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Chapter 1

Introduction

For millennia mathematicians have been fascinated by prime numbers, integers n such
that the only positive divisors of n are 1 and n itself. Certainly not all integers are
prime numbers, which raises the question how many there are and how one can find and
detect them. The most obvious way to test if an integer n is prime is to check if one of
2, 3, . . . , n − 1 divides n. If not, then n is prime! This primality test works every time,
but doing n−1 divisions is not ideal when n is large. This is why we try to use algebraic
properties of the prime numbers to find faster tests. We can note for example that if n
is not prime, then n has a divisor a such that a ≤

√
n. Using this fact, we now only

have to check if one of 2, 3, . . . , b
√
nc divides n.

We are often interested in how fast an algorithm is. One way the describe the effi-
ciency of an algorithm is by computing its complexity. We say that the complexity of
an algorithm is O(f(n)) if for all n ∈ N, the number of bit operations the algorithm
performs on an input of length n is bounded by f(n), up to some constant. For exam-
ple, using schoolbook long division, we can divide two integers that are less than n in
about log(n)2 bit operations, up to some constant. Hence, the complexity of division
is O(log(n)2) and the complexity of the first trivial primality test is O(n log(n)2). The
dominant factor in the last expression is the term n, since log(n) is a lot smaller. To
make life easier, we sometimes write Õ(n) instead. This means that if a term g(n)
appears in the complexity, then the log(g(n)) terms and even slower growing terms are
omitted. For instance, it turns out [41] that there is a faster way to divide and multiply
n bit integers, namely in

O(log(n) log log(n) log log log(n)),

or just Õ(log(n)) for short.
Although the second primality test we saw was a lot faster than the first one, its

running time is still exponential in the length of the input, i.e. the complexity of the
algorithm is not of the form Õ(log(n)k) for some fixed k. The complexity of the Fermat
test however is polynomial, namely Õ(log(n)2). This test depends on Fermat’s little
theorem: if p is prime, then for all integers a 6= 0 mod p we have that

ap−1 = 1 mod p. (1.1)
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Given an integer n, we can test the converse: take an integer a 6= 0 mod n and check if
an−1 = 1 mod n holds or not. If not, then we know for sure that is composite! However,
it turns out that there can be integers a such that an−1 = 1 mod n even though n
is composite. It is even worse than that, there exist so-called Carmichael numbers
which are integers n with the property that an−1 = 1 mod n for all integers a with
gcd(a, n) = 1. This means that detecting the compositeness of such n with this test is
not faster than a random search for factors of n. The Fermat test is not a primality test,
it is a compositeness test instead, since it can only be used to prove that an integer is
not prime.

Fortunately, there is an improvement of the Fermat test called the Miller-Rabin test.
This test also uses (1.1), but expands on it using the following remark. Write p−1 = 2rs,
where s is odd. Then given an integer a 6= 0 mod p, we first compute b = as mod p,
and then we repeatedly square b afterwards. We know that we will eventually reach
1 mod p by Fermat’s little theorem, but the Miller-Rabin test is also interested in the
step before that happens, i.e. the number x such that x2 = 1 mod p. Since Z/pZ is a
field, we know that x = ±1 mod p are the only two solutions for this equation. However,
if an integer n has more than one distinct prime factor, then Z/nZ is not a field and the
equation x2 = 1 mod n will have more than two solutions. Hence, the Miller-Rabin test
also checks that the second to last number in the chain of squarings is ±1 mod n.

Rabin famously proved [37] that a composite integer n passes the Miller-Rabin test
with probability at most 1/4. This means that if an integer n passes the test multiple
times with different random integers a, then n is probably prime. Because then the
probability that n is composite is very small. However, this is still only a compositeness
test, since it does not prove the primality of n, it only gives a very strong indication
that n might be prime. The Miller-Rabin test already shows that there are a lot more
sophisticated tests than the first obvious one we saw in the beginning of this introduction.

Thesis overview

Personally, I have only been fascinated by prime numbers for a few decades. Fortunately,
this was still enough time to write two chapters about compositeness and primality tests
for this thesis.

In the first chapter we consider a new compositeness test that takes place in matrix
groups modulo n, where n is the number we want to test. We will show that that there
is a way to define Carmichael numbers for this test that generalizes the Carmichael
numbers from the Fermat test. We study the properties of these Carmichael numbers
and prove that there are infinitely many of them using an explicit construction. We
will exhibit a lot of experimental data that we got from searching for these Carmichael
numbers. After that, we show that a lot of classical tests such as the Miller-Rabin test
and the Lucas-Lehmer test can be performed in matrix groups in a very natural way.

In the second chapter we look at compositeness and primality tests in finite fields.
The first major one we will discuss is Grantham’s test. In practice, Grantham’s test
is most often performed in a quadratic extension of a prime field. We will consider
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Grantham’s test in larger extensions and discuss the similarities with the celebrated AKS
test [2], which can decide if an integer is prime or not in polynomial time. After that, we
will show some new ways to construct polynomials that are irreducible modulo a prime
divisor of n, where n is the integer you want to test for compositeness/primality. We
need these polynomials to create finite fields. As an application of these constructions,
we show that they can be used in a new compositeness test that uses elliptic curves.
Finally, we propose an algorithm that produces a polynomial which is irreducible modulo
all divisors of n and study its use when combined with other compositeness/primality
tests.
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Chapter 2

Matrices

2.1 Matrix Carmichael numbers

In this chapter we will be looking at a generalization of the Carmichael numbers men-
tioned in the introduction. Generalizing Carmichael numbers is by no means a new idea,
however it seems that our version of the matrix approach has not been done before. The
main idea is the following. Let n, d ∈ Z≥1 and take G = GL(Z/nZ, d) = GL(n, d). Then
G is a group under matrix multiplication. This group is finite, so it has a certain order
x(n, d). By Lagrange’s theorem, we know that for all A ∈ G we have that

Ax(n,d) = I, (2.1)

where I is the identity matrix of dimension n. We will see that there is a nice formula to
compute x(n, d) in the case that n is prime (later on we will look at the group exponent
instead, but the idea is the same). So there is an obvious compositeness test: pretend
that n is prime and compute x(n, d), take a random matrix A ∈ G and check if (2.1)
holds or not. If it doesn’t hold, then we know for sure that n is not prime. However,
just like the classical Fermat test, the converse is not true. A natural question to ask
is if there are any “Carmichael numbers” for matrix groups and if so, do they have
interesting properties?

Proposition 2.1. Let p be a prime number, then

#GL(p, d) =
d∏
i=1

(pd − pi−1)

Proof. A matrix is invertible if and only if all of its columns are independent. This
gives us nd − 1 choices for the first column (we don’t want the 0-column). For the
second column we have nd−n choices to prevent a dependency. More generally, we have
nd − ni−1 choices for the ith column.

Given n and d, the above product is easy to compute, thus we can apply it in
our compositeness test. However, we can do better than this. We can use a stronger
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condition than (2.1). One of the differences between (Z/pZ)∗ and GL(p, d) for d > 1 is
that if p is prime, then (Z/pZ)∗ is cyclic, i.e. there is an element whose order equals the
order of the group. GL(p, d) for d > 1 however is not cyclic, which means that the order
of the elements of the group are all smaller than the order of the group. This gives rise
to the following definition.

Definition 2.2. Let G be a finite group with identity element e. The group exponent of
G is the smallest integer λ ≥ 1 such that xλ = e for all x ∈ G.

The group exponent of GL(p, d) has been known since the forties [36].

Theorem 2.3. Let p be prime and d ∈ Z≥1. Then the group exponent of GL(p, d)
equals:

pdlogp(d)e lcm(p− 1, p2 − 1, . . . , pd − 1).

We will only give a brief sketch of the proof, since the details are quite a lot of work.
Let A ∈ GL(p, d) and let fA(x) be its characteristic polynomial. Then by the Cayley-
Hamilton theorem, we know that fA(A) = 0 (the zero-matrix). Let <A> denote the
subgroup of GL(p, d) that is generated by A by taking matrix sums and products. This
gives an isomorphism of Fp algebras:

<A>∼= Fp[x]/(fA)

A←→ x mod fA

Now, if fA(x) is square-free, then fA(x) factors in Fp as fe11 · · · f
ed
d , where fi is irreducible

and has degree i, and ei is 0 or 1. Then

Fp[x]/(fA) ∼= Fp[x]/(fe11 )× · · · ×Fp[x]/(fedd ) ∼= (Fp)
e1 × · · · × (Fpd)ed .

Then since (Fpi)
∗ is cyclic and #(Fpi)

∗ = pi − 1, we see where the lcm(p − 1, p2 −
1, . . . , pd − 1) term comes from. To explain the pdlogp(d)e term, we can look at the case
that fA contains a square factor, so ei > 1 for some i. For example, A =

(
1 1
0 1

)
has

characteristic polynomial (x−1)2 and order p, since Ai =
(

1 i
0 1

)
for all i. More generally,

it can be shown that

B =


1 1 0 . . . 0 0
0 1 1 . . . 0 0

. . .

0 0 0 . . . 1 1
0 0 0 . . . 0 1


has characteristic polynomial (x− 1)d and order pdlogp(d)e. End of sketch.

Notation. Let n, d ∈ Z≥1 where n can be composite. Then we we write:

µ(n, d) := ndlogn(d)e lcm(n− 1, n2 − 1, . . . , nd − 1),

δ(n, d) := lcm(n− 1, n2 − 1, . . . , nd − 1).
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We can now give the main definition of this chapter.

Definition 2.4. Let n, d ∈ Z≥1 with n composite. We say (n, d) is Carmichael if for all
A ∈ GL(n, d) we have that

Aµ(n,d) = I.

By plugging in d = 1 in the above definition, we get the definition of the usual
Carmichael numbers. Hence this definition can be see as a generalization. A natural
question to ask is whether any Carmichael numbers exist for d > 1. The answer is a very
positive yes. We will prove later in this chapter that for all d ≥ 1 there exists infinitely
many Carmichael numbers (n, d). The first Carmichael number for d = 2 is n = 4. We
will look at the number of Carmichael numbers below a certain bound later on in this
chapter.

According to Definition 2.4, to see if (n, d) is Carmichael we have to check if a
certain condition holds for all invertible matrices of dimension d modulo n. This is a
finite process, but since there are a lot of those matrices (see Proposition 2.1), we would
like to have an equivalent condition that can be checked more easily. For the usual
Carmichael numbers this can be done using the well-known Korselt criterion:

Theorem 2.5. Let n ∈ Z≥2 be composite. Then (n, 1) is Carmichael if and only if n is
square-free and p− 1 | n− 1 for all prime divisors p of n.

We will prove that there is an analogous criterion for Carmichael numbers with d > 1.
But first we need the following lemma, which is a generalization of Proposition 2.3. This
lemma can be proven using the Chinese remainder theorem.

Lemma 2.6. Let n, d ∈ Z≥1 and let n =
∏r
i=1 p

ei
i be the prime factorization of n. Then

the group exponent λ(n, d) of GL(n, d) is:

λ(n, d) := lcm(pe1−1
1 µ(p1, d), . . . , per−1

r µ(pr, d)).

Note that (n, d) is Carmichael if and only if λ(n, d) | µ(n, d). This gives an easier
way to check that (4, 2) is indeed Carmichael: λ(4, 2) = 2 · 2 · lcm(1, 3) = 12 and
µ(4, 2) = 4 · lcm(3, 15) = 60, and 12 | 60. The next lemma does not only help us with
formulating a criterion, it also shows that for every d ≥ 2 there are infinitely many
integers n such that (n, d) is not Carmichael.

Lemma 2.7. Let n, d ∈ Z≥2. Suppose that n ≥ d and that n has a prime factor p with
p < d. Then (n, d) is not Carmichael.

Proof. Let m be number of factors of p in n. We will count the number of factors p in
λ(pm, d) and in µ(n, d). We know that µ(p, d) contains at least 2 factors p, because p < d,
so dlogp(d)e ≥ 2. Hence λ(pm, d) = pm−1µ(p, d) contains at least m − 1 + 2 = m + 1
factors p. Now we look at µ(n, d). First note that the lcm term in µ(n, d) does not
contain any factors p, since ni − 1 ≡ −1 6≡ 0 mod p. Now we use n ≥ d ≥ 2 to see that
µ(n, d) has m · dlogn(d)e = m factors p. Hence λ(pm, d) - µ(n, d), so λ(n, d) - µ(n, d).
Thus (n, d) is not Carmichael.
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We can now state and prove a Korselt-like criterion for matrix groups.

Theorem 2.8. Let n, d ∈ Z≥2 with n ≥ d and n composite. Then (n, d) is Carmichael
if and only if for all prime divisors p of n, we have that δ(p, d) | µ(n, d) and p ≥ d.

Proof. Write n =
∏r
i=1 p

ei
i . We first prove that for all i:

λ(peii , d) | µ(n, d) ⇐⇒ λ(pi, d) | µ(n, d) and pi ≥ d.

The implication from left to right is analogous to what we did in Lemma 2.7, namely
if pi < d then there would be too many factors of pi in λ(peii , d). For the converse,
since pi ≥ d, we know that λ(peii , d) has ei − 1 + 1 = ei factors pi. On the other hand,
µ(n, d) has at least ei factors pi. So there are no problems with the factors pi, hence
λ(peii , d) | µ(n, d).
The proof of the theorem is now not very hard anymore:

(n, d) is Carmichael ⇐⇒ λ(n, d) | µ(n, d)

⇐⇒ λ(peii , d) | µ(n, d) for all i

⇐⇒ λ(pi, d) | µ(n, d) and pi ≥ d for all i

⇐⇒ δ(pi, d) | µ(n, d) and pi ≥ d for all i

The last equivalence can again be seen by counting the number of factors pi. We know
that µ(n, d) has ei of them, λ(pi, d) has one of them and δ(pi, d) has none. They are
equivalent since ei ≥ 1.

Using this theorem, we can use a computer to find to number of Carmichael pairs in
a certain range. If we had to use Definition 2.4 directly, then we wouldn’t be able to get
nearly as far.

d 1 2 3 4 5 6 7 8

#CM (n, d) 43 4567 226 207 208 201 201 195

Table 2.1: Number of Carmichael numbers below 106

Note that there is no statement about square-freeness in the above theorem, like
there is in Theorem 2.5. This has to do with the definition of µ(n, d). We see that if
d = 1, then dlogn(1)e = 0 for all n, so there is no factor n in µ(n, 1). That is why (n, 1)
can’t be Carmichael if n = p2m, since then λ(n, 1) | µ(n, 1) is not possible, because
p | λ(n, 1) and p - µ(n, 1). For d > 1 however, we have dlogn(d)e > 0, so we do a get
factor n, so then square factors are not a problem. That factor n also might explain
why there are more Carmichael numbers for d = 2 than for d = 1. The condition that
(p2− 1) | n(n2− 1) is much weaker than p2− 1 | n2− 1. Suppose that µ(n, 1) also has a
factor n. The number of n < 106 such that (p−1) | n(n−1) for all p | n is 10694 > 4567,
which shows the power of that factor n.

Theorem 2.8 is not only useful for computer computations, it can also be used to
prove interesting corollaries quite easily.
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Corollary 2.9. Let p, k ∈ Z≥2 where p is prime. Then (pk, d) is Carmichael for all
2 ≤ d ≤ p.

Proof. By Theorem 2.8, we only have to check that δ(p, d) | µ(pk, d). Note that

µ(pk, d) = pk lcm(pk − 1, p2k − 1, . . . , pdk − 1).

Furthermore, for all 1 ≤ i ≤ d we have that

pik − 1 = (pi − 1)(pi(k−1) + pi(k−2) + · · ·+ pi + 1).

Thus δ(p, d) | µ(pk, d).

This corollary already shows that there are infinitely many Carmichael numbers for
all d ≥ 2, but in a kind of trivial way. This raises the next question: are there for every
d ≥ 2 infinitely many Carmichael numbers (n, d), where n is not a power of a prime?

Definition 2.10. Let n, d ∈ Z≥1 with n composite. We say (n, d) is a strong Carmichael
number if (n, d) is Carmichael and n is not a prime power.

d 1 2 3 4 5 6 7 8

#CM (n, d) 43 4331 8 0 0 0 0 0

Table 2.2: Number of strong Carmichael numbers below 106

We now see that all of the Carmichael numbers for we found in Table 2.1 for d ≥ 4
were prime powers. Furthermore, Table 2.2 suggests that a Fermat test in a matrix
group of dimension ≥ 3 might be a stronger than the classical Fermat test (d = 1).

We will now show that for d = 2, there exists an infinite family of strong Carmichael
numbers.

Proposition 2.11. Let d = 2, then (2i3j , d) is a strong Carmichael number for all
i ∈ Z≥1 and all j ∈ Z≥3.

Proof. Let n = 2i3j with i and j as in the proposition. By theorem 2.8, we only have to
check that δ(2, 2) | µ(n, 2) and δ(3, 2) | µ(n, 2), since 2, 3 ≥ d.
Now, δ(2, 2) = lcm(2 − 1, 22 − 1) = 3 and δ(3, 2) = lcm(3 − 1, 32 − 1) = 23. Hence,
it suffices to show that 23 · 3 | µ(n, 2). Now, µ(n, 2) = n · lcm(n − 1, n2 − 1). By the
construction of n, we already have that 23 · 3 | n, hence 23 · 3 | µ(n, 2).

We found another infinite family for d = 2 that can be constructed using the factorial.
The proof again shows that is it relatively easy for a number to be Carmichael for d = 2.

Proposition 2.12. (m!, 2) is a strong Carmichael number if and only if m ≥ 4.
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Proof. First note that 2! = 2 is prime, so (2, 2) is not Carmichael by definition. So let
m ≥ 3 and write n = m!. By Theorem 2.8, we need that (p− 1)(p+ 1) | n(n− 1)(n+ 1)
for all primes p ≤ m. We will show that (p − 1)(p + 1) | n and hence (p − 1)(p + 1) |
n(n− 1)(n+ 1). First consider p = 2. We have (p− 1)(p+ 1) = 3 | n, since m ≥ 3. So
from now on, let p > 2. Suppose that qk | p + 1, with q prime and k ∈ Z as large as
possible.

We first do the case that q > 2. If qk < m+ 1, then qk ≤ m, hence qk | m! = n. The
case that qk = m+ 1 happens only when m = p is prime and p+ 1 = m+ 1 is a prime
power. In that case, we see that k ≥ 2, since p+ 1 is composite (we have p 6= 2). Then
since q > 2, we have that qk−1, 2qk−1 ≤ m, so q2k−2 | n, with 2k − 2 ≥ k, hence qk | n.

We conclude that apart from the factors 2 in p+ 1, we have that p+ 1 | n. Likewise,
we can show that p− 1 | n, apart from the factors 2 for now. This would not yet imply
that (p−1)(p+1) | n, since there can be common factors in p−1 and p+1. We see that
gcd(p − 1, p + 1) = 2, since p is odd. Hence, the only factors that can cause problems
are the factors 2, which is why we had skipped them for now.

Suppose that 2k is the largest power of 2 that divides p − 1 or p + 1, then k ≥ 2
and 2k+1 is the largest power of 2 that divides (p − 1)(p + 1). Hence, we will show
that 2k+1 | n, since (n − 1)(n + 1) is odd. Now, if 2k ≤ m, then 2k, 2k−1 ≤ m, hence
22k−1 | n and 2k − 1 ≥ k + 1, so 2k+1 | n. For the final case, we have that 2k > m, i.e.
p+ 1 = m+ 1 = 2k, so m is a Mersenne prime. In this case we see that if k = 2, then we
have that 2k+1 - n, since then m = 3 and 3! only contains 1 factor 2. This is why (3!, 2)
is not Carmichael. But, if we take k ≥ 3, then 2k−1, 2k−2, 3 · 2k−2 ≤ m, hence 23k−5 | n,
with 3k − 5 ≥ k + 1. So, in that case, we do have that 2k+1 | n. We conclude that if
m ≥ 4, then (p2−1) | n | n(n2−1). Thus (m!, 2) is Carmichael if and only if m ≥ 4.

We can also see that (m!, 1) is never Carmichael since classical Carmichael numbers
are square-free, and (6, 1) isn’t Carmichael. Furthermore, we can also easily see that if
d > 2, then (m!, d) is never Carmichael, since 2 | m! and 2 < d. This gives a complete
classification of Carmichael numbers of the form (m!, d).

We now state without proof a few other infinite families of Carmichael numbers.

Proposition 2.13.

• (3i5j , 2) is a strong Carmichael number for all i, j ≥ 1.

• (372i739j , 2) is a strong Carmichael number for all i, j ≥ 1.

• (56i75j , 3) is a strong Carmichael number for all i, j ≥ 1.

• (34i52j72k, 3) is a strong Carmichael number for all i, j, k ≥ 1.

Although those examples for a few values of d are quite nice, it is of course much
better if we would have some general way of constructing an infinite family for a given
d ≥ 2. We will now describe a way to do that for numbers n of the form paqb, this
method also extends to more than two distinct primes.
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Note that Theorem 2.8 says that n = paqb is Carmichael for d if and only if:

p, q ≥ d and δ(p, d), δ(q, d) | µ(n, d).

Note that δ(p, d) and δ(q, d) are independent of the exponents a and b. This will help
us tremendously, since now we can take a and b as large as we like.

Now, let rc be a prime power dividing pi − 1 for some 1 ≤ i ≤ d. Then p has
multiplicative order ≤ i ≤ d when as seen as an element of (Z/rcZ)∗. This also implies
that pa has order ≤ i in (Z/rcZ)∗ for all a ∈ Z≥1. Now, let xr be the order of q
in (Z/rcZ)∗. Then qxr has order 1 in that group. Thus n = paqxr has order ≤ i in
(Z/rcZ)∗. This is great, because now:

rc | nj − 1 | µ(n, d)

for some j ≤ i ≤ d. Do this for all prime powers rc dividing pi−1 for some i ≤ d and let
b be the least common multiple of all xr’s. This ensures that δ(p, d) | µ(n, d). To also
get δ(q, d) | µ(n, d), we just do the same thing: look at the prime powers dividing qi − 1
and get an exponent a for p from that process. There is however a slight problem with
the definition of xr. If rc | pi − 1, then it is possible that r = q. In that case, xr does
not exist. Luckily, we can make an exception for those primes, since µ(n, d) also has a
factor n = paqb. This means that for b big enough, the prime power rc = qc fits inside
the factor n, so then we don’t need that xr exists. If the b we found is not large enough,
then we can take kb instead, with k ∈ Z and kb ≥ c.

Example 2.14. Let’s look at an example to get some more insight in how the construc-
tion works. Let’s take d = 3, p = 3 and q = 5, which are the smallest primes possible
for this value of d. We write n = paqb and we will try to find exponents a, b such that
(n, d) is Carmichael. We compute:

δ(p, d) = 104 = 23 · 13 and δ(q, d) = 744 = 23 · 3 · 31.

If we run into factors 3 or 5, then we skip them for now. Let’s first look at the factors
of δ(p, d). Let’s start with rc = 23. The order of q mod 8 is 2, since 52 = 1 mod 8.
Now we use that 8 | pi − 1 for some 1 ≤ i ≤ 3 to see that n = p · q2 has order ≤ 3
mod 8. Thus 8 | µ(n, 3), which is what we want. We now do the same process for the
factor 13. We get that the order of q mod 13 is 4. This gives our choice for b: we take
b = lcm(4, 2) = 4.
Now we look at the factors of δ(q, d). We see that p has order 2 mod 8 and order
30 mod 31. So we take a = lcm(2, 30) = 30.
This gives us n = 330 · 54 = 128681957559155625, which is a fairly large number already,
considering the sizes of d, p and q. We now have to check if there are any annoying
factors 3 or 5. We see that 3 | δ(q, d), but that is not a problem since n already has 30
copies of 3. Hence δ(p, d), δ(q, d) | µ(n, d), thus (n, 3) is Carmichael.
It follows that n = 330k · 54l is also Carmichael for d = 3 for all k, l ∈ Z≥1, since if pa has
order ≤ d modulo some prime power, then so does pk·a. It turns out that there is also a
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“smaller” family of Carmichael numbers, namely n = 310k ·54l. This is because we could
have restricted the sizes of a and b a bit more in some stages of the algorithm. More
precisely, we took a = 30 to ensure that n = paqb has small order mod 31, because then
31 | ni − 1 for some 1 ≤ i ≤ 3. However, if a = 10, then n still has small enough order
mod 31. But trying to do this optimally introduces a lot of complications.

As said before, this method extends to more than two distinct primes. For example,
if we want (paqbrc, d) to be Carmichael, where p, q, r ≥ d. Then we look at the prime
powers se | pi − 1 with i ≤ d, and we compute the order xs of qr mod se. Let b′ and c′

both be the lcm of those xs’s. Because then pqb
′
rc
′

will have small order mod se. Then
we do the same for the prime powers se | qi − 1, let xs be the order of pr mod se. Then
let a′ be the lcm of those xs’s and let c be the lcm of c′ together with those xs’s. Finally,
we consider the prime powers se | ri− 1, this time xs is the order of pq mod se. Let a be
the lcm of a′ and those xs’s and let b be the lcm of b′ and those xs’s. Then n = paqbrc

is Carmichael for d, since

p, q, r ≥ d and δ(p, d), δ(q, d), δ(r, d) | µ(n, d).

This of course extends to more than three distinct primes. So we have proven the
following theorem.

Theorem 2.15. Let d, k ≥ 2 and let p1, . . . , pk be distinct primes ≥ d. Then there
exists exponents e1, . . . , ek such that n = pm1e1

1 · · · pmkek
k is strong Carmichael for d for

all m1, . . . ,mk ∈ Z≥1.

The main theorem from this chapter now easily follows.

Theorem 2.16. For every d ≥ 1 there exist infinitely many strong Carmichael numbers
(n, d).

Proof. The case that d = 1 is the hardest. Fortunately for us, that case has already
been done in the nineties by Alford, Granville and Pomerance [3]. The case that d ≥ 2
is covered by Theorem 2.15.

Until now, we have only seen strong Carmichael numbers for d ≤ 3, so let’s look at
some for larger values of d. We have tried to find “small” Carmichael numbers for those
values of d, nevertheless they are still quite big. The method described above is very
good at finding infinite families of strong Carmichael numbers. However, it does not
always give small Carmichael numbers.

Recall that in the method for finding infinite families, we took a prime power rc | pi−1
and computed an exponent b such that qb has small order mod rc, because then n = paqb

has small order mod rc, hence rc | nj − 1 | µ(n, d). In that process, it might have been
possible to take a smaller b and still have that n = paqb has small order mod rc. For
Table 2.3 we first computed those exponents a, b and then we looked if piqj was still
Carmichael for d, where i | a and j | b. We take divisors of a and b because then n will
at least still have small order modulo some primes dividing δ(p, d) and δ(q, d).

12



This method also has it limits however, since the number of divisors of a and b get
large when p, q or d get large. An optimization of the search process when using two
primes is to write a = as · ab and b = bs · bb, where as consists of primes that are smaller
than or equal to d and ab consists of primes that are bigger than d, likewise for bs and bb.
This is useful, because if s > d is a prime dividing the exponent b. Then by construction,
there is a k ≤ d such that there exist a prime power re | pk − 1 such that the order of q
mod re is a multiple of s. This is because then qb has small order mod re. This means
that checking if piqj is Carmichael for d with s - j is unnecessary, since then qj has order
≥ s > d mod re, and pi has order ≤ d mod re, so n = piqj has order ≥ s > d mod re.
But then re - nl − 1 for all 1 ≤ l ≤ d, hence re - µ(n, d), so then n can’t be Carmichael
for d.

This method of splitting the exponents in a small part and a bigger part doesn’t work
as well when we have more than 2 distinct primes. E.g. if n = paqbrc is Carmichael for
d and s | pk − 1 for some k ≤ d, then we want that qbrc has small order mod s. Then
the construction says that we should compute the order xs of qr mod s and then take b
and c to be a multiple of xs. However, if xs is big, then that doesn’t give rise to a small
Carmichael number. It might be possible that q2r has small order ys < xs mod s, in
that case, it might be better to let b be a multiple of 2ys and r a multiple of ys. However,
this seems hard to predict. This is why we don’t have a very fast way to construct small
Carmichael numbers with 3 divisors or more.

d Smallest known non prime power Carmichael number n for d #digits of n

1 3 · 11 · 17 3
2 3 · 5 2
3 72 · 112 4
4 114 · 136 11
5 5240 · 742 183
6 7210 · 19560 894
7 753130 · 1994640 165922
8 1128768740 · 1924454290 61230567

Table 2.3: Small strong Carmichael numbers

The “small” strong Carmichael numbers we found are not necessarily the smallest
ones, since other choices of primes might result in smaller numbers. Also, the Carmichael
numbers in Table 2.3 are not always part of an infinite family of the form pm1e1

1 · · · pmkek
k .

We also looked for Carmichael numbers that aren’t perfect powers, i.e. the exponents
have a gcd of 1. Up to now, we haven’t really looked at non-perfect power Carmichael
numbers. This is because our method for finding infinite families does not always produce
non-perfect powers. That is why we can’t prove something like that there are infinitely
many of them. We only have been able to find them for the first few values of d. One
way to get Carmichael numbers that are not a perfect power might be by considering
numbers n that have a lot of distinct prime factors. Because this might increase the
chance that the exponents have gcd 1. For example, see d = 4 in Table 2.4. However, as
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said before, we don’t really have a good method for finding small Carmichael numbers
when they have more than two distinct prime divisors.

d Smallest known non-perfect power Carmichael number n for d #digits of n

1 3 · 11 · 17 3
2 3 · 5 2
3 33 · 5 · 132 5
4 516 · 77 · 11 · 13 20
5 − -
6 − -
7 − -
8 − -

Table 2.4: Small non-perfect power Carmichael numbers

For completeness sake, we also list the number of non-perfect power Carmichael
numbers below a million for the first values of d, like we did in Table 2.1 and Table 2.2.

d 1 2 3 4 5 6 7 8

#CM (n, d) 43 4097 3 0 0 0 0 0

Table 2.5: Number of non-perfect power Carmichael numbers below 106

Remark 2.17. A question one can ask is whether there exist integers n such that (n, d)
is Carmichael for all d ≥ 1. Suppose that we have an integer n with that property. Then
n is composite. Let p be a prime divisor of n, then there exists an integer d such that
p < d < n. Theorem 2.8 now implies that (n, d) can’t be Carmichael, so those integers
n don’t exist.
Interestingly enough, given an integer N > 1, we can construct integers n such that
(n, d) is a strong Carmichael number for all d = 2, 3, . . . , N . Let p, q > N be primes.
We will now show that this can be done using the same construction as for the infinite
families with these p and q. Let se | pi − 1, where 1 ≤ i ≤ N and let xs be the order of
q mod se. Then pqxs has order ≤ i, so by doing this for all se | pi − 1 and all se | qi − 1
and taking the lcm of the xs’s, we get exponents a, b such that

δ(p, d), δ(q, d) | µ(n, d),

for all 2 ≤ d ≤ N , where n = paqb. Thus n will be Carmichael for all 2 ≤ d ≤ N . For
example,

512600 · 7420

has 9162 digits and is Carmichael for all 2 ≤ d ≤ 5, and

23431323543664662016472583795930112967852004082419628753827736351827263332876314776412817770964400

×
2992644631755427239961966569007322791348225327664611609756935102609964621990152033354033341826080

14



has roughly 7.23 ·1095 digits and is Carmichael for all 2 ≤ d ≤ 20. This number is so big
that we can probably never write down its decimal expansion, since it is estimated that
there are only 1080 atoms in the universe [35]. However, the construction of this number
took less than a second, this is because we only had to factor δ(p,N) and δ(q,N), which
are independent of the exponents a and b.

2.2 Miller-Rabin in matrix groups

We will now make a few remarks about using matrix groups in compositeness tests. A
possible test was already mentioned in the introduction of this chapter. For a possibly
composite number n we choose d > 1 and compute µ(n, d). We then take a random
matrix A ∈ GL(n, d) and check whether

Aµ(n,d) = I (2.2)

holds or not. If it doesn’t, then n is composite. If it is true, then n is probably prime. For
d = 2 we can see in Table 2.2 that there are quite a lot of Carmichael numbers below a
million, i.e. integers n which will never be detected as composite by this test. For d > 2
there seem to be fewer Carmichael numbers, hence the chance of proving compositeness
might increase. However, computing (2.2) becomes more expensive when d grows. We
will give two algorithms to compute that matrix power. The first one is the most natural
one, but not that fast, the second one is slightly more sophisticated and also faster.

Proposition 2.18. Suppose that multiplying two matrices in GL(n, d) can be done in
Õ(log(n)dw). Then computing Aµ(n,d) in (2.2) can be done in

Õ(log(n)2d2+w).

In particular, with w = 3, computing Aµ(n,d) in (2.2) can be done in

Õ(log(n)2d5).

Proof. Using binary exponentiation, we can compute Am in O(log(m)) matrix multipli-
cations mod n. Now,

µ(n, d) < ndlogn(d)e
d∏
i=1

ni = ndlogn(d)e+
∑d

i=1 i = ndlogn(d)e+ 1
2
d(d+1).

So, log(µ(n, d)) < (1
2d(d + 1) + dlogn(d)e) log(n). Then because d ≥ logn(d), we have

that log(µ(n, d)) ∈ O(log(n)d2). Hence we can compute Aµ(n,d) in O(log(n)d2) matrix
multiplications mod n.

The above result in polynomial in log(n) and d, but the exponent of d is quite large.
Fortunately, there is a more efficient way to compute Aµ(n,d). We use ideas from [12].
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Proposition 2.19. Suppose that multiplying two matrices in GL(n, d) can be done in
Õ(log(n)dw) and that the characteristic polynomial of A equals its minimal polynomial.
Then Aµ(n,d) can be computed in

Õ(log(n)2d3 + log(n)dw+1)

and we can check if Aµ(n,d) = I in

Õ(log(n)2d3).

Proof. The characteristic polynomial of A can be computed in O(dw log(n)) [24]. We
know from the Cayley-Hamilton theorem that A is a root of its own characteristic poly-
nomial fA(x). This means we can first compute

g(x) = xµ(n,d) mod fA(x),

and then compute g(A) to get Aµ(n,d). This is great, since multiplying polynomials
is not as expensive as multiplying matrices. Note that deg(fA(x)) = d. The product
of two polynomials in Z/nZ[x] of degree d can be computed in Õ(d log(n)) using fast
multiplication [6, Chapter 4]. We then have to reduce that product mod fA, which can
be done in time Õ(d log(n)) [6, Chapter 17]. Then we can use binary exponentiation to
compute g(x) mod fA(x) in

Õ(log(µ(n, d)) · d log(n)) = Õ(log(n)2d3).

Finally, since g has degree at most d − 1, we can retrieve g(A) =
∑d−1

i=0 aiA
i by first

computing A2, A3, . . . , Ad−1 in time Õ(d · dw log(n)) = Õ(dw+1 log(n)), and then since
the sum of two matrices mod n can be computed in Õ(log(n)d2), we can compute
g(A) =

∑d−1
i=0 aiA

i in Õ(d · log(n)d2) = Õ(log(n)d3). In total, we get that we can
compute Aµ(n,d) in

Õ(log(n)2d3 + log(n)dw+1).

Now note that Aµ(n,d) = I if and only if g(x) = 1 mod fA, since fA is the minimal
polynomial of A. Hence, if we only want to see if Aµ(n,d) = I or not, then we don’t have
to compute A2, A3, . . . Ad−1. By skipping that part, the total running time is

Õ(log(n)2d3).

We see that the method in Proposition 2.19 is a factor Õ(dw−1) faster than the
method in Proposition 2.18 in checking if Aµ(n,d) = I. This is quite substantial, because
there are d2 elements in a matrix of dimension d, so w ≥ 2. Currently, the best value of
w is 2.3728639 [17].

Remark 2.20. Suppose that we do the compositeness test described above Proposition
2.18 with d = 2 and n a prime number and suppose that we have a random matrix
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A ∈ GL(n, 2). If A is diagonalizable, then we can write A = PDP−1 for some diagonal
matrix D = diag(a, b) ∈ GL(n, 2). But then

An−1 = (PDP−1)n−1 = PDn−1P−1 = PIP−1 = I.

Where we used that an−1 ≡ bn−1 ≡ 1 mod n, since n is prime. This means that raising
the matrix to the power µ(n, 2) would be overkill in this situation.
Furthermore, if n is not prime and A is diagonalizable modulo all the divisors of n, then
for Aµ(n,2) = I to happen, we only need that µ(n, 2) is a multiple of p − 1 for all p | n.
But then it’s better to do a usual Fermat test modulo n, because µ(n, 2) has a lot more
factors than the exponent n − 1 occurring in the classic Fermat test. So then it’s less
effective in showing the compositeness of n than the classical Fermat test.
This shows that most of the time it’s better to have a matrix that is not diagonalizable
modulo at least one of its divisors. For the d = 2 case, there is a nice way to do this using
the Legendre symbol. We know from linear algebra that if p is prime, then a matrix
A ∈ GL(p, d) is diagonalizable if the characteristic polynomial splits in d distinct factors.
Let δ be the discriminant of the characteristic polynomial of A ∈ GL(p, 2). Then A is
not diagonalizable if

(
δ
p

)
= −1. If we switch back to the case that n is composite, then

we see that
(
δ
n

)
= −1 implies that

(
δ
p

)
= −1 for some p | n. Hence the matrix won’t be

diagonalizable modulo at least one divisor of n. Given a polynomial f , we can construct
a matrix with characteristic polynomial f by computing its companion matrix [8].
For general d it is still nice to use matrices whose characteristic polynomial does not
split in factors of small degree, for the same reason as above. In the next chapter we
will look at a lot of interesting ways to construct polynomials of large degree that are
irreducible modulo at least one divisor of n.

Until now in this chapter, the only compositeness test we have looked at is a Fermat
test for matrices. We will now show that another classical test in Z/nZ can also be
generalized to a test in GL(n, d), namely the Miller-Rabin test. As a test in Z/nZ,
Miller-Rabin searches for “strange” square roots of 1 mod n. This is because if n is
prime, then the only two solutions to x2 ≡ 1 mod n are x = 1 and x = −1. This is
because in that case Z/nZ is a field. If n has more than one distinct prime divisor
however, then there are more than two roots of 1 mod n.

If we want to generalize this to matrix groups, then we have to know what the roots
of the identity matrix I mod n are when n is prime. We of course have the usual suspects
I and −I, but what about

(
0 1
1 0

)
or
(

1 0
1 2

)
mod 3? It turns out that there are a lot of

square roots of I, especially if n or d is large.

Proposition 2.21. Let p be an odd prime, then for all A ∈ GL(p, d) we have that

A2 = I ⇐⇒ A is similar to diag(It,−Id−t) for some 1 ≤ t ≤ d.

Two matrices A and B are similar if there exists an invertible matrix C such that
A = CBC−1. The implication from right to left is not hard. Since then we can write

A = P · diag(It,−Id−t) · P−1
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for some P ∈ GL(p, d) and some 1 ≤ t ≤ d. It follows that A2 = PIP−1 = I. The
converse however is a bit harder, we refer to [23].

Lemma 2.22. Similar matrices A and B have the same characteristic polynomial pA(x)
and pB(x).

Proof. Suppose that matrices A and B are similar, say B = PAP−1. Recall that the
characteristic polynomial of A can be defined as det(xI −A). Now,

pB(x) = det(xI −B) = det(xI − PAP−1) = det(PxIP−1 − PAP−1)

= det(P (xI −A)P−1) = det(P ) det(xI −A) det(P−1) = det(xI −A) = pA(x).

Lemma 2.23. µ(n, d) can be computed in Õ(log(n)d2).

Proof. We have to compute a lcm of a list, this can be done using the following rule:

lcm(a, b, c) = lcm(lcm(a, b), c).

The computation of the lcm of two O(m) bit numbers can be done in Õ(m) using a faster
version of the Euclidean algorithm [40] and the fact that lcm(a, b) = ab

gcd(a,b) . Now, the
list has length d and the bit size of the largest occurring number in the sequence of
lcm’s is O(log(n)d2), since log(µ(n, d)) ∈ O(log(n)d2). Hence we can compute µ(n, d) in
Õ(log(n)d2).

Using all those ingredients, we can now state a Miller-Rabin like test for matrices.
In the algorithm, n is the number we want to test for compositeness, d is the dimension
of the matrices used and k is the number of tries.
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Algorithm 1 Miller-Rabin with matrices

1: function MR(n, d, k)
2: if n is a perfect power then
3: return n is composite
4: end if
5: x = µ(n, d)
6: write x = 2sy where y is odd
7: precompute all polynomials of the form (x− 1)t(x+ 1)d−t with 0 ≤ t ≤ d
8: i = 0
9: while i < k do

10: pick random d by d matrix A
11: f = CharacteristicPolynomial(A)
12: g = gcd(f, f ′)
13: if g does not exist then
14: return n is composite
15: end if
16: if f(0) = 0 or g 6= 1 then
17: continue while loop
18: end if
19: i = i+ 1
20: B = Ay

21: if B = I then
22: continue while loop
23: end if
24: count = 0
25: while B2 6= I and count < s do
26: B = B2

27: count = count+ 1
28: end while
29: g = CharacteristicPolynomial(B)
30: if g is not of the form (x− 1)t(x+ 1)d−t then
31: return n is composite
32: end if
33: if B can’t be diagonalized to diag(It,−Id−t) then
34: return n is composite
35: end if
36: end while
37: return n is probable prime
38: end function

Proposition 2.24. Algorithm 1 is correct and runs in Õ(kd3 log(n)2).

Proof. We first prove the correctness of the algorithm. If g in line 12 is equal to 1,
then we know that f is square-free. This implies that the characteristic polynomial and
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the minimal polynomial of A coincide, since there are no duplicate eigenvalues, see [15,
Theorem 4.7]. The gcd is computed using the Euclidean algorithm, if n is not prime, then
it is possible that one of the leading coefficients of a polynomial in that process is not
invertible, showing that n is not prime. Note that f(0) = ±det(A), so f(0) 6= 0 makes
sure that A is an element of GL(n, d) in the case that n is prime. If n is not prime then
it is possible that det(A) 6= 0 but A 6∈ GL(n, d). This is certainly not a problem, since
then Aµ(n,d) 6= I, so we would prove that n is indeed composite. By Theorem 2.3, we
know that B2 in line 25 is eventually I if n is prime. In line 30 we assert that g is of the
form (x− 1)t(x+ 1)d−t, because that is the characteristic polynomial of diag(It,−Id−t)
and Proposition 2.21 and Lemma 2.22 tell us that g has to be of that form. Now note
that B is diagonalizable if and only if B is similar to diag(It,−Id−t), so in line 33 we
explicitly check if B is similar to diag(It,−Id−t) or not.

Now we look at the running time. We begin by checking if n is a perfect power.
This can be done by checking if one of n1/2, . . . , n1/blog(n)c is an integer. A very efficient
version of this algorithm by Bernstein [7] runs in O(log(n)2). In line 5 we compute
µ(n, d), which can be done in Õ(log(n)d2) by Lemma 2.23. In line 7 we compute a list
of d + 1 polynomials. Every polynomial is computed by a product of d polynomials of
degree ≤ d, so that can be done in Õ(d3 log(n)). In lines 11 and 29 we can compute the
characteristic polynomial in Õ(dw log(n)) according to [24]. In line 12 we compute the
gcd in Õ(d2 log(n)). In line 20 and in the while loop that starts in line 25, we compute
in total Aµ(n,d), we know from Proposition 2.19 that this can be done in Õ(log(n)2d3).
If we reach line 33, then we know that the eigenvalues of B are 1 or −1. So we can try
to diagonalize B by computing ker(B− I) and ker(B+ I) using Gaussian elimination in
Õ(d3 log(n)) [4]. Now note that B is diagonalizable if and only if we get d independent
eigenvectors. We see that the running time of the while loop of line 9 is dominated by
the computation time of Aµ(n,d). Since we repeat the process at most k times, the total
running time is Õ(kd3 log(n)2).

Example 2.25. We will use Algorithm 1 to see if n = 377 is prime or not, using d = 2.
We compute µ(n, d) = 53582256 = 24 · 3348891. The first random matrix we pick is
A =

(
20 272
127 5

)
, with det(A) = 240. Note that gcd(240, n) = 1, so if n is not prime, then

at least A ∈ GL(p, d) for all p | n. We continue by computing B = A3348891 =
(

153 226
197 293

)
.

We now repeatedly square this matrix and look if we get a normal square root of I. We
have that B2 =

(
71 137
21 306

)
and B4 = I. We compute that the characteristic polynomial of

B2 is x2 − 1 = (x− 1)(x+ 1), hence it is a “normal” square root of I. At this stage we
might think that n is prime. However, the next random matrix we pick is A =

(
360 239
122 39

)
with det(A) = 339 and gcd(339, n) = 1. Then

B = A3348891 =

(
204 348
348 30

)
, B2 =

(
233 0
0 233

)
, B4 = I.

We compute that the characteristic polynomial of B2 is x2 + 288x + 1, which is not of
the form (x− 1)i(x + 1)2−i for some 0 ≤ i ≤ 2. Hence we found an unexpected root of
I, so n is not prime. Furthermore, we can find a factor of n is this situation, since we
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know that the characteristic polynomial of B2 is of the form (x− 1)i(x+ 1)2−i modulo
the prime divisors of n, where i can vary for the different factors of n. If we look at
x2 +288x+1− (x−1)2 = 290x then we can compute gcd(290, n) = 29. So we can factor
n = 13 · 29. However, this is not a very good factorization algorithm in general, since if
n does not have small prime factors, then most of the time we have that Aµ(n,d) 6= I, so
we don’t get into that situation.

Although we have shown that Algorithm 1 is correct, it would of course be a lot
better if we could also say something about the probability that this test detects a
composite number n. It is natural to look at the proof of the classical Miller Rabin
test and look if we can do something similar here. Those proofs (like [14]) often look at
sets like H = {a ∈ Z/nZ | an−1 = 1}, it is not hard to see that this is a subgroup of
(Z/nZ)∗, since if an−1 = bn−1 = 1 mod n, then also (ab)n−1 = 1 mod n. This is very
useful, because if n is not a Carmichael number, then H is a subgroup of (Z/nZ)∗ of
index at least 2, which gives a probability of at least one half that an−1 6= 1 mod n. For
the case that n is a Carmichael number, another subgroup of (Z/nZ)∗ is considered.
The problem for us is that GL(n, d) is not commutative for d > 1, so we can’t construct
such subgroups.

Our test consists of two major steps. Checking if Aµ(n,d) = I and checking if we
don’t encounter any unexpected square roots of I. Using the second property, we have
been able to prove that a composite number n is detected with probability at least one
half using Algorithm 1. This is not bad, because it means that if we run the test k
times, then we either proved that n is composite or we know that the probability that
n is composite is less than 2−k, which gets small very quickly. However, it still not very
useful in practice, since the classical Miller-Rabin test for example is more efficient.

Lemma 2.26. Let G be a cyclic group with order 2sy, where y is odd. If g is a random
element of G, then the probability that 2s | order(g) is 1/2.

Proof. Since G is cyclic, we know that if m | #G, then there are φ(m) elements of order
m in G, where φ is the Euler phi function. This means that the number of elements in
G whose order is divisible by 2s is∑

a|y

φ(2sa) = φ(2s)
∑
a|y

φ(a) = 2s−1y =
1

2
#G.

Proposition 2.27. Let n, d ∈ Z≥1 and suppose that n is composite. Then (n, d) passes
one run of Algorithm 1 with probability at most 1/2.

Proof. If Aµ(n,d) 6= I, then it shows that n is composite, so suppose Aµ(n,d) = I. We
know that n is not a perfect power, so n has at least two distinct prime divisors p and
q. We follow the notation from Algorithm 1, so let A be the random matrix we pick.
Now, gcd(f, f ′) = 1 implies that f is square-free modulo all divisors of n, where f is
the characteristic polynomial of A. This means that A is diagonalizable in large enough
extensions of Fp and Fq. Say A = PDP−1 in Fpr and A = QEQ−1 in Fqs , where D
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and E are diagonal matrices.
In the algorithm we compute B = Ay, where y is the odd part of µ(n, d). Then since
Aµ(n,d) = I, we know that the order of B is a power of 2 modulo all divisors of n.
Hence the order of Dy mod p and Ey mod q are both a power of 2. Now, suppose that f
factors into irreducibles as f1 · · · fr in Fp and as g1 · · · gs in Fq. Let Fi = Fp[x]/(fi) and
Gi = Fq[x]/(gi) for all i. If αij for j = 1, . . . ,deg(fi) are the roots of fi in Fi and βij the
roots of gi in Gi for all i. Then the elements on the diagonal of D are precisely αyij with
1 ≤ i ≤ r and 1 ≤ j ≤ deg(fi), likewise for the matrix E. We see that if pmax is the
largest order of an element in Dy mod p and if qmax is the largest order of an element
in Ey mod q. Then we get an expected root of I if and only if pmax = qmax and the
number of αyij that have maximal order pmax equals the number of βyij that have order
qmax. We will show this happens with probability at most 1/2.
Let a be an index such that #F ∗a has the most factors of 2 of all Fi, likewise an index
b for the Gi. There might be multiple copies of Fa or Gb, since f can have multiple
irreducible factors of the same degree. So say that there are v copies of Fa and w copies
of Gb. We will now use that all of the groups F ∗i and G∗i are cyclic. Note that if i is
fixed, then the multiplicative order of all the αij is the same, likewise for the βij .
First suppose that pmax 6= qmax, say pmax > qmax. Then by Lemma 2.26, we know that
the αyaj for j = 1, . . . ,deg(fa) have order 2pmax with probability 1/2. There can’t be any
elements βyij with such large order, hence we get an unexpected root of I in that case.

Now suppose that pmax = qmax. By Lemma 2.26, we expect v deg(fa)
2 elements αyij of

order pmax and w deg(gb)
2 elements βyij of order qmax. The probability that those fractions

are equal is maximal when v = w and deg(fa) = deg(gb). The probability that k deg(fu)
elements αyij have order pmax is x =

(
v
k

)
(1/2)v, since it is binomially distributed with

probability 1/2. Hence the the probability that the number of αyij that have maximal
order pmax equals the number of βyij that have order pmax is:

v∑
k=0

((
v

k

)(
1

2

)v)2

=

(
1

4

)v v∑
k=0

(
v

k

)2

=

(
1

4

)v (2v

v

)
≤
(

1

4

)v
22v−1 =

1

2
.

It would be nice if we could prove that the probability that Algorithm 1 detects
composite numbers would increase if we increase d. Experimental testing does seem to
support this idea. For all of the composite non-perfect power numbers n below 104 and
for all 1 ≤ d ≤ 5, we computed an approximation of the probability that Algorithm 1
detects that n is composite in one run. We did this by running the algorithm on 104

random d by d matrices for all of those n and for all 1 ≤ d ≤ 5.
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n ≤ 102 n ≤ 103 n ≤ 104

d average worst average worst average worst

1 0.957 0.792 0.989 0.772 0.997 0.764

2 0.983 0.885 0.994 0.883 0.998 0.831

3 0.995 0.947 0.998 0.939 0.9994 0.921

4 0.995 0.969 0.998 0.966 0.9996 0.960

5 0.998 0.984 0.9995 0.981 0.9999 0.981

Table 2.6: Approximation of the probability that Algorithm 1 detects composite numbers
in one run in certain intervals.

Remark 2.28. You might be wondering if a Miller-Rabin like test can be used in some
other groups that can be defined modulo n. Here is a rough list of things you need to
be able to do in the case that n is prime:

• Efficiently compute the order of the group.

• Efficiently pick a random element of your group.

• Know what the elements of order 2 are.

An example would be elliptic curves. Since if n is prime, then we can compute the order
of an elliptic curve over Fn in polynomial time [42], we can pick random elements by
computing square roots mod n, and the elements P = (x, y) of order 2 are of the form
(x, 0). If n is not prime, then you might fail to accomplish one of those requirements,
but that would already show that n is not prime. One drawback of this method is
that the computation of the order of the elliptic curve is not very fast. There are
some exceptions however, for example when you look at supersingular curves, see [20].
Another interesting instance of a Miller-Rabin like test can be done in quadratic unique
factorization domains [50].

2.3 Lucas-Lehmer in matrix groups

Another famous primality test is the Lucas-Lehmer test for Mersenne numbers. It states
that if p is an odd prime, then q = 2p − 1 is prime if and only if sp−2 = 0 mod q, where

si =

{
4 if i = 0;

s2
i−1 − 2 otherwise.

(2.3)

This gives a very efficient test to check if a Mersenne number is prime or not. Currently
[19], the largest known prime number is a Mersenne prime, namely

282589933 − 1,

which has more than 24 million decimal digits. Since this chapter is about matrices, we
will give a matrix approach to this test. We follow in essence the same proof as in [10]
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and [38], but we have translated it to the world of matrices. In Theorem 2.31 we will see
that there is a very nice way to go from the matrix world back to the setting of (2.3).

Proposition 2.29. Let p be an odd prime and let q = 2p − 1. Let A be a matrix in
GL(q, 2) with characteristic polynomial

pA(x) = x2 − 4x+ 1.

Then q is prime if and only if
A2p−1

= −I.

Proof. First suppose that A2p−1
= −I. This implies that A has order 2p modulo all

divisors of q. If q is not prime, then q has a prime divisor r with r ≤ √q. We know that,
as an element of GL(r, 2), the order of A divides r(r2 − 1). Now, q is odd, hence so is r.
This means that the factors 2 have to lie in the r2−1 part. Now, r2−1 ≤ q−1 < q+1 = 2p,
but A has order 2p mod r. This gives a contradiction, thus q is prime.
Now suppose that q is prime. Note that the discriminant of pA(x) is 16−4 = 12 = 22 ·3.
Now, (

12

q

)
=

(
3

q

)
= −

(
q

3

)
,

where in the last step we used quadratic reciprocity and the fact that q = 3 mod 4. Now,
since p is odd, we know that 2p = 2 mod 3. Hence(

q

3

)
=

(
2p − 1

3

)
=

(
1

3

)
= 1.

Thus
(

12
q

)
= −1, which means that pA(x) is irreducible over Fq. We will now use the

correspondence between A and x mod pA(x) as described below Theorem 2.3. Note that
pA(x) factors in Fq2 as (x− (2 +

√
3))(x− (2−

√
3)). Let ω = 2 +

√
3 and w = 2−

√
3

in Fq2 . If we can show that w2p−1
= −1 and w2p−1

= −1, then x2p−1
= −1 mod pA(x)

and hence A2p−1
= −I. Note that

(3 +
√

3)2

6
=

9 + 6
√

3 + 3

6
= ω.

Hence

(6ω)2p−1
= (3 +

√
3)2p = (3 +

√
3)q(3 +

√
3) = (3q +

√
3
q
)(3 +

√
3),

by the freshman’s dream. Now note that since
(

3
q

)
= −1, we know that 3

q−1
2 = −1,

hence √
3
q

=
√

3 · 3
q−1

2 = −
√

3.

We conclude that
(6ω)2p−1

= (3−
√

3)(3 +
√

3) = 9− 3 = 6.
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Now, since q ≡ 7 mod 8, we know that
(

2
q

)
= 1, so

(
6
q

)
= −1. Thus

ω2p−1
=

6

62p−1 =
1

62p−1−1
=

1

6
q−1

2

=
1(
6
q

) = −1.

We can do a similar calculation for ω, or we can note that

ω2p−1
= ωq·2

p−1
= (−1)q = −1.

Proposition 2.29 already gives us a way to detect Mersenne primes using matri-
ces, take A =

(
2 1
3 2

)
for example. Then we can check if q is prime in O(p) matrix

multiplications mod q. This algorithm has the same asymptotic complexity as the clas-
sical Lucas-Lehmer test, since there you have to do O(p) integer multiplications mod q.
However, this matrix approach is a constant factor slower, because multiplying 2 by 2
matrices consists of multiple integer multiplications instead of just 1.

To complete the discussion on the Lucas-Lehmer test, we will prove the correctness
of the test in the famous form as in (2.3). We do this by using the trace of a matrix.
Recall that the characteristic polynomial of a 2 by 2 matrix A is x2 − tr(A)x+ det(A).

Lemma 2.30. Let p, q and A as in Proposition 2.29. Then

A2p−1
= −I if and only if tr(A2p−2

) = 0.

Proof. Write B = A2p−2
. If A2p−1

= −I then B2 + I = 0. So the characteristic
polynomial of B is x2 + 1, hence tr(B) = 0. Now suppose that tr(A2p−2

) = 0, then the
characteristic polynomial of B is x2 + det(B). We see that

det(B) = det(A)2p−2
= 12p−2

= 1.

Hence B2 + I = 0, so B2 = −I.

We can now prove the correctness of the Lucas-Lehmer test via our matrix approach.

Theorem 2.31. Let p be an odd prime and let q = 2p − 1. Then q is prime if and only
if sp−2 = 0 mod q.

Proof. Let A be a matrix in GL(q, 2) with characteristic polynomial pA(x) = x2−4x+1.
We will first prove by induction that tr(A2i) = si for all i ≥ 0. For i = 0 we have that

tr(A20
) = tr(A) = 4 = s0.

Now let m ≥ 1 and set B = A2m−1
. Our induction hypothesis is that tr(B) = sm−1. We

see that B again has determinant one, so B2 − tr(B) · B + I = 0. Then since the trace
function is linear, we get that

tr(B2) = tr(B) · tr(B)− tr(I).

Thus
tr(A2m) = tr(B)2 − 2 = s2

m−1 − 2 = sm.

Now we use Proposition 2.29 and Lemma 2.30 to conclude that:

q is prime ⇐⇒ A2p−1
= −I ⇐⇒ tr(A2p−2

) = 0 ⇐⇒ sp−2 ≡ 0 mod q.
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Chapter 3

Finite Field Extensions

A lot of compositeness tests take in place in the ring Z/nZ, where n is the number we
want to test. If n is prime then this ring is the finite field of n elements Fn. Not all
finite fields have prime order, we can also create finite fields which are extensions of a
finite field of prime order. This is done by adjoining a root of an irreducible polynomial
in Fn[x] to Fn. The orders of those extension fields are powers of the order of the prime
field. More precisely, if f ∈ Fn[x] is irreducible of degree d and has a root α, then

Fn(α) ∼= Fn[x]/(f) ∼= Fnd

is a finite field of order nd. We can do computations in those finite fields using the
polynomial representation Fn[x]/(f). E.g., given β, γ ∈ Fnd , we can get polynomial
representations h, g ∈ Fn[x]/(f), respectively. Then say, computing β · γ can be done
using polynomial multiplication: h(x)g(x) mod (f, n). If it is clear that we are working
modulo n, then we will just write h(x)g(x) mod f instead.

3.1 Grantham’s test

A natural question to ask is if there are any interesting primality or compositeness tests
that take place in extensions of finite fields. We have just seen that if n is prime then
we can create those fields, as long as we can find irreducible polynomials. However, if n
is not prime, then Z/nZ isn’t even a field, let alone extensions of Z/nZ. This gives the
following general setting for a compositeness test that uses finite fields. If n is prime,
then we can exploit properties of those finite fields, and if n is not prime, then we can
hope that those properties don’t hold, showing that n is indeed composite. We will now
state some of those properties that we will use throughout this chapter. The first one is
a well-known theorem from finite field theory [25, Theorem VIII.2.1].

Proposition 3.1. Let p be a prime and let d ∈ Z≥1. Then xp
d−x is equal to the product

of all monic irreducible polynomials in Fp[x] whose degree divides d.

Another property of finite fields comes from Galois theory and is strongly related to
the one stated above [25, Theorem VIII.2.4].
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Proposition 3.2. Let p be a prime and let f ∈ Fp[x] be irreducible and of degree d. If
α is a root of f in some extension of Fp, then the remaining d− 1 roots of f are

αp, αp
2
, . . . , αp

d−1
.

Equivalently, the automorphism group of Fpd over Fp is generated by the the Frobe-
nius homomorphism σ that sends β to βp for all β ∈ Fpd .

The next property is less well-known, so this time we will provide a proof. We follow
the proof of [49, Theorem 1], but we only do the case that f is irreducible. Let ∆(f)
denote the discriminant of f . Recall that if α1, . . . , αd are the roots of f in a splitting
field of f , then

∆(f) =
∏

1≤i<j≤d
(αi − αj)2.

Proposition 3.3. Let p be prime and let f be irreducible over Fp of degree d. Then(∆(f)
p

)
= 1 if and only if d is odd.

Proof. Let α be a root of f in some extension of Fp. Then by Proposition 3.2, the roots
of f are σi(α) for 0 ≤ i ≤ d − 1. Then by the definition of the discriminant, we have
that ∆(f) = δ(f)2, where

δ(f) =
∏

0≤i<j≤d−1

(σi(α)− σj(α)).

We will now use the fact that for all a in some extension of Fp, we have that σ(a) = a
if and only if a ∈ Fp. We compute

σ(δ(f)) =
∏

0≤i<j≤d−1

(σi+1(α)− σj+1(α)) =
∏

1≤i<j≤d−1

(σi(α)− σj(α)) ·
d−1∏
i=1

(σi(α)− α)

= (−1)d−1
∏

1≤i<j≤d−1

(σi(α)− σj(α)) ·
d−1∏
i=1

(σ0(α)− σi(α))

= (−1)d−1
∏

0≤i<j≤d−1

(σi(α)− σj(α)) = (−1)d−1δ(f).

Hence, we see that δ(f) = σ(δ(f)) if and only if d is odd. Thus, ∆(f) is a square mod
p if and only if d is odd.

The definition of the discriminant above Proposition 3.3 is not the usual way how
the discriminant is computed in practice. Instead, it can be derived purely from the
coefficients of the polynomial.

The final statement we need is a multiplicative rule for the discriminant of a poly-
nomial.
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Lemma 3.4. Let p be prime and let f, g ∈ Fp[x], possibly reducible. Then

∆(fg) = ∆(f)∆(g)β2

for some β ∈ Fp.

Proof. Let α1, . . . , αk and αk+1, . . . , αl be the roots of f and g respectively. Then
α1, . . . , αl are the roots of fg, so

∆(fg) =
∏

1≤i<j≤l
(αi − αj)2 = ∆(f)∆(g)

∏
1≤i≤k<j≤l

(αi − αj)2.

Let β =
∏

1≤i≤k<j≤l(αi − αj), we will show that β ∈ Fp by showing that σ(β) = β. If
1 ≤ i ≤ k, then σ(αi) = ατ(i), where 1 ≤ τ(i) ≤ k, since it is a root of f again, even if f
is reducible. Likewise for the roots αj with k + 1 ≤ j ≤ l. So,

σ(β) =
∏

1≤i≤k<j≤l
(ατ(i) − ατ(j)) =

∏
1≤i≤k<j≤l

(αi − αj) = β,

since σ is injective, so we get a permutation of the terms of β. Thus β ∈ Fp.

We can now state and prove the correctness of the compositeness test of Grantham.
The test takes as input an odd integer n > 1 and a polynomial f ∈ Z/nZ[x] of degree d
such that gcd(n, f(0)∆(f)) = 1. We call n a Frobenius probable prime with respect to
f if it passes Algorithm 2 with parameters n and f .

Algorithm 2 Grantham’s test

1: function Grantham(n, f)
2: f0(x) = f
3: for 1 ≤ i ≤ d do . Factorization step
4: Fi(x) = gcd(xn

i − x, fi−1(x))
5: fi(x) = fi−1(x)/Fi(x)
6: end for
7: if one of the gcds does not exist or fd(x) 6= 1 then
8: return n is composite
9: end if

10: for 2 ≤ i ≤ d do . Frobenius step
11: if Fi(x

n) 6= 0 mod Fi(x) then
12: return n is composite
13: end if
14: end for
15: S =

∑d
2|i deg(Fi(x))/i . Jacobi step

16: if (−1)S 6=
(∆(f)

n

)
then

17: return n is composite
18: end if
19: return did not prove compositeness
20: end function
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Proposition 3.5. Algorithm 2 is correct and runs in Õ(log(n)2d2), where d = deg(f).

Proof. We first prove the correctness of the algorithm. Suppose that n is prime. Using
Proposition 3.1, we see that in the Factorization step we have for all 1 ≤ i ≤ d that Fi(x)
is the product of the irreducible factors of f of degree i. Then since f has degree d, we
expect that fd(x) = 1. It is possible that fj(x) = 1 for j < d, namely if f is reducible
over Fn. If n is not prime, then it is possible that one of the gcds does not exist. This
happens if one of the leading coefficients of a polynomial in the process of the Euclidean
algorithm is not invertible mod n.
Next up is the Frobenius step. Suppose again that n is prime. Proposition 3.2 implies
that xn mod Fi(x) is again a root of Fi(x).
Finally, we arrive at the Jacobi step. Again, we suppose that n is prime. Let ai =
deg(Fi(x))/i, then ai is the number of irreducible factors of degree i of Fi(x). Write
Fi(x) =

∏ai
j=1Gi,j(x) for all i, where the Gi,j are irreducible over Fn. Then by first

using Lemma 3.4 twice and then Proposition 3.3, we see that since the Jacobi symbol is
multiplicative:(

∆(f)

n

)
=

d∏
i=1

(
∆(Fi)

n

)
=

d∏
i=1

ai∏
j=1

(
∆(Gi,j)

n

)
=

d∏
i=1
i odd

1ai ·
d∏
i=2
i even

(−1)ai

= (−1)
∑d

2|i ai = (−1)S .

Now we determine the running time of the algorithm. In the Factorization step we can
first compute xn

i
mod fi−1(x) and then gcd(xn

i −x, fi−1(x)). We thus have to compute

xn, xn
2
, . . . , xn

d
mod g, where g has degree ≤ d. This can be done in Õ(log(n)2d2) using

binary exponentiation and fast multiplication [6, Chapter 4]. The d quotients can be
computed in at most Õ(log(n)d2) [6, Chapter 17].
In the Frobenius step we can use the computation of xn mod f from before by reducing it
modulo Fi(x) for all i. Given three polynomials g1, g2, g3 ∈ Z/nZ[x] of degree≤ d, we can
compute g1(g2(x)) mod g3(x) in Õ(log(n)d2), by computing g2(x)2, . . . , g2(x)d mod g3(x)
and substituting that in g1(x). So, we can compute Fi(x

n) for i = 2, . . . , d in

Õ(

d∑
i=2

(deg(Fi)
2 log(n)).

Now, we know that
∑d

i=1 deg(Fi) = d, since (n, f) passed the Factorization step. So,∑d
i=1 deg(Fi)

2 ≤ d2, which implies that the running time of the Frobenius step is

Õ(log(n)d2).
Finally, we consider the Jacobi step. We only have to do a simple Jacobi symbol com-
putation, which can be done in Õ(log(n)2), since the computation is analogous to the
Euclidean algorithm.
We see that the running time is dominated by the Factorization step, which takes
Õ(log(n)2d2).
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Example 3.6. Let’s take n = 1159 and f = x2 + 389x+ 596. Before we do Grantham’s
test, we first we have to check that gcd(n, f(0)∆(f)) = 1. Now, ∆(f) = 3892− 4 · 596 =
585 mod n, then using the Euclidean algorithm, we can check that gcd(1159, 596 ·585) =
1. So we can begin the test! We start with the Factorization step. We compute xn =
1158x+ 770 mod f and xn

2
= x mod f . Furthermore, F1 = gcd(1157x+ 770, f) = 1, so

f1 = f and F2 = gcd(0, f) = f , so f2 = 1. Hence, (n, f) passes the Factorization step.
Next up is the Frobenius step. Since F2 = f , we can use our previous results to compute

F2(xn) = f(1158x+ 770) = x2 + 389x+ 596 = f(x) = 0 mod F2(x).

Hence, (n, f) also passes the Frobenius step. Finally, we use the Jacobi symbol to check
that

(
585
n

)
= (−1)1. So (n, f) passes all steps of the test, hence n is a Frobenius probable

prime with respect to f .
This might lead us to believe that n is prime, but lo and behold, if we take another
polynomial such as g = x2 + 574x + 795, then we get a different result. We still have
that gcd(n, g(0)∆(g)) = gcd(1159, 575 · 617) = 1. But this time

gcd(xn−x, g) = gcd(1074x+152, g) = 1 and gcd(xn
2−x, g) = gcd(785x+19, g) = 1.

Hence f2 6= 1, so (n, g) does not pass the Factorization step, thus n is composite. This
test usually does not give a factorization of n, even when it shows that n is composite.
Nevertheless, it might be pleasing to know that n = 19 · 61.

Now that we know how the test works, we can start to look at its interesting prop-
erties. Grantham not only showed that his test is correct, he also showed that using a
variant of his test, a composite number passes the test with probability less than 1/7710
[22]. In this variant Grantham only uses polynomials of degree 2 of which the discrim-
inant is not a square mod n and he incorporates a Miller-Rabin step in his test. He
then carefully computed an upper bound for the number of such quadratic polynomials
f such that (n, f) passes his test to arrive at that probability.

Furthermore, Grantham also showed that his quadratic test is efficient, he shows that
it runs in Õ(log(n)2). The Miller-Rabin test has the same complexity, but Rabin [37] only
showed that a composite number passes the Miller-Rabin test with probability less than
1/4. Hence it might be natural to think that it is better to use Grantham’s test, since
1/7710 < 1/4. However, it is possible that the coefficients of the complexity function of
Grantham’s test are much larger. That’s why Grantham computed the explicit number
of bit operations his quadratic test takes and showed that it is fewer than 3 Miller-Rabin
tests. Now, (1/4)3 = 1/64 > 1/7710, hence Grantham’s test is faster in proving strong
probabilities.

There have been a lot of optimizations of Grantham’s test such as [43, 16, 33, 34]. But
they all work in extensions of degree at most 2. This is perhaps because computations in
larger extensions take more time. Nevertheless, we will consider those larger extensions
later on in this chapter and we will discuss the problems arising when you try to construct
those finite fields when you don’t know if your input n is prime or not.
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Grantham’s test is not only useful in a practical setting, it also has an important
place in the theory of primality and compositeness tests. Grantham showed that his test
can be seen as a generalization of several other tests. An interesting example of this is
a classical test that uses Lucas sequences. A Lucas sequence with parameters P,Q ∈ Z
is of the form:

U0 = 0, U1 = 1, Um = PUm−1 −QUm−2 (for m ≥ 2).

We first prove some basic properties of Lucas sequences.

Lemma 3.7. Let p be prime and set f(x) = x2 − Px + Q. If α and β are the roots of
f in Fp2, then

Um =
αm − βm

α− β
for all m ≥ 0.

Proof. We will prove it by using strong induction on m. The base cases m = 0 and
m = 1 can easily be checked. Now suppose the formula holds for all 0 ≤ k ≤ m. Then

Um+1 = PUm −QUm−1 = P
αm − βm

α− β
−Qα

m−1 − βm−1

α− β

=
(Pα−Q)αm−1 − (Pβ −Q)βm−1

α− β
=
α2αm−1 − β2βm−1

α− β
=
αm+1 − βm+1

α− β
.

Here we used in the second to last equality that α and β are roots of f .

Proposition 3.8. Given P,Q ∈ Z, write Um = Um(P,Q) and ∆ = P 2 − 4Q. If p is
prime and p - 2Q∆, then Up−(∆

p) = 0 mod p.

Proof. Again let f(x) = x2−Px+Q with roots α and β in Fp2 . Then since p - ∆ = ∆(f),

we know that α 6= β. First suppose that
(

∆
p

)
= 1. Then α, β ∈ Fp, so αp−1 = βp−1 =

1 mod p. Hence by Lemma 3.7,

Up−1 =
1− 1

α− β
= 0 mod p.

Now suppose that
(

∆
p

)
= −1, then f is irreducible over Fp. Then by Proposition 3.2, we

know that αp = β and βp = α. Thus

Up+1 =
βα− αβ
α− β

= 0 mod p.

Proposition 3.8 naturally gives rise to a compositeness test. Given a positive integer
n, we can randomly choose 0 ≤ P,Q ≤ n − 1 and compute Un−(∆

n) mod n using the

Jacobi symbol and a fast method to compute a term in a recurrence sequence [30]. If
gcd(n, 2Q∆) = 1 and Un−(∆

n) 6= 0 mod n, then we know for sure that n is composite.

But as usual, the converse is not always true. We say n is a Lucas pseudoprime with
respect to P and Q if gcd(n, 2Q∆) = 1 and Un−(∆

n) = 0 mod n.

The proof of Proposition 3.8 already hints at a possible connection between Lu-
cas pseudoprimes and Frobenius pseudoprimes. We will make this explicit in the next
proposition. We follow the proof from Grantham [21].
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Proposition 3.9. If n is a Frobenius pseudoprime with respect to x2 − Px+Q, then n
is a Lucas pseudoprime with respect to P and Q.

Proof. Let f = x2 − Px + Q. We will try to use Lemma 3.8 again. First suppose that(
∆
n

)
= 1. Then by the Jacobi step, we know that S = 0, which means that xn = x mod f .

Now, x(x − P ) = −Q mod f , so x · (x−P−Q ) = 1 mod f , which means that x is invertible

mod f . Hence xn−1 = 1 mod f . Explicitly, that means that xn−1 = 1 + f(x)g(x) mod n
for some g(x) ∈ Z/nZ[x]. Now note that

f(P − x) = P 2 − 2Px+ x2 − P 2 + Px+Q = x2 − Px+Q = f(x) = 0 mod f(x),

which means that P − x is a root of f(x). Now we use composition of polynomials to
see that

(P−x)n−1 = xn−1◦(P−x) = (1+f(x)g(x))◦(P−x) = 1+f(P−x)g(P−x) = 1 mod f.

Also note that

(2x− P )2 = 4x2 − 4xP + P 2 = 4Px− 4Q− 4xP + P 2 = P 2 − 4Q = ∆(f) mod f.

Then since ∆(f) is invertible mod n, we see that 2x − P is invertible mod f , since
(2x− P ) · 2x−P

∆(f) = 1 mod f . Thus, we can now use Lemma 3.8 to see that

Un−1 =
xn−1 − (P − x)n−1

x− (P − x)
=

1− 1

2x− P
= 0 mod f.

Now suppose that
(

∆
n

)
= −1. This time the Jacobi step tells us that S = 1. So,

by the Factorization step, we know that gcd(xn − x, f) = 1. This implies that xn 6=
x mod (f, pk) for all prime powers pk | n. Now, if p | n, then f(x) has precisely two
roots mod p, since gcd(p,∆(f)) = 1. Then by Hensel’s lemma, we know that f(x)
also has precisely two roots mod pk. We already saw the other root, namely P − x.
Hence xn = P − x mod (f, pk). Then by the Chinese remainder theorem, we know that
xn = P − x mod (f, n). Finally, we know that

x = xn
2

= (P − x)n mod (f, n),

so we can use Lemma 3.8 to see that

Un+1 =
xn+1 − (P − x)n+1

x− (P − x)
=
x(P − x)− (P − x)x

2x− P
= 0 mod f.

Thus, n is a Lucas pseudoprime with respect to P and Q.

We gave the proof of 3.9 since it uses all of the steps of Grantham’s test and also
because it uses composition of polynomials. Later on in this chapter we will see some
more uses of polynomial composition. Having said that, we could have showcased several
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other types of pseudoprimes that have a strong relation with Frobenius pseudoprimes.
Grantham does this in Chapters 4 and 5 of his paper [21].

We already said if n is not prime, then Z/nZ isn’t a field. Fortunately for us, it will
still have a prime divisor p which we can work with. Given f ∈ Z/nZ[x] of degree d,
we can view it modulo p. Suppose that f is square-free modulo p, which we can check
by computing gcd(f, f ′). Say f factors as f1 · · · fr over Fp, where the fi are irreducible
over Fp. Then we get the following ring homomorphisms:

Z/nZ[x]/(f)→ Z/pZ[x]/(f)→ Fp[x]/(fi) ∼= Fpdeg(fi) . (3.1)

This means that even if n is not prime, we can still work in a finite field that is strongly
related to n. This is of course a bit vague, so let’s look at an example. We have already
seen an instance where this idea is used, namely in the proof of the Lucas-Lehmer test
in paragraph 2.3, so we will only sketch the test here. In that test we have a prime p and
the integer q = 2p − 1 that we want to test for primality. The test is usually formulated
in terms of a recurrence relation, but for this example it is better to describe it in terms
of finite field extensions. The test uses the fact that 3 is always a non-square mod q, so
if q is prime, then we can create the finite field Fq(

√
3) = Fq[x]/(x2− 3) of q2 elements.

Furthermore, if q is not prime, then it has a prime divisor r with r ≤ √q. We can then
use the homomorphism from Z/nZ[x]/(x2 − 3) to G = Fr[x]/(x2 − 3) to show that G∗

contains an element of order q + 1 > r2 − 1 ≥ #G∗. This gives a contradiction, proving
that q is prime. For a rigorous proof of this test we refer back to paragraph 2.3.

Grantham [22] also used the map (3.1) to show that a composite number is unlikely
to pass his test. Like we said before, he did this is the case that f is of degree 2.
Furthermore, he chose the coefficients of f = x2 +ax+b such that

(∆(f)
n

)
= −1. He does

this because then n has at least one prime divisor p such that
(∆(f)

p

)
= −1. Hence, if we

reduce modulo that prime divisor, then Fp[x]/(f) is a finite field of p2 elements. Then if
(n, f) passes his test, then we know that xn = xp mod (f, p), since xn is again a root of
f and it is not equal to x mod (f, p). This implies that xn−p = 1 mod (f, p). Now, F∗p2

is cyclic so there are gcd(n− p, p2 − 1) elements y ∈ Fp2 such that yn−p = 1 mod (f, p).
Grantham used this to compute an upper bound for the probability that you choose
coefficients a, b such that xn = xp mod (f, p).

We will now explore the option of using polynomials f of higher degree to see if they
bring something new to the table. We will also use the fact that F∗

pd
is cyclic, but in a

slightly different way.

Lemma 3.10. Suppose that p is a prime divisor of n and f ∈ Z/nZ[x] is irreducible
over Fp and of degree d. If (n, f) passes the Frobenius Step of Grantham’s test, then

xn = xp
m

mod (f, p) for some 1 ≤ m ≤ d− 1.

Proof. We know that xn mod (f, p) is again a root of f and different from x. The claim
now follows from Proposition 3.2.
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Now, if a is the order of x mod (f, p) in the group F∗
pd

= (Fp[x]/(f))∗, then xn =

xp
m

mod (f, p) implies that n = pm mod a. The idea will be that increasing d will on
average increase a, which means that xn = xp

m
mod (f, p) will be less likely. Using this

idea, we can formulate a sufficient condition for primality.

Theorem 3.11. Suppose that all conditions of Lemma 3.10 hold. Suppose furthermore
that f is primitive, i.e., x mod (f, p) has maximal order pd − 1. Finally, suppose that
d > log2(n) and that n is not a perfect power. Then n is prime.

Proof. From Lemma 3.10 we know that n = pm mod pd − 1 for some 1 ≤ m ≤ d − 1.
Now, m < d, so pd− 1 > pm. Furthermore, d > log2(n) and p ≥ 2, hence pd− 1 > n− 1,
thus pd − 1 ≥ n. This means that n = pm is also true as an equality in Z. Then since n
is not a perfect power, we know that m = 1, hence n is prime.

We saw in the proof of Proposition 3.5 that we can compute xn mod f in Õ(log(n)2d)
and that the rest of the Frobenius step can then be performed in Õ(log(n)d2). Hence,
if f has degree O(log(n)), then we can check that (n, f) passes the Frobenius step in
Õ(log(n)3).

Since Theorem 3.11 has so many assumptions, it is important to check that they are
sensible ones. For example, we need a polynomial f that is irreducible over Fp and of
large degree, where p is some unknown prime divisor of n. Using the Legendre symbol
trick, we could do it for degree 2 polynomials, but we have not yet seen any methods
to go beyond that. Later on in this chapter we will look at several ways to construct
such polynomials, so we will see that that assumption is fine. All the other assumptions
are also fine, except for the one that says that x mod (f, p) has to be a primitive root.
Since F∗

pd
is cyclic, we know that φ(#F∗

pd
) = φ(pd − 1) elements in F∗

pd
are generators

for that group, where φ is the Euler phi function. There is a classical lower bound for
this function [39, Theorem 15], that says that for all integers m > 2,

φ(m) >
m

eγ log logm+ 3
log logm

.

This means that after randomly choosing O(log(log(pd−1))) elements in F∗
pd

, we expect
to get one primitive root. So by trying multiple polynomials f , Theorem 3.11 can be
turned into a probabilistic primality test. However, the only known way to check if an
element generates the group requires the factorization of the order of the group. But, we
can’t expect to know the complete factorization of nd−1, let alone pd−1. This is why we
will improve on Theorem 3.11. The next proposition relaxes the conditions of Theorem
3.11 in two ways. We don’t have to restrict ourselves to the element x mod (f, p) and
we don’t need a generator for F∗

pd
, just an element of fairly large order.

Proposition 3.12. Suppose that all conditions of Lemma 3.10 hold. Suppose that
we have an element g(x) mod (f, p) that has order at least pd−2 and satisfies g(xn) =
g(x)n mod (f, p). If d > log2(n) + 2 and if n is not a perfect power, then n is prime.
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Proof. From Lemma 3.10 we again know that xn = xp
m

mod (f, p) for some 1 ≤ m ≤
d− 1. Note that

g(x)n = g(xn) = g(xp
m

) = g(x)p
m

mod (f, p),

because the freshman’s dream implies that g(xp) = g(x)p mod (f, p), the equality then
follows from induction. Let a be the order of g(x) mod (f, p), then n = pm mod a. So
we get the same congruence as in the proof of Theorem 3.11, apart from the fact that a
is now somewhat smaller than pd − 1. We will now show that a is still large enough.
Note again that p ≥ 2, hence pd−2 > n. If m = d − 1, then pm > a, which is a bit
worrying. But since n and pm are both integers that are divisible by p, we see that
n
p = pm−1 mod a, where a > n

p , p
m−1, hence n

p = pm−1. So, we see that n is a power of
a prime, thus by the assumption that n is not a perfect power, n has to be prime.

The question now becomes how many elements in F∗
pd

have order at least pd−2. Using
the fact again that F∗

pd
is cyclic, we see that there are∑

a|pd−1

a≥pd−2

φ(a)

such elements in F∗
pd

. Experimentally, this seems to be around pd−O(pd−1), but we have
no proof of this. If we could prove it, then we would know that we have a probability of
about

1− pd − pd−1

pd
= 1− p− 1

p
=

1

p

that we choose an element that does not have an order high enough for our purposes,
so that would be a an enormous improvement.

It should be noted that we don’t actually know what p is, so these probabilities might
seem a bit meaningless. However, if we check that n is not divisible by all primes below
a certain bound B, then we know that p > B for all primes dividing n, which makes
the probability 1/p very small. Doing this also allows us to choose d somewhat smaller
than in Proposition 3.12. There we stated that d > logn(n) + 2, since p ≥ 2. But if we
know that p ≥ B, then d > logB(n) + 2 suffices. This is very helpful in practice, since it
greatly increases the speed of the finite field arithmetic. However, it does not improve
the complexity of the algorithm, since logB(n) = log2(n)

log2(B) and B has to be polynomial in

log(n).
There are still more improvements to be discussed, the next one uses the group

structure of F∗
pd

.

Lemma 3.13. The elements g(x) mod (f, p) such that g(xn) = g(x)n mod (f, p) form a
group under multiplication.

Proof. First note that 1 = 1n mod (f, p). Now suppose that g(xn) = g(x)n mod (f, p)
and h(xn) = h(x)n mod (f, p). Then

(gh)(xn) = g(xn)h(xn) = g(x)nh(x)n = (g(x)h(x))n mod (f, p).
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This means that we don’t necessarily need one element that has big order, we just
need a set of elements g1(x), . . . , gm(x) mod (f, p) such that

lcm(order(g1(x)), . . . , order(gr(x)))

is at least pd−2. Unfortunately, there is no unconditional polynomial time algorithm
known that produces such a set. But, we can look how far we can get by assuming
the Riemann hypothesis, or some generalization of it. In the case that d = 1, it is
known that under assumption of the extended Riemann hypothesis (ERH), the elements
1, 2, . . . , 2 log(p)2 generate F∗p [5]. Furthermore, in the case that d = 2, it is known that
if we assume ERH, then the set

{a1 + a2x | ai ∈ O(log(p)B)}

generates F∗p2 for some constant B [44]. However, a similar statement is not known for
d > 2. But, there is a deterministic polynomial time algorithm assuming ERH that
given a prime p, produces a model for Fpd with basis θ1, . . . , θd over Fp such that

{
∑

aiθi : |ai| ≤ CdDd log(p)max(d−1,2)}

generates F∗
pd

for certain constants C and D [11]. But, we can’t use this construction,
since we don’t know if our number n that we want to test is prime. Hence the currently
known results are not strong enough to make Theorem 3.11 into a primality proving
algorithm.

However, there is a test that uses some of same ideas that actually is fully deter-
ministic and can prove primality in polynomial time. This algorithm is the celebrated
AKS test from 2002, by Agrawal, Kayal and Saxena. In their original paper [2] they
take f = xr − 1 where r is of size O(log(n)5) and show that to prove that n is prime, it
is enough to check that

(x+ a)n = xn + a mod f, for all 1 ≤ a ≤ l,

where l is also polynomially bounded by log(n). They do this by constructing a large
set of elements g(x) such that g(xn) = g(x)n mod f and show that this is only possible
when n is a power of a prime. The full algorithm runs in Õ(log(n)10.5). We tried
similar constructions, Lemma 3.13 for example is Lemma 4.6 in [2]. But we were not as
successful, since the AKS test is fully deterministic. However, the running time of our
test is also polynomial in log(n) and is also quite a lot faster. This is because the degree
of our f is only O(log(n)). But this is comparing apples to oranges, since our algorithm
isn’t deterministic at all. But we certainly can compare the original AKS test to its
improvements. Lenstra and Pomerance [26] showed that the AKS test can be adapted
to an algorithm that runs in Õ(log(n)6), which is a lot better. They did this by showing
that you only need a polynomial f of degree O(log(n)2) (with certain properties) and
by lowering the bound on l.
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3.2 Irreducible polynomials modulo divisors of n

The polynomials f used in the AKS test are not necessarily irreducible modulo p for
some p | n. Instead, they are constructed such that they have an irreducible factor
of large enough degree modulo some p | n. We will now look at various techniques to
construct irreducible polynomials modulo a prime divisor of n, some of which will be
new. We have seen that constructing such a polynomial of degree 2 isn’t very difficult. If
we have some a with

(
a
n

)
= −1, then

(
a
p

)
= −1 for some p | n, hence x2− a is irreducible

over Fp. We can extend this idea in multiple ways; the first one produces polynomials
with degree a power of 2.

Proposition 3.14. Let p = 1 mod 4 be a prime and suppose we have some a with(
a
p

)
= −1. Then f = x2m − a is irreducible over Fp for all m ∈ Z≥0.

Proof. Note that by Proposition 3.1, if we can show that gcd(xp
2m−1

− x, f) = 1 and

f | xp2m − x, then f is irreducible over Fp, because then the degree of all irreducible

factors of f divide 2m, but not 2m−1. Now, p is odd and φ(2m) = 2m−1, hence p2m−1
=

1 mod 2m. This means that

xp
2m−1

= xa
p2m−1

−1
2m mod f,

since x2m = a mod f . Note that

p2m−1 − 1 = (p− 1)(p+ 1)(p2 + 1)(p4 + 1) · · · (p2m−2
+ 1).

Now we use that p = 1 mod 4 to see that p2k +1 = 2 mod 4 for all k ∈ Z≥0. This implies
that

(p+ 1)(p2 + 1)(p4 + 1) · · · (p2m−2
+ 1)

contains m− 1 factors of 2. Hence

p2m−1 − 1

2m
=
p− 1

2
· r,

where r is an odd integer. Now we use the assumption that
(
a
p

)
= −1 to get that

a
p−1

2 = −1 mod p. Thus

xp
2m−1

= x · (−1)r = −x mod f.

This implies that

gcd(xp
2m−1

− x, f) = gcd(−2x, f) = 1.

Finally, we check that f | xp2m − x. Note that

p2m − 1

2m
= (p− 1) · s,
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where s is odd, since we now have an extra factor of 2. Then

xp
2m

= x · 1s = x mod f.

Hence f | xp2m − x, so f is irreducible over Fp.

This proposition only helps us in the case that p = 1 mod 4. Fortunately, a similar
polynomial can be used in the case that p = 3 mod 4. For a proof we refer to [26,
Lemma 4.2].

Proposition 3.15. Let p = 3 mod 4 be a prime and suppose we have some a with(
a2+4
p

)
= −1. Then f = x2m+1 − ax2m − 1 is irreducible over Fp for all m ∈ Z≥0.

It should be noted that there currently is no deterministic polynomial time algorithm
that can find non-residues modulo a prime p, let alone modulo n. However, since half
of the integers mod p are non-residues, we can simply pick random numbers a and hope
that

(
a
p

)
= −1. This works well in practice, since you expect to find one after only two

tries. Then since the Legendre symbol is (also) multiplicative in the second argument,
we can also expect to find numbers a with

(
a
n

)
= −1 very quickly, assuming that n is

not a perfect square.
Given Proposition 3.14 and 3.15, we are very close to constructing irreducible polyno-

mials modulo a prime divisor of a given odd integer n. The problem is that if n = 1 mod 4
for example, then the divisors of n can still be both 1 mod 4 or 3 mod 4. This makes it
harder to use one of the propositions, since we know that

(
a
p

)
= −1 for some p | n, but

we don’t know what p mod 4 is. You could maybe come up with some argument that
shows that at least one of x2m − a and x2m+1 − ax2m − 1 irreducible modulo some p | n,
but it is much more satisfying to just have one. We will show that this can be achieved
in a compositeness/primality test setting.

Theorem 3.16. Given positive integers n and m with n odd, there is an algorithm that
either proves that n is composite, or returns a polynomial of degree 2m that is irreducible
modulo some prime divisor p of n.

Proof. We will use that if n is prime, then we can compute square roots modulo n given
some quadratic non-residue. This can be done using the Tonelli-Shanks algorithm for
example [1]. Furthermore, we will also use that if p is prime, then −1 is a square mod
p if and only if p = 1 mod 4.
First suppose that n = 1 mod 4. Try to compute a square root of −1 mod n. If the
process fails, then we know that n is composite. If the process doesn’t fail, then we
know that all prime divisors of n are 1 mod 4, since −1 is a square modulo all of those
divisors. Now find an integer a with

(
a
n

)
= −1, then the claim follows from Proposition

3.14.
Now suppose that n = 3 mod 4. Then we know that n has a prime divisor p that is also
3 mod 4, hence

(−1
p

)
= −1. Find an integer a with

(
a2+4
n

)
= −1, then

(
a2+4
q

)
= −1 for

some q mod n. We can circumvent the problem that q might be unequal to p by using
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the following neat trick. Note that
(−(a2+4)

n

)
= 1. Try to compute the square root of

−(a2 + 4) mod n using the square root algorithm. If it fails, then n is composite. If it

doesn’t, then
(−(a2+4)

r

)
= 1 for all prime divisors r of n. This means that(
−1

r

)
=

(
a2 + 4

r

)
for all prime divisors r of n.

Hence
(
a2+4
p

)
= −1, where p is that prime divisor of n which is 3 mod 4. The claim now

follows from Proposition 3.15.

Theorem 3.16 is very useful for Theorem 3.11. Because now we can construct a
polynomial that satisfies the assumption. It’s also efficient, since the Tonelli-Shanks
algorithm is efficient. We could stop here since we got what we needed, but there are
a lot more interesting ways to construct these kinds of polynomials, so we will consider
some of them. The first one is a generalization of the one we just saw. A proof of the
following proposition can be found in [27, Theorem 3.75].

Proposition 3.17. Let p = 1 mod 4 be prime and let r also be prime and suppose that
a is not an rth power mod p. Then xr

m − a is irreducible over Fp for all m ∈ Z≥0.

Note that if n is prime, then we can find such a if r | (Z/nZ)∗. So, Proposition 3.17
can be used in a compositeness/primality test setting in the following way. Suppose that
n = 1 mod 4, then we can check that −1 is a square mod n like in the proof of Theorem
3.16 to show that all primes p | n are 1 mod 4. Now write n−1 = rks, where r - s. Then
find an element a of order rk modulo n. To make sure that a also has order rk modulo
its prime divisors, we check that gcd(ar

k−1−1, n) = 1. If it is not 1, then n is composite,
else a has order rk modulo all p | n. Now, rk+1 - n − 1, which implies that n has a
prime divisor p such that rk+1 - p − 1, because otherwise n = 1 mod rk+1, which gives
a contradiction. Thus we can apply Proposition 3.17 to get that xr

m − a is irreducible
mod p for all m ∈ Z≥0. The bottleneck of this method is that you have to (partially)
factor n− 1.

We have already seen that we can make irreducible polynomials mod p | n of degree
2m. We found a different way to construct such polynomials using so-called self-reciprocal
polynomials.

Definition 3.18. Given a polynomial f of degree m, the reciprocal polynomial f∗ of f
is given by

f∗(x) = xnf(1/x).

Furthermore, f is called self-reciprocal if f(x) = f∗(x).

The coefficients of f∗(x) are the same as f , but in reverse. For example, if f(x) =
5x4 + x2 + 2x + 3, then f∗(x) = 3x4 + 2x3 + x2 + 5. Self-reciprocal polynomials have
a lot of interesting properties. The next proposition is one of them, the similarity with
Proposition 3.1 is striking. We only prove the first part, the second part can by found
in [29, Theorem 1].
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Proposition 3.19. Let p be an odd prime. Then each self-reciprocal irreducible monic
polynomial f ∈ Fp[x] of degree 2m with m ≥ 1 is a factor of

Hp,m(x) := xp
m+1 − 1.

Furthermore, each irreducible factor of degree > 2 of Hp,m(x) in Fp[x] is self-reciprocal
of degree 2d, where d | m and m/d is odd.

Proof. First note that if α is a root of f , then so is 1/α, since

f(1/α) = f(α)αn = 0.

So, by Proposition 3.2, we know that α−1 = αp
j

for some 0 ≤ j ≤ 2m − 1. Hence,
αp

2j
= (α−1)p

j
= α. We know that the minimal k such that αp

k
= α is k = 2m, since f

is irreducible. This implies that 2m | 2j, hence m | j, which means that j = 0 or j = m.
If j = 0, then α2 = 1 for all roots α of f , which means that f(x) | x2− 1. Now note that
x2 − 1 | Hp,m(x), because 2 | pm + 1. Finally, if j = m, then αp

m+1
= 1 for all roots α of

f , hence f(x) | Hp,m(x).

Meyn [29] showed that you can construct irreducible polynomials over F2 using self-
reciprocal ones. Cohen [13] generalized this method to finite fields of odd order. He
defined an operator R such that given a polynomial f of degree m,

fR(x) = (2x)mf(1/2(x+ 1/x)).

It can be shown that fR(x) is a self-reciprocal polynomial of degree 2m. Cohen then
proved the following theorem [13, Theorem 2].

Theorem 3.20. Let p be an odd prime and let f0(x) be a monic irreducible polynomial

mod p of degree d ≥ 1, where d is even if p = 3 mod 4. Suppose that
(f0(1)f0(−1)

p

)
= −1.

For each integer m ≥ 1 define
fm(x) = fRm−1(x).

Then for all m ≥ 0, fm(x) is irreducible over Fp and has degree d2m.

Example 3.21. If we take p = 13 and f0 = x + 3, then
(f0(1)f0(−1)

p

)
=
(

8
13

)
= −1. So

Theorem 3.20 says that

x+ 3, x2 + 6x+ 1, x4 + 12x3 + 6x2 + 12x+ 1,

x8 + 11x7 + 2x6 + 12x5 + 5x4 + 12x3 + 2x2 + 11x+ 1

are all irreducible mod 13.

Using Theorem 3.20, we will now show that there is another way to construct irre-
ducible polynomials of degree 2m mod p | n.
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Alternative proof of Theorem 3.16. We will again use that if n is prime, then we can
compute square roots modulo n given some quadratic non-residue.
First suppose that n = 1 mod 4. First check that −1 has a square root mod n, so we
know that all prime divisors of n are 1 mod 4. Now find an integer a with

(
a2−1
n

)
= −1.

Take f0(x) = x+a, then Theorem 3.20 constructs polynomials of degree 2m for all m ≥ 0
that are irreducible modulo some p | n.
The case that n = 3 mod 4 is a bit harder, because the degree of f0(x) now has to be at
least 2. Find an a with

(
a
n

)
= −1 and find a polynomial f0(x) = x2 + bx + c with the

following properties:
(∆(f0)

n

)
= −1 and

(f0(1)f0(−1)
n

)
= −1. Cohen proves in Lemma 4 of

his paper [13] that those polynomials exist. We know that n has a prime divisor p that
is 3 mod 4. If we want to apply Theorem 3.20, then we need that all the equalities:(

−1

p

)
=

(
∆(f0)

p

)
=

(
f0(1)f0(−1)

p

)
= −1

are true for that prime divisor p. Now, similarly as in the previous proof of this propo-
sition, check that −∆(f) and −f0(1)f0(−1) are indeed both a square mod n using the
square root algorithm. If not, then n is composite, otherwise we know that(

−1

q

)
=

(
∆(f)

q

)
=

(
f0(1)f0(−1)

q

)
for all primes q | n. Hence, those symbol are all −1 for p. The claim then follows from
Theorem 3.20.

We found one more way to construct polynomials f which are irreducible modulo a
divisor of n. This one very different from the others. The power of this method is that you
can choose any degree you want. The big downside is that you can’t always prove that the
polynomial is irreducible. This method again only works in a compositeness/primality
test setting, which is the setting we are most interested in. The main idea is that we
can rule out certain factorizations of f modulo the prime divisors of n.

Proposition 3.22. Given positive integers n and d with n odd, there is an algorithm
that either proves that n is composite or returns a polynomial f of degree d such that if
a prime p divides n, then f splits as a product of degree e irreducible polynomials over
Fp, where e | d. The number e can vary for the different prime divisors of n.

Proof. If n is prime, then we can find irreducible polynomials f of any degree d in
expected polynomial time in log(n) and d [45]. If that algorithm fails to produce a
polynomial of degree d, then n is composite. Otherwise, we continue by computing
xn, . . . , xn

d−1
mod f and we check that

f(xn
i
) = 0 mod f for all 1 ≤ i ≤ d−1 and gcd(xn

i−xnj
, f) = 1 for all 0 ≤ i < j ≤ d−1.

If one of those equalities does not hold, then n is composite. Finally, we check that
gcd(f, f ′) = 1 to ensure that f is square-free modulo all divisors of n. Let p be a prime
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divisor of n and suppose that f factors into irreducibles as f1 · · · fr over Fp. Now take
an arbitrary fi(x). Then F = Fp[x]/(fi(x)) is a field, so f has at most d roots in F . We
found d of them, so f splits completely in F . This means that all fj(x) split completely
in F , so F

pdeg(fj) ⊂ Fpdeg(fi) , hence we get that deg(fj) | deg(fi) for all j. The above is

true for all i, so e = deg(fi) = deg(fj) for all i, j, which also implies that e | deg(f) = d.
This number e can vary for the different prime divisors of n.

Corollary 3.23. Given positive integers n and d with n odd and d prime, there is an
algorithm that either proves that n is composite, or returns a polynomial f of degree d
such that for every prime p | n we have that f is irreducible or splits completely over Fp.
This can vary for the different prime divisors of n.

Proof. This clearly follows from Proposition 3.22, since the only positive divisors of d
are 1 and d.

It would be great if we could rule out the case that f completely splits, because then
we can prove that f is irreducible modulo p | n. We will sketch one possible way to do
this. Suppose that we know a factor a of ndeg f − 1 that is at least

√
n. Note that if n

is composite, then it has a prime divisor p ≤
√
n. Try to find an element that has order

at least a in (Fp[x]/(f))∗. If f completely splits over Fp, then such elements can’t exist
in (Fp[x]/(f))∗, since then (Fp[x]/(f))∗ = ((Fp)

∗)deg(f) and #F∗p = p − 1 <
√
n ≤ a.

Which gives a contradiction, proving that f is irreducible mod p | n. If you could find an
element of order at least n, then you can show that f is irreducible modulo all divisors
of n, since all prime factors of n are ≤ n. The big problem with this method is that you
have to (partially) factor ndeg f −1, which is a very big integer, so that can be very hard.

This finishes our exploration of constructing polynomials that are irreducible modulo
a divisor of n. We already saw that we can use these polynomials in the test that follows
from Theorem 3.11. But, we also found another application that uses elliptic curves.

3.3 Elliptic curves

We will only give a very brief description of elliptic curves, a more detailed account can
be found in [46]. Given a field F with char(F ) 6= 2, 3 and a, b ∈ F , an elliptic curve E
is the set of solutions (x, y) ∈ F 2 of a Weierstrass equation:

y2 = x3 + ax+ b, (3.2)

together with a point at infinity denoted by O. We also need that E is non-singular,
this means that ∆E := −16(4a3 + 27b2) has to be non-zero in F . The j-invariant is
defined as −1728(4a)3/∆E . The set E can be turned into an abelian group (E,+) with
identity O. For m ∈ N we write [m]P = P + · · ·+P , where P appears m times. Elliptic
curves have been of great interest because of their applications in cryptography, but also
in primality tests and integer factorization algorithms. Currently, the (heuristically)
fastest primality proving algorithm is the Atkin-Morain ECPP test. A fast version [32]
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of this algorithm has a heuristic running time of Õ(log(n)4). We now give a brief sketch
of that algorithm.

Given a prime n, you can consider elliptic curves defined over Z/nZ. But, if n is not
prime, then E(Z/nZ) is not an elliptic curve by definition. However, we can pretend
that that is not a problem and still do computations in E. It can be shown [31, § 5.4.2]
that given P,Q ∈ E(Z/nZ), the addition algorithm either correctly computes P +Q in
E(Z/nZ), or it returns a factor of n. The latter case is certainly not a problem, because
then we have proven that n is composite. Those “elliptic curves” are sometimes called
pseudo-elliptic curves, or just elliptic curves for short.

A fundamental result of elliptic curves over finite fields is the Hasse bound.

Theorem 3.24. Let E be an elliptic curve over a finite field of q elements. Then∣∣#E − (q + 1)
∣∣ ≤ 2

√
q.

We can now prove the core result that Atkin and Morain use in their ECPP test. The
result and proof are very similar to Proposition 2.29 and the method described below
Corollary 3.23. We follow the proof of [31, Theorem 5.5.1].

Proposition 3.25. Suppose we have an integer n and a point P on an elliptic curve E
defined over Z/nZ with the following properties. Suppose there are integers m, s such
that s > (n1/4 + 1)2 and s | m and [m]P = O and [m/qi]P 6= O for all primes qi | s.
Then n is prime.

Proof. Suppose that n is not prime and let p be a prime divisor of n with p ≤
√
n.

Let Ep be the elliptic curve E viewed modulo p, also denote Pp by the point P reduced
modulo p. This is possible, since if (3.2) holds modulo n, then it is also true modulo
p. Now, [s][m/s]Pp = O, so s is a multiple of the order of [m/s]Pp ∈ Ep. Furthermore,
[m/qi]Pp 6= O for all primes qi | s, because otherwise the point addition algorithm would
have returned the factor p of n. This means that [m/s]P has order s in Ep. Hence
s | #Ep, so

#Ep ≥ s > (n1/4 + 1)2 ≥ (
√
p+ 1)2.

Now we use Theorem 3.24 to see that

#Ep ≤ p+ 1 + 2
√
p = (

√
p+ 1)2 < #Ep,

which is a contradiction. Thus n is prime.

We now check if the assumptions of Proposition 3.25 are reasonable. If n is prime,
then we can find a point P by taking a random integer x and then computing a square
root of x3 + ax+ b mod n. If this process fails, then n is composite. Finding the integer
m is harder. The Goldwasser–Kilian ECPP test finds m using Schoof’s algorithm [42]
to compute the order of E. The running time of Schoof’s algorithm is polynomial in
log(n), but it is not very fast in practice. Another way to find m is by using complex
multiplication. That method has as input a prime p and constructs an elliptic curve
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E such that you know the order of E. It would take way to long to explain it all, so
we refer to [31]. The complex multiplication method is often used in practice because
it is much faster than Schoof’s algorithm. Yet another way to find m is by restricting
ourselves to supersingular curves, which we will consider later in this chapter.

Although we now know that we can compute the integer m, we still have to compute
a large factor of m. This can be very hard in general, since m ∈ O(n). However, the
power of elliptic curves is that we are not restricted to one group order. If we can’t find
a large factor of the order of one elliptic curve, then we can take another and try again.

We will now propose a compositeness test that combines the ECPP test of Atkin and
Morain with Grantham’s test. The idea is that elliptic curves can be defined over any
finite field, so why not take an extension of a finite field. The bridge between Grantham’s
test and elliptic curves is the following map. Given an elliptic curve E over a finite field
Fpd = Fp[x]/(f), the map

σp : E(Fpd) −→ E(Fpd)

(g(x), h(x)) 7−→ (g(x)p, h(x)p)

O 7−→ O

is called the Frobenius endomorphism. The freshman’s dream implies that this map is
well defined. The fact that it is an endomorphism that sends O to O tells us that it is a
group homomorphism from E(Fpd) to itself. The fundamental property of the Frobenius
endomorphism is that it satisfies the following characteristic equation:

σ2
p − [tp]σp + [p] = [0], (3.3)

where tp = p + 1 − #E(Fp) is called the trace of Frobenius. This means that for all
P = (g(x), h(x)) ∈ E(Fpd), we have that

(g(x)p
2
, h(x)p

2
)− [tp](g(x)p, h(x)p) + [p](g(x), h(x)) = O.

This gives rise to the following compositeness test for an integer n. Use one of the
results such as Theorem 3.16 to get a polynomial f that is irreducible modulo some p | n.
Then check if (n, f) passes Grantham’s test, if not, then n is composite. Construct an
elliptic curve E : y2 = x3 +ax+ b with gcd(∆E , n) = 1 such that if n is prime, you know
that the order of E(Z/nZ) is an integer m. We have already stated that this can be done
using various techniques. Using this “guess” for #E, we can compute tn = n + 1 −m.
Now pick a random point P = (g(x), h(x)) on E((Z/nZ)[x]/(f)) by randomly choosing
g(x) and then computing a square root h(x) of g(x)3 + ag(x) + b in (Z/nZ)[x]/(f).
This can be done using a square root algorithm that works in general finite fields [18,
Algorithm 14.15]. As always, if the process fails, then n is composite. After that, we
check that the following equation holds

(g(x)n
2
, h(x)n

2
)− [tn](g(x)n, h(x)n) + [n](g(x), h(x)) = O (3.4)

in E((Z/nZ)[x]/(f)). If not, then n is composite.
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The link with Grantham’s test lies in the nth power map. Similarly what we did in
Proposition 3.12, if we also check that g(xn) = g(x)n mod (f, n) and h(xn) = h(x)n mod

(f, n), then since xn = xp
k

mod (f, p) for some k, we know that σn(P ) = σkp(P ) mod
(f, p). So (3.4) implies that

σ2k
p (P )− [tn]σkp(P ) + [n]P = O (3.5)

in E((Z/pZ)[x]/(f)). At the same time, we know that

σ2
p(P )− [tp]σp(P ) + [p]P = O (3.6)

in E((Z/pZ)[x]/(f)), where tp = p+ 1−#E(Fp). We would like to combine those two
equations to get information about p for our compositeness test. However, this is quite
difficult, since p and tp are both unknown. Fortunately, in some cases we do know tp,
for example when the elliptic curve E is supersingular.

We say that E(Fp) is supersingular if tp = 0 mod p. If p > 3, then Theorem 3.24
implies that tp = 0. This will make it a lot easier to combine equations (3.5) and (3.6).
We will see that there is a very nice link with what we did in Lemma 3.10. The next
proposition helps us constructing supersingular elliptic curves. A proof can be found in
[51, Proposition 4.37].

Proposition 3.26. Let p > 3 be a prime. Then E : y2 = x3 + 1 defined over Fp
is supersingular if and only if p = 2 mod 3 and E : y2 = x3 + x defined over Fp is
supersingular if and only if p = 3 mod 4.

As usual, the above proposition is only true for prime numbers p. So, if we want to
use it in a compositeness test for an integer n, we can try to reduce modulo some prime
divisor of n.

Proposition 3.27. Given positive integers n and m with gcd(n, 6) = 1 and n = 2 mod 3
or n = 3 mod 4, there is an algorithm that either proves that n is composite, or returns
an elliptic curve E and a polynomial f of degree 2m such that there is a prime divisor
p | n such that E(Fp) is supersingular and f is irreducible over Fp.

Proof. We will show that the (first) proof of Theorem 3.16 for irreducible polynomials
mod p | n can be adapted such that we also get a supersingular elliptic curve modulo
the same prime p.
First suppose that n = 3 mod 4. In the proof of Theorem 3.16, we saw that n in that
case has a prime divisor p which is also 3 mod 4 and the polynomial f of degree 2m

we constructed was irreducible over Fp. Take the elliptic curve E : y2 = x3 + x from
Proposition 3.26, then E(Fp) is supersingular.
Now suppose that n = 2 mod 3, then n has a prime divisor p that is also 2 mod 3. We
now take E : y2 = x3 + x, then E(Fp) is supersingular. We don’t know the value of(

3

n

)
= (−1)

n−1
2

(
n

3

)
= (−1)

n+1
2
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yet, since that depends on n mod 4. So, first suppose that n = 1 mod 4. Then
(

3
n

)
= −1.

Now check that −1 mod n is indeed a square, then all primes dividing n are 1 mod 4.
Hence

(
3
p

)
= −1, so we can use Proposition 3.14 with a = 3 to get a polynomial of

degree 2m that is irreducible over Fp. Finally, suppose that n = 3 mod 4. This time(
3
n

)
= 1, and we can check that it is indeed a square mod n. This implies that

(
3
p

)
= 1,

so p = 3 mod 4, where p is the prime divisor of n which is 2 mod 3. Find an integer a
with

(
a2+4
n

)
= −1. Then by computing a square root of −(a2 + 4) mod n like before,

we can show that
(
a2+4
p

)
= −1. Hence, we get our desired polynomial from Proposition

3.15.

We can now use Proposition 3.27 in the compositeness test described above Propo-
sition 3.26. Suppose that n = 3 mod 4 or n = 2 mod 3, then we get an elliptic curve E
that is supersingular for some prime p | n. If we check that gcd(6, n) = 1, then p > 3,
so tp = 0. We also take tn = 0, because if n is prime, then E(Fn) is also supersingular.
Now, σ is a group homomorphism, so equation (3.6) implies that

σ2k
p (P ) = [−p]σ2k−2

p (P ) = [p2]σ2k−4
p (P ) = · · · = [(−p)k]P.

Combining with equation (3.5), we get that

[−n]P = [(−p)k]P

in E((Z/pZ)[x]/(f)). Now, the polynomial f from Proposition 3.27 has degree d = 2m

and we expect that all of x, xp, . . . , xp
2m−1

are different roots of f . If that’s not the case,
then n is composite, else we know that gcd(k, 2m) = 1, which means that k is odd. We
can check this by computing gcd(xp

i − xpj , f) for all 0 ≤ i < j ≤ d − 1. Let a be the
order of P ∈ E(Fpd), then n = pk mod a. Which is the exact same relation as the one
we got below Lemma 3.10. The only possible difference is that the modulus a might be
different.

However, a divides the order of E(Fpd) and since E(Fp) is supersingular, there is an
explicit formula for the order of that group [46, Exercise 5.15]

#E(Fpd) =

{
pd + 1 if d is odd;

(pd/2 − (−1)d/2)2 if d is even.

Now note that pd + 1 | p2d − 1 = #F∗
p2d and pd/2 − (−1)d/2 | pd − 1 = #F∗

pd
. Which

means that if a point P ∈ E(Fpd) has order a, where E(Fp) is supersingular, then there
is also an element in F∗

p2d of order a. So, Grantham’s test on supersingular elliptic curves
reduces to the usual Grantham’s test in finite fields.

This means that using supersingular curves in our compositeness test is not very
useful, because it is not better than just working in finite fields. However, the strength
of elliptic curves is precisely that you are not restricted to a single group. The downside
of using an elliptic curve with tp 6= 0 is that you can’t combine equations (3.5) and (3.6)
very easily to get an explicit result. But, using our elliptic compositeness test with those
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elliptic curves is still a strong test, since it is at least as strong as Grantham’s test, and
probably even stronger.

It should be noted that using supersingular elliptic curves in compositeness tests has
been done before. Gordon [20] introduced the so-called elliptic pseudoprimes. Given an
integer n and an elliptic curve E defined modulo n such that E is supersingular if n is
prime, the integer n is an elliptic pseudoprime for (E,P ) if P ∈ E and [n+1]P = O. We
can [47] of course extend this by defining n to be an elliptic Carmichael number for E if
n is an elliptic pseudoprime for (E,P ) for all P ∈ E. Examples for E can be found in
Proposition 3.26, but these are not the only ones, as we will see in the next paragraph.

3.4 Non-residue modulo all divisors of n

The goal of this paragraph is to prove the following new result.

Theorem 3.28. Given an integer n, there is an algorithm that either shows that n is
composite or returns an integer a with(

a

n

)
=

(
a

p

)
= −1 for all primes p | n.

If the generalized Riemann hypothesis (GRH) is true, then the algorithm has expected
running time Õ(log(n)3).

We stress that the GRH is only needed for proving the running time, not the cor-
rectness of the algorithm. We will first look at the two main corollaries of this theorem.
The first one is an improvement of Theorem 3.16.

Corollary 3.29. Given positive integers n and m with n odd, there is an algorithm that
either proves that n is composite, or returns a polynomial of degree 2m that is irreducible
modulo all prime divisors of n.

Proof. Suppose that we get an integer a from the algorithm of Theorem 3.28. We will
adapt the first proof of Theorem 3.16 using this a
First suppose that n = 1 mod 4. We can follow the same steps as in the first proof of
Theorem 3.16, but we don’t have to find a non-residue modulo n, we use the integer
a instead. Then Proposition 3.14 gives a polynomial of degree 2m that is irreducible
modulo all p | n.
Now suppose that n = 3 mod 4. This case is slightly more work, since now we need an
integer b with

(
b2+4
n

)
= −1, so we can’t use a directly. But, if we find such b, then we

can try to compute the square root of a(b2 + 4) mod n. If it exists, then(
b2 + 4

p

)
=

(
a

p

)
= −1 for all p | n.

Then by following the rest of the first proof of Theorem 3.16, we get a polynomial of
degree 2m that is irreducible modulo all p | n.
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This gives another big improvement for the test described in Theorem 3.11. Because
it makes it easier to satisfy the assumption that there is a prime divisor p of n such that
we have an element of large order.

The second corollary is also interesting since it can strengthen a lot of existing com-
positeness and primality tests.

Corollary 3.30. Given an integer n, there is an algorithm that either shows that

a) n is composite, or

b) n is prime or has at least 3 (not necessarily distinct) prime divisors.

If the generalized Riemann hypothesis (GRH) is true, then the algorithm has expected
running time Õ(log(n)3).

Proof. Suppose that we get an integer a from the algorithm of Theorem 3.28. We will
prove a slightly stronger result, namely that n has an odd number of prime divisors.
Because if n has 2m prime divisors, then

−1 =

(
a

n

)
= (−1)2m = 1.

So, if n is composite, then n has at least 3 prime divisors.

We could try to use Corollary 3.30 to improve compositeness tests like the Miller-
Rabin test. It might be possible to improve the probability 1/4 from that test to 1/8
using the fact that n has 3 prime factors. But, the complexity of one run of a Miller-
Rabin test is Õ(log(n)2). So combining them is probably not worth it, because we can
do Õ(log(n)) runs of Miller-Rabin in the time that we run the algorithm from Corollary
3.30, which is more than enough.

But, the combination with the ECPP test might be more promising. Because then
we can weaken the assumption in Proposition 3.25 that we need an integer s such that
s > (n1/4 + 1)2 to having an integer s such that s > (n1/6 + 1)2. This is an improvement
of a factor O(n1/6), which is significant, since factoring the integer m in Proposition
3.25 is generally very hard. Furthermore, one round of fast ECPP takes Õ(log(n)3) [32],
so Corollary 3.30 won’t worsen the complexity. However, ECPP is usually implemented
such that it tries to find integers m that are of the form a · q, where a is a small integer
and q a large probable prime, so that we can take s = q. It then proceeds recursively
by proving that q is prime with a different elliptic curve modulo q. With that in mind,
it doesn’t really matter if the bound on s is weakened, since s is already big enough
anyways.

Instead, the combination of Corollary 3.30 with ECPP is better when we try we
search for an m that can be easily factored as b · c, where b consists of small prime
factors and b > (n1/6 +1)2. Because then we could prove the primality of n in one round
of ECPP, instead of the recursive process. But, this would need a more detailed analysis
to see which version is faster, since integers with such a large smooth factor might be a
lot scarcer than the ones of the form a · q from before.
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At first we tried to prove Theorem 3.28 using properties of finite fields such as
Proposition 3.2. Using those properties we could produce an integer a that was very
likely to be a non square modulo all divisors, but we could not find a proof. Fortunately,
we did eventually succeed using a very different approach. Coincidentally, this method
uses supersingular elliptic curves again. Our algorithm uses two existing algorithms.
The first one constructs a supersingular curve and the second one checks if an elliptic
curve is supersingular or not. Using those two algorithms, we will produce an elliptic
curve E that is supersingular modulo all divisors of n. In Proposition 3.26 we already
saw that E : y2 = x3 + x is supersingular over Fp if and only if

(−1
p

)
= −1. Continuing

this idea, we will construct elliptic curves E and certain integers a such that E(Fp) is
supersingular if and only if

(
a
p

)
= −1.

Unfortunately, we won’t explain the two algorithms in much detail, this is because
the theory behind it would take a lot of work to set up. However, we will explain how
the correctness of our algorithm follows from the other two.

The first algorithm is by Bröker [9, Algorithm 2.4] and can be seen as a generalization
of Proposition 3.26. Recall that for an elliptic curve E : y2 = x3 +ax+ b, the j-invariant
j(E) is defined as j(E) = −1728(4a)3/∆E . It can be shown that two elliptic curves
over an algebraically closed field K are isomorphic if and only if they have the same
j-invariant [46, Proposition 1.4b]. The algorithm first finds a j which is a j-invariant of
a supersingular elliptic curve. It accomplishes this by computing a root of the Hilbert
class polynomial PK(x) ∈ Z[x] of a certain quadratic field K. After that it constructs
an elliptic curve E with j-invariant j. The input of the algorithm is an odd prime p and
the output is a supersingular curve E over Fp.

Algorithm 3 Constructing supersingular curves

1: function ConstructSupersingular(p)
2: if p = 3 mod 4 then
3: return E : y2 = x3 + x
4: end if
5: find the smallest prime q such that q = 3 mod 4 and

(−q
p

)
= −1

6: if q = 3 then
7: return E : y2 = x3 + 1
8: end if
9: let K = Q(

√
−q) and compute PK(x)

10: reduce PK(x) mod p and compute a root j ∈ Fp
11: compute a = 27j

4(1728−j) mod p

12: return E : y2 = x3 + ax− a
13: end function

Bröker proves that his algorithm always returns a supersingular curve and that
the expected running time is Õ(log(p)3), assuming the generalized Riemann hypoth-
esis (GRH). The GRH is only used for the bound on the running time, not for the
correctness. In the proof he shows that the elliptic curve in line 12 is supersingular if
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and only if the prime q satisfies
(−q
p

)
= −1. Note that by Proposition 3.26, the elliptic

curve in lines 3 and 7 are supersingular if and only if
(−1
p

)
= −1 and

(−3
p

)
= −1 respec-

tively. We thus see that every elliptic curve returned by Algorithm 3 can be associated
with an integer a such that

(
a
p

)
= −1.

We can use Algorithm 3 in a compositeness test as follows. If we run the algorithm
on an integer n, then either a step fails, showing that n is composite, or it returns an
elliptic curve E. We don’t know yet if E is supersingular modulo prime divisors of n,
because Algorithm 3 is only correct for prime numbers. To circumvent this problem, we
use the following algorithm.

The second algorithm is by Sutherland [48, Algorithm 2]. It takes as input an elliptic
curve E and a prime p > 3 and returns true if E(Fp) is supersingular and false otherwise.

Sutherland proved that the expected running time of his algorithm is Õ(log(p)3).

Algorithm 4 Identifying supersingular curves

1: function CheckSupersingular(E, p)
2: try to factor Φ2(x, j(E)) as (x− j1)(x− j2)(x− j3) in Fp2

3: if Φ2(x, j(E)) can’t be factored like that in Fp2 then
4: return false
5: end if
6: set j′i = j(E) for i = 1, 2, 3
7: compute m = blog2(p)c+ 1
8: for k = 1, . . . ,m do
9: for i = 1, 2, 3 do

10: compute fi(x) = Φ2(x, ji)/(x− j′i) ∈ Fp2 [x]
11: update j′i = ji
12: try to find a root ri of fi(x) in Fp2

13: if fi(x) does not have a root in Fp2 then
14: return false
15: end if
16: update ji = ri.
17: end for
18: end for
19: return true
20: end function

The algorithm uses the so-called modular polynomials Φl(x, y) ∈ Z[x, y] for positive
integers l. It can be shown that [48] if j1 and j2 are roots of a Φl(x, y) mod p, then
there are elliptic curves E1, E2 over Fp such that ji = j(Ei) for i = 1, 2 and #E1(Fp) =
#E2(Fp). So, E1(Fp) is supersingular if and only if E2(Fp) is supersingular. The
algorithm tries to find a “long” chain of roots of Φ2(x, y), starting with x = j(E), where
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E is the elliptic curve of the input and

Φ2(x, y) = x3 + y3 − x2y2 + 1488(x2y + xy2)− 162000(x2 + y2)

+ 40773375xy + 8748000000(x+ y)− 157464000000000.

Note that this polynomial is symmetric. Sutherland showed that such a long chain exists
if and only if E(Fp) is supersingular. He also showed that his algorithm finds the longest
chain, hence we can prove or disprove that E is supersingular.

This algorithm is again only correct for prime numbers p, but we will now show that
we can adapt both Algorithm 3 and 4 to be useful in a compositeness test setting.

We first consider Algorithm 3. We have to slightly change this algorithm to “work”
for general integers n. After line 7, we also check that −1 really is a square mod n. If
that process fails, then n is composite. We do this to ensure that all prime divisors of
n are 1 mod 4. Furthermore, instead of just returning the elliptic curve, we also return
the corresponding integer a such that

(
a
n

)
= −1. So, in line 3 of Algorithm 3 we have

a = −1, in line 7 we have a = −3 and in line 12 we have a = −q. We call this algorithm
the adapted Algorithm 3.

Now we consider Algorithm 4. We also have to alter this algorithm a little bit, since
it uses finite fields. We can’t create “Fn2”, because we don’t know if n is prime or not.

However, we can create Z/nZ[x]/(g(x)), where g has degree 2 and
(∆(g)

n

)
= −1, and

try to find roots of Φ2(x, y) in that ring. If the algorithm fails, then we know that n
is composite, else we continue with the algorithm. We call this algorithm the adapted
Algorithm 4.

We can now state the algorithm where Theorem 3.28 refers to. The input is an
integer n > 3, the algorithm either proves that n is composite or returns an integer a
such that

(
a
n

)
=
(
a
p

)
= −1 for all primes p | n.

Algorithm 5 Non-residue modulo all divisors

1: function FindGlobalNonresidue(n)
2: if gcd(n, 6) > 1 then
3: return n is composite
4: end if
5: run the adapted Algorithm 3 with input n and let (E, a) be the output
6: if the process fails then
7: return n is composite
8: end if
9: run the adapted Algorithm 4 with input (E,n) and let b be the output

10: if the process fails or b = false then
11: return n is composite
12: end if
13: return a
14: end function
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Proof of Theorem 3.28. We claim that Algorithm 5 has the properties stated in the
theorem.
Since both Algorithm 3 and 4 are correct when when the input is prime, we know that
if one of those algorithms fails, then n is composite. So, assume that neither Algorithm
fails. If b = false, then we also know that n is composite. Since if n is prime, then
Algorithm 3 produces a supersingular curve over Fn, so Algorithm 4 would in that case
return true.
Finally, we have the case that Algorithm 5 reaches line 10, where it returns an integer
a. In this case, we know that all of the roots ji and j′i needed in the adapted Algorithm
4 have been found in the ring R = Z/nZ[x]/(g(x)). Let p be a prime divisor of n. If we
reduce R modulo p, then we either get Fp2 or Fp × Fp. In both cases, we see that the
roots ji and j′i also lie in Fp2 . Then since Algorithm 4 is correct for primes, we know
that E(Fp) is supersingular.
Now, in the paragraph below Algorithm 3, we noted that Bröker proved that the integer
a that the adapted Algorithm 3 returns satisfies

(
a
p

)
= −1 if and only if E(Fp) is

supersingular. Thus we know that
(
a
p

)
= −1. Then since p was an arbitrary prime

divisor of n, we know that
(
a
q

)
= −1 for all prime divisors q of n.

Now we look at its running time. Algorithm 3 and 4 both have expected running time
Õ(log(p)3) for a prime p, assuming GRH. In the adapted versions we fill in an integer n
which might be composite, but then it either aborts earlier or finishes as quickly. We only
added a square root computation in Algorithm 3. We can compute square roots mod n
using the Tonelli-Shanks algorithm [1] in Õ(log(n)2), or the algorithm fails, proving that
n is composite. Hence the total expected running time of Algorithm 5 is Õ(log(n)3),
assuming GRH.
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[38] Rödseth, Ö. J. A note on primality tests for N = h ·2n−1, BIT 34 (1994), 451–454.

[39] Rosser, J. B. and Schoenfield, L. Approximate formulas for some functions of prime
numbers, Ill. J. Math. 6 (1962), 64–94.

[40] Schönhage, A. Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informat-
ica 1 (1971), 139–144 (in German).

[41] Schönhage, A. and Strassen, V. Schnelle Multiplikation großer Zahlen, Computing
7 (1971), 281–292 (in German).

[42] Schoof. R. Elliptic Curves over Finite Fields and the Computation of Square Roots
mod p, Math. Comp. 44 (1985), 483–494.

[43] Seysen, M. A Simplified Quadratic Frobenius Primality Test, Cryptology ePrint
Archive, Report 2005/462, https://eprint.iacr.org/2005/462.pdf.

[44] Shoup, V. Searching for Primitive Roots in Finite Fields, Math. Comp. 58 (1992),
369–380.

[45] Shoup, V. Fast Construction of Irreducible Polynomials over Finite Fields, J. Symb.
Comput. 17.5 (1994), 371–391.

[46] Silverman, J. H. The Arithmetic of Elliptic Curves (2nd ed.), Springer, 2009.

55

http://mrob.com/pub/math/numbers-19.html
http://mrob.com/pub/math/numbers-19.html
https://eprint.iacr.org/2005/462.pdf


[47] Silverman, J. H. Elliptic Carmichael numbers and elliptic Korselt criteria,
arXiv:1108.3830.

[48] Sutherland, A. V. Identifying Supersingular Elliptic Curves, LMS J. Comp. and
Math. 15 (2012), 317–325.

[49] Swan, R. G. Factorization of polynomials over finite fields, Pacific J. Math. 12
(1962), 1099–1106.

[50] Vaskouski, M., Kondratyonokb, N. and Prochorovb, N. Primes in quadratic unique
factorization domains, J. Number Theory 168 (2016), 101–116.

[51] Washington, L. C. Elliptic Curves (2nd ed.), Chapman & Hall/CRC, Boca Raton,
2008.

56

https://arxiv.org/abs/1108.3830

	Introduction
	Matrices
	Matrix Carmichael numbers
	Miller-Rabin in matrix groups
	Lucas-Lehmer in matrix groups

	Finite Field Extensions
	Grantham's test
	Irreducible polynomials modulo divisors of n
	Elliptic curves
	Non-residue modulo all divisors of n

	Bibliography

