 \lambda^{7}-96557200 \lambda^{6}+148924952 \lambda^{5}-166283680 \lambda^{4} \\
& +127253616 \lambda^{3}-59634432 \lambda^{2}+12821760 \lambda
\end{aligned}
$$

The standard Magma algorithm needed 328 seconds to compute the chromatic polynomial, while ChromaticPolynomialHyperhole needed less than a second. In fact, the first hyperhole we could find of length seven that needed one second for ChromaticPolynomialHyperhole to compute its chromatic polynomial, was $[17,16,18,17,19,16,21]_{H}$. This polynomial has degree 124 and the largest coefficient is approximately $5,6 \cdot 10^{173}$.

2.5 Chromatic polynomial for classes of hyperholes

As discussed before: a cycle is an example of a hyperhole. Let us calculate the chromatic polynomial of a cycle C_{n} with Theorem 2.13. For all i it is $\# X_{i}=1$:

$$
\begin{aligned}
C_{n}(\lambda)= & \prod_{i=1}^{n} \prod_{j=0}^{1-1}\left(\lambda-1 \cdot 1_{\mathbb{N} \backslash\{1\}}(i)-j\right)+ \\
& +\sum_{i=1}^{1}(-1)^{i}\binom{1}{i}\left(\prod_{j=0}^{i-1}(1-j)\right)\left(\prod_{j=1+i}^{1}(\lambda-j)\right)\left(\prod_{j=1+i}^{1}(\lambda-j)\right) \cdot C_{n-1}(\lambda) \\
= & \lambda(\lambda-1)^{n-1}-C_{n-1}(\lambda)
\end{aligned}
$$

This is the same we get if we use deleting of edges (Theorem 2.6 when we remember $P_{n}(\lambda)=$ $\lambda(\lambda-1)^{n-1}$. Using this, we can prove the chromatic polynomial of a cycle.

Lemma 2.19. The chromatic polynomial of a cycle C_{n} on n vertices is

$$
P_{C_{n}}(\lambda)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)
$$

Proof. We will prove it with induction to the number of vertices in the cycle.
BASE: Assume $n=3$, then $C_{3}=K_{3}$, thus

$$
\begin{aligned}
P_{C_{3}}(\lambda) & =\lambda(\lambda-1)(\lambda-2)=(\lambda-1)\left(\lambda^{2}-2 \lambda\right) \\
& =(\lambda-1)\left((\lambda-1)^{2}-1\right)=(\lambda-1)^{3}+(-1)^{3}(\lambda-1)
\end{aligned}
$$

INDUCTION STEP: Assume for an n we know $P_{C_{n}}(\lambda)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)$. Using Theorem 2.13

$$
\begin{aligned}
P_{C_{n+1}}(\lambda) & \stackrel{\boxed{2.13}}{=} \lambda(\lambda-1)^{n}-C_{n}(\lambda) \\
& \stackrel{I H}{=} \lambda(\lambda-1)^{n}-(\lambda-1)^{n}-(-1)^{n}(\lambda-1) \\
& =(\lambda-1)^{n+1}+(\lambda-1)^{n}-(\lambda-1)^{n}+(-1)^{n+1}(\lambda-1) \\
& =(\lambda-1)^{n+1}+(-1)^{n+1}(\lambda-1)
\end{aligned}
$$

When a hyperhole $\left[x_{1}, \ldots, x_{k}\right]_{H}$ with $k \geq 4$ has $x_{i}=1$ for an i, we can calculate its chromatic polynomial. Without loss of generality, we say $x_{1}=1$. The next theorem calculates $\left[1, x_{2}, \ldots, x_{k}\right]_{H}$.

Theorem 2.20. Let $G=\left[1, x_{2}, \ldots, x_{k}\right]_{H}$ be a hyperhole of length $k \geq 4$. Then the chromatic polynomial of G is equal to

$$
G(\lambda)=\left(\prod_{i=2}^{k} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)\left(\left(\prod_{i=1}^{k}\left(\lambda-x_{i}\right)\right)+(-1)^{k} \cdot\left(\prod_{i=1}^{k} x_{i}\right)(\lambda-1)\right)
$$

Proof. We will prove this with induction to k : the length of a hyperhole.
BASE:
Consider a hyperhole $\left[1, x_{2}, x_{3}, x_{4}\right]_{H}$. We apply Theorem 2.13 and recall that $\left[1, x_{2}, x_{3}\right]_{H}=K_{1+x_{2}+x_{3}}$; a complete graph. We define $x_{0}:=0$.

$$
\begin{aligned}
& {\left[1, x_{2}, x_{3}, x_{4}\right]_{H}(\lambda) } \\
& \stackrel{2.13}{=}\left(\prod_{i=1}^{4} \prod_{j=x_{i-1}}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)-x_{4}\left(\prod_{j=x_{3}+1}^{x_{3}+x_{4}-1}(\lambda-j)\right)\left(\prod_{j=0}^{x_{2}+x_{3}}(\lambda-j)\right) \\
&=\left(\prod_{i=2}^{4} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)\left(\lambda\left(\prod_{i=1}^{3}\left(\lambda-x_{i}\right)\right)-x_{4} \lambda \cdot(\lambda-1)\left(\lambda-\left(x_{2}+x_{3}\right)\right)\right) \\
&=\left(\prod_{i=2}^{4} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)\left(\left(\prod_{i=1}^{4}\left(\lambda-x_{i}\right)\right)+x_{4} x_{3} x_{2}(\lambda-1)\right)
\end{aligned}
$$

Therefore, the base-case is true.
INDUCTION:
Assume for every $x_{2}, \ldots, x_{k} \in \mathbb{N}$ a hyperhole $G^{\prime}=\left[1, x_{2}, \ldots, x_{k}\right]_{H}$ of length k the formula

$$
G(\lambda)=\left(\prod_{i=2}^{k} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)\left(\left(\prod_{i=1}^{k}\left(\lambda-x_{i}\right)\right)+(-1)^{k} \cdot\left(\prod_{i=1}^{k} x_{i}\right)(\lambda-1)\right)
$$

holds. Consider a hyperhole $G=\left[1, x_{2}, \ldots, x_{k+1}\right]$ of length $k+1$. Notate $x_{0}:=1$. With the recursive formula for hyperholes, we know

$$
\begin{aligned}
& {\left[1, x_{2}, \ldots, x_{k+1}\right]_{H}(\lambda) } \\
& \stackrel{2.13}{=}\left(\prod_{i=1}^{k+1} \prod_{j=x_{i-1}}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)-x_{k+1}\left(\prod_{j=x_{k}+1}^{x_{k}+x_{k+1}-1}(\lambda-j)\right)\left[1, x_{2}, \ldots, x_{k}\right]_{H}(\lambda) \\
& \stackrel{[I H]}{=}\left(\prod_{i=1}^{k+1} \prod_{j=x_{i-1}}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)-x_{k+1}\left(\prod_{j=x_{k}+1}^{x_{k}+x_{k+1}-1}(\lambda-j)\right) \cdot\left(\prod_{i=2}^{k} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right) . \\
& \cdot\left(\left(\prod_{i=1}^{k}\left(\lambda-x_{i}\right)\right)+(-1)^{k} \cdot\left(\prod_{i=1}^{k} x_{i}\right)(\lambda-1)\right) \\
&=\left(\prod_{i=2}^{k+1} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right) . \\
& \cdot\left(\lambda\left(\prod_{i=1}^{k}\left(\lambda-x_{i}\right)\right)-x_{k+1}\left(\left(\prod_{i=1}^{k}\left(\lambda-x_{i}\right)\right)+(-1)^{k} \cdot\left(\prod_{i=1}^{k} x_{i}\right)(\lambda-1)\right)\right) \\
&=\left(\prod_{i=2}^{k+1} \prod_{j=x_{i-1}+1}^{x_{i-1}+x_{i}-1}(\lambda-j)\right)\left(\left(\prod_{i=1}^{k+1}\left(\lambda-x_{i}\right)\right)+\left((-1)^{k+1} \cdot\left(\prod_{i=1}^{k+1} x_{i}\right)(\lambda-1)\right)\right)
\end{aligned}
$$

This completes the proof.

Chapter 3

Coloring rings

3.1 Recognizing rings

One way to introduce rings is through circular-arc graphs. Rings form a special case of those graphs. Recall that circular-arc graphs are intersection graphs of open intervals (a, b) on a circle with a circumference r. The arcs are from a to b in a clockwise direction and $a, b \in[0, r)$.

Definition 3.1. A Ring R is an intersection graph of a circular-arc model for which the following requirements hold:

1. The arcs can be partitioned into k nonempty sets X_{1}, \ldots, X_{k} where $k \geq 4$ is the circumference of the circular arc model such that (2.) is satisfied;
2. All arcs in set X_{i} are of the form $\left(i-a_{i}^{j}, i+b_{i}^{j}\right)$ with the extra restrictions:

$$
\begin{gather*}
0<a_{i}^{j}, b_{i}^{j} \leq 1 \tag{3.1}\\
a_{i}^{1} \geq \ldots \geq a_{i}^{\# X_{i}} \tag{3.2}\\
b_{i}^{1} \geq \ldots \geq b_{i}^{\# X_{i}} \tag{3.3}\\
a_{i}^{1}=1 \wedge b_{i}^{1}=1 \tag{3.4}
\end{gather*}
$$

We say R is a k-ring and the length of R is equal to k.

Figure 3.1: Ring of length 8 . On the left the circular-arc model. On the right its intersection graph.

The model on the right of Figure 3.1 looks similar to a hyperhole. However, some edges from a hyperhole may be missing. That is another way to introduce rings: hyperholes are a subclass of rings. From de defnition of hyperholes we can gain a characterization for a ring by making the requirement that every vertex v in X_{i} is complete to $X_{i-1} \cup X_{i} \backslash v \cup X_{i+1}$ less strict.

Lemma 3.2. The graph R is a ring of length $k \geq 4$ if and only if there exists a partition of the vertex set into $k \geq 4$ nonempty sets $X_{1}, X_{2}, \ldots, X_{k}$, such that for all $1 \leq i \leq k$ the set X_{i} can be ordered as $X_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{\# X_{i}}\right\}$ and

$$
X_{i} \subseteq N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]=X_{i-1} \cup X_{i} \cup X_{i+1}
$$

Proof. First we will prove the lemma from right to left. Assume graph R has a partition X_{1}, \ldots, X_{k} for $k \geq 4$ of the vertices $V(R)$ where for every i there is an ordering $X_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{\# X_{i}}\right\}$ such that $X_{i} \subseteq N_{R}\left[u_{i}^{\# \#}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]=X_{i-1} \cup X_{i} \cup X_{i+1}$. For every vertex u_{i}^{j}, we define the arc representing u_{i}^{j} to be $A_{i}^{j}:=\left(i-a_{i}^{j}, i+b_{i}^{j}\right)$ with

$$
\begin{aligned}
a_{i}^{j} & :=\frac{\# X_{i}-j+1}{\# X_{i}} \\
b_{i}^{j} & :=\frac{l}{\# X_{i+1}} \text { with } l \text { the largest integer satisfying }\left\{v_{i+1}^{1} \ldots v_{i+1}^{l}\right\} \subseteq N_{R}\left(v_{i}^{j}\right)
\end{aligned}
$$

Now we want to prove the two conditions of Definition 3.1 are met and that the model is a circular-arc model for R. The partition of the arcs will be analogue to the given vertex partition, i.e., we have an arc partition $X_{1}^{A}, \ldots X_{k}^{A}$ with $X_{i}^{A}=\left\{A_{i}^{1}, \ldots, A_{i}^{\# X_{i}}\right\}$. We will prove the second condition is also satisfied in Claim 1. Let X_{i}^{A} be a set of arcs.

Claim 1. The conditions (3.1)-(3.4) are satisfied for X_{i}^{A}.
Proof of Claim 1. By construction the conditions (3.1)-(3.3) and $a_{i}^{1}=1$ are met. By assumption, we know $N_{R}\left[u_{i}^{1}\right]=X_{i+1} \cup X_{i} \cup X_{i+1}$. Thus $l=\# X_{i+1}$ and the claim holds.
Claim 2. The set of open $\operatorname{arcs} X_{1}^{A} \cup \ldots \cup X_{k}^{A}$ form a circular-arc model for R.
Proof of Claim 2. Let v, w be two neighbours in R. Assume v and w are from the same set X_{i}, i.e., $v=u_{i}^{j}, w=u_{i}^{h}$ for an j, h, then $i \in A_{i}^{j} \cap A_{i}^{h}$. Therefore, their representing arcs intersect. Assume otherwise, so assume v and w are not from the same set X_{i} for any i. Without loss of generality, $v=u_{i}^{j}$ and $w=u_{i+1}^{h}$ for an i, j, h. We prove their representing arcs intersect, i.e., $i+b_{i}^{j}>i+1-a_{i+1}^{h}$ is satisfied: v and w are neighbors, therefore $u_{i}^{j} \in N_{R}\left(u_{i+1}^{h}\right) \subseteq \ldots \subseteq N_{R}\left(u_{i+1}^{1}\right)$ and thus

$$
b_{i}^{j} \geq \frac{h}{\# X_{i+1}}>1-1+\frac{h-1}{\# X_{i+1}}=1-\frac{\# X_{i+1}+h-1}{\# X_{i+1}}=1-a_{i+1}^{h} .
$$

Therefore, their representing arcs intersect.
Let v, w be two vertices in R with no edge between the vertices. Assume $v \in X_{i}$ and $w \in V(R) \backslash$ $\left(X_{i-1} \cup X_{i}\right) \cup X_{i+1}$. Then it is trivial their representing arcs do not intersect. Assume without loss of generality $v=u_{i}^{j}$ and $w=u_{i+1}^{h}$ for an i, j, h. We prove their representing arcs do not intersect, i.e., $i+b_{i}^{j} \leq i+1-a_{i+1}^{h}$ is satisfied: v and w are no neighbors, therefore $u_{i+1}^{h} \notin N_{R}\left(u_{i}^{j}\right)$ and thus

$$
b_{i}^{j} \leq \frac{h-1}{\# X_{i+1}}=1-1+\frac{h-1}{\# X_{i+1}}=1-\frac{\# X_{i+1}+h-1}{\# X_{i+1}}=1-a_{i+1}^{h} .
$$

The intervals are open, so their representing arcs do not intersect.
Using Claim 1 and Claim 2 we know there exists a circular-arc model of every graph R that meets the requirements of Definition 3.1. Thus R is a ring.

We will also prove from left to right. Assume we have a ring R. This is an intersection graph of a circular-arc model with circumference $k \geq 4$ where the arcs are partitioned into k nonempty sets $Y_{1}, \ldots Y_{k}$ and all arcs in Y_{i} are of the form $\left(i-a_{i}^{j}, i+b_{i}^{j}\right)$ that satisfy some additional restrictions (3.1)-(3.4). Let X_{i} be the set of vertices that represent Y_{i}. The first requirement ensures arcs in Y_{i} only intersect with arcs in $Y_{i-1} \cup Y_{i} \cup Y_{i+1}$ and that all arcs in Y_{i} intersect each other. Therefore, X_{i} is a clique and anticomplete to all X_{j} with $j \notin\{i-1, i, i+1\}$. The second and third requirement guarantee the existence of an order in $X_{i}:=\left\{u_{i}^{1}, \ldots, u_{i}^{\# X_{i}}\right\}$ such that $N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]$. The last requirement tells us $N_{R}\left[u_{i}^{1}\right]=X_{i-1} \cup X_{i} \cup X_{i+1}$.

In literature, the characterization of Lemma 3.2 is mostly used for defining a ring [2]. From now on, when we discuss a ring, we often assume a ring partition X_{1}, \ldots, X_{k} of vertices is given. We will consider the indices to be taken modulo k and we obtain an ordering of the set $X_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{\# X_{i}}\right\}$ such that

$$
X_{i} \subseteq N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]=X_{i-1} \cup X_{i} \cup X_{i+1}
$$

We define $s_{i}:=u_{i}^{1}$ and $t_{i}:=u_{i}^{\# X_{i}}$.
Corollary 3.3. All hyperholes are rings.
Proof. Let $G=\left[X_{1}, \ldots, X_{k}, X_{1}\right]_{H}$ be a hyperhole of length $k \geq 4$. All vertices v in X_{i} are complete to $X_{i-1} \cup\left(X_{i} \backslash\{v\}\right) \cup X_{i+1}$ and anticomplete to all other vertices, so

$$
X_{i} \subseteq N_{G}\left[u_{i}^{\# X_{i}}\right]=\ldots=N_{G}\left[u_{i}^{1}\right]=X_{i-1} \cup X_{i} \cup X_{i+1}
$$

Therefore, G is a hyperhole.
Using Lemma 3.2, we can program a recognition algorithm for rings that is described in Lemma 8.14 in [2]. This implementation is slightly different from the one given in [2]. The difference are the extra checks at the end of the algorithm. When we want to check whether we can sort the vertices in a clique $X_{i}=\left\{u_{i}^{1}, \ldots, u_{i}^{\# X_{i}}\right\}$ such that $N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]$ hold, we use Algorithm 16 SORT$\operatorname{Clique}\left(G, X_{i}\right)$ to sort X_{i} from vertices with the most neighbors to vertices with the least neighbors, as described in the Appendix. It then checks if $N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]$. The running time of this algorithm is the same as the running time of the algorithm that determines if a graph is chordal.

The algorithm $\operatorname{IsRing}(G)$ starts with a vertex v with the largest number of neighbors, this will become vertex s_{1}. The first clique X_{1} is defined as all the vertices with its neighborhood contained in $N_{G}\left[s_{1}\right]$ (lines 7-13). For the second clique X_{2}, we start with a random vertex $x \in N_{G}\left(s_{1}\right) \backslash X_{1}$ (lines 22-27). We set $X_{2}:=\left(N_{G}[x] \cap N_{G}\left(s_{1}\right)\right) \backslash X_{1}$ (lines 28-29). The other cliques are made recursively: $X_{i}:=N_{G}\left(s_{i-1}\right) \backslash\left(X_{1} \cup \ldots \cup X_{i-1}\right)$. At the end of the algorithm, there are some checks (lines 56-74) for example that $G\left[\left\{s_{1}, \ldots, s_{k}\right\}\right]$ is a hole or that s_{i} is complete to X_{i+1}. After we give the algorithm itself, we will prove the checks are sufficient to determine whether G is a ring or not.

```
Algorithm 2. IsRING(G).
#INPUT: Graph G
#OUTPUT: True together with its good partition if G is a ring. False otherwise.
#RUNNING TIME: OO(n
IsRing := function(G);
    #Make X1
    d,v := Maxdeg(G);
    X1 := [v];
    Neighbor := Include(Neighbors(v),v);
    for w in Neighbors(v) do
            if Neighbors(w) subset Neighbor then
                Include(~}\mp@subsup{}{}{\textrm{X}1, w);
            end if;
        end for;
        b, X1 := SortClique(G,X1);
        if not b then
            "X1 could not be orderd properly";
            return false, [];
        end if;
        #Make X2: First find an x in X2
        x:=0;
        for w in Neighbor do
            if not w in X1 then
                        x:=w;
                        break;
```

```
end if;
    end for;
    X2:=[y : y in Neighbors(x) | y in Neighbors(X[1][1]) and not y in X1 ];
    Append(~}~2,x)
    b, X2 := SortClique(G,X2);
    if not b then
        "X2 could not be orderd properly";
        return false, [];
    end if;
    cupX:=X1 cat X2;
    X:= [X1,X2];
    #Make all other Xi
    while true do
        Xi := [x : x in Neighbors(X[|X|][1]) | not x in cupX];
        if |Xi| eq O then
            break;
        end if;
        b,Xi := SortClique(G,Xi);
        if not b then
            "Xi could not be orderd properly";
                return false, [];
        end if;
        #Update X and cupX
        Append( ~}\mp@subsup{~}{,}{\prime},\textrm{Xi})
        cupX := cupX cat Xi;
    end while;
    #Last Checks:
    RemainingVertices := [y : y in Vertices(G) | not y in cupX];
    if |RemainingVertices| ne 0 or |X| le 3 then
        "k<=3 or V(X) ne V(G)";
        return false, [];
    elif not IsPolygon(sub<G|{X[i][1] : i in [1..|X|]}>) then
        "x1,x2,\ldots.,xk,x1 is not a hole";
        return false, [];
    end if;
    for i:= 1 to |X|-1 do
        if not X[i] subset Neighbors(X[i+1][1]) then
            return false
        end if;
    end for;
    if not X[1] subset Neighbors(X[|X|][1]) then
        return false;
    elif not X[|X|]) subset Neighbors(X[1][1]) then
        return false;
    end if;
    return true, X;
end function;
```

Proof. To check if this algorithm is correct, we use the characterization of a ring given in Lemma 3.2 We immediately can see that $X=\left[X_{1}, \ldots, X_{k}\right]$ is a partition of the vertices in G into $k \geq 4$ nonempty sets from the way X is defined and from the final checks. With SortClique, we know that for every i, we have an ordered $X_{i}:=\left[x_{i}^{1}, \ldots, x_{i}^{\# X_{i}}\right]$ such that $N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]$. We only need to check
that

$$
\begin{equation*}
X_{i} \subseteq N_{R}\left[u_{i}^{\# X_{i}}\right] \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{R}\left[u_{i}^{1}\right]=X_{i-1} \cup X_{i} \cup X_{i+1} \tag{3.6}
\end{equation*}
$$

is true for every $i \leq k$.
The first one, (3.5), is true because in SortClIQUE we check if $N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq \ldots \subseteq N_{R}\left[u_{i}^{1}\right]$. In particular, we have $N_{R}\left[u_{i}^{\# X_{i}}\right] \subseteq N_{R}\left[u_{i}^{j}\right]$ for every $u_{i}^{j} \in X_{i}$ and thus $u_{i}^{\# X_{i}} \in N_{R}\left[u_{i}^{j}\right]$. For the second one, (3.6), we need to verify that two things are satisfied:
(\subseteq) Assume $N_{R}\left[u_{i}^{1}\right] \nsubseteq X_{i-1} \cup X_{i} \cup X_{i+1}$. Then there exists vertices u_{i}^{s}, u_{j}^{t} such that these vertices are connected and $j \notin\{i-1, i, i+1\}$. Then the vertices u_{i}^{1}, u_{j}^{1} are also connected, for otherwise one or both checks $N_{R}\left[u_{i}^{s}\right] \subseteq N_{R}\left[u_{i}^{1}\right]$ and $N_{R}\left[u_{j}^{t}\right] \subseteq N_{R}\left[u_{j}^{1}\right]$ fail. But then $G\left[\left\{u_{1}^{1}, \ldots, u_{k}^{1}\right\}\right]$ is not a hole. So the algorithm verifies whether or not $N_{R}\left[u_{i}^{1}\right] \subseteq X_{i-1} \cup X_{i} \cup X_{i+1}$.
(\supseteq) All vertices in X_{i} are in $N_{R}\left[u_{i}^{1}\right]$, because $u_{i}^{1} \in X_{i}$ and X_{i} is a clique. For every $i<\# X$ we have $X_{i+1} \subseteq N_{G}\left(u_{i}^{1}\right)$ by the way X_{i+1} is defined through u_{i}^{1}. The rest is checked in the last checks.

Lemma 3.4. [14] Let R be a ring of length $k \geq 4, S$ a subset of its vertices and $\left[v_{1}, \ldots, v_{t}\right]$ a maximal sequence of pairwise distinct vertices of $R \backslash S$ such that v_{i} is simplicial in $R \backslash\left(S \cup\left\{v_{1}, \ldots, v_{i-1}\right\}\right)$. Then either $V(R)=S \cup\left\{v_{1}, \ldots, v_{t}\right\}$ or $R \backslash\left(S \cup\left\{v_{1}, \ldots, v_{t}\right\}\right)$ is a k-ring.

Proof. This proof is obtained from [14]. For a ring R with ring partition X_{1}, \ldots, X_{k}, S a subset of its vertices and $\left[v_{1}, \ldots, v_{t}\right]$ a maximal simplicial elimination ordering in $R \backslash S$, we set $R^{\prime}:=R \backslash(S \cup$ $\left.\left\{v_{1}, \ldots, v_{t}\right\}\right)$ and $Y_{i}:=X_{i} \cap R^{\prime}$. Assume $V\left(R^{\prime}\right) \neq \emptyset$ for otherwise the lemma is trivial. If for an i we have $Y_{i}=\emptyset$, then R^{\prime} is chordal and there exist a simplicial vertex which is in contradiction with the maximality of the sequence $\left[v_{1}, \ldots, v_{t}\right]$. We write $Y_{i}=\left\{y_{i}^{1} \ldots, y_{i}^{\# Y_{i}}\right\}$ and by definition of a ring R we have

$$
Y_{i} \subseteq N_{R^{\prime}}\left[y_{i}^{\# Y_{i}}\right] \subseteq \ldots \subseteq N_{R^{\prime}}\left[y_{i}^{1}\right] \subseteq Y_{i-1} \cup Y_{i} \cup Y_{i+1}
$$

If $N_{R^{\prime}}\left[y_{i}^{1}\right] \subsetneq Y_{i-1}$, then $y_{i-1}^{\# Y_{i}}$ is a simplicial vertex of R^{\prime} contradicting the maximality of $\left[v_{1}, \ldots, v_{t}\right]$. Analogously $N_{R^{\prime}}\left[y_{i}^{1}\right] \subsetneq Y_{i+1}$ contradicts the maximality. Therefore R^{\prime} is a ring with ring partition Y_{1}, \ldots, Y_{k}.

3.2 Coloring even rings

The chromatic number of a graph is always greater than or equal to the clique number of the graph, because all vertices in a clique have to be colored differently in order to obtain a proper coloring. For even rings it is an equality. A maximal clique C is always a subset $X_{i} \cup X_{i+1}$ for some i, and if k is even, we can alternate the coloring tactics between the sets of the clique partition X_{1}, \ldots, X_{k}. We use Algorithm CliqueSizeRing CliqueSizeRing (R, X) to find $\omega(R)$ in $\mathscr{O}\left(n^{3}\right)$ time. We follow Lemma 3.2 of [14] to color an even ring R with the colors $\{1, \ldots, \omega(R)\}$:

$$
c\left(u_{i}^{j}\right):= \begin{cases}j & \text { if } i \text { is odd } \\ \omega(R)-j+1 & \text { otherwise }\end{cases}
$$

Algorithm 3. ColorEvenRing (R, X)

```
#INPUT: An even ring R together with its ring partition X.
#OUTPUT: A proper coloring that uses }\chi(R)\mathrm{ colors.
#RUNNING TIME: O}(\mp@subsup{n}{}{3}
ColorEvenRing := function(R,X);
    w := CliqueSizeRing(R,X);
    Parent := Parent({X[1][1]});
    Colours := [Parent | {} : i in [1..w]];
    for i:=1 to |X| do
        if IsEven(i) then
            for j:=1 to |X[i]| do
            Include(~Colours[j],X[i][j]);
            end for;
        else
            for j:=1 to |X[i]| do
                Include(~}\mp@subsup{}{}{~}\mathrm{ Colours [w-j+1],X[i][j]);
            end for;
        end if;
    end for;
    return Colours;
end function;
```

The proof is straightforward [14]. The algorithm will color the vertices u_{i}^{j} and u_{i}^{l} differently. If u_{i}^{j} and u_{i+1}^{l} are neighbors, then $R\left[\left\{u_{i}^{1}, \ldots, u_{i}^{j}\right\} \cup\left\{u_{i+1}^{1} \ldots, u_{i+1}^{l}\right\}\right]$ is a clique of size $l+j \leq \omega(R)=w$ by construction of a ring. Therefore it is not possible that u_{i}^{j} and u_{i+1}^{l} receive the same color. By construction of a ring, these are all possible connected vertices.

Using this algorithm, we can color the 8-ring of Figure 3.1. The maximal clique-size is 5 , so we need five colors: $\{b l u e$, dark blue, red, yellow, green $\}$ represent $\{1,2,3,4,5\}$.

Figure 3.2: Following Algorithm 3 to color the ring of Figure 3.1 optimally

3.3 Coloring odd hyperholes

Only two colors are needed to color even cycles. To color an odd one, we need an extra color since we can not simply alternate the colors any more. The same holds for odd rings and odd hyperholes. A coloring algorithm for hyperholes is straightforward, given and proven as Theorem 3.2 of [16]. First, we want to determine its chromatic number.

Theorem 3.5. (Theorem 3.2 of [16]) Let $G:=\left[x_{1}, \ldots, x_{k}\right]_{H}$ be a hyperhole of odd length $k \geq 5$, then

$$
\chi(G)=\max \left(\omega(G),\left\lceil\frac{V(G)}{\alpha(G)}\right\rceil\right)
$$

The algorithms, given as part of the proof [16], to color an odd hyperhole are below. The cliquesize of a hyperhole is denoted as wMAX in Algorithm 4 and wTOT denotes the number of vertices. The idea is to determine how many colors are needed and then to color vertices contiguous with the
colors $\{1, \ldots, \chi(R)\}$ until we can color every vertex v of X_{i} for an even i with the colors $\left\{1, \ldots, \# X_{i}\right\}$. At that point, we color the graph like it is an even ring. Notice that $c(X[1])=\left\{1, \ldots, x_{1}\right\}$.

Algorithm 4. ChromHyperhole (G) :

```
#INPUT: An enumerated sequence that represents a hyperhole.
#OUTPUT: The chromatic number.
#RUNNING TIME: \mathscr{O}(n)
ChromHyperhole := function(X);
    wTOT := 0;
    wMAX := 0;
    for i:= 1 to }|\textrm{X}|\mathrm{ do
        wTOT +:= X[i];
        if X[i] + X[i mod |X| +1] gt wMAX then
            wMAX := X[i] + X[i mod |X| +1];
        end if;
    end for;
    if IsEven(|X|) then
            return wMax;
    else
            m := |X| div 2;
            return Max(wMAX, Ceiling(wTOT/m));
    end if;
end function;
```


Algorithm 5. ColorOddHyperhole (H):

```
#INPUT: A hyperhole H of odd length represented by vertices and edges
#OUTPUT: A coloring of the graph, using at most \chi (H) colors.
#RUNNING TIME: \mathscr{O}(n+m)
ColorOddHyperhole := function(G);
    b,X:= IsRing(G);
    x := [|X[i]| : i in [1..|X|]];
    colors := [Parent({X[1][1]}) | {} : i in [1..ChromHyperhole(x)]];
    sum := x[1];
    k:=1;
    c:=1;
    #if }\mp@subsup{\sum}{i=1}{k}\leq(k div 2)*/colors/ for an odd k\geq3, then we can color a
    #vertex in X X+1 with the same color as X[1][1]. Untill then,
    #we color contiguous
    while sum gt (k div 2)*|colors| do
            for i:=k to k+1 do
                for j:=1 to x[i] do
                    l := (c-1) mod |colors| + 1;
                    Include(~ colors[l] , X [i] [j]);
                    c+:=1;
                end for;
            end for;
            sum +:= x[k]+x[k+1];
            k+:=2;
    end while;
    #Color the vertices with the same tactics on how to color even rings.
    for i:=k to |X| do
        if IsEven(i) then
            for j:=1 to x[i] do
```

```
                Include(~ colors[j],X[i][j]);
        end for;
    else
        for j:=1 to x[i] do
                        Include(~ colors[|colors-j+1]|, X[i][j]);
        end for;
        end if;
    end for;
    return colors
end function;
```

In Figure 3.3 an example is given. We start coloring at the top clique of size 3 (with vertex u_{1}^{1}). The colors are $c=\{$ dark blue, light blue, green, dark green, yellow, orange, purple $\}$. At the bottom clique of size $3\left(X_{6}\right)$, we can finally color a vertex in an even set with dark blue (the same color as u_{1}^{1}).

Figure 3.3: Coloring of the hyperhole $[3,2,4,2,2,3,3]_{H}$

3.4 Coloring odd rings

In 2020, F. Maffray, I. Penev and K. Vušković [14] discovered a polynomial time algorithm to color odd rings. They first introduced the concept of unimprovable coloring for a subgraph $R \backslash\left\{t_{2}\right\}$ of a ring R. Recall t_{2} is defined as the vertex $u_{2}^{\# X_{2}}$, a vertex with least number of neighbours in X_{2}. If $R \backslash\left\{t_{2}\right\}$ is colored properly with coloring c, we can make the coloring unimprovable and color the whole ring using no more than $\max \{\chi(R), r\}$ colors where r is the number of colors used to color $R \backslash\left\{t_{2}\right\}$.

Definition 3.6. For an odd ring R, a proper coloring c of $R \backslash\left\{t_{2}\right\}$ is called unimprovable if for all colors $a \in c\left(V(R) \backslash\left\{t_{2}\right\}\right)$ such that $a \neq c\left(s_{1}\right)$, and for all components Q of $R\left[\left\{v \in V\left(R \backslash\left\{t_{2}\right\}\right): c(v)=\right.\right.$ $\left.\left.a \vee c(v)=c\left(s_{1}\right)\right\}\right]$ that do not contain s_{1}, both the following are satisfied:

- For all odd $i \in\{3, \ldots, k\}$ such that $Q \cap X_{i} \neq \emptyset$, then $a \notin c\left(X_{i}\right)$ or there exists indices $j<l$ such that $c\left(u_{i}^{j}\right)=c\left(s_{1}\right)$ and $c\left(u_{i}^{l}\right)=a$;
- For all even $i \in\{4, \ldots, k-1\}$ such that $Q \cap X_{i} \neq \emptyset$, then $c\left(s_{1}\right) \notin c\left(X_{i}\right)$ or there exists indices $j>l$ such that $c\left(u_{i}^{l}\right)=a$ and $c\left(u_{i}^{j}\right)=c\left(s_{1}\right)$.

For an odd ring R we define a proper coloring c on $R \backslash\left\{t_{2}\right\}$ to be improvable, if c is not unimprovable.
The following is a property of unimprovable colorings:
Lemma 3.7. Let R be an odd ring and c an unimprovable coloring for $R \backslash\left\{t_{2}\right\}$, then for all vertices $v \in V(R) \backslash\left\{t_{2}\right\}$ that are not colored with color $c\left(s_{1}\right)$ and are not connected to s_{1} by a path containing only vertices that are colored with the color $c\left(s_{1}\right)$ or $c(v)$, we have:

$$
\begin{gathered}
v=u_{i}^{l} \text { for some odd } i \text { and }\left(\exists j<l\left[c\left(u_{i}^{j}\right)=c\left(s_{1}\right)\right]\right) \quad \text { or } \\
v=u_{i}^{l} \text { for some even } i \text { and }\left(\exists j>l\left[c\left(u_{i}^{j}\right)=c\left(s_{1}\right)\right] \vee \forall u \in X_{i}\left[c(u) \neq c\left(s_{1}\right)\right]\right)
\end{gathered}
$$

Proof. Let R be a ring of odd length $k \geq 5, c$ an unimprovable coloring for $R \backslash\left\{t_{2}\right\}$ and $v \in V(R) \backslash\left\{t_{2}\right\}$ colored with color $a \neq c\left(s_{1}\right)$. If v is not connected to s_{1} by a path containing only vertices that are colored with the color $c\left(s_{1}\right)$ or $c(v)$, then v is in a component Q of $R\left[\left\{v \in V\left(R \backslash\left\{t_{2}\right\}\right): c(v)=a \vee c(v)=\right.\right.$ $\left.\left.c\left(s_{1}\right)\right\}\right]$ such that $s_{1} \notin Q$. Let $v=u_{i}^{l}$ for an i, l.

If i is odd, then by assumption of c being unimprovable, there exists an index $j<l$ such that $c\left(u_{i}^{j}\right)=c\left(s_{1}\right)$. Therefore, v satisfies the condition in the Lemma 3.7 .

If i is even, then by assumption of c being unimprovable, either $c\left(s_{1}\right) \notin c\left(X_{i}\right)$, so $\forall u \in X_{i}[c(u) \neq$ $\left.c\left(s_{1}\right)\right]$, or there exists an index $j>l$ such that $c\left(u_{i}^{j}\right)=c\left(s_{1}\right)$. Therefore, v satisfies the condition in Lemma 3.7

The property described in the lemma holds.
An example of an unimprovable coloring of an odd ring is given in Figure 3.4. To check if the conditions hold for the color pink, we only need to check the vertices of the tree $R[16,17,19]$ and this holds.

Figure 3.4: Ring of length 9 with unimprovable coloring on the left. On the right the forest $F_{R \backslash t_{2}}^{\mathrm{pink}}$.
The following lemma is inspired by Claim 3 from Lemma 3.5 [14].
Lemma 3.8. Let R be an odd ring and c an unimprovable coloring of $R \backslash\left\{t_{2}\right\}$, then the color $c\left(s_{1}\right)$ is assigned to $\alpha(R)=\frac{k-1}{2}$ number of vertices.

Proof. Consider an odd length ring R with its ring partition X_{1}, \ldots, X_{k}, an unimprovable coloring c of $R \backslash\left\{t_{2}\right\}$ and let l be the first odd integer such that $c\left(s_{l}\right) \neq c\left(s_{1}\right)$. Such l exists, because k is odd and s_{k} is connected to s_{1}. The coloring c is unimprovable, so Lemma 3.7 suggests there should be a path from s_{l} to s_{1} from vertices containing only colors $c\left(s_{1}\right)$ or $c\left(s_{l}\right)$. Notice that no vertex in X_{l-1} is colored with the color $c\left(s_{1}\right)$, because s_{l-2} is complete to X_{l-1} and the color $c\left(s_{1}\right)$ is assigned to s_{l-2} by the choice of l. Thus there exists a path $\left(s_{l}, p_{l+1}, \ldots, p_{k}, s_{1}\right)$ with p_{i} in X_{i} and for even i we must have $c\left(p_{i}\right)=c\left(s_{1}\right)$. In total there are $\frac{k-1}{2}$ vertices colored with the same color as s_{1}.

An unimprovable coloring need not be optimal and an optimal coloring is not always unimprovable. In Figure 3.5we see counterexamples of rings that are colored optimal or unimprovable, but not both. Unimprovable colorings are colorings such that the color assigned to s_{1} is optimally distributed throughout the ring. Sometimes it depends on the ring partition $X_{1} \ldots, X_{k}$ (or even the order of the vertices in X_{i}) whether or not a coloring is unimprovable. The right graph in Figure 3.5 is colored unimprovable for $R \backslash\left\{t_{2}\right\}$ if $X_{1}=\left\{s_{3}\right\}$ and $X_{k}=\left\{s_{1}\right\}$, but improvable if $X_{1}=\left\{s_{1}\right\}$ and $X_{k}=\left\{s_{k}\right\}$.

Figure 3.5: Let R be a ring with $R \backslash\left\{t_{2}\right\} \cong C_{9}$. On the left: an unimprovable coloring. On the right: an optimal coloring of $R \backslash\left\{t_{2}\right\}$

To check whether a coloring c is unimprovable for $R \backslash\left\{t_{2}\right\}$ where R is an odd ring, we will check for every color $a \neq c\left(s_{1}\right)$ if the vertices that are colored with color a satisfy the conditions in Definition 3.1. To do so, for every color $a \neq c\left(s_{1}\right)$ we make a forest

$$
F_{R \backslash t_{2}}^{a}:=R\left[\left\{v \in V\left(R \backslash t_{2}\right): c(v)=a \vee c(v)=c\left(s_{1}\right)\right\}\right]
$$

and check the vertices of every tree on this forest.
The following algorithm checks if a given coloring is unimprovable [14]. We use Algorithm 14 IndexSet(Set, v) of the Appendix. It returns the index i such that v is in $\operatorname{Set}[i]$.

Algorithm 6. IsUnimprovable (R, X, c)

```
#INPUT: An odd ring R together with its ring partition }X\mathrm{ and a coloring c
# on V(R)\{t2}
#OUTPUT: false, colors a and c(s1) and subtree of F}\mp@subsup{F}{R}{a}\mathrm{ where it is not unimprovable.
#RUNNING TIME: O(n }\mp@subsup{n}{}{3
IsUnimprovable := function(R,X,C);
    c1 := c[IndexSet(c,X[1][1])];
    X2 := [{v : v in X[i]} : i in [1..|X|]];
    for a in Exclude(c,c1) do
        #Make the vertices of the forrest F.
        Fvertices:= a join c1;
        while |Fvertices| gt 0 do
            #Make a subtree of forrest F beginning at t
            t := Random(Fvertices);
            Tcheck := [t];
            Exclude(~Fvertices, t);
            T := {};
            while |Tcheck| ge 1 do
                v := Tcheck[1];
                Exclude(~}\mp@subsup{}{}{~}\mathrm{ Tcheck, v);
                Include(~T, v);
            for w in Fvertices meet Neighbors(v) do
                Exclude(~Fvertices, w);
                Include(~}\mp@subsup{}{}{~}\mathrm{ Tcheck, w);
            end for;
        end while;
        #Check subtree T
        if not {X[1][1]} subset T then
            for i:=1 to |X| do
```

```
Y:= [v : v in X2[i] meet T];
        if |Y| eq 1 then
            if IsEven(i) and {Y[i][1]} subset c1 then
                        return false, a, c1, T;
                    elif not IsEven(i) and {Y[i][1]} subset a then
                        return false, a,c1, T;
    end if;
                elif |Y| eq 2 then
                    m := Index(X[i],Y[i][1]);
                    n := Index(X[i],Y[i][2]);
                    if m gt n and {Y[i][1]} subset a and IsEven(i) then
                return false, a, c1, T;
                    elif n gt m and {Y[i][2]} subset a and IsEven(i) then
                        return false, a, c1, T;
                    elif m gt n and {Y[i][1]} subset c1 and not IsEven(i) then
                return false, a, c1, T;
                    elif n gt m and {Y[i][2]} subset c1 and not IsEven(i) then
                return false, a, c1, T;
                    end if;
                end if;
            end for;
        end if;
        end while;
    end for;
end function;
```

Now we can make any proper coloring of an odd ring an unimprovable coloring. Whenever a coloring is improvable at color a and tree $T \subseteq F_{R \backslash t_{2}}^{a}$, we will switch the colors given to the vertices in that tree. And we will continue to do so until the coloring is unimprovable. This algorithm will hold after at most n iterations where n is the number of vertices in R. The intuition why this algorithm stops after n iterations, is that every tree will switch colors at most one time. The proof and algorithm can be found in [14].

Algorithm 7. MakeUnimprovable (R, X, c)

```
#INPUT: An odd ring R together with its ring partition }X\mathrm{ and a coloring }
# on V (R)\{t2}
#OUTPUT: false, color a and subtree of }R\mathrm{ where it is not unimprovable and c(s).
# true, color cl if R\t2 is colored unimprovable
#RUNNING TIME: O( }\mp@subsup{n}{}{4
MakeUnimprovable := function(R,X,C);
    b,a,c1,T := IsUnimprovable(R,X,c);
    while not b do
        i := Index(c,a);
        j := Index (c, c1);
        for t in T do
            if {t} subset a then
                Exclude(~ c[i],t);
                Include(~}\mp@subsup{~}{c[j],t);}{
            else
                Exclude(~}c[j],t)
                Include(~c[i],t);
            end if;
        end for;
        b,a,c1,T := IsUnimprovable(R,X,c);
    end while;
    return c,c1;
end function;
```

The next theorem connects rings to hyperholes. The notion of unimprovable colorings plays an
important role in the proof given by F. Maffray, I. Penev and K. Vušković [14], because it helps creating hyperholes with a lot of vertices that are contained in the ring.

Theorem 3.9. Let $k \geq 4$ be an integer, and let R be a k-ring. Then

$$
\chi(R)=\max \{\chi(H) \mid H \text { is a } k \text {-hyperhole in } R\} .
$$

Proof. This proof is an overview of the proofs from Lemma 3.5 and Theorem 1.2 of [14]. We will prove it with induction to the number of vertices in a k-ring R. Assume for every k-ring R^{\prime} with fewer vertices than R it contains a k-hyperhole H^{\prime} with $\chi\left(H^{\prime}\right)=\chi\left(R^{\prime}\right)$.

First assume $\chi(R)=\omega(R)$. Without loss of generality $X_{1} \cup X_{2}$ is a clique of size $\omega(R)$. Then

$$
H:=X_{1} \cup X_{2} \cup\left\{v_{i}^{1}: 3 \leq i \leq k\right\}
$$

is a hyperhole in R of the same chromatic number as the ring R itself. Recall that for k even, we always have $\chi(R)=\omega(R)$.

Second, we take a ring R of odd length $k \geq 5$, with $\chi(R)>\omega(R)$. We will construct a hyperhole H such that $\chi(H)=\chi(R)$ from an optimal unimprovable coloring c of $R \backslash\left\{t_{2}\right\}$. An optimal coloring exists and earlier we showed how to make an unimprovable coloring c^{\prime} for $R \backslash\left\{t_{2}\right\}$ from a proper coloring c for $R \backslash\left\{t_{2}\right\}$ using no more colors than used in c with Algorithm 7 MAKEUnimprov$\operatorname{ABLE}(R, X, c)$. We define $S:=\left\{v \in R: c(v)=c\left(s_{1}\right) \wedge v \neq t_{2}\right\}$ and $r:=|c|=\chi\left(R \backslash\left\{t_{2}\right\}\right)$; the number of colors used in c. We prove three claims; together they cover all possibilities.

Claim 1. If in addition to $k \geq 5, \chi(R)>\omega(R)$, also $\omega(R \backslash S)=r$ is satisfied, then R contains a hyperhole H such that $\left\lceil\frac{V(H)}{\alpha(H)}\right\rceil=r+1$.
Proof of Claim 1$]$ We know $\omega(R) \leq r$ for otherwise $\omega(R)=\chi(R)$ and this contradicts our assumption. Thus $\omega(R)=r=\omega(R \backslash S)=\chi\left(R \backslash\left\{t_{2}\right\}\right)$ and from this, we can deduce $X_{2} \cup\left(N_{R}\left(t_{2}\right) \cap X_{3}\right)$ is the unique clique of size r in $R \backslash S$. We can conclude no vertices in this maximal clique are colored with color $c\left(s_{1}\right)$. The color c is unimprovable and $i=3$ is odd, so all vertices $v \in N_{R}\left(t_{2}\right) \cap X_{3}$ are connected to s_{1} with a path $\left(v, u_{4}^{l^{\prime}}, \ldots, u_{k}^{l^{\prime \prime}}, s_{1}\right)$ containing only vertices that are colored with the colors $c\left(s_{1}\right)$ or $c(v)$. For odd $i \geq 5$, let h_{i} be the maximal integer such that $u_{i}^{h_{i}} \in X_{i}$ is adjacent to two vertices in X_{i-1} resp X_{i+1} colored with color $c\left(s_{1}\right)$. The construction of $H=\left[Z_{1}, \ldots, Z_{k}\right]_{H}$ is as follows:

- $Z_{1}:=\left\{s_{1}\right\}, Z_{2}:=X_{2}, Z_{3}:=N_{R}\left(t_{2}\right) \cap X_{3} ;$
- for all even $i \geq 4$ define $Z_{i}:=\left\{u_{i}^{l}: \exists j \geq l\left[c\left(u_{i}^{j}=c\left(s_{1}\right)\right)\right]\right\}$
- for all odd $i \geq 5$ define $Z_{i}:=\left\{u_{i}^{l}: l \leq h_{i}\right\}$ For all colors $\mathscr{C} \in c\left(Z_{3}\right)$, there is a vertex in Z_{i} that received color \mathscr{C}.

This is a hyperhole of R. Notice $\left|\left\{c\left(s_{1}\right) \cup c\left(Z_{2} \backslash t_{2}\right) \cup c\left(Z_{3}\right)\right\}\right|=r$ and in [14] it is proven that every color from $\left\{c\left(s_{1}\right) \cup c\left(Z_{2} \backslash t_{2}\right) \cup c\left(Z_{3}\right)\right\}$ appears on $\frac{k-1}{2}$ vertices of $H \backslash\left\{t_{2}\right\}$ and therefore $\mid V(H) \backslash$ $\left\{t_{2}\right\} \left\lvert\, \geq \frac{k-1}{2} \cdot r\right.$, thus $\left\lceil\frac{V(H)}{\alpha(H)}\right\rceil=r+1$. Therefore, the ring R contains a hyperhole H of the same chromatic number.

Claim 2. If in addition to $k \geq 5, \chi(R)>\omega(R)$, also $\omega(R \backslash S) \leq r-1$ and $\chi(R \backslash S) \leq r-1$ are satisfied, then $\chi(R)=r$ and R contains a hyperhole H such that $\chi(H)=r$.
Proof of Claim 2 The fact $\chi(R)=r$ follows from the assumption $\chi(R \backslash S) \leq r-1$ and c is an optimal coloring on $R \backslash\left\{t_{2}\right\}$ using r colors. The set $X_{2} \backslash\left\{t_{2}\right\}$ is nonempty, because otherwise $R \backslash\left\{t_{2}\right\}$ is chordal and $r=\chi\left(R \backslash\left\{t_{2}\right\}\right)=\omega\left(R \backslash\left\{t_{2}\right\}\right) \leq \omega(R)<\chi(R)=r$. Every vertex in $X_{2} \backslash\left\{t_{2}\right\}$ has a greater than or equal to neighborhood t_{2}. The graph $R \backslash\left\{t_{2}\right\}$ is a k-ring, so we can apply the induction hypothesis to gain a hyperhole H that is contained in $R \backslash\left\{t_{2}\right\}$ with chromatic number $\chi(H)=\chi\left(R \backslash\left\{t_{2}\right\}\right)=\chi(R)$.

Claim 3. If in addition to $k \geq 5, \chi(R)>\omega(R)$, also $\omega(R \backslash S) \leq r-1$ and $\chi(R \backslash S)=r$ are satisfied, then R contains a hyperhole H such that $\left[\frac{V(H)}{\alpha(H)}\right\rceil=r+1$.
Proof of Claim 3] The detailed and complete proof given in [14] is elaborate, so we only show the highlights. Let $\left[v_{1}, \ldots, v_{t}\right.$] be a maximal simplicial sequence of $R \backslash S$. The graph $R \backslash S$ can not be chordal, because $\chi(R \backslash S) \neq \omega(R \backslash S)$. Thus $R \backslash\left(S \cup\left\{v_{1}, \ldots, v_{t}\right\}\right)$ is a nonempty k-ring and by induction hypothesis contains a hyperhole H^{\prime} with the same chromatic number. It can be proven that $\left\lceil\frac{V\left(H^{\prime}\right)}{\alpha\left(H^{\prime}\right)}\right\rceil=r$. With this hyperhole H^{\prime} and an unimprovable coloring c, we may construct a hyperhole H contained in R such that $\left\lceil\frac{V(H)}{\alpha(H)}\right\rceil=r+1$. Let h_{i} be the largest integer such that $u_{i}^{h_{i}} \in X_{i} \cap V\left(H^{\prime}\right)$ and l the largest odd index such that in every odd $i \leq l$ the set X_{i} contains a vertex colored with the color $c\left(s_{1}\right)$. The construction of $H=\left[Z_{1}, \ldots, Z_{k}\right]$ is as follows:

- for $i \leq l+2$ define $Z_{i}:=\left\{u_{i}^{j}: j \leq h_{i}\right\} ;$
- for even $i \geq$ define $l+3 Z_{i}:=\left\{u_{i}^{j}: \exists j^{\prime} \geq j\left[c\left(u_{i}^{j^{\prime}}\right)=c\left(s_{1}\right)\right] \vee j \leq h_{i}\right\}$;
- for odd $i \geq l+4$ define $Z_{i}:=\left\{u \in X_{i}: \exists v \in X_{i-1}\left[c(v)=c\left(s_{1}\right) \wedge e_{u v} \in E(R)\right]\right\}$.

This H is proven to be a hyperhole of size $V(H) \geq\left|V\left(H^{\prime}\right)\right|+\frac{k-1}{2}$ and therefore, $\chi(H) \geq\left\lceil\frac{|V(H)|}{\alpha(H)}\right\rceil \geq$ $\left\lceil\frac{\left|V\left(H^{\prime}\right)\right|}{\alpha\left(H^{\prime}\right)}\right\rceil+1=r+1$.

We conclude that the ring R contains a hyperhole H of the same chromatic number in every case.

The following lemma is not an immediate consequence of the previous theorem, but follows directly from the given proof and the observation that Claim 1 holds if $\omega(R) \leq r$ regardless of whether the condition $\omega(R)<\chi(R)$ is met or not, and Claim 3 also holds when $\omega(R)=\chi(R)$.

Lemma 3.10. [14] Let R be an odd ring. Let c be an unimprovable coloring of $R \backslash t_{2}$, let $S=\{x \in$ $\left.V(R) \mid x \neq t_{2}, c(x)=c\left(u_{1}^{1}\right)\right\}$. Then either $\chi(R \backslash S) \leq \# c-1$ or $\chi(R)=\# c+1$.

Observe that S is a stable set. Therefore if $\chi(R \backslash S) \leq r-1$, then $\chi(R) \leq r$. So, this lemma gives a tactic on how to color an odd ring R. Namely, if we can color the graphs $R \backslash t_{2}$ and $R \backslash S$, we can either expand the coloring of $R \backslash t_{2}$ with a new color for t_{2} or the coloring $R \backslash S$ with a new color for the stable set S. We will use the first expansion if the number of colors used in $\chi(R \backslash S) \geq r$ (thus $\chi(R)=r+1)$ and the second expansion if otherwise.

The algorithm given in [14] works as follows. The input is an odd ring R with $\left(X_{1}, \ldots, X_{k}\right)$ as ring partition and a proper coloring on $R \backslash t_{2}$. First we make the coloring c unimprovable and define the set $S:=\left\{x \in V(R) \mid x \neq t_{2}, c(x)=c\left(u_{1}^{1}\right)\right\}$ (lines 8-10). Then we obtain $R_{2}:=R \backslash S$ (lines 14-15) and $R_{3}:=R \backslash\left(S \cup\left\{v_{1}, \ldots, v_{t}\right\}\right)$ with $\left[v_{1}, \ldots, v_{t}\right]$ a maximal simplicial elimination ordering of R_{2} (lines 36-39). Recall that R_{3} is empty or a ring and we can greedy color R_{2} from an optimal coloring of R_{3} by reversed simplicial elimination order (line 20 or 49). We define a coloring c_{1} on $R_{3} \backslash\left\{t_{2}\right\}$ such that $c_{1}=\left.c\right|_{V\left(R_{3}\right) \backslash\left\{t_{2}\right\}}$ (lines 22-33). If R_{3} is a ring, we check if t_{2} is a vertex in R_{3} (line 41). If this is not the case, then c_{1} is already an optimal coloring for R_{3} (line 42). If it is, we can find an optimal coloring for R_{3} by making a recursive call with input R_{3} and c_{1} (lines 44-47). After this, we can easily check if $\chi(R \backslash S) \leq|c|-1$ by counting the number of colors used to optimally color R_{2} (line 52). A more detailed proof and complexity analysis can be found in [14].

Algorithm 8. ExtendColoring (R, X, c)

```
#INPUT: An odd ring R together with its ring partition }X\mathrm{ and a coloring }
# on V (R)\{t2}
#OUTPUT: Proper coloring on }R\mathrm{ using at most max (r, 义(R)) colors where r=#c
#RUNNING TIME: }\mathscr{O}(\mp@subsup{n}{}{5}
ExtendColoring := function(R,X,C);
    #Make the coloring c unimprovable.
    #Make stable set S:=v\inV(R\t2):c(v)=c(s)
```

```
    c,S:=MakeUnimprovable(R,X,c);
    t2:= X[2][|X[2] |];
    Exclude(~}\mp@subsup{}{}{~
    r := |c|;
    #Make R2:= R\S
    W:= {v : v in Vertices(R) | not {v} subset S };
    R2 := sub<R | W>;
    #Make proper coloring for R2:=R\S
    simp := MaxSimplicial(R2);
    if |simp| eq |Vertices(R2)| then
        c2:= ColorGreedy(R2, [],simp);
    else
        c1 := c;
        simp2 := {v : v in simp};
        for v in simp2 join S join {t2} do
                i:= IndexSet(c1,v);
                if i ne 0 then
                        if {v} eq c1[i] then
                                    Exclude(~c1,{v});
                                elif {v} subset c1[i] then
                                    Exclude(~c1[i], v);
                    end if;
                end if;
            end for;
            #Making R3:=R\(S\cup\operatorname{simp})
            for s in simp do
                Exclude(~W,s);
            end for;
            R3 := sub<R | W>;
            if Index(simp,t2) gt 0 then
                c3 := c1;
            else
                b,X3 := IsRing(R3);
                j := IndexSet(X3,t2);
                Rotate(~ X3,-j+2);
                c3 := $$(R3,X3, c1);
            end if;
            c2 := ColorGreedy(R2, c3,simp);
    end if;
    if |c2| le r-1 then
        c2 := Parent([S]) ! c2;
        return Include(c2,S);
    else
        return Include(c,{t2});
    end if;
end function;
```

We can finally color a ring R with even and with odd length. Let G be a graph such that $G \backslash\left\{v_{1}, \ldots, v_{t}\right\}$ is a ring with $\left[v_{1}, \ldots, v_{t}\right]$ a maximal simplicial elimination ordering. The following algorithm will color every such graph G optimally [14]. It is a recursive algorithm that first computes a maximal simplicial elimination ordering A of G (line 5). If this ordering includes every vertex of G, we can simply color G greedily (lines 6-7). If it is a part of the vertices of G, then $G \backslash A$ is a ring (Lemma 3.4) and we make a recursive call with input $G \backslash A$ and greedily expand the coloring using a reversed simplicial elimination ordering (lines $8-11$). If there are no simplicial vertices in G, then we
check if G is a ring and obtain its ring partition (line 13). If it is an even ring, we can use Algorithm ColorevenRing (G, X) to color G (line 18). If it is an odd ring, we can make a recursive call with input $G \backslash\left\{t_{2}\right\}$ and extend the coloring with ExtendColoring (G, X, c). A more detailed proof and complexity analysis can be found in [14].

Algorithm 9. ColorRing (R)

```
#INPUT: A ring R
#OUTPUT: Proper coloring on }R\mathrm{ that uses }\chi(R)\mathrm{ colors.
#RUNNING TIME: \mathscr{O}(\mp@subsup{n}{}{6})
ColorRing := function(G);
    simp := MaxSimplicial(G);
    if |simp| eq |Vertices(G)| then
            return ColorGreedy(G,[],simp);
    elif |simp| ge 1 then
            G2 := G- {v : v in simp};
            c := $$(G2);
            return ColorGreedy(G,c,simp);
    else
        b,X := IsRing(G);
            if not b then
                return false;
            end if;
            if IsEven(|X|) then
                return ColorEvenRing(G,X);
            else
                G2:= G-{X[2][|X[2]] |};
                c := $$(G2);
                c := Parent([{Vertices(G)[1]}]) ! c;
                return ExtendColoring(G,X,c);
            end if;
    end if;
end function;
```


Bibliography

[1] Benzer, S. (1959). On the topology of the genetic fine structure. Proceedings of the National Academy of Sciences of the United States of America, 45(11), 1607-1620.
[2] Boncompagni, V \& Penev, I. \& Vušković, K. (2019). Clique-cutsets beyond chordal graphs. Journal of Graph Theory, 91(2), 192-246.
[3] Bosma, W. \& Cannon, J. \& Playoust, J. (1997). The Magma algebra system. I. The user language, J. Symbolic Comput., v. 24, 5017 pages.
[4] Cameron K. \& Eschen E.M. \& Hoàng C.T. \& Sritharan R. (2006). Recognition of Perfect Circular-arc Graphs. In: Bondy A., Fonlupt J., Fouquet J.L., Fournier J.C., Ramírez Alfonsín J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel., p97-108.
[5] Eschen, E.M. \& Spinrad, J.P. (1993). An $\mathscr{O}\left(n^{2}\right)$ algorithm for circular-arc graph recognition SODA, p128-137
[6] Garey, M.R. \& Johnson, D.S. \& Miller, G.L. \& Papadimitriou, C.H. (1980). The complexity of coloring circular arcs and chords SIAM J. Alg. Disc. Math., Vol.1, No. 2
[7] Guillermo, D \& Grippo, L.N. \& Safe, M.D. (2014). Structural results on circular-arc graphs and circle graphs: a survey and the main open problems. Discrete Applied Mathematics, 164, 427-443.
[8] Golumbic, M. C. (1980). Algorithmic graph theory and perfect graphs New York: Academic Press
[9] Hamming, R. W. (2004). Methods of mathematics applied to calculus, probability, and statistics. (Dover, Ser. Dover books on mathematics). Dover Publications.
[10] Hsu, W.L. (1981). How to color claw-free prefect graphs. Ann. Discrete Math., vol. 11, 189-197.
[11] Klee, V. (1969). What Are the Intersection Graphs of Arcs in a Circle? The American Mathematical Monthly, vol. 76(7), 810-813.
[12] Korte, N. \& Möhring, R. (1986). A Simple Linear-Time Algorithm to Recognize Interval Graphs. Conference Paper, 1-16.
[13] Lekkerkerker, C. \& Boland, J. (1962). Representation of a finite graph by a set of intervals on the real line. Fundamenta Mathematicae vol. 51(1), 45-64.
[14] Maffray, F. \& Penev, I. \& Vušković, K. (2021). Coloring rings. Journal of Graph Theory, 96(4), 642-683.
[15] McConnell, R (2001). Linear-Time Recognition of Circular-Arc Graphs. Computer Science Technical Reports.
[16] Narayanan, L. \& Shende, S. M. (2001). Static frequency assignment in cellular networks. Algorithmica : An International Journal in Computer Science, 29(3), 396-409.
[17] Orlin, J.B. \& Bonuccelli, M.A. \& Bovet, D.P. (1981). An $\mathscr{O}\left(n^{2}\right)$ Algorithm for Coloring Proper Circular Arc Graphs. SIAM Journal on Algebraic and Discrete Methods, vol. 2(2), 88-93.
[18] Read, R.C. (1968). An introduction to chromatic polynomials. Journal of Combinatorial Theory, 4(1), 52-71.
[19] Stoffers, K.E. (1968). Scheduling of traffic lights-a new approach. Transportation Research, 2(3), 199-234.
[20] Stahl, F.W. (1967). Circular genetic maps. Journal of Cellular Physiology, 70(S1), 1-12.
[21] Tucker, A. (1971). Matrix characterizations of circular-arc graphs. Pacific J. Math, 39(2), 535-545.
[22] Tucker, A. (1974). Structure theorems for some circular-arc graphs. Discrete Mathematics, 7(1), 167-195.
[23] Tucker, A. (1975). Coloring a Family of Circular Arc. SIAM Journal on Applied Mathematics, 29(3), 493-502.
[24] Tucker, A. (1980). An efficient test for circular-arc graphs. SIAM J. Comput. Vol.9, No. 1
[25] Chen, X. \& Hu, Z. \& Zang, W. (2005). Perfect Circular Arc Coloring. Journal of Combinatorial Optimization, 9, 267-280.

Appendix

Preliminary algorithms

The first algorithm is to find a maximal elimination ordering for a graph G [14]. The idea behind this algorithm is the definition of a simplicial vertex. A vertex is simplicial if and only if its neighborhood is a clique. For a graph G, we calculate

$$
\operatorname{Diff}_{G}(x, y):=\left\{\begin{array}{ll}
\#\left(N_{G}[x] \backslash N_{G}[y]\right) & \text { if } x, y \text { are connected } \\
0 & \text { if otherwise }
\end{array} .\right.
$$

A vertex x is simplicial iff $\operatorname{Diff}_{G}(x, y)=0$ for all vertices y. If we found a simplicial vertex x, then we remove it from the graph, include it in the list, set $\operatorname{Diff}_{G \backslash x}\left(x^{\prime}, y^{\prime}\right)$ correct for all other vertices and repeat the algorithm to look for another simplicial vertex.

Algorithm 10. MaxSimplicial(G):

```
#INPUT: Graph G
#OUTPUT: [ }\mp@subsup{v}{1}{},\ldots,\mp@subsup{v}{t}{}]; a maximal elimination ordering for graph G, possible empty
#RUNNING TIME: OO(n}\mp@subsup{}{}{3}
MaxSimplicial := function(G);
    V := {v : v in Vertices(G)};
    if |V| = 0 then
        return [];
    end if;
    A := [[x,y] : x in V, y in V | x ne y];
    Diff := [0 : i in [1..|A|]];
    #Calculating diff(x,y) for every vertex }x\not=y\mathrm{ :
    for i:=1 to |A| do
        if A[i][2] in Neighbors(A[i][1]) then
            d := {x : x in Neighbors(A[i][1]) |
                    not x in Neighbors(A[i][2]) and not x eq A[i][2]};
            Diff[i] := |d|;
        end if;
    end for;
    L := [Parent(Random(V)) | ];
    cont := true;
    while cont do
        cont := false;
        for x in V do
            distance := 0;
            for y in V do
            if y ne x then
                if Diff[Index(A,[x,y])] gt 0 then
                    distance :=1;
                    break y;
```

It is well known that a graph G is chordal if and only if it's maximal elimination ordering is an ordering of all vertices of the graph. There exists an $\mathscr{O}(n+m)$ time algorithm to figure out if a graph is Chordal or not [2], but for convenient reasons, we will use the following algorithm [14].

Algorithm 11. IsChordal (G) :

```
#INPUT: Graph G
#OUTPUT: True if G is Chordal and false otherwise.
#RUNNING TIME: O(n }\mp@subsup{n}{}{3
IsChordal := function(G);
    L := MaxSimplicial(G);
    if |L| eq |Vertices(G)| then
        return true;
    else
        return false;
    end if;
end function;
```

The following algorithm is to extend a coloring c for a graph G by coloring the vertices in order where order is a simplicial elimination ordering of G. Therefore, if c is a minimal proper coloring, so is the extension.

Algorithm 12. ColorGreedy (G, c, o) :

```
#INPUT: Graph G, Coloring c of V (G)\order and the order of
# maximal simplicial elimination ordering of G.
#OUTPUT: Coloring of all vertices such that the coloring on c remains the same.
#RUNNING TIME: O( }\mp@subsup{n}{}{2}
ColorGreedy := function(G, c, order);
    if |c| eq 0 then
        c := [Parent({order[1]}) | {order[lorder|]} ];
    end if;
    for i:= |order| to 1 by -1 do
        j := 1;
        Neigh := Neighbors(order[i]);
```

```
        cont := true;
        while cont and j le |c| do
            cont := false;
            #Check if there is a neighbor of order[i] already colored with
            #color c[j]
            for v in c[j] do
                    if v in Neigh then
                    cont := true;
                    j+:=1;
                    break v;
            end if;
            end for;
        end while;
        if j le |c| then
            Include(~c[j],order[i]);
        else
            Include(~ c, {order[i]});
        end if;
    end for;
    return c;
end function;
```

If a graph is chordal, we have a simplicial elimination ordering. With this ordering, we can color the graph optimal by greedy coloring the reversed order.

Algorithm 13. ColorChordal (G) :

```
#INPUT: Chordal graph G
#OUTPUT: Optimal coloring of G
#RUNNING TIME: O(n }\mp@subsup{n}{}{2
ColorChordal := function(G);
    ord := MaxSimplicial(G);
    return ColorGreedy(G,[],ord);
end function;
```

The following is a simple, but handy algorithm.

Algorithm 14. INDEXSET(Set,v)

```
#INPUT: A sequence of sets or sequences called `Set' and a variable v.
#OUTPUT: The first index i such that Set[i] contains v and 0 otherwise.
IndexSet := function(Set, var);
    for i:= 1 to |Set| do
            if {var} subset Set[i] then
                return i;
            end if;
    end for;
end function;
```


Algorithms for hyperholes

Algorithm 15. MaKeHyperhole (X) :

```
#INPUT: Enumerated list I of integers
#OUTPUT: The hyperhole H where the clique-size of Xi is equal to I[i].
#RUNNING TIME: ??
MakeHyperhole := function(X);
    n := 0;
```

```
    for i in X do
        n +:= i;
    end for;
    G := Graph<n|>;
    V := Vertices(G);
    koekjes := 1;
    for i:=1 to |X| do
        for l:=0 to X[i]-1 do
            #make complete to X[i+1]
            for m:=0 to X[i mod |X| +1]-1 do
            G +:= {V[koekjes+l], V[(koekjes + X[i] + m -1) mod n +1]};
            end for;
        #make X[i] a clique
        for k:=l+1 to X[i]-1 do
            G+:= {V[koekjes+l], V[koekjes + k]};
        end for;
    end for;
    koekjes +:= X[i];
    end for;
    return G;
end function;
```


Algorithms for rings

The following algorithm is based on Bubble Sort.
Algorithm 16. $\operatorname{SortClique}\left(G, X_{i}\right)$:

```
#INPUT: Graph G, Xi:= [v , ,.,v, v}]\mathrm{ such that G[Xi] is a clique
#OUTPUT: True together with an ordering if Xi can be ordered such that
# N
#RUNNING TIME: OO(t\cdotn)
SortClique := function(G, Xi);
    i:=1;
    while i le |Xi| do
        j := i;
        while j ge 2 and Degree(Xi[j-1]) lt Degree(Xi[j]) do;
            y:= Xi[j-1];
            Xi[j-1] := Xi[j];
            Xi[j] := y;
            j-:=1;
        end while;
        i+:=1;
    end while;
    #Check if the ordering is correct
    for j:= 1 to |Xi|-1 do
        if not Include(Neighbors(Xi[j+1]),Xi[j+1]) subset
            Include(Neighbors(Xi[j]),Xi[j]) then
                return false, [];
            end if;
    end for;
    return true, Xi;
end function;
```

The following algorithm determines the clique size of a Ring. It is based on Lemma 2.6 [14] which is based on Lemma 8.25 [2].

```
Algorithm 17. CliqueSIzERING ( }R,X)\mathrm{ :
```

```
#INPUT: Ring R together with its ring partition X.
```

\#INPUT: Ring R together with its ring partition X.
\#OUTPUT: The clique size }\omega(R)\mathrm{ of ring R.
\#OUTPUT: The clique size }\omega(R)\mathrm{ of ring R.
\#RUNNING TIME: O(}\mp@subsup{n}{}{3})\mathrm{ .
\#RUNNING TIME: O(}\mp@subsup{n}{}{3})\mathrm{ .
CliqueSizeRing := function(R,X);
CliqueSizeRing := function(R,X);
V := Vertices(R);
V := Vertices(R);
R1 := sub<R | {v : v in V | not v in X[1]}>;
R1 := sub<R | {v : v in V | not v in X[1]}>;
R2 := sub<R | {v : v in V | not v in X[3]}>;
R2 := sub<R | {v : v in V | not v in X[3]}>;
c1 := |ColorGreedy(R1, [], MaxSimplicial(R1))|;
c1 := |ColorGreedy(R1, [], MaxSimplicial(R1))|;
c2 := |ColorGreedy(R2, [], MaxSimplicial(R2))|;
c2 := |ColorGreedy(R2, [], MaxSimplicial(R2))|;
return Max({c1,c2});
return Max({c1,c2});
end function;

```
end function;
```

