
Coloring Hyperholes and Ring Graphs

MASTER’S THESIS IN MATHEMATICS

Author:
Els Hoekstra

Supervisor:
Dr. Wieb Bosma

Radboud University

Second reader:
Prof. Dr. Kristina Vušković

University of Leeds

1

2
3

4

5

6
7

8

November 2021

Acknowledgements

First and foremost, I would like to thank my supervisor Wieb Bosma for the amount of time he
invested in me and his support during this thesis. For the weekly meetings, which were always fun
and helped me to continue with the thesis. I want to thank him for his guidance, his positive feedback
towards my thesis and his willingness to read all of the versions I sent him. For his patience and
understanding when I needed a break and for believing in me.

I also want to thank Kristina Vušković. Her enthusiasm for the course ‘Graph Theory: Structure
and Algorithms’ led me to a subject in graph theory. Thank you for giving me the subject of this
thesis, I truly enjoyed doing this research. I want to give thanks to Kristina Vušković for being a
second reader, for taking the time to look at my thesis in detail and attending my presentation.

Two persons whom I am also grateful for, are my study advisors Bram Arens and Ina de Vries.
To Bram Arens, who helped me go trough a tough period in my study by taking the time for weekly
calls. For helping me to take the step to change the subject of my thesis into one which is better suited
for me. To Ina de Vries who guided me throughout the study.

A special thanks goes to my friends and family for their support. They sympathised with me in
my ups and downs, they were enthusiastic in major breakthroughs and stood with me when things
got rough. The endless study sessions with my friends helped me to stay focused and have a great
start. Extra thanks for Jimmy who understood and supported me when I was passionate to continue
with my thesis, even in the weekends. And an extra thanks for Timo, Jasper, Paul and Willemijn who
willingly checked my thesis on (textual) errors.

1

Contents

Introduction 3
Definitions and notation . 4

1 Coloring circular-arc graphs 6
1.1 Interval graphs . 6
1.2 Introduction to circular-arc graphs . 6
1.3 Coloring circular-arc graphs in general . 7
1.4 Proper circular-arc graphs . 9
1.5 Perfect circular-arc graphs . 11

2 Chromatic polynomial for hyperholes 12
2.1 Fundamental theorems for chromatic polynomials 13
2.2 Hyperpaths . 14
2.3 Hyperholes . 16
2.4 Magma program and computation time . 23
2.5 Chromatic polynomial for classes of hyperholes . 24

3 Coloring rings 27
3.1 Recognizing rings . 27
3.2 Coloring even rings . 31
3.3 Coloring odd hyperholes . 32
3.4 Coloring odd rings . 34

Bibliography 42

Appendix 44
Preliminary algorithms . 44
Algorithms for hyperholes . 46
Algorithms for rings . 47

2

Introduction

In 1959, S. Benzer researched the internal structure of chromosomes [1]. In this genetic analysis, the
question arose whether or not mutations were in linear order. It could be tested whether two different
mutations overlap and based on this an intersection graph can be constructed. If this intersection
graph is a linear interval graph, then the mutations are in linear order.

V. Klee first introduced circular-arc graphs in 1969 [11]. Circular-arc graphs are intersection
graphs of arcs laying on a circle. See Figure 1 for an example. A fast recognition algorithm was
searched for to detect circularity in genetics. Circular-arc graphs were extensively researched by A.
Tucker and others. Tucker first discovered a polynomial time recognition algorithm for circular-arc
graphs in 1980 [24].

In 2014 G. Durán, L.N. Grippo and M.D. Safe wrote a survey on structural results relating to
circular-arc graphs [7]. Most results and important open problems contained characterizations of cir-
cular arc graphs through forbidden induced subgraphs, none of the results or problems were related
to the coloring of circular-arc graphs.

This thesis discusses the coloring of circular-arc graphs.

An application for coloring circular-arc graphs is found in scheduling of transport [23]. Every
hour the schedule for busses repeats. The time it takes to complete a route can be represented as an
arc on a circle. See for an example Figure 1, where route A is driven from a quarter past the hour
till 15 minutes later. For cost efficiency we want the least possible number of bus drivers to work the
shifts. Every chauffeur receives a different color and we can color the arcs on the circular-arc model
by who drives the route. This coloring is proper and we want to use the least possible number of
colors.

Another application is in the design of compilers where a variable is used in a certain amount
of time and allocated to a register [23]. In while loops or for loops the same variables are used in
every round. The least number of registers necessary is related to an optimal coloring of a circular-arc
graph. Other applications are phasing of traffic lights [8] [19] and can be found in genetics [20].

3

6

9

12

A

A

Figure 1: Bus schedule. The arcs represents a route, a color represents a bus driver. On the right its
intersection graph.

3

In this thesis we start with an introduction to circular-arc graphs. We first prove that the coloring
problem for circular-arc graphs is NP-complete [6] and then describe two polynomial time algorithms
to color proper [17] and perfect [25] circular-arc graphs. This is all discussed in Chapter 1.

Then we focus on hyperholes. Hyperholes can be described as holes (or irreducible cycles of
length ≥ 4) where every vertex is blown up to a clique. See Figure 2 for an example and Definition
2.12 for the definition of hyperholes.

Figure 2: On the left a circular-arc model of the hyperhole on the right.

A recursive relation for the chromatic polynomial of a hyperhole is discovered and proved in
Chapter 2. We describe a fast algorithm to determine the chromatic polynomial of a hyperhole in
section 2.4 and give the chromatic polynomial for the class of hyperholes where at least one vertex is
blown up by a clique of size one (like the hyperhole in Figure 2) in section 2.5.

In 2020, F. Maffray, I. Penev and K. Vušković [14] discovered a polynomial time algorithm to
color odd rings. Rings form a subclass of circular-arc graphs and are subgraphs of hyperholes with
extra conditions. See Figure 1 for an example and Definition 3.1 for the definition of a ring. The
possibility to color rings in polynomial time was an answer to an open problem in [2]. We describe
the algorithms from [2][14] in Chapter 3. The implementations are new, and have led to the correction
of some minor errors in the description [3].

Definitions and notation
Before we start, we need to agree on some definitions and notation. This section will provide the nec-
essary terminology which is used throughout the paper. Some definitions, such as those of chromatic
polynomials and rings, will be introduced in the designated chapters.

All the graphs in this paper are finite, nonempty, simple (i.e., unweighted, undirected, without
self-loops nor multiple edges between the same pair of vertices) graphs. We denote V (G) for the set
of vertices of G and E(G) for the edges. The letter n represents the number of vertices in G and the
letter m the number of edges. The complement graph of G is denoted as G = (V (G),E(G)). The
complement graph has all the same vertices as the graph itself and e is an edge in G if and only if e
is not an edge in G. A graph is connected if for every pair of vertices there exists a path connecting
them. The most common finite, nonempty, simple graphs are complete graphs (i.e., graphs with
an edge between every vertex, notation: Kn), edgeless graphs (Kn), paths (i.e., graphs with vertices
V = {v1, . . . ,vn} and edges E = {{vi,vi+1} : 1≤ i≤ n−1}, notation: Pn), cycles (i.e., graphs where
(v1, . . . ,vn) is a path and {v1,vn} is also an edge, notation: Cn) and trees (i.e., connected graphs with
no cycles).

A coloring for a graph G is a map from the vertices of G to N. It assigns to every vertex a color.
We say that c : V (G)→N is a proper coloring for G if and only if for all edges {v,w} ∈ E(G) it holds
that c(v) 6= c(w). From now on we only consider proper colorings. For an integer r ∈N we say G is
r−colorable if there is a coloring of V (G) that uses at most r colors. The chromatic number χ(G) of
G is the smallest such integer.

We denote G[S] for the subgraph induced by the subset S ⊆ V (G). The vertex set of G[S] is
equal to S and the edges are all edges of G with both endpoints in S. The graph G\S := G[V (G)\S]

4

is the graph where the vertices of S are removed. We say S is a clique of G if all vertices in G[S]
are connected. A clique C is said to be maximal in graph G if there is no vertex v in G, such that
G[C∪{v}] is a clique. The size of the largest clique in G is denoted as ω(G). A cutset of a graph G
is a (possibly empty) subset S ⊆V (G) of the vertices of G such that G\S is disconnected. A clique-
cutset is a cutset S for which G[S] is a clique. We define a clique-cut-partition as a triple (A,B,C)
such that A,B are nonempty, (A,B,C) is a partition for the vertices of G, no vertex in A is connected
to a vertex in B and the last condition is that C is a clique-cutset for G.

Two graphs G and H are isomorphic if there exists a bijection between the vertices f : V (G) ↪→→
V (H) such that {v,w} ∈ E(G) if and only if { f (v), f (w)} ∈ E(H). The notation for two isomorphic
graphs G,H is G∼= H. We say that G contains a graph H if there is a subset S⊆V (G) such that G[S]
and H are isomorphic.

The neighbors of a vertex v ∈ V (G) are all vertices in G that are connected to the vertex v. We
will denote the neighborhood of vertex v in graph G by NG(v). So NG(v) := {w : {v,w} ∈ E(G)}. We
will define NG[v] := NG(v)∪{v}; i.e., the neighborhood of v with the vertex v itself included. Let S be
a subset of V (G), then a vertex v /∈ S is complete to S if S⊆ NG(v) and anticomplete if S∩NG(v) = /0.
A subset A⊆V (G) is called complete (resp. anticomplete) to S if all vertices in A are complete (resp.
anticomplete) to S.

A simplicial vertex v is a vertex whose neighborhood is a clique. A simplicial elimination ordering
for a graph G is an ordering for a (subset of the) vertex-set {v1, . . . ,vt} ⊆V (G) such that vertex vi is
simplicial in G \ {v1, . . . ,vi−1}. Irreducible cycles are cycles without chords. Holes are irreducible
cycles of length ≥ 4. The graph G is called chordal if it contains no holes. It is well known a graph
G is chordal if and only if G has a simplicial elimination ordering that uses all the vertices (e.g. [13]).

The notation for adding an edge evw = {v,w} ∈ E(G) to the graph G is G+evw. It is also possible
to merge two vertices v,w ∈ V (G). The new vertex xvw (or vw) has the combined neighborhood:
NG(xvw) := (NG(v)\{w})∪ (NG(w)\{v}). The notation for merging two vertices in G is: G/vw.
The vertex-set will be V (G/vw) = (V (G)∪{xvw})\{v,w}.

Perfect graphs G are graphs such that χ(H) = ω(H) for every subgraph H of G. Notice that a
perfect graph G can not contain an odd cycle.

A matching M of a graph G is a subset of its edges such that no vertex in G is an endpoint of two
or more edges in M. An augmenting path of a matching M in graph G, is a path P in G such that
edges in P alternate being in M, starting and ending with an edge not in M.

5

Chapter 1

Coloring circular-arc graphs

1.1 Interval graphs
Definition 1.1. A graph G = (V,E) is an interval graph if there exist a set I := {Iv}v∈V of open
intervals Iv = (a,b) on the real line with a < b and a bijection f : V →I such that for v 6= w

{v,w} ∈ E ⇐⇒ f (v)∩ f (w) 6= /0.

We call {Iv}v∈V an interval representation of G.

An example is given in Figure 1.1. There is a simple lineair-time algorithm to recognize interval
graphs [12], given by N. Korte and R. Möhring.

1
2

3

4

5 6
1

2

3

4

5
6

Figure 1.1: On the left an interval model of the interval graph on the right.

Theorem 1.2. [13] Interval graphs are chordal.

Proof. [13] Take an interval graph G=(V,E) with interval representation {Iv}v∈V where Iv =(av,bv).
Assume (1, . . . ,k) is a hole in graph G, then without loss of generality: a1 < b1 ≤ a3 < b3. Because
I2∩ I1 6= /0 and I2∩ I3 6= /0, we have a2 < b1∧a3 < b2. Now make an interval

J :=
⋃

i∈{4,...,k}
Ii.

This is an interval, because i is connected to i+1. This interval has overlap with I1 and with I3, but
not with I2 which is impossible.

With the above theorem, we can color interval graphs in polynomial time, because we can color
any chordal graphs in polynomial time (See COLORCHORDAL, Algorithm 13 in appendix). In this
thesis we will focus more on circular-arc graphs.

1.2 Introduction to circular-arc graphs
Definition 1.3. A graph G = (V,E) is a circular-arc graph if there exist a set A := {Av}v∈V of open
arcs Av = (a,b) on a circle with circumference r (the arc is from a to b in the clockwise direction with
a,b ∈ [0,r)) and a bijection f : V →A such that for v 6= w

{v,w} ∈ E ⇐⇒ f (v)∩ f (w) 6= /0.

6

We call {Av}v∈V a circular-arc representation of G.

Interval graphs are examples of circular-arc graphs. The opposite is false, because circular-arc
graphs can have holes where interval graphs must be chordal. See Figure 1.2 for an example of a
circular-arc graph and its model.

1

2

3

4

5
6

Figure 1.2: On the left a circular-arc model of the graph on the right

In 1980 a recognition algorithm was given by Tucker that could recognize circular-arc graphs
in O(n3) time [24]. This algorithm has been simplified to an O(n2) time algorithm [5] and further
optimized to an O(n) time algorithm [15]. If a graph G is a circular-arc graph, then all algorithms
will produce a circular-arc representation of G.

1.3 Coloring circular-arc graphs in general
The question that arises is whether we can color a circular-arc graph G in polynomial time. A vertex
coloring of G corresponds uniquely to an arc coloring of its circular-arc model. We will often use an
arc coloring when we want to color the vertices.

ARC-COLORING PROBLEM
Given: A family A of arcs and an integer k ∈N

Question: Can we color the arcs with k colors such that intersecting arcs have different colors?

M.R. Garey, D.S. Johnson, G.L. Miller and C.H. Papadimitriou proved in 1980 that the arc-coloring
problem is NP-complete:

Theorem 1.4. [6] The Arc-coloring problem is NP-complete.

Proof. We give the proof from [6] which is a reduction proof from the word problem for products of
symmetric groups (WPPSG). We start by defining the WPPSG problem.

WPPSG PROBLEM
Given: K ∈N, m subsets X1, . . . ,Xm ⊆ {1, . . . ,K} and a permutation π ∈ SK

Question: Can π be written as π = πm · . . . · π1 where πi is a permutation of {1, . . . ,K} that leave all
elements in {1, . . . ,K}\Xi fixed.

The WPPSG problem is proven to be NP-complete in the same article [6].

Recall πi+1 ·πi is the permutation that first applies πi and then πi+1. Let Xli[1], . . . ,Xli[r(i)] be all
the sets that contain i, i.e. there are r(i) different sets that contain i. First, we define a map f from the
WPPSG problem to the Arc-Coloring problem:

K ∈N
π ∈ SK

X1, . . . ,Xm

with ∀i ∃ j [i ∈ X j]

7→


K colors
Arcs F :=

⋃K
i=1(Fi∪Ci) with

Fi := (i,K + li[1])∪{(K + li[j−1],K + li[j]) : 2≤ j ≤ r(i)}
Ci := (K + li[r(i)],π−1(i)).

7

The arcs in F are in the interval [0,K+m). If there exists an i such that i /∈ X j for all j, then either
π(i) 6= i, we make f (K,X1, . . . ,Xm,π) =

(
∪2

i=1(0,1),k = 1
)

for which the answer is ‘no’. Or, π(i) = i
so as new input, we decrease all integers larger than i with 1.

We can compute f in polynomial time. What is left to do, is to prove

π = πm · . . . ·π1 ⇐⇒ f (K,X1, . . . ,Xm,π) is K-colorable.

Let K ∈ N, X1, . . . ,Xm ⊆ {1, . . . ,k}, π ∈ SK be the input of f such that F,K is the output. An
example where some arcs are already colored, can be found in Figure 1.3. We want to see when we
can color this graph with K colors.

First we make a model F ′ of arcs that will help us to properly define a permutation. This model
F ′ will have a one-to-one correspondence with F . The arcs in C will be split into two parts and placed
in F ′: F ′i := Fi∪ (K+ li[r(i)],0)∪ (0, i) and F ′ := ∪K

i=1F ′i . With this construction, for 0≤ p < K+m,
the point p+ 1

2 is in K arcs, none of those arcs are in the same set F ′i . Now we can define properly
σp(j) = i to be the j-th color assigned to the unique arc in F ′i that contains the point p+ 1

2 . For every
p, σp is a map from {1, . . . ,K} to itself and therefore a permutation. Without loss of generality, for
i≤ K we set σ0(i) = i. To be able to go back to F , we need

σK+m(i) = π(i). (1.1)

Figure 1.3: Example [6]. K = 5, π = (12453), X1 = {1,3}, X2 = {3,4,5}, X3 = {2,5}, X4 =
{1,2,4}, m = 4. On the left F = ∪5

i=1(Fi∪Ci), on the right F ′

Notice that for the points p≤ K the permutation σp is already fixed: σp(i) = σ0(i) = i. This can
be easily seen with induction to p. If σp is known, we can make σp+1. Sometimes an arc continues
and therefore the assigned color is fixed, i.e. σp(j) = σp+1(j). At other times we can choose between
the colors that are not assigned by the obligation. We have

σp+1(j)

{
= σp(j) if p, p+1 ∈ A ∈ F ′

σp(j) for some A,

∈ {σp(j) | (a, p+1) ∈ F ′
σp(j) for some a} otherwise.

By construction, when p ∈ {K + 1, . . . ,K +m}, the set of integers to choose from in the second
case is always Xp−K . Therefore, σp+1 = πp−K ·σp. All others should stay the same. In our example,
X6−5 = X1 = {1,3} and thus σ6(1) ∈ {1,3}. In total, we have

π(i)
(1.1)
= σK+m(i) = πm · . . . ·π1 · id{1,·K}.

And therefore
π = πm · . . . ·π1 ⇐⇒ f (K,X1, . . . ,Xm,π) is K-colorable.

8

The arc-coloring problem is in NP, because in O(n2) time, we can check if the colors assigned to
the endpoints of each edge in G are different. We keep track of the used colors in linear time. Both
tests are polynomial and if successful the graph can be colored with K colors.

Theorem 1.4 tells us a polynomial time algorithm to color circular-arc graphs in general is not
known. However, through the WPPSG-problem, there exists an O(n · k! · k logk) time algorithm to
answer the question of whether a circular-arc graph with n vertices is k-colorable [3]. This algorithm
is polynomial (even linear) if k is fixed. The following problem is therefore in P:

ARC-K-COLORING PROBLEM
Given: A family A of arcs.

Question: Can we color the arcs with K colors such that intersecting arcs have different colors?

Some subclasses of circular-arc graphs have polynomial time algorithms to color the graphs from
the subclasses optimally where the number of colors needed is not fixed. In the next two sections, we
will discuss examples of such subclasses.

1.4 Proper circular-arc graphs
Definition 1.5. A graph G = (V,E) is a proper circular-arc graph if there exists a circular-arc repre-
sentation A = {A1, . . . ,An} of G such that no arc in A contains another arc, i.e.

∀Ai,A j ∈ A [i 6= j⇒¬(Ai ⊆ A j ∨A j ⊆ Ai)].

There is also a notion of unit circular-arc graphs in the literature (first introduced by Tucker [22]).
These are graphs that have a circular-arc representation where all arcs have the same length. All unit
circular-arc graphs are proper circular-arc graphs.

There exists a O(n2) time algorithm for recognizing proper circular-arc graphs and creating an
associated proper circular-arc representation [21].

J.B. Orlin, M.A. Bonuccelli and D.P. Bovet gave a O(n2 logn) time algorithm to optimally color
proper circular-arc graphs [17]. First they translate the problem of proper coloring a circular-arc
graph G with k colors (if possible) to a linear integer programming problem. Normally, there is no
polynomial time algorithm known to determine a feasible solution for a linear integer programming
problem. With this set of equations we can have a O(n2) time algorithm to solve it. A short descrip-
tion how this is done, can be found in Theorem 1.7. After a solution to the system is given, we can
color the vertices.

Theorem 1.6. [17] Let G = (V,E), n := #V be a proper circular-arc graph with an associated proper
circular-arc representation A = {A1, . . . ,An} such that Ai = [a1,bi] and a1 < .. . < an. Then G may
be k-colored if and only if there is a feasible solution to the following system with r := n mod k and
x0, . . . ,xn are integer valued variables:

for i = 1, . . . ,n
{

0≤ xi− xi−1{
x0 = 0
xn = r · dn/ke

for S := {Ai+1 . . .A j} is a maximal
clique in G and i < j. (|S|= j− i)

{
x j− xi ≤ r
(j− i)− (x j− xi)≤ k− r

for S := {Ai+1 . . .A j} is a maximal
clique in G and i > j. (|S|= n+ j− i)

{
xn + x j− xi ≤ r
(n+ j− i)− (xn + x j− xi)≤ k− r

Proof. This proof is inspired by and sometimes incorporates proofs of [17]. First we notice that
every maximal clique S of G is of the form S = {Ai,Ai+1 . . . ,A j} for some i, j. This holds because

9

a maximal clique has one or more common points on the circle and therefore, it is easy to see that
a j := maxl{al : Al ∈ S} or bi := minl{bl : Al ∈ S} is a common point that induces the clique:

a j ∈
⋂
A∈S

A ∨ bi ∈
⋂
A∈S

A

for otherwise Ai and A j do not overlap. If this common point is equal to 0, then S = {Ai : ai >
bi or ai = 0}. If this common point is greater than 0, we can rotate the circle and fix the arcs such that
the common point is equal to 0 and apply the same argument.

(⇐)
Assume there exists a feasible solution to the system described in Theorem 1.6. We define the set

W := {Ai : xi− xi−1 = 1}.

We will interpret for i< j, x j−xi = |W ∩{Ai+1, . . . ,A j}| and for i> j xn+x j−xi = |W ∩{Ai+1, . . . ,A j}|.
Thus |W | = xn− x0 = r · dn/ke− 0. We use l(i) to denote the integer such that W has i− 1 arcs A j
with a j < ai. The intuition is that the arc Ai is the l(i)-th arc in W . Consider the coloring c of G[W]
with the colors 1, . . . ,r such that c(Ai) := l(i) mod r. Thus, we sequentially color the arcs. The ‘last’
arc in W has color r. Let c(Ai) = c(A j) with i < j.

i If bi ∈ A j, then Al(i),Al(i+1) . . . ,Al(j) is in a maximal clique S with |S∩W | ≥ r+1 for otherwise
c(Ai) 6= c(A j). But this is in contradiction with the assumption we had a feasible solution
(|S∩W |= x j− xi−1 ≤ r must hold). Thus bi /∈ A j.

ii If a j ∈ Ai, then A j, . . . ,Ai is in a maximal clique. An analogous argument will conclude a j /∈ Ai.

Therefore, Ai ∩A j = /0, so the coloring c is proper. Analogously we can color G[V \W] with k− r
colors.

(⇒)
Assume the graph G can be colored with k colors.

Claim 1. G can be colored with k colors in such a way that each color class has either dn/ke or bn/kc
colors. Proof of Claim 1: [17] We will prove this with induction to k. Assume k = 2. If n is even,
then we can color the arcs of G alternately. If n is odd and a color class C is of size ≥ (n+ 2)/2,
then there exists an i such that Ai,Ai+1 ∈ C. It follows C′ = {. . . ,Ai−4,Ai−2,Ai,Ai+1,Ai+3, . . .} nor
A\C′ has two overlapping arcs and consequently are proper coloring classes of size dn/2e and bn/2c
respectively. If k > 2 we can iterative recolor G[C∪D] with C,D the color classes of smallest and
largest size.

Let c be a k-coloring of G such that every color class has dn/ke or bn/kc colors and let r =
n mod k. If r = 0, then xi = 0 for every i, is a feasible solution. If r > 1, then we take a union of
coloring classes W :=

⋃
|C|=dn/keC and assign xi := |{A1, . . . ,Ai}∩W |. This is a feasible solution.

Theorem 1.7. [17] A proper circular-arc graph G can be colored with χ(G) colors in O(n2 logn)
steps.

Proof. Let G be a graph. In O(n2) time an associated proper circular-arc representation is given if
possible [22]. If such representation does not exist, it will output false. Otherwise, for a given k,
we can create the constraints as described in Theorem 1.6. A feasible solution to the system can be
determined in O(n2) steps: First a directed, weighted graph G′ is made with the vertices v0, . . . ,vn−1
and for every constraint x j− xi ≤ wi j we construct the edges are (vi,v j) with weight wi j. If for every
i, the shortest distance from v0 to vi is positive, then we assign the distance d0i the the variable xi.
Otherwise, there is no feasible solution to the system. There are at most 2n points that induce different
cliques and therefore at most 5n edges. Thus, these distances can be computed in O(n2) time by the
Bellman-Ford method [17].

Using binary search, we can determine k in O(logn) steps. At every step, we compute if the
solutions for a k. In total, we need O(n2 logn) steps.

When we have a feasible solution of minimal k to the system, we can determine the coloring of
G in O(n) steps. First we color G[{Ai : xi− xi−1 = 1}] with 1, . . . ,(n mod k) colors by sequentially
color its arcs. We color all other arcs sequentially with the colors (n+1 mod k), . . . ,k.

10

1.5 Perfect circular-arc graphs
Perfect cirucular-arc graphs are circular-arc graphs which are perfect, i.e. χ(H) = ω(H) for every
induced subgraph H. These graphs can be recognised in O(mn log logn+m2) time [4]. If the graph
is a perfect circular-arc graph, we will also obtain a circular-arc model representing the graph. For
perfect circular-arc graphs there also exists a polynomial time algorithm to compute its coloring [25].
We will only give a short description of the algorithm.

Theorem 1.8. Perfect circular-arc graphs can be colored in O(n2m) time.

Proof. The following is a short description of the algorithm given in [25]. Let G be a perfect circular-
arc graph and A = {A1, . . . ,An} the associated arc model such that Ai = (ai,bi) and the length of arc
Ai is greater than or equal to the length of arc A j for all j > i. Recall a circular-arc representation of
G can be found in O(n) time [15] and an ordering can be realized in O(n logn) time (e.g. by merge
sort). We will color the arcs one at a time.

Assume the algorithm already gave a coloring c for the vertices {v1, . . . ,vl} and now we want
to create a coloring c′ for the vertices {v1, . . . ,vl+1}. We define H := G[{v1, . . . ,vl}] and H0 :=
G[NH(vl+1)].

All arcs that have overlap with Al+1 contain point al+1 or bl+1, because the length of the arc
Al+1 is smaller than or equal to those of the arcs representing H (and also H0). Therefore H0 can be
covered by two cliques (namely, the cliques induced by al+1 or bl+1) and so H0 is bipartite.

We construct a matching M in H0 by {v,w} ∈ M if and only if c(v) = c(w). This is a correct
matching, because c is a proper coloring of H0 and H0 can be covered by two cliques, so every color
in c is assigned to at most two vertices. Hsu [10] proved the following statement:

Claim 1. If H0 has used ω(G) colors, then M is not a maximum matching in H0.

In O(n2) steps we can find an augmenting path (or correctly state M is maximal) [25]. If M is
maximal, we assign a random color to vl+1 not assigned yet to its neighbors. Thus c′|V (H) = c and
c′(vl+1) /∈ c(V (H0)). If M is not maximal, we found P: an augmenting path.

If this path is an edge {v,w} ∈ E(H0), then cv := c(v) 6= c(w) =: cw and no other vertices in H0
are colored with cv or cw. Define

T cvcw
H,w := {u : (c(u) = cv or c(u) = cw) and ∃Pwu = (w, p2, . . . ,u) a path from w to u}.

The new coloring c′ will be equal to c, but with one small change: the colors of the component T cvcw
H,w

are switched in c′. If c′(v) 6= c(v), then there exists a shortest path Pvw from w to v and Pwv∪{vl+1} is
an odd cycle. This contradicts G being perfect. Therefore, we can expand the coloring c′ by assigning
c′(vl+1) := c(w).

If this augmenting path P consists of more than one edge, we can shorten the path in O(n+m)
steps by switching colors and changing the matching M until we have an edge. There are two color
switch possibilities. It depends on the edges in H0 which one we apply. We need to do this at most
O(n) times.

The details and the complete proof can be found in [25].

11

Chapter 2

Chromatic polynomial for hyperholes

This chapter is all about finding the chromatic polynomial of a hyperhole. Therefore, we need to
know what a chromatic polynomial is and what a hyperhole is. The definitions are in line with [18]
and [14].

Definition 2.1. The chromatic function of a graph G is the function PG :N→N that gives the number
of ways of coloring the vertices of a graph G with input the number of available colors.

Notice that PG(χ(G)) > 0 and for all x ∈ {0, . . . ,χ(G)− 1} we have PG(x) = 0. The vertices in
the graph are interpreted as fixed on a piece of paper or as labeled. In Figure 2.1 we see two different
colorings of the graph using the colors {red, blue, yellow}.

1

2

3 1

2

3

Figure 2.1: Two different colorings of the same graph

There are three important families of graphs where the chromatic function is known that we are
going to use to calculate the chromatic function of a hyperhole. The chromatic function can be
computed for these families using induction on the number of vertices. We will only give a proof
sketch.

Lemma 2.2. The chromatic function of an edgeless graph Kn on n vertices is

PKn
(λ) = λ

n.

Proof. The graph is edgeless, so if we want to color a vertex it does not matter how another vertex is
colored for it to be a proper coloring. Therefore PKn

(λ) = λ n.

Lemma 2.3. The chromatic function of a path Pn on n vertices is

PPn(λ) = λ (λ −1)n−1.

Proof. Take a path Pn = (v1, . . . ,vn). For the first vertex v1 we have λ options to color this vertex.
The second vertex v2 has only λ−1 options to be colored, because it cannot be colored with the same
color as the one before. Do this inductively and we see that PPn(λ) = λ (λ −1)n−1.

Lemma 2.4. The chromatic function of a complete graph Kn on n vertices is

PKn(λ) = λ (λ −1) · · ·(λ − (n−1)) =
n−1

∏
i=0

(λ − i).

Proof. All vertices have to be colored differently. At the first vertex we can choose from λ colors,
the second from λ −1 colors, etcetera.

12

2.1 Fundamental theorems for chromatic polynomials
A trick can be used to calculate a chromatic function for any graph. The trick is to add or delete edges
from the graph until we find a graph of which we know the chromatic function.

Theorem 2.5. Let G = (V,E) be a graph and u,v ∈ V be two vertices with no edge between them.
Then

PG(λ) = PG+euv(λ)+PG/uv(λ).

Proof. The number of colorings in graph G is equal to the number of colorings of graph G where the
vertices u and v have a different color plus the case where the vertices u and v have the same color.
The first one is exactly PG+euv(λ). By adding an edge, the colors of u and v have to be different. The
second one is PG/uv(λ). Merging the vertices u and v is analogous to assigning the same color to u
and v.

Corollary 2.6. Let G = (V,E) be a graph and u,v ∈V be neighbors. Then

PG(λ) = PG−euv(λ)−PG/uv(λ).

Proof. We will use Theorem 2.5 on the graph G− euv:

PG−euv(λ) = PG−euv+euv(λ)+PG/uv(λ)

PG−euv(λ) = PG(λ) +PG/uv(λ)

PG−euv(λ)−PG/uv(λ) = PG(λ).

Theorem 2.7. The chromatic function of a simple graph is a polynomial with integer coefficients:
PG(λ) = λ n−an−1λ n−1+an−2λ n−2+ . . .+(−1)na2λ 2−(−1)na1λ where n is the number of vertices
in G and for all i≤ n we have ai ∈N≥0.

Proof. We will give a proof with induction to the number of edges. The theorem holds for an edgeless
graph, because PKn

(λ) = λ n. Assume it holds for a simple graph with m edges. Take a simple graph
G with m+ 1 edges and n vertices. We use Corollary 2.6 to delete an edge euv ∈ E(G). Note G/uv
has strictly fewer edges than G and hence we can apply the induction hypothesis two times:

PG(λ)
2.6
= PG−euv(λ)−PG/uv(λ)

IH
= λ

n−an−1λ
n−1 + . . .+(−1)n+1a1λ −

(
λ

n−1−a′n−2λ
n−2 + . . .λ 2 +(−1)na′1λ

)
= λ

n− (an−1 +1)λ n−1 +(an−2 +a′n−2)λ
n−2 + . . .+(−1)n(a1 +a′1)λ

All ai and a′i are inN. With induction we have proven our theorem.

From now on we say chromatic polynomial instead of chromatic function.

When a graph has a clique-cut-partition (A,B,C), we can use it to calculate the chromatic polyno-
mial of the whole graph by calculating the chromatic polynomial of two parts G[A∪C] and G[B∪C].
Recall, C is a clique and A is anticomplete to B.

Theorem 2.8. If (A,B,C) is a clique-cut-partition of a graph G, then

PG(λ) =
PG[A∪C](λ) ·PG[B∪C](λ)

PG[C](λ)
.

Proof. There are PG[C](λ) number of ways to color the common part G[C]. If we fix the colors of this
part, we have PG[A∪C](λ)/PG[C](λ) ways to color G[A] and PG[B∪C](λ)/PG[C](λ) for G[B]. It brings a
number of colorings equal to

PG(λ) = PG[C](λ) ·
PG[A∪C](λ)

PG[C](λ)
·

PG[B∪C](λ)

PG[C](λ)
=

PG[A∪C](λ) ·PG[B∪C](λ)

PG[C](λ)

13

To simplify notation, we will remove the ‘P’ to denote the chromatic polynomial of a graph G.
From now on, we will write G(λ) for the chromatic polynomial of G with variable λ . The notation
for G can be a drawing of the graph or letters that represent a special graph.

2.2 Hyperpaths
We can visualise a hyperpath by taking a path and blowing up each vertex to a nonempty clique of
arbitrary size.

Definition 2.9. A hyperpath G = (V,E) is a graph whose vertex set can be partitioned into k ≥ 3
nonempty cliques X1,X2, . . . ,Xk such that for all i ∈ {2, . . . ,k− 1}, Xi is complete to Xi−1 ∪Xi+1,
anticomplete to all X j with j /∈ {i− 1, i, i+ 1} and X1 is anticomplete to Xk. We say that G is a
k−hyperpath and the length of G is equal to k. Another notation for G is [X1, . . . ,Xk]P where Xi are
subsets of V (G), or as [x1, . . . ,xk]P where xi := #Xi.

Figure 2.2 contains an example of a hyperpath. The hyperpath is equal to [1,4,3,2,3,1]P. Notice
hyperpaths are examples of interval-graphs and an interval model of the hyperpath is given on the left
of Figure 2.2. To simplify our drawings, we will use a circle with a number n to denote a clique of
size n. We will use an ‘=’-sign to denote that two (sub)graphs are complete to each other.

3

4

1 1

3

2

Figure 2.2: On the left an interval-graph model of the hyperpath [1,4,3,2,3,1]P as shown in the
middle. On the right a schematic model of the same hyperpath. The length of the hyperpath is equal
to 6.

With the following proposition (Proposition 2.10), we can calculate that its chromatic polynomial
is

[1,4,3,2,3,1]P(λ)
=λ (λ −1)(λ −2)(λ −3)(λ −4)(λ −4)(λ −5)(λ −6)
· (λ −3)(λ −4)(λ −2)(λ −3)(λ −4)(λ −3)

=λ (λ −1)(λ −2)2(λ −3)4(λ −4)4(λ −5)(λ −6).

Proposition 2.10. Let G = [x1, . . . ,xk]P be a hyperpath. To simplify notation, we define x0 := 0. The
chromatic polynomial is

[x1, . . . ,xk]P(λ) =
k

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j).

Proof. We will prove it with induction on the length of the path.

BASE:
Let G = [X1,X2,X3]P be a hyperpath of length three and define xi := #Xi, then (X1,X3,X2) is a clique-
cut-partition of P. Theorem 2.8 gives us

G(λ) =
G[X1,X2](λ) ·G[X2,X3](λ)

G[X2](λ)
.

14

Because X1 is complete to X2 and X2 is complete to X3, we know that G[X1,X2],G[X2,X3],G[X2] are
cliques. Lemma 2.4 gives us

G[X1,X2](λ) ·G[X2,X3](λ)

G[X2](λ)
=

(
∏

x1+x2−1
j=0 (λ − j)

)(
∏

x2+x3−1
j=0 (λ − j)

)
∏

x2−1
j=0 (λ − j)

=

(
∏

x1+x2−1
j=0 (λ − j)

)(
∏

x2−1
j=0 (λ − j)

)(
∏

x2+x3−1
j=x2

(λ − j)
)

∏
x2−1
j=0 (λ − j)

=

(
x1−1

∏
j=0

(λ − j)

)(
x1+x2−1

∏
j=x1

(λ − j)

)(
x2+x3−1

∏
j=x2

(λ − j)

)

=
3

∏
i=1

xi−1+xi−1

∏
j=xi−1

(λ − j) =
3

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j).

INDUCTION STEP:
We want to calculate the chromatic polynomial of G = [X1, . . . ,Xk+1]P. We define xi := #Xi. Assume
the chromatic polynomial of [X1, . . . ,Xk]P is equal to ∏

k
i=1 ∏

xi−1
j=0 (λ − xi−1− j) where xi := #Xi and

#X0 := 0. We know that ([X1, . . . ,Xk−1]P,Xk+1,Xk) is a clique-cut-partition. The following steps are
analogous to the base case, so we will withhold some steps.

[X1, . . . ,Xk+1]P(λ)
[2.8]
=

[X1, . . . ,Xk]P(λ) ·G[Xk,Xk+1](λ)

G[Xk](λ)

IH
=

(
∏

k
i=1 ∏

xi−1
j=0 (λ − xi−1− j)

)
·G[Xk,Xk+1](λ)

G[Xk](λ)

=

(
k

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j)

)
·

xk+xk+1−1

∏
t=xk

(λ − t)

=
k+1

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j)

Corollary 2.11. The chromatic number of a hyperpath [X1, . . . ,Xk]P is equal to the maximum clique-
size:

χ([X1, . . . ,Xk]P) = max
i<k

({xi + xi+1}) with xi := #Xi.

Proof. The proof is derived from colorings of even rings (Lemma 3.2 of [14]). Let m :=maxi<k({xi+
xi+1}) and c := {1, . . . ,m}. Vertices of Xi can be colored with the colors {1, . . . ,xi} if i is odd and
with {m− xi +1, . . . ,xi} if i is even. This is a proper coloring, because xi < m− xi+1 +1 and xi+1 <
m− xi +1 as from how m is defined. By Proposition 2.10 the graph [X1, . . . ,Xk]P can not be colored
with less colors. If m is maximal at xi +xi+1, then (λ −xi− (xi+1−1)) = (λ − (m−1)) is a factor of
[X1, . . . ,Xk]P. Therefore, [X1, . . . ,Xk](m−1) = 0.

In Figure 2.3 we color the hyperpath [1,4,3,2,3,1]P with the colors {blue, light blue, green, dark
green, purple , yellow, orange}

Figure 2.3: A coloring of the hyperpath [X1, . . . ,Xk]P

15

2.3 Hyperholes
Like hyperpaths we have hyperholes, i.e., a hole (or irreducible cycle of length ≥ 4) where the ver-
tices are blown up to cliques [2]. For these types of graphs, we wish to determine the chromatic
polynomial.

Definition 2.12. A hyperhole G = (V,E) is a graph whose vertex set can be partitioned into k ≥ 4
nonempty cliques X1,X2, . . . ,Xk such that for all i ∈ {1, . . . ,k}, Xi is complete to Xi−1∪Xi+1 and anti-
complete to all X j with j /∈ {i−1, i, i+1}. Here, i is taken modulo k. We say that G is a k−hyperhole
and the length of G is equal to k. Another notation for G is [X1, . . . ,Xk]H where Xi are subsets of
V (G), or as [x1, . . . ,xk]H where xi := #Xi.

From now on when discussing hyperholes we will take indices modulo k for k the length of that
hyperhole. Notice hyperholes have circular-arc models, see Figure 2.4 for an example of a hyperhole
and a circular-arc model of the hyperhole. How such model can be constructed, is discussed in
Chapter 3.

3

4

1 1

3

2

Figure 2.4: On the left a circular-arc model of the hyperhole in the middle. On the right a schematic
model of the same hyperpath of length 6.

The final symbol we want to introduce is the ‘;l’-symbol. Like the ‘=’-symbol, this new symbol
is used between two cliques. For cliques Xi and X j we write Xi ;l X j if exactly l vertices in Xi are
complete to X j and all other vertices of Xi are anticomplete to X j. See Figure 2.5 for an example
where Xi ∼= K4 and X j ∼= K3 and l = 1.

4 3
1

Figure 2.5: Schematic figure on the right represents the graph on the left.

The remainder of this section is dedicated to proving the Chromatic Theorem for hyperholes
(Theorem 2.13), stated below.

Theorem 2.13. Let G = [x1, . . . ,xk]H be a hyperhole of length k ≥ 4. Without loss of generality,
assume xk ≥ x1. Indices are not taken modulo k and we define x0 := 0. Then the chromatic polynomial
of G can be calculated recursively:

[x1, . . . ,xk]H(λ) =

(
k

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j)

)

+

(x1

∑
i=1

(−1)i
(

x1

i

)(i−1

∏
j=0

(xk− j)

)(
x1+x2−1

∏
j=x2+i

(λ − j)

)

·

(
xk−1+xk−1

∏
j=xk−1+i

(λ − j)

)
· [i,x2, . . . ,xk−1]H(λ)

)

16

In order to prove the Chromatic Theorem for hyperholes, we wish to prove a lemma that will
allow us to remove multiple edges at the same time. Recall that we denote euv for an edge between the
vertices u and v. The notation for removing an edge euv of the graph G is G− euv and for contracting
the vertices u, v is G/uv.

Lemma 2.14. Let G be a graph and let X = {x1, . . . ,xt} be a clique in G with vertices that have the
same neighbors: NG[x1] = . . .= NG[xt]. Let v ∈ NG[x1]\X , then

G/vx1 ∼= (G− evx1)/vx2 ∼= . . .∼= (G− evx1 − . . .− evxt−1)/vxt .

Proof. We will denote V (G/vxi) :=V (G)∪{vxi}\{v,xi}. First we prove G/vx1 ∼= (G−evx1)/vx2 by
making a bijection f between the vertices. We take f |V (G/vx1)\{vx1,x2}) := id; the idendity map. And
f (vx1) = vx2, f (x2) = x1. This is a bijection and we have:

{w,vx1} ∈ E(G/vx1)⇔{w,v} ∈ E(G)∨{w,x1} ∈ E(G) (2.1)
⇔{w,v} ∈ E(G)∨{w,x2} ∈ E(G) (2.2)
⇔{w,vx2} ∈ E((G− ev,x1)/vx2) (2.3)

The second line (2) holds because NG[x1] = NG[x2]. The last line (3) holds because x1 is connected
to x2 in G, so the removing of the line {v,x1} does not affect the edges in (G− ev,x1)/vx2. For
every other edge {s, t} ∈ E(G/vx1) it is clear that it is also an edge in (G− ev,x1)/vx2. Thus f is an
isomorphism. The proof of the other isomorphisms is analogously.

The next proposition is the first concrete step towards proving Theorem 2.13.

Proposition 2.15. Let H = [x1, . . . ,xk]H with xi ∈N be a hyperhole of length k ≥ 4. The following
holds:

x1

x2

xk

xk−1

(λ) =

x1

x2

xk

xk−1

(λ)− xk∑

x1−1

i = 0

x2 xk−1

1

x1 xk
−1 −1

(λ)

i

Before we prove Proposition 2.15, we will prove the following lemma.

Lemma 2.16. The following holds, where xi = #Xi:

x1

x2

xk

xk−1

j (λ) =

i
x1

x2

xk

xk−1

j (λ)− xk·

i−1

x2 xk−1

x1 xk
−1 −1

j
+1 (λ)

i−1

Proof. Consider the graph G visualised on the left side of the equation and a vertex v of X1 that is
complete to Xk = {w1, . . . ,wt}. We use Corollary 2.6 to remove the edges one by one between v and
Xk, starting at w1.

G(λ) = (G− evw1)(λ)− (G/vw1)(λ)

= (G− evw1 − evw2)(λ)−
(
(G/vw1)(λ)+((G− evw1)/vw2)(λ)

)
...

= (G− evw1 − . . .− evwt)(λ)−
(
(G/vw1)(λ)+ . . .+((G− evw1 −·· ·− evwt−1)/vwt)(λ)

)
L 2.14
= (G− evw1 − . . .− evwt)(λ)− xk · (G/vw1)(λ)

17

We can use Lemma 2.14, because Xk is a clique and the neighbors of two vertices in Xk are the same.
This is exactly the equation in the Lemma.

We can now prove Proposition 2.15.

Proof. Take a hyperhole H = [x1, . . . ,xk]H = [X1, . . . ,Xk] with xi = #Xi ∈N of length k ≥ 4. Notice
that the leftmost graph G of Lemma 2.16 is the same as hyperhole H if we take i = x1 and j = 0.
For the next part of the proof, we will use Lemma 2.16 for x1 number of times. Every time on the
left-most graph:

x1

x2

xk

xk−1

(λ) =

x1

x2

xk

xk−1

0 (λ)

x1

x1

x2

xk

xk−1

0 (λ)− xk·=

x1−1

x2 xk−1

1

x1 xk
−1 −1

(λ)

x1−1

x1

x2

xk

xk−1

0 (λ)− xk·=

x1−2

x2 xk−1

1

x1 xk
−1 −1

(λ)− xk·

x1−1

x2 xk−1

1

x1 xk
−1 −1

(λ)

x1−2
...

x1

x2

xk

xk−1

= (λ)− xk∑

x1−1

i = 0

x2 xk−1

1

x1 xk
−1 −1

(λ)

i

We already know the chromatic polynomial of any hyperpath. Therefore, the next step is to
simplify the right side of the equation in Lemma 2.15. To do so, we use a property from Pascal’s
Triangle.

Lemma 2.17. For all n ∈N≥0 and for all 0≤ k ≤ n this holds:(
n+1
k+1

)
=

n

∑
i=k

(
i
k

)
Proof. We will prove this with induction to n.

BASE:
Assume n = 0, then k = 0 as well. And

(1
1

)
=
(0

0

)
= ∑

0
i=0
(i

0

)
. Therefore the base case holds.

18

INDUCTION STEP:
Assume for some n we have that

(n+1
k+1

)
= ∑

n
i=k
(i

k

)
holds for every k ≤ n. If k = 0, then ∑

n+1
i=0

(i
0

)
=

(n+1) ·1 =
(n+1

1

)
; if k = n+1, then

(n+2
n+2

)
= ∑

n+2
i=n+2

(i
n+2

)
. Now take k > 0 and k < n+1, then(

n+2
k+1

)
=

(
n+1
k+1

)
+

(
n+1

k

)
IH
=

n

∑
i=k

(
i
k

)
+

n

∑
i=k−1

(
i

k−1

)

=

(
n

∑
i=k

(
i
k

)
+

(
i

k−1

))
+

(
k−1
k−1

)

=

(
n

∑
i=k

(
i+1

k

))(
k−1
k−1

)

=

(
n+1

∑
i=k+1

(
i
k

))(
k
k

)

=
n+1

∑
i=k

(
i
k

)
So the property stated in the lemma holds for every n≥ 0 and every 0≤ k ≤ n.

Proposition 2.18. Let xk ≥ x1 and xi = #Xi, then the following holds:

x2 xk−1

1

x1 xk
−1 −1

(λ) =

(
∑(−1)l

(
∏ (xk− j)

)(x1
l

)−xk∑

x1−1

i = 0

x1

l = 1

l−1

j = 0

i

x2 xk−1

l

x1 xk
−l −l

(λ)

)

Proof. The following proof is a twofold. We will first prove another claim before we finish the proof
itself.

Claim 1. The following holds where xi = #Xi:

x1

x2

xk

xk−1

k (λ) =

(
∑(−1)l

(
∏ (xk− j)

)(i
l

)i

l = 0

l−1

j = 0

i

x2 xk−1

k+ l

x1 xk
−l −l

(λ)

)

Proof of Claim 1: We will prove this with induction to i: the number of vertices in X1 that are com-
plete to Xk. The proof has the same idea as the inductive proof for the Binomial Theorem [9].

BASE:
Assume i = 0, so no vertices are complete to Xk. This is trivial as the left part of the equation is the
same as the right side.

INDUCTION STEP:
Assume the Claim 1 holds for all graphs that have exactly i−1 vertices in X1 that are complete to Xk.
Consider a graph that has exactly i vertices in X1 complete to Xk. The first step is to use Lemma 2.16:

19

x1

x2

xk

xk−1

k (λ) =
L2.16

i
x1

x2

xk

xk−1

k (λ)− xk·

i−1

x2 xk−1

k+1

x1 xk
−1 −1

(λ)

i−1

x2 xk−1

k+ l

x1 xk
−l −l

(λ)

)
=

(
∑(−1)l

(
∏ (xk− j)

)(i−1
l

)i−1

l = 0

l−1

j = 0

IH

x2 xk−1

x1 xk
−l−1 −l−1

k+ l
+1 (λ)

)
−xk ·

(
∑(−1)l

(
∏ (xk−1− j)

)(i−1
l

)i−1

l = 0

l−1

j = 0

x2 xk−1

k+ l

x1 xk
−l −l

(λ)

)
=

(
∑(−1)l

(
∏ (xk− j)

)(i−1
l

)i−1

l = 0

l−1

j = 0

x2 xk−1

k+ l

x1 xk
−l −l

(λ)

)
+

(
∑(−1)l

(
∏ (xk− j)

)(i−1
l−1

)i

l = 1

l−1

j = 0

x2 xk−1

k+ l

x1 xk
−l −l

(λ)

)
=

(
∑(−1)l

(
∏ (xk− j)

)(i
l

)i−1

l = 1

l−1

j = 0

x1

x2

xk

xk−1

k (λ) + (−1)i
(

∏ (xk− j)
)

+
i−1

j = 0

x2 xk−1

k+ i

x1 xk
−i −i

(λ)

20

x2 xk−1

k+ l

x1 xk
−l −l

(λ).=∑(−1)l
(

∏ (xk− j)
)(i

l

)i

l = 0

l−1

j = 0

With the principle of induction, we have proven the claim. Now that we have proven the claim,
we can use it for the first line of the following equation.

x2 xk−1

1

x1 xk
−1 −1

(λ) =−xk

(
∑∑(−1)l

(
∏ (xk−1− j)

)(i
l

)−xk∑

x1−1

i = 0

x1−1

i = 0

i

l = 0

l−1

j = 0

C1

i

x2 xk−1

1+ l

x1 xk
−1− l −1− l

(λ)

)

x2 xk−1

1+ l

x1 xk
−1− l −1− l

(λ)=−∑∑(−1)l
(

∏ (xk− j)
)(i

l

)x1−1

i = 0

i

l = 0

l

j = 0

x2 xk−1

1+ l

x1 xk
−1− l −1− l

(λ) ·∑
(i

l

))
=−∑

(
(−1)l

(
∏ (xk− j)

)x1−1

l = 0

x1−1

i = l

l

j = 0

x2 xk−1

1+ l

x1 xk
−1− l −1− l

(λ) ·
(x1

l+1

))
=−∑

(
(−1)l

(
∏ (xk− j)

)L2.17

x1−1

l = 0

l

j = 0

x2 xk−1

l

x1 xk
−l −l

(λ)=∑(−1)l
(

∏ (xk− j)
)(x1

l

)x1

l = 1

l−1

j = 0

21

At the moment, we have created a lot of cliques, so we can use the clique-cut-partition theorem
for chromatic polynomials (Theorem 2.8) to simplify the right side of the equation in Lemma 2.18
even more. We can now prove the Chromatic Theorem for hyperholes. For convenience the statement
of the Chromatic Theorem for hyperholes is stated below.

Theorem 2.13. Let G = [x1, . . . ,xk]H be a hyperhole of length k ≥ 4. Without loss of generality,
assume xk ≥ x1. Indices are not taken modulo k and we define x0 := 0. Then the chromatic polynomial
of G can be calculated recursively:

[x1, . . . ,xk]H(λ) =

(
k

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j)

)

+

(x1

∑
i=1

(−1)i
(

x1

i

)(i−1

∏
j=0

(xk− j)

)(
x1+x2−1

∏
j=x2+i

(λ − j)

)

·

(
xk−1+xk−1

∏
j=xk−1+i

(λ − j)

)
· [i,x2, . . . ,xk−1]H(λ)

)

Proof. Take a hyperhole G = [X1, . . . ,Xk]H = [x1, . . . ,xk]H of length k≥ 4. With help of Lemma 2.15
and Lemma 2.18, we know

x1

x2

xk

xk−1

(λ) =

x1

x2

xk

xk−1

(λ)

x2 xk−1

i

x1 xk
−i −i

+∑(−1)i
(

∏ (xk− j)
)(x1

i

)
(λ)

x1

i = 1

i−1

j = 0

Using Proposition 2.10 we calculate the following where x0 := 0:

[x1, . . . ,xk]P(λ) :=
k

∏
i=1

xi−1

∏
j=0

(λ − xi−1− j).

Let G′ be the graph on the right-most side of the next equation, Y be the i vertices in the middle of
the graph and X ′1 := {v1

1, . . . ,v
x1−i
1 }. Then

(
X ′1,V (G)\ (X ′1∪X2∪Y),X2∪Y

)
is a clique-cut-partition.

We apply the Clique-cut-partition Theorem for chromatic polynomials (Theorem 2.8) two times and
insert the chromatic polynomial for a complete graph (Lemma 2.4):

x2 xk−1

i

x1 xk
−i −i

(λ) =

x2 xk−1

i

xk
−i

(λ) =

∑ (λ − j)

∑ (λ − j)

x1 + x2−1

j = 0

x2 + i−1

j = 0

x2 xk−1

i (λ)

(
∑ (λ − j)

)

(
∑ (λ − j)

)

xk + xk−1−1

j = 0

xk−1 + i−1

j = 0

(
∑ (λ − j)

)

(
∑ (λ − j)

)

x1 + x2−1

j = 0

x2 + i−1

j = 0

22

With one more step, we have proven our statement.

2.4 Magma program and computation time
When we find the representation X := [X1, . . . ,Xk]H of a hyperhole, we can convert Theorem 2.13
into a Magma program.

Algorithm 1. CHROMATICPOLYNOMIALHYPERHOLE(X).

1 #INPUT: Representation of a hyperhole in integers: X := [|X1|, . . . , |Xk|]
2 #OUTPUT: The chromatic polynomial of the hyperhole

3

4 P<x> := PolynomialRing(Integers());

5

6 ChromaticPolynomialHyperhole := function(X);

7 #Rotate the graph such that the smallest clique is X1

8 min, i := Min(X);

9 Rotate(~X,-i+1);

10

11 if |X| eq 3 then

12 #The hyperhole with vertex partition X is a complete graph

13 g := 1;

14 for i:=0 to X[1]+X[2]+X[3]-1 do

15 g*:=(x-i);

16 end for;

17 return g;

18 else

19 f:= 1;

20

21 #Chromatic Polynomial for hyperpath [X1, . . . ,Xk]P

22 for i:=1 to |X| do

23 if i eq 1 then

24 n:=0;

25 else

26 n:=X[i-1];

27 end if;

28 for j:=n to (n+X[i]-1) do

29 f*:=(x-j);

30 end for;

31 end for;

32

33 for i:=1 to X[1] do

34 h := (-1)^i * Binomial(X[1],i);

35 for j := 0 to (i-1) do

36 h*:= (X[|X|] - j);

37 end for;

38

39 for j := X[2]+i to X[1]+X[2]-1 do

40 h*:= (x-j);

41 end for;

42

43 for j := X[|X|-1]+i to X[|X|]+X[|X|-1]-1 do

44 h*:= (x-j);

45 end for;

46

47 Y := X;

48 Exclude(~Y, Y[1]);

23

49 Y[|Y|] := i;

50 h1 := $$(Y); #Recursive call to the algorithm

51

52 f+:= h*h1;

53 end for;

54 return f;

55 end if;

56 end function;

We can calculate the chromatic polynomial of a hyperhole by using Corollary 2.6 recursively. Let
G = [X1, . . . ,Xk]H be a hyperhole of length k and euv an edge. We define xi := Xi. Then

PG(λ) = PG−euv(λ)+PG/uv(λ)

The standard algorithm in Magma uses this principle. In total G has ∑
k
i:=1

x2
i −xi

2 edges in all cliques
X1, . . . ,Xk combined and ∑

k
i:=1 xi ·xi+1 edges between the cliques. Notice that the algorithm in Magma

uses a lot of memory as for every edge in G two graphs must be saved. As an example we take the
graph G := [1,2,1,3,5,2,1]H , drawn in Figure 2.6.

Figure 2.6: Graph [1,2,1,3,5,2,1]H colored with χ(H) = 8 colors.

The chromatic polynomial for G is equal to

[1,2,1,3,5,2,1]H(λ) =

λ
15−50λ

14 +1138λ
13−15626λ

12 +144640λ
11−955238λ

10 +4646270λ
9

−16935214λ
8 +46589063λ

7−96557200λ
6 +148924952λ

5−166283680λ
4

+127253616λ
3−59634432λ

2 +12821760λ .

The standard Magma algorithm needed 328 seconds to compute the chromatic polynomial, while
CHROMATICPOLYNOMIALHYPERHOLE needed less than a second. In fact, the first hyperhole we
could find of length seven that needed one second for CHROMATICPOLYNOMIALHYPERHOLE to
compute its chromatic polynomial, was [17,16,18,17,19,16,21]H . This polynomial has degree 124
and the largest coefficient is approximately 5,6 ·10173.

2.5 Chromatic polynomial for classes of hyperholes
As discussed before: a cycle is an example of a hyperhole. Let us calculate the chromatic polynomial
of a cycle Cn with Theorem 2.13. For all i it is #Xi = 1:

Cn(λ) =
n

∏
i=1

1−1

∏
j=0

(λ −1 ·1N\{1}(i)− j) +

+

1

∑
i=1

(−1)i
(

1
i

)(i−1

∏
j=0

(1− j)

)(
1

∏
j=1+i

(λ − j)

)(
1

∏
j=1+i

(λ − j)

)
·Cn−1(λ)

=λ (λ −1)n−1−Cn−1(λ)

24

This is the same we get if we use deleting of edges (Theorem 2.6) when we remember Pn(λ) =
λ (λ −1)n−1. Using this, we can prove the chromatic polynomial of a cycle.

Lemma 2.19. The chromatic polynomial of a cycle Cn on n vertices is

PCn(λ) = (λ −1)n +(−1)n(λ −1).

Proof. We will prove it with induction to the number of vertices in the cycle.

BASE: Assume n = 3, then C3 = K3, thus

PC3(λ) = λ (λ −1)(λ −2) = (λ −1)(λ 2−2λ)

= (λ −1)
(
(λ −1)2−1

)
= (λ −1)3 +(−1)3(λ −1)

INDUCTION STEP: Assume for an n we know PCn(λ) = (λ −1)n +(−1)n(λ −1). Using Theorem
2.13:

PCn+1(λ)
[2.13]
= λ (λ −1)n−Cn(λ)

IH
=λ (λ −1)n− (λ −1)n− (−1)n(λ −1)

=(λ −1)n+1 +(λ −1)n− (λ −1)n +(−1)n+1(λ −1)

=(λ −1)n+1 +(−1)n+1(λ −1)

When a hyperhole [x1, . . . ,xk]H with k ≥ 4 has xi = 1 for an i, we can calculate its chromatic
polynomial. Without loss of generality, we say x1 = 1. The next theorem calculates [1,x2, . . . ,xk]H .

Theorem 2.20. Let G = [1,x2, . . . ,xk]H be a hyperhole of length k ≥ 4. Then the chromatic polyno-
mial of G is equal to

G(λ) =

(
k

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)((
k

∏
i=1

(λ − xi)

)
+(−1)k ·

(
k

∏
i=1

xi

)
(λ −1)

)

Proof. We will prove this with induction to k: the length of a hyperhole.

BASE:
Consider a hyperhole [1,x2,x3,x4]H . We apply Theorem 2.13 and recall that [1,x2,x3]H = K1+x2+x3 ;
a complete graph. We define x0 := 0.

[1,x2,x3,x4]H(λ)

[2.13]
=

(
4

∏
i=1

xi−1+xi−1

∏
j=xi−1

(λ − j)

)
− x4

(
x3+x4−1

∏
j=x3+1

(λ − j)

)(
x2+x3

∏
j=0

(λ − j)

)

=

(
4

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)(
λ

(
3

∏
i=1

(λ − xi)

)
− x4λ · (λ −1)(λ − (x2 + x3))

)

=

(
4

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)((
4

∏
i=1

(λ − xi)

)
+ x4x3x2(λ −1)

)

Therefore, the base-case is true.

INDUCTION:
Assume for every x2, . . . ,xk ∈N a hyperhole G′ = [1,x2, . . . ,xk]H of length k the formula

G(λ) =

(
k

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)((
k

∏
i=1

(λ − xi)

)
+(−1)k ·

(
k

∏
i=1

xi

)
(λ −1)

)

25

holds. Consider a hyperhole G = [1,x2, . . . ,xk+1] of length k+1. Notate x0 := 1. With the recursive
formula for hyperholes, we know

[1,x2, . . . ,xk+1]H(λ)

[2.13]
=

(
k+1

∏
i=1

xi−1+xi−1

∏
j=xi−1

(λ − j)

)
− xk+1

(
xk+xk+1−1

∏
j=xk+1

(λ − j)

)
[1,x2, . . . ,xk]H(λ)

[IH]
=

(
k+1

∏
i=1

xi−1+xi−1

∏
j=xi−1

(λ − j)

)
− xk+1

(
xk+xk+1−1

∏
j=xk+1

(λ − j)

)
·

(
k

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)
·

·

((
k

∏
i=1

(λ − xi)

)
+(−1)k ·

(
k

∏
i=1

xi

)
(λ −1)

)

=

(
k+1

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)
·

·

(
λ

(
k

∏
i=1

(λ − xi)

)
− xk+1

((
k

∏
i=1

(λ − xi)

)
+(−1)k ·

(
k

∏
i=1

xi

)
(λ −1)

))

=

(
k+1

∏
i=2

xi−1+xi−1

∏
j=xi−1+1

(λ − j)

)((
k+1

∏
i=1

(λ − xi)

)
+

(
(−1)k+1 ·

(
k+1

∏
i=1

xi

)
(λ −1)

))

This completes the proof.

26

Chapter 3

Coloring rings

3.1 Recognizing rings
One way to introduce rings is through circular-arc graphs. Rings form a special case of those graphs.
Recall that circular-arc graphs are intersection graphs of open intervals (a,b) on a circle with a cir-
cumference r. The arcs are from a to b in a clockwise direction and a,b ∈ [0,r).

Definition 3.1. A Ring R is an intersection graph of a circular-arc model for which the following
requirements hold:

1. The arcs can be partitioned into k nonempty sets X1, . . . ,Xk where k ≥ 4 is the circumference
of the circular arc model such that (2.) is satisfied;

2. All arcs in set Xi are of the form (i−a j
i , i+b j

i) with the extra restrictions:

0 < a j
i ,b

j
i ≤ 1 (3.1)

a1
i ≥ . . .≥ a#Xi

i (3.2)

b1
i ≥ . . .≥ b#Xi

i (3.3)

a1
i = 1 ∧ b1

i = 1. (3.4)

We say R is a k-ring and the length of R is equal to k.

1

2
3

4

5

6
7

8

Figure 3.1: Ring of length 8. On the left the circular-arc model. On the right its intersection graph.

The model on the right of Figure 3.1 looks similar to a hyperhole. However, some edges from a
hyperhole may be missing. That is another way to introduce rings: hyperholes are a subclass of rings.
From de defnition of hyperholes we can gain a characterization for a ring by making the requirement
that every vertex v in Xi is complete to Xi−1∪Xi \ v∪Xi+1 less strict.

27

Lemma 3.2. The graph R is a ring of length k ≥ 4 if and only if there exists a partition of the vertex
set into k ≥ 4 nonempty sets X1,X2, . . . ,Xk, such that for all 1 ≤ i ≤ k the set Xi can be ordered as
Xi = {u1

i , . . . ,u
#Xi
i } and

Xi ⊆ NR[u
#Xi
i]⊆ . . .⊆ NR[u1

i] = Xi−1∪Xi∪Xi+1.

Proof. First we will prove the lemma from right to left. Assume graph R has a partition X1, . . . ,Xk
for k ≥ 4 of the vertices V (R) where for every i there is an ordering Xi = {u1

i , . . . ,u
#Xi
i } such that

Xi ⊆ NR[u
#Xi
i] ⊆ . . . ⊆ NR[u1

i] = Xi−1 ∪Xi ∪Xi+1. For every vertex u j
i , we define the arc representing

u j
i to be A j

i := (i−a j
i , i+b j

i) with

a j
i :=

#Xi− j+1
#Xi

b j
i :=

l
#Xi+1

with l the largest integer satisfying {v1
i+1 . . .v

l
i+1} ⊆ NR(v

j
i).

Now we want to prove the two conditions of Definition 3.1 are met and that the model is a circular-arc
model for R. The partition of the arcs will be analogue to the given vertex partition, i.e., we have an
arc partition XA

1 , . . .X
A
k with XA

i = {A1
i , . . . ,A

#Xi
i }. We will prove the second condition is also satisfied

in Claim 1. Let XA
i be a set of arcs.

Claim 1. The conditions (3.1)–(3.4) are satisfied for XA
i .

Proof of Claim 1: By construction the conditions (3.1)–(3.3) and a1
i = 1 are met. By assumption, we

know NR[u1
i] = Xi+1∪Xi∪Xi+1. Thus l = #Xi+1 and the claim holds.

Claim 2. The set of open arcs XA
1 ∪ . . .∪XA

k form a circular-arc model for R.
Proof of Claim 2: Let v,w be two neighbours in R. Assume v and w are from the same set Xi, i.e.,
v = u j

i , w = uh
i for an j,h, then i ∈ A j

i ∩Ah
i . Therefore, their representing arcs intersect. Assume

otherwise, so assume v and w are not from the same set Xi for any i. Without loss of generality, v = u j
i

and w = uh
i+1 for an i, j,h. We prove their representing arcs intersect, i.e., i+ b j

i > i+ 1− ah
i+1 is

satisfied: v and w are neighbors, therefore u j
i ∈ NR(uh

i+1)⊆ . . .⊆ NR(u1
i+1) and thus

b j
i ≥

h
#Xi+1

> 1−1+
h−1
#Xi+1

= 1− #Xi+1 +h−1
#Xi+1

= 1−ah
i+1.

Therefore, their representing arcs intersect.
Let v,w be two vertices in R with no edge between the vertices. Assume v ∈ Xi and w ∈ V (R) \

(Xi−1 ∪Xi)∪Xi+1. Then it is trivial their representing arcs do not intersect. Assume without loss of
generality v = u j

i and w = uh
i+1 for an i, j,h. We prove their representing arcs do not intersect, i.e.,

i+b j
i ≤ i+1−ah

i+1 is satisfied: v and w are no neighbors, therefore uh
i+1 /∈ NR(u

j
i) and thus

b j
i ≤

h−1
#Xi+1

= 1−1+
h−1
#Xi+1

= 1− #Xi+1 +h−1
#Xi+1

= 1−ah
i+1.

The intervals are open, so their representing arcs do not intersect.

Using Claim 1 and Claim 2 we know there exists a circular-arc model of every graph R that meets
the requirements of Definition 3.1. Thus R is a ring.

We will also prove from left to right. Assume we have a ring R. This is an intersection graph
of a circular-arc model with circumference k ≥ 4 where the arcs are partitioned into k nonempty
sets Y1, . . .Yk and all arcs in Yi are of the form (i−a j

i , i+b j
i) that satisfy some additional restrictions

(3.1)–(3.4). Let Xi be the set of vertices that represent Yi. The first requirement ensures arcs in Yi
only intersect with arcs in Yi−1 ∪Yi ∪Yi+1 and that all arcs in Yi intersect each other. Therefore, Xi
is a clique and anticomplete to all X j with j /∈ {i− 1, i, i+ 1}. The second and third requirement
guarantee the existence of an order in Xi := {u1

i , . . . ,u
#Xi
i } such that NR[u

#Xi
i]⊆ . . .⊆ NR[u1

i]. The last
requirement tells us NR[u1

i] = Xi−1∪Xi∪Xi+1.

28

In literature, the characterization of Lemma 3.2 is mostly used for defining a ring [2]. From now
on, when we discuss a ring, we often assume a ring partition X1, . . . ,Xk of vertices is given. We will
consider the indices to be taken modulo k and we obtain an ordering of the set Xi = {u1

i , . . . ,u
#Xi
i }

such that
Xi ⊆ NR[u

#Xi
i]⊆ . . .⊆ NR[u1

i] = Xi−1∪Xi∪Xi+1.

We define si := u1
i and ti := u#Xi

i .

Corollary 3.3. All hyperholes are rings.

Proof. Let G = [X1, . . . ,Xk,X1]H be a hyperhole of length k ≥ 4. All vertices v in Xi are complete to
Xi−1∪ (Xi \{v})∪Xi+1 and anticomplete to all other vertices, so

Xi ⊆ NG[u
#Xi
i] = . . .= NG[u1

i] = Xi−1∪Xi∪Xi+1.

Therefore, G is a hyperhole.

Using Lemma 3.2, we can program a recognition algorithm for rings that is described in Lemma
8.14 in [2]. This implementation is slightly different from the one given in [2]. The difference are
the extra checks at the end of the algorithm. When we want to check whether we can sort the vertices
in a clique Xi = {u1

i , . . . ,u
#Xi
i } such that NR[u

#Xi
i] ⊆ . . . ⊆ NR[u1

i] hold, we use Algorithm 16 SORT-
CLIQUE(G,Xi) to sort Xi from vertices with the most neighbors to vertices with the least neighbors,
as described in the Appendix. It then checks if NR[u

#Xi
i] ⊆ . . . ⊆ NR[u1

i]. The running time of this
algorithm is the same as the running time of the algorithm that determines if a graph is chordal.

The algorithm ISRING(G) starts with a vertex v with the largest number of neighbors, this will
become vertex s1. The first clique X1 is defined as all the vertices with its neighborhood contained in
NG[s1] (lines 7–13). For the second clique X2, we start with a random vertex x ∈ NG(s1) \X1 (lines
22–27). We set X2 := (NG[x]∩NG(s1)) \X1 (lines 28–29). The other cliques are made recursively:
Xi := NG(si−1) \ (X1∪ . . .∪Xi−1). At the end of the algorithm, there are some checks (lines 56–74)
for example that G[{s1, . . . ,sk}] is a hole or that si is complete to Xi+1. After we give the algorithm
itself, we will prove the checks are sufficient to determine whether G is a ring or not.

Algorithm 2. ISRING(G).

1 #INPUT: Graph G
2 #OUTPUT: True together with its good partition if G is a ring. False otherwise.

3 #RUNNING TIME: O(n2)

4 IsRing := function(G);

5 #Make X1

6 d,v := Maxdeg(G);

7 X1 := [v];

8 Neighbor := Include(Neighbors(v),v);

9 for w in Neighbors(v) do

10 if Neighbors(w) subset Neighbor then

11 Include(~X1, w);

12 end if;

13 end for;

14 b, X1 := SortClique(G,X1);

15 if not b then

16 "X1 could not be orderd properly";

17 return false, [];

18 end if;

19

20 #Make X2: First find an x in X2

21 x:=0;

22 for w in Neighbor do

23 if not w in X1 then

24 x:=w;

25 break;

29

26 end if;

27 end for;

28 X2:=[y : y in Neighbors(x) | y in Neighbors(X[1][1]) and not y in X1];

29 Append(~X2,x);

30 b, X2 := SortClique(G,X2);

31 if not b then

32 "X2 could not be orderd properly";

33 return false, [];

34 end if;

35

36 cupX:=X1 cat X2;

37 X:= [X1,X2];

38

39 #Make all other Xi

40 while true do

41 Xi := [x : x in Neighbors(X[|X|][1]) | not x in cupX];

42 if |Xi| eq 0 then

43 break;

44 end if;

45 b,Xi := SortClique(G,Xi);

46 if not b then

47 "Xi could not be orderd properly";

48 return false, [];

49 end if;

50

51 #Update X and cupX

52 Append(~X, Xi);

53 cupX := cupX cat Xi;

54 end while;

55

56 #Last Checks:

57 RemainingVertices := [y : y in Vertices(G) | not y in cupX];

58 if |RemainingVertices| ne 0 or |X| le 3 then

59 "k<=3 or V(X) ne V(G)";

60 return false, [];

61 elif not IsPolygon(sub<G|{X[i][1] : i in [1..|X|]}>) then

62 "x1,x2,...,xk,x1 is not a hole";

63 return false, [];

64 end if;

65 for i:= 1 to |X|-1 do

66 if not X[i] subset Neighbors(X[i+1][1]) then

67 return false

68 end if;

69 end for;

70 if not X[1] subset Neighbors(X[|X|][1]) then

71 return false;

72 elif not X[|X|]) subset Neighbors(X[1][1]) then

73 return false;

74 end if;

75

76 return true, X;

77 end function;

Proof. To check if this algorithm is correct, we use the characterization of a ring given in Lemma 3.2.
We immediately can see that X = [X1, . . . ,Xk] is a partition of the vertices in G into k ≥ 4 nonempty
sets from the way X is defined and from the final checks. With SORTCLIQUE, we know that for every
i, we have an ordered Xi := [x1

i , . . . ,x
#Xi
i] such that NR[u

#Xi
i] ⊆ . . . ⊆ NR[u1

i]. We only need to check

30

that

Xi ⊆ NR[u
#Xi
i] (3.5)

and

NR[u1
i] = Xi−1∪Xi∪Xi+1 (3.6)

is true for every i≤ k.

The first one, (3.5), is true because in SORTCLIQUE we check if NR[u
#Xi
i] ⊆ . . . ⊆ NR[u1

i]. In
particular, we have NR[u

#Xi
i] ⊆ NR[u

j
i] for every u j

i ∈ Xi and thus u#Xi
i ∈ NR[u

j
i]. For the second one,

(3.6), we need to verify that two things are satisfied:

(⊆) Assume NR[u1
i]* Xi−1∪Xi∪Xi+1. Then there exists vertices us

i ,u
t
j such that these vertices are

connected and j /∈ {i− 1, i, i+ 1}. Then the vertices u1
i ,u

1
j are also connected, for otherwise

one or both checks NR[us
i]⊆ NR[u1

i] and NR[ut
j]⊆ NR[u1

j] fail. But then G[{u1
1, . . . ,u

1
k}] is not a

hole. So the algorithm verifies whether or not NR[u1
i]⊆ Xi−1∪Xi∪Xi+1.

(⊇) All vertices in Xi are in NR[u1
i], because u1

i ∈ Xi and Xi is a clique. For every i < #X we have
Xi+1 ⊆ NG(u1

i) by the way Xi+1 is defined through u1
i . The rest is checked in the last checks.

Lemma 3.4. [14] Let R be a ring of length k ≥ 4, S a subset of its vertices and [v1, . . . ,vt] a maximal
sequence of pairwise distinct vertices of R \ S such that vi is simplicial in R \ (S∪ {v1, . . . ,vi−1}).
Then either V (R) = S∪{v1, . . . ,vt} or R\ (S∪{v1, . . . ,vt}) is a k-ring.

Proof. This proof is obtained from [14]. For a ring R with ring partition X1, . . . ,Xk, S a subset of
its vertices and [v1, . . . ,vt] a maximal simplicial elimination ordering in R \ S, we set R′ := R \ (S∪
{v1, . . . ,vt}) and Yi := Xi ∩R′. Assume V (R′) 6= /0 for otherwise the lemma is trivial. If for an i we
have Yi = /0, then R′ is chordal and there exist a simplicial vertex which is in contradiction with the
maximality of the sequence [v1, . . . ,vt]. We write Yi = {y1

i . . . ,y
#Yi
i } and by definition of a ring R we

have
Yi ⊆ NR′ [y

#Yi
i]⊆ . . .⊆ NR′ [y

1
i]⊆ Yi−1∪Yi∪Yi+1.

If NR′ [y1
i] (Yi−1, then y#Yi

i−1 is a simplicial vertex of R′ contradicting the maximality of [v1, . . . ,vt].
Analogously NR′ [y1

i] (Yi+1 contradicts the maximality. Therefore R′ is a ring with ring partition
Y1, . . . ,Yk.

3.2 Coloring even rings
The chromatic number of a graph is always greater than or equal to the clique number of the graph,
because all vertices in a clique have to be colored differently in order to obtain a proper coloring. For
even rings it is an equality. A maximal clique C is always a subset Xi ∪Xi+1 for some i, and if k is
even, we can alternate the coloring tactics between the sets of the clique partition X1, . . . ,Xk. We use
Algorithm CliqueSizeRing CLIQUESIZERING(R,X) to find ω(R) in O(n3) time. We follow Lemma
3.2 of [14] to color an even ring R with the colors {1, . . . ,ω(R)}:

c(u j
i) :=

{
j if i is odd;
ω(R)− j+1 otherwise.

Algorithm 3. COLOREVENRING(R,X)

31

1 #INPUT: An even ring R together with its ring partition X.
2 #OUTPUT: A proper coloring that uses χ(R) colors.

3 #RUNNING TIME: O(n3)

4 ColorEvenRing := function(R,X);

5 w := CliqueSizeRing(R,X);

6 Parent := Parent({X[1][1]});

7 Colours := [Parent | {} : i in [1..w]];

8 for i:=1 to |X| do

9 if IsEven(i) then

10 for j:=1 to |X[i]| do

11 Include(~Colours[j],X[i][j]);

12 end for;

13 else

14 for j:=1 to |X[i]| do

15 Include(~Colours[w-j+1],X[i][j]);

16 end for;

17 end if;

18 end for;

19 return Colours;

20 end function;

The proof is straightforward [14]. The algorithm will color the vertices u j
i and ul

i differently. If u j
i

and ul
i+1 are neighbors, then R[{u1

i , . . . ,u
j
i }∪ {u1

i+1 . . . ,u
l
i+1}] is a clique of size l + j ≤ ω(R) = w

by construction of a ring. Therefore it is not possible that u j
i and ul

i+1 receive the same color. By
construction of a ring, these are all possible connected vertices.

Using this algorithm, we can color the 8-ring of Figure 3.1. The maximal clique-size is 5, so we
need five colors: {blue, dark blue, red, yellow, green} represent {1,2,3,4,5}.

Figure 3.2: Following Algorithm 3 to color the ring of Figure 3.1 optimally

3.3 Coloring odd hyperholes
Only two colors are needed to color even cycles. To color an odd one, we need an extra color since
we can not simply alternate the colors any more. The same holds for odd rings and odd hyperholes. A
coloring algorithm for hyperholes is straightforward, given and proven as Theorem 3.2 of [16]. First,
we want to determine its chromatic number.

Theorem 3.5. (Theorem 3.2 of [16]) Let G := [x1, . . . ,xk]H be a hyperhole of odd length k ≥ 5, then

χ(G) = max
(

ω(G),

⌈
V (G)

α(G)

⌉)
The algorithms, given as part of the proof [16], to color an odd hyperhole are below. The clique-

size of a hyperhole is denoted as wMAX in Algorithm 4 and wTOT denotes the number of vertices.
The idea is to determine how many colors are needed and then to color vertices contiguous with the

32

colors {1, . . . ,χ(R)} until we can color every vertex v of Xi for an even i with the colors {1, . . . ,#Xi}.
At that point, we color the graph like it is an even ring. Notice that c(X [1]) = {1, . . . ,x1}.

Algorithm 4. CHROMHYPERHOLE(G):

1 #INPUT: An enumerated sequence that represents a hyperhole.

2 #OUTPUT: The chromatic number.

3 #RUNNING TIME: O(n)
4 ChromHyperhole := function(X);

5 wTOT := 0;

6 wMAX := 0;

7 for i:= 1 to |X| do

8 wTOT +:= X[i];

9 if X[i] + X[i mod |X| +1] gt wMAX then

10 wMAX := X[i] + X[i mod |X| +1];

11 end if;

12 end for;

13 if IsEven(|X|) then

14 return wMax;

15 else

16 m := |X| div 2;

17 return Max(wMAX, Ceiling(wTOT/m));

18 end if;

19 end function;

Algorithm 5. COLORODDHYPERHOLE(H):

1 #INPUT: A hyperhole H of odd length represented by vertices and edges

2 #OUTPUT: A coloring of the graph, using at most χ(H) colors.

3 #RUNNING TIME: O(n+m)

4 ColorOddHyperhole := function(G);

5 b,X:= IsRing(G);

6 x := [|X[i]| : i in [1..|X|]];

7 colors := [Parent({X[1][1]}) | {} : i in [1..ChromHyperhole(x)]];

8

9 sum := x[1];

10 k:=1;

11 c:=1;

12

13 #if ∑
k
i=1 ≤ (k div 2)*|colors| for an odd k ≥ 3, then we can color a

14 #vertex in Xk+1 with the same color as X [1][1]. Untill then,

15 #we color contiguous

16 while sum gt (k div 2)*|colors| do

17 for i:=k to k+1 do

18 for j:=1 to x[i] do

19 l := (c-1) mod |colors| + 1;

20 Include(~colors[l],X[i][j]);

21 c+:=1;

22 end for;

23 end for;

24

25 sum +:= x[k]+x[k+1];

26 k+:=2;

27 end while;

28

29 #Color the vertices with the same tactics on how to color even rings.

30 for i:=k to |X| do

31 if IsEven(i) then

32 for j:=1 to x[i] do

33

33 Include(~colors[j],X[i][j]);

34 end for;

35 else

36 for j:=1 to x[i] do

37 Include(~colors[|colors-j+1]|, X[i][j]);

38 end for;

39 end if;

40 end for;

41 return colors;

42 end function;

In Figure 3.3, an example is given. We start coloring at the top clique of size 3 (with vertex u1
1).

The colors are c ={dark blue, light blue, green, dark green, yellow, orange, purple}. At the bottom
clique of size 3 (X6), we can finally color a vertex in an even set with dark blue (the same color as
u1

1).

u1
1

Figure 3.3: Coloring of the hyperhole [3,2,4,2,2,3,3]H

3.4 Coloring odd rings
In 2020, F. Maffray, I. Penev and K. Vušković [14] discovered a polynomial time algorithm to color
odd rings. They first introduced the concept of unimprovable coloring for a subgraph R \ {t2} of a
ring R. Recall t2 is defined as the vertex u#X2

2 , a vertex with least number of neighbours in X2. If
R \ {t2} is colored properly with coloring c, we can make the coloring unimprovable and color the
whole ring using no more than max{χ(R),r} colors where r is the number of colors used to color
R\{t2}.

Definition 3.6. For an odd ring R, a proper coloring c of R \ {t2} is called unimprovable if for all
colors a ∈ c(V (R)\{t2}) such that a 6= c(s1), and for all components Q of R[{v ∈V (R\{t2}) : c(v) =
a∨ c(v) = c(s1)}] that do not contain s1, both the following are satisfied:

• For all odd i ∈ {3, . . . ,k} such that Q∩Xi 6= /0, then a /∈ c(Xi) or there exists indices j < l such
that c(u j

i) = c(s1) and c(ul
i) = a;

• For all even i ∈ {4, . . . ,k− 1} such that Q∩Xi 6= /0, then c(s1) /∈ c(Xi) or there exists indices
j > l such that c(ul

i) = a and c(u j
i) = c(s1).

For an odd ring R we define a proper coloring c on R\{t2} to be improvable, if c is not unimprovable.

The following is a property of unimprovable colorings:

Lemma 3.7. Let R be an odd ring and c an unimprovable coloring for R \{t2}, then for all vertices
v ∈V (R)\{t2} that are not colored with color c(s1) and are not connected to s1 by a path containing
only vertices that are colored with the color c(s1) or c(v), we have:

v = ul
i for some odd i and

(
∃ j < l [c(u j

i) = c(s1)]
)

or

v = ul
i for some even i and

(
∃ j > l [c(u j

i) = c(s1)]∨∀u ∈ Xi [c(u) 6= c(s1)]
)

34

Proof. Let R be a ring of odd length k≥ 5, c an unimprovable coloring for R\{t2} and v∈V (R)\{t2}
colored with color a 6= c(s1). If v is not connected to s1 by a path containing only vertices that are col-
ored with the color c(s1) or c(v), then v is in a component Q of R[{v ∈V (R\{t2}) : c(v) = a∨c(v) =
c(s1)}] such that s1 /∈ Q. Let v = ul

i for an i, l.

If i is odd, then by assumption of c being unimprovable, there exists an index j < l such that
c(u j

i) = c(s1). Therefore, v satisfies the condition in the Lemma 3.7.

If i is even, then by assumption of c being unimprovable, either c(s1) /∈ c(Xi), so ∀u ∈ Xi [c(u) 6=
c(s1)], or there exists an index j > l such that c(u j

i) = c(s1). Therefore, v satisfies the condition in
Lemma 3.7.

The property described in the lemma holds.

An example of an unimprovable coloring of an odd ring is given in Figure 3.4. To check if the
conditions hold for the color pink, we only need to check the vertices of the tree R[16,17,19] and this
holds.

Figure 3.4: Ring of length 9 with unimprovable coloring on the left. On the right the forest Fpink
R\t2

.

The following lemma is inspired by Claim 3 from Lemma 3.5 [14].

Lemma 3.8. Let R be an odd ring and c an unimprovable coloring of R\{t2}, then the color c(s1) is
assigned to α(R) = k−1

2 number of vertices.

Proof. Consider an odd length ring R with its ring partition X1, . . . ,Xk, an unimprovable coloring c
of R \ {t2} and let l be the first odd integer such that c(sl) 6= c(s1). Such l exists, because k is odd
and sk is connected to s1. The coloring c is unimprovable, so Lemma 3.7 suggests there should be a
path from sl to s1 from vertices containing only colors c(s1) or c(sl). Notice that no vertex in Xl−1 is
colored with the color c(s1), because sl−2 is complete to Xl−1 and the color c(s1) is assigned to sl−2
by the choice of l. Thus there exists a path (sl , pl+1, . . . , pk,s1) with pi in Xi and for even i we must
have c(pi) = c(s1). In total there are k−1

2 vertices colored with the same color as s1.

An unimprovable coloring need not be optimal and an optimal coloring is not always unimprov-
able. In Figure 3.5 we see counterexamples of rings that are colored optimal or unimprovable, but not
both. Unimprovable colorings are colorings such that the color assigned to s1 is optimally distributed
throughout the ring. Sometimes it depends on the ring partition X1 . . . ,Xk (or even the order of the
vertices in Xi) whether or not a coloring is unimprovable. The right graph in Figure 3.5 is colored
unimprovable for R\{t2} if X1 = {s3} and Xk = {s1}, but improvable if X1 = {s1} and Xk = {sk}.

35

s8

s9

s1
s2

s3

s4

s5

s6

s7

t2

s8

s9

s1
s2

t2

s3

s4

s5

s6

s7

Figure 3.5: Let R be a ring with R\{t2} ∼=C9. On the left: an unimprovable coloring. On the right:
an optimal coloring of R\{t2}

To check whether a coloring c is unimprovable for R\{t2} where R is an odd ring, we will check
for every color a 6= c(s1) if the vertices that are colored with color a satisfy the conditions in Definition
3.1. To do so, for every color a 6= c(s1) we make a forest

Fa
R\t2 := R[{v ∈V (R\ t2) : c(v) = a∨ c(v) = c(s1)}]

and check the vertices of every tree on this forest.

The following algorithm checks if a given coloring is unimprovable [14]. We use Algorithm 14
INDEXSET(Set, v) of the Appendix. It returns the index i such that v is in Set[i].

Algorithm 6. ISUNIMPROVABLE(R,X ,c)

1 #INPUT: An odd ring R together with its ring partition X and a coloring c
2 # on V (R)\{t2}
3 #OUTPUT: false, colors a and c(s1) and subtree of Fa

R where it is not unimprovable.

4 #RUNNING TIME: O(n3)

5 IsUnimprovable := function(R,X,c);

6 c1 := c[IndexSet(c,X[1][1])];

7 X2 := [{v : v in X[i]} : i in [1..|X|]];

8 for a in Exclude(c,c1) do

9 #Make the vertices of the forrest F.

10 Fvertices:= a join c1;

11

12 while |Fvertices| gt 0 do

13 #Make a subtree of forrest F beginning at t
14 t := Random(Fvertices);

15 Tcheck := [t];

16 Exclude(~Fvertices, t);

17 T := {};

18 while |Tcheck| ge 1 do

19 v := Tcheck[1];

20 Exclude(~Tcheck, v);

21 Include(~T, v);

22

23 for w in Fvertices meet Neighbors(v) do

24 Exclude(~Fvertices, w);

25 Include(~Tcheck, w);

26 end for;

27 end while;

28

29 #Check subtree T
30 if not {X[1][1]} subset T then

31 for i:=1 to |X| do

36

32 Y:= [v : v in X2[i] meet T];

33 if |Y| eq 1 then

34 if IsEven(i) and {Y[i][1]} subset c1 then

35 return false, a, c1, T;

36 elif not IsEven(i) and {Y[i][1]} subset a then

37 return false, a,c1, T;

38 end if;

39 elif |Y| eq 2 then

40 m := Index(X[i],Y[i][1]);

41 n := Index(X[i],Y[i][2]);

42 if m gt n and {Y[i][1]} subset a and IsEven(i) then

43 return false, a, c1, T;

44 elif n gt m and {Y[i][2]} subset a and IsEven(i) then

45 return false, a, c1, T;

46 elif m gt n and {Y[i][1]} subset c1 and not IsEven(i) then

47 return false, a, c1, T;

48 elif n gt m and {Y[i][2]} subset c1 and not IsEven(i) then

49 return false, a, c1, T;

50 end if;

51 end if;

52 end for;

53 end if;

54 end while;

55 end for;

56 end function;

Now we can make any proper coloring of an odd ring an unimprovable coloring. Whenever a
coloring is improvable at color a and tree T ⊆ Fa

R\t2 , we will switch the colors given to the vertices in
that tree. And we will continue to do so until the coloring is unimprovable. This algorithm will hold
after at most n iterations where n is the number of vertices in R. The intuition why this algorithm
stops after n iterations, is that every tree will switch colors at most one time. The proof and algorithm
can be found in [14].

Algorithm 7. MAKEUNIMPROVABLE(R,X ,c)

1 #INPUT: An odd ring R together with its ring partition X and a coloring c
2 # on V (R)\{t2}
3 #OUTPUT: false, color a and subtree of R where it is not unimprovable and c(s1).

4 # true, color c1 if R\ t2 is colored unimprovable

5 #RUNNING TIME: O(n4)

6 MakeUnimprovable := function(R,X,c);

7 b,a,c1,T := IsUnimprovable(R,X,c);

8 while not b do

9 i := Index(c,a);

10 j := Index(c,c1);

11 for t in T do

12 if {t} subset a then

13 Exclude(~c[i],t);

14 Include(~c[j],t);

15 else

16 Exclude(~c[j],t);

17 Include(~c[i],t);

18 end if;

19 end for;

20 b,a,c1,T := IsUnimprovable(R,X,c);

21 end while;

22 return c,c1;

23 end function;

The next theorem connects rings to hyperholes. The notion of unimprovable colorings plays an

37

important role in the proof given by F. Maffray, I. Penev and K. Vušković [14], because it helps
creating hyperholes with a lot of vertices that are contained in the ring.

Theorem 3.9. Let k ≥ 4 be an integer, and let R be a k-ring. Then

χ(R) = max{χ(H) | H is a k-hyperhole in R}.

Proof. This proof is an overview of the proofs from Lemma 3.5 and Theorem 1.2 of [14]. We will
prove it with induction to the number of vertices in a k-ring R. Assume for every k-ring R′ with fewer
vertices than R it contains a k-hyperhole H ′ with χ(H ′) = χ(R′).

First assume χ(R) = ω(R). Without loss of generality X1∪X2 is a clique of size ω(R). Then

H := X1∪X2∪{v1
i : 3≤ i≤ k}

is a hyperhole in R of the same chromatic number as the ring R itself. Recall that for k even, we
always have χ(R) = ω(R).

Second, we take a ring R of odd length k ≥ 5, with χ(R)> ω(R). We will construct a hyperhole
H such that χ(H) = χ(R) from an optimal unimprovable coloring c of R\{t2}. An optimal coloring
exists and earlier we showed how to make an unimprovable coloring c′ for R \ {t2} from a proper
coloring c for R \ {t2} using no more colors than used in c with Algorithm 7 MAKEUNIMPROV-
ABLE(R,X ,c). We define S := {v ∈ R : c(v) = c(s1)∧ v 6= t2} and r := |c|= χ(R\{t2}); the number
of colors used in c. We prove three claims; together they cover all possibilities.

Claim 1. If in addition to k ≥ 5,χ(R) > ω(R), also ω(R \ S) = r is satisfied, then R contains a
hyperhole H such that

⌈
V (H)
α(H)

⌉
= r+1.

Proof of Claim 1. We know ω(R)≤ r for otherwise ω(R) = χ(R) and this contradicts our assumption.
Thus ω(R) = r =ω(R\S) = χ(R\{t2}) and from this, we can deduce X2∪(NR(t2)∩X3) is the unique
clique of size r in R \ S. We can conclude no vertices in this maximal clique are colored with color
c(s1). The color c is unimprovable and i = 3 is odd, so all vertices v ∈ NR(t2)∩X3 are connected to s1

with a path (v,ul′
4 , . . . ,u

l′′
k ,s1) containing only vertices that are colored with the colors c(s1) or c(v).

For odd i≥ 5, let hi be the maximal integer such that uhi
i ∈ Xi is adjacent to two vertices in Xi−1 resp

Xi+1 colored with color c(s1). The construction of H = [Z1, . . . ,Zk]H is as follows:

• Z1 := {s1}, Z2 := X2, Z3 := NR(t2)∩X3;

• for all even i≥ 4 define Zi := {ul
i : ∃ j ≥ l [c(u j

i = c(s1))]}

• for all odd i ≥ 5 define Zi := {ul
i : l ≤ hi} For all colors C ∈ c(Z3), there is a vertex in Zi that

received color C .

This is a hyperhole of R. Notice |{c(s1)∪ c(Z2 \ t2)∪ c(Z3)}| = r and in [14] it is proven that ev-
ery color from {c(s1)∪ c(Z2 \ t2)∪ c(Z3)} appears on k−1

2 vertices of H \{t2} and therefore |V (H)\
{t2}| ≥ k−1

2 · r, thus
⌈

V (H)
α(H)

⌉
= r+1. Therefore, the ring R contains a hyperhole H of the same chro-

matic number.

Claim 2. If in addition to k≥ 5,χ(R)>ω(R), also ω(R\S)≤ r−1 and χ(R\S)≤ r−1 are satisfied,
then χ(R) = r and R contains a hyperhole H such that χ(H) = r.
Proof of Claim 2. The fact χ(R) = r follows from the assumption χ(R\S)≤ r−1 and c is an optimal
coloring on R\{t2} using r colors. The set X2\{t2} is nonempty, because otherwise R\{t2} is chordal
and r = χ(R\{t2}) = ω(R\{t2})≤ω(R)< χ(R) = r. Every vertex in X2 \{t2} has a greater than or
equal to neighborhood t2. The graph R\{t2} is a k-ring, so we can apply the induction hypothesis to
gain a hyperhole H that is contained in R\{t2} with chromatic number χ(H) = χ(R\{t2}) = χ(R).

38

Claim 3. If in addition to k ≥ 5,χ(R) > ω(R), also ω(R\S) ≤ r−1 and χ(R\S) = r are satisfied,
then R contains a hyperhole H such that

⌈
V (H)
α(H)

⌉
= r+1.

Proof of Claim 3. The detailed and complete proof given in [14] is elaborate, so we only show
the highlights. Let [v1, . . . ,vt] be a maximal simplicial sequence of R \ S. The graph R \ S can not
be chordal, because χ(R \ S) 6= ω(R \ S). Thus R \ (S∪{v1, . . . ,vt}) is a nonempty k-ring and by
induction hypothesis contains a hyperhole H ′ with the same chromatic number. It can be proven that⌈

V (H ′)
α(H ′)

⌉
= r. With this hyperhole H ′ and an unimprovable coloring c, we may construct a hyperhole

H contained in R such that
⌈

V (H)
α(H)

⌉
= r+ 1. Let hi be the largest integer such that uhi

i ∈ Xi ∩V (H ′)
and l the largest odd index such that in every odd i ≤ l the set Xi contains a vertex colored with the
color c(s1). The construction of H = [Z1, . . . ,Zk] is as follows:

• for i≤ l +2 define Zi := {u j
i : j ≤ hi};

• for even i≥ define l +3 Zi := {u j
i : ∃ j′ ≥ j [c(u j′

i) = c(s1)]∨ j ≤ hi};

• for odd i≥ l +4 define Zi := {u ∈ Xi : ∃v ∈ Xi−1 [c(v) = c(s1)∧ euv ∈ E(R)]}.

This H is proven to be a hyperhole of size V (H)≥ |V (H ′)|+ k−1
2 and therefore, χ(H)≥

⌈
|V (H)|
α(H)

⌉
≥⌈

|V (H ′)|
α(H ′)

⌉
+1 = r+1.

We conclude that the ring R contains a hyperhole H of the same chromatic number in every
case.

The following lemma is not an immediate consequence of the previous theorem, but follows
directly from the given proof and the observation that Claim 1 holds if ω(R)≤ r regardless of whether
the condition ω(R)< χ(R) is met or not, and Claim 3 also holds when ω(R) = χ(R).

Lemma 3.10. [14] Let R be an odd ring. Let c be an unimprovable coloring of R \ t2, let S = {x ∈
V (R)|x 6= t2,c(x) = c(u1

1)}. Then either χ(R\S)≤ #c−1 or χ(R) = #c+1.

Observe that S is a stable set. Therefore if χ(R\S)≤ r−1, then χ(R)≤ r. So, this lemma gives
a tactic on how to color an odd ring R. Namely, if we can color the graphs R \ t2 and R \ S, we can
either expand the coloring of R\ t2 with a new color for t2 or the coloring R\S with a new color for
the stable set S. We will use the first expansion if the number of colors used in χ(R \ S) ≥ r (thus
χ(R) = r+1) and the second expansion if otherwise.

The algorithm given in [14] works as follows. The input is an odd ring R with (X1, . . . ,Xk) as
ring partition and a proper coloring on R\ t2. First we make the coloring c unimprovable and define
the set S := {x ∈ V (R)|x 6= t2,c(x) = c(u1

1)} (lines 8–10). Then we obtain R2 := R \ S (lines 14–15)
and R3 := R\(S∪{v1, . . . ,vt}) with [v1, . . . ,vt] a maximal simplicial elimination ordering of R2 (lines
36–39). Recall that R3 is empty or a ring and we can greedy color R2 from an optimal coloring of
R3 by reversed simplicial elimination order (line 20 or 49). We define a coloring c1 on R3 \{t2} such
that c1 = c|V (R3)\{t2} (lines 22–33). If R3 is a ring, we check if t2 is a vertex in R3 (line 41). If this is
not the case, then c1 is already an optimal coloring for R3 (line 42). If it is, we can find an optimal
coloring for R3 by making a recursive call with input R3 and c1 (lines 44–47). After this, we can
easily check if χ(R \ S) ≤ |c|− 1 by counting the number of colors used to optimally color R2 (line
52). A more detailed proof and complexity analysis can be found in [14].

Algorithm 8. EXTENDCOLORING(R,X ,c)

1 #INPUT: An odd ring R together with its ring partition X and a coloring c
2 # on V (R)\{t2}
3 #OUTPUT: Proper coloring on R using at most max(r,χ(R)) colors where r = #c
4 #RUNNING TIME: O(n5)

5 ExtendColoring := function(R,X,c);

6 #Make the coloring c unimprovable.

7 #Make stable set S := v ∈V (R\ t2) : c(v) = c(s1)

39

8 c,S:=MakeUnimprovable(R,X,c);

9 t2:= X[2][|X[2]|];

10 Exclude(~S,t2);

11 r := |c|;

12

13 #Make R2 := R\S
14 W:= {v : v in Vertices(R) | not {v} subset S };

15 R2 := sub<R | W>;

16

17 #Make proper coloring for R2 := R\S
18 simp := MaxSimplicial(R2);

19 if |simp| eq |Vertices(R2)| then

20 c2:= ColorGreedy(R2, [],simp);

21 else

22 c1 := c;

23 simp2 := {v : v in simp};

24 for v in simp2 join S join {t2} do

25 i:= IndexSet(c1,v);

26 if i ne 0 then

27 if {v} eq c1[i] then

28 Exclude(~c1,{v});

29 elif {v} subset c1[i] then

30 Exclude(~c1[i], v);

31 end if;

32 end if;

33 end for;

34

35 #Making R3 := R\ (S∪ simp)
36 for s in simp do

37 Exclude(~W,s);

38 end for;

39 R3 := sub<R | W>;

40

41 if Index(simp,t2) gt 0 then

42 c3 := c1;

43 else

44 b,X3 := IsRing(R3);

45 j := IndexSet(X3,t2);

46 Rotate(~X3,-j+2);

47 c3 := $$(R3,X3,c1);

48 end if;

49 c2 := ColorGreedy(R2,c3,simp);

50 end if;

51

52 if |c2| le r-1 then

53 c2 := Parent([S]) ! c2;

54 return Include(c2,S);

55 else

56 return Include(c,{t2});

57 end if;

58 end function;

We can finally color a ring R with even and with odd length. Let G be a graph such that
G \ {v1, . . . ,vt} is a ring with [v1, . . . ,vt] a maximal simplicial elimination ordering. The following
algorithm will color every such graph G optimally [14]. It is a recursive algorithm that first computes
a maximal simplicial elimination ordering A of G (line 5). If this ordering includes every vertex of
G, we can simply color G greedily (lines 6–7). If it is a part of the vertices of G, then G\A is a ring
(Lemma 3.4) and we make a recursive call with input G\A and greedily expand the coloring using a
reversed simplicial elimination ordering (lines 8–11). If there are no simplicial vertices in G, then we

40

check if G is a ring and obtain its ring partition (line 13). If it is an even ring, we can use Algorithm
COLOREVENRING(G,X) to color G (line 18). If it is an odd ring, we can make a recursive call with
input G\{t2} and extend the coloring with EXTENDCOLORING(G,X ,c). A more detailed proof and
complexity analysis can be found in [14].

Algorithm 9. COLORRING(R)

1 #INPUT: A ring R
2 #OUTPUT: Proper coloring on R that uses χ(R) colors.

3 #RUNNING TIME: O(n6)

4 ColorRing := function(G);

5 simp := MaxSimplicial(G);

6 if |simp| eq |Vertices(G)| then

7 return ColorGreedy(G,[],simp);

8 elif |simp| ge 1 then

9 G2 := G- {v : v in simp};

10 c := $$(G2);

11 return ColorGreedy(G,c,simp);

12 else

13 b,X := IsRing(G);

14 if not b then

15 return false;

16 end if;

17 if IsEven(|X|) then

18 return ColorEvenRing(G,X);

19 else

20 G2:= G-{X[2][|X[2]]|};

21 c := $$(G2);

22 c := Parent([{Vertices(G)[1]}]) ! c;

23 return ExtendColoring(G,X,c);

24 end if;

25 end if;

26 end function;

41

Bibliography

[1] Benzer, S. (1959). On the topology of the genetic fine structure. Proceedings of the National
Academy of Sciences of the United States of America, 45(11), 1607–1620.

[2] Boncompagni, V & Penev, I. & Vušković, K. (2019). Clique-cutsets beyond chordal graphs.
Journal of Graph Theory, 91(2), 192–246.

[3] Bosma, W. & Cannon, J. & Playoust, J. (1997). The Magma algebra system. I. The user language,
J. Symbolic Comput., v. 24, 5017 pages.

[4] Cameron K. & Eschen E.M. & Hoàng C.T. & Sritharan R. (2006). Recognition of Perfect
Circular-arc Graphs. In: Bondy A., Fonlupt J., Fouquet J.L., Fournier J.C., Ramı́rez Alfonsı́n
J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel., p97–108.

[5] Eschen, E.M. & Spinrad, J.P. (1993). An O(n2) algorithm for circular-arc graph recognition
SODA, p128–137

[6] Garey, M.R. & Johnson, D.S. & Miller, G.L. & Papadimitriou, C.H. (1980). The complexity of
coloring circular arcs and chords SIAM J. Alg. Disc. Math., Vol.1, No.2

[7] Guillermo, D & Grippo, L.N. & Safe, M.D. (2014). Structural results on circular-arc graphs
and circle graphs: a survey and the main open problems. Discrete Applied Mathematics, 164,
427–443.

[8] Golumbic, M. C. (1980). Algorithmic graph theory and perfect graphs New York: Academic Press

[9] Hamming, R. W. (2004). Methods of mathematics applied to calculus, probability, and statistics.
(Dover, Ser. Dover books on mathematics). Dover Publications.

[10] Hsu, W.L. (1981). How to color claw-free prefect graphs. Ann. Discrete Math., vol. 11, 189–197.

[11] Klee, V. (1969). What Are the Intersection Graphs of Arcs in a Circle? The American Mathe-
matical Monthly, vol. 76(7), 810–813.

[12] Korte, N. & Möhring, R. (1986). A Simple Linear-Time Algorithm to Recognize Interval
Graphs. Conference Paper, 1–16.

[13] Lekkerkerker, C. & Boland, J. (1962). Representation of a finite graph by a set of intervals on
the real line. Fundamenta Mathematicae vol. 51(1), 45–64.

[14] Maffray, F. & Penev, I. & Vušković, K. (2021). Coloring rings. Journal of Graph Theory, 96(4),
642–683.

[15] McConnell, R (2001). Linear-Time Recognition of Circular-Arc Graphs. Computer Science
Technical Reports.

[16] Narayanan, L. & Shende, S. M. (2001). Static frequency assignment in cellular networks. Algo-
rithmica : An International Journal in Computer Science, 29(3), 396–409.

[17] Orlin, J.B. & Bonuccelli, M.A. & Bovet, D.P. (1981). An O(n2) Algorithm for Coloring Proper
Circular Arc Graphs. SIAM Journal on Algebraic and Discrete Methods, vol. 2(2), 88–93.

42

[18] Read, R.C. (1968). An introduction to chromatic polynomials. Journal of Combinatorial The-
ory, 4(1), 52-71.

[19] Stoffers, K.E. (1968). Scheduling of traffic lights—a new approach. Transportation Research,
2(3), 199–234.

[20] Stahl, F.W. (1967). Circular genetic maps. Journal of Cellular Physiology, 70(S1), 1–12.

[21] Tucker, A. (1971). Matrix characterizations of circular-arc graphs. Pacific J. Math, 39(2),
535–545.

[22] Tucker, A. (1974). Structure theorems for some circular-arc graphs. Discrete Mathematics, 7(1),
167–195.

[23] Tucker, A. (1975). Coloring a Family of Circular Arc. SIAM Journal on Applied Mathematics,
29(3), 493-502.

[24] Tucker, A. (1980). An efficient test for circular-arc graphs. SIAM J. Comput. Vol.9, No.1

[25] Chen, X. & Hu, Z. & Zang, W. (2005). Perfect Circular Arc Coloring. Journal of Combinatorial
Optimization, 9, 267–280.

43

Appendix

Preliminary algorithms
The first algorithm is to find a maximal elimination ordering for a graph G [14]. The idea behind this
algorithm is the definition of a simplicial vertex. A vertex is simplicial if and only if its neighborhood
is a clique. For a graph G, we calculate

DiffG(x,y) :=

{
#(NG[x]\NG[y]) if x,y are connected
0 if otherwise

.

A vertex x is simplicial iff DiffG(x,y) = 0 for all vertices y. If we found a simplicial vertex x, then
we remove it from the graph, include it in the list, set DiffG\x(x′,y′) correct for all other vertices and
repeat the algorithm to look for another simplicial vertex.

Algorithm 10. MAXSIMPLICIAL(G):

1 #INPUT: Graph G
2 #OUTPUT: [v1, . . . ,vt]; a maximal elimination ordering for graph G, possible empty.

3 #RUNNING TIME: O(n3)

4 MaxSimplicial := function(G);

5 V := {v : v in Vertices(G)};

6 if |V| = 0 then

7 return [];

8 end if;

9 A := [[x,y] : x in V, y in V | x ne y];

10 Diff := [0 : i in [1..|A|]];

11

12 #Calculating diff(x,y) for every vertex x 6= y:
13 for i:=1 to |A| do

14 if A[i][2] in Neighbors(A[i][1]) then

15 d := {x : x in Neighbors(A[i][1]) |

16 not x in Neighbors(A[i][2]) and not x eq A[i][2]};

17 Diff[i] := |d|;

18 end if;

19 end for;

20

21 L := [Parent(Random(V)) |];

22 cont := true;

23

24 while cont do

25 cont := false;

26 for x in V do

27 distance := 0;

28 for y in V do

29 if y ne x then

30 if Diff[Index(A,[x,y])] gt 0 then

31 distance :=1;

32 break y;

44

33 end if;

34 end if;

35 end for;

36

37 #If diff(x,y)=0 for all y, then x is a simplicial vertex for G[V]

38 if distance eq 0 then

39 Include(~L,x);

40 Exclude(~V,x);

41 cont := true;

42

43 #update Diff:

44 for x1, y in V do

45 if x1 ne y and x in Neighbors(x1) and

46 (not x in Neighbors(y)) then

47 Diff[Index(A,[x1,y])] -:= 1;

48 end if;

49 end for;

50 break x;

51 end if;

52 end for;

53 end while;

54

55 return L;

56 end function;

It is well known that a graph G is chordal if and only if it’s maximal elimination ordering is an
ordering of all vertices of the graph. There exists an O(n+m) time algorithm to figure out if a graph
is Chordal or not [2], but for convenient reasons, we will use the following algorithm [14].

Algorithm 11. ISCHORDAL(G):

1 #INPUT: Graph G
2 #OUTPUT: True if G is Chordal and false otherwise.

3 #RUNNING TIME: O(n3)

4 IsChordal := function(G);

5 L := MaxSimplicial(G);

6 if |L| eq |Vertices(G)| then

7 return true;

8 else

9 return false;

10 end if;

11 end function;

The following algorithm is to extend a coloring c for a graph G by coloring the vertices in order
where order is a simplicial elimination ordering of G. Therefore, if c is a minimal proper coloring,
so is the extension.

Algorithm 12. COLORGREEDY(G,c,o):

1 #INPUT: Graph G, Coloring c of V (G)\order and the order of

2 # maximal simplicial elimination ordering of G.

3 #OUTPUT: Coloring of all vertices such that the coloring on c remains the same.

4 #RUNNING TIME: O(n2)

5 ColorGreedy := function(G, c, order);

6 if |c| eq 0 then

7 c := [Parent({order[1]}) | {order[|order|]}];

8 end if;

9 for i:= |order| to 1 by -1 do

10 j := 1;

11 Neigh := Neighbors(order[i]);

45

12 cont := true;

13 while cont and j le |c| do

14 cont := false;

15 #Check if there is a neighbor of order[i] already colored with

16 #color c[j]

17 for v in c[j] do

18 if v in Neigh then

19 cont := true;

20 j+:=1;

21 break v;

22 end if;

23 end for;

24 end while;

25 if j le |c| then

26 Include(~c[j],order[i]);

27 else

28 Include(~c, {order[i]});

29 end if;

30 end for;

31 return c;

32 end function;

If a graph is chordal, we have a simplicial elimination ordering. With this ordering, we can color
the graph optimal by greedy coloring the reversed order.

Algorithm 13. COLORCHORDAL(G):

1 #INPUT: Chordal graph G
2 #OUTPUT: Optimal coloring of G
3 #RUNNING TIME: O(n2)

4 ColorChordal := function(G);

5 ord := MaxSimplicial(G);

6 return ColorGreedy(G,[],ord);

7 end function;

The following is a simple, but handy algorithm.

Algorithm 14. INDEXSET(Set,v)

1 #INPUT: A sequence of sets or sequences called `Set' and a variable v.
2 #OUTPUT: The first index i such that Set[i] contains v and 0 otherwise.

3 IndexSet := function(Set, var);

4 for i:= 1 to |Set| do

5 if {var} subset Set[i] then

6 return i;

7 end if;

8 end for;

9 end function;

Algorithms for hyperholes
Algorithm 15. MAKEHYPERHOLE(X):

1 #INPUT: Enumerated list I of integers

2 #OUTPUT: The hyperhole H where the clique-size of Xi is equal to I[i].
3 #RUNNING TIME: ??

4 MakeHyperhole := function(X);

5 n := 0;

46

6 for i in X do

7 n +:= i;

8 end for;

9

10 G := Graph<n|>;

11 V := Vertices(G);

12 koekjes := 1;

13 for i:=1 to |X| do

14 for l:=0 to X[i]-1 do

15 #make complete to X[i+1]

16 for m:=0 to X[i mod |X| +1]-1 do

17 G +:= {V[koekjes+l], V[(koekjes + X[i] + m -1) mod n +1]};

18 end for;

19

20 #make X[i] a clique

21 for k:=l+1 to X[i]-1 do

22 G+:= {V[koekjes+l], V[koekjes + k]};

23 end for;

24 end for;

25 koekjes +:= X[i];

26 end for;

27 return G;

28 end function;

Algorithms for rings
The following algorithm is based on Bubble Sort.

Algorithm 16. SORTCLIQUE(G,Xi):

1 #INPUT: Graph G, Xi := [v1, . . . ,vt] such that G[Xi] is a clique

2 #OUTPUT: True together with an ordering if Xi can be ordered such that

3 # NG[v1′]⊆ . . .⊆ NG[vt′]. False otherwise.

4 #RUNNING TIME: O(t ·n)
5 SortClique := function(G, Xi);

6 i:=1;

7 while i le |Xi| do

8 j := i;

9 while j ge 2 and Degree(Xi[j-1]) lt Degree(Xi[j]) do;

10 y:= Xi[j-1];

11 Xi[j-1] := Xi[j];

12 Xi[j] := y;

13 j-:=1;

14 end while;

15 i+:=1;

16 end while;

17

18 #Check if the ordering is correct

19 for j:= 1 to |Xi|-1 do

20 if not Include(Neighbors(Xi[j+1]),Xi[j+1]) subset

21 Include(Neighbors(Xi[j]),Xi[j]) then

22 return false, [];

23 end if;

24 end for;

25 return true, Xi;

26 end function;

47

The following algorithm determines the clique size of a Ring. It is based on Lemma 2.6 [14]
which is based on Lemma 8.25 [2].

Algorithm 17. CLIQUESIZERING(R,X):

1 #INPUT: Ring R together with its ring partition X.
2 #OUTPUT: The clique size ω(R) of ring R.
3 #RUNNING TIME: O(n3).

4 CliqueSizeRing := function(R,X);

5 V := Vertices(R);

6 R1 := sub<R | {v : v in V | not v in X[1]}>;

7 R2 := sub<R | {v : v in V | not v in X[3]}>;

8 c1 := |ColorGreedy(R1, [], MaxSimplicial(R1))|;

9 c2 := |ColorGreedy(R2, [], MaxSimplicial(R2))|;

10 return Max({c1,c2});

11 end function;

48

	Introduction
	Definitions and notation

	Coloring circular-arc graphs
	Interval graphs
	Introduction to circular-arc graphs
	Coloring circular-arc graphs in general
	Proper circular-arc graphs
	Perfect circular-arc graphs

	Chromatic polynomial for hyperholes
	Fundamental theorems for chromatic polynomials
	Hyperpaths
	Hyperholes
	Magma program and computation time
	Chromatic polynomial for classes of hyperholes

	Coloring rings
	Recognizing rings
	Coloring even rings
	Coloring odd hyperholes
	Coloring odd rings

	Bibliography
	Appendix
	Preliminary algorithms
	Algorithms for hyperholes
	Algorithms for rings

