
Automatic Sequences:

The effect of local changes on complexity

This research was done as a master thesis for the MFoCS specialisation
at the Radboud University in Nijmegen

Flip van Spaendonck
Master Student

S4343123

Hans Zantema
Supervisor

Wieb Bosma
Second Supervisor

Abstract

We take a look at k-DFAOs, which are Deterministic Finite Automata
with Output with a special property: each k-DFAO represents a k-automatic
sequence a, an infinite sequence in which the i-th element is the output
the automata produces for the k-ary representation of i. Given any k-
automatic sequence a, we define their complexity ||a||k as the size of the
smallest possible k-DFAO representing our sequence and similarly the
reverse complexity ||a||Rk for the right to left representation of k-ary num-
bers.
To be more specific, we look at local changes f to our sequences, that
only change a finite amount of elements, and find an upper bound for the
complexities ||f(a)||k and ||f(a)||Rk , when applied to an arbitrary sequence
a. We then use SAT/SMT solvers to prove that these upper bounds can
not be further improved, thus establishing a lower bound as well. We
also create an algorithm for minimizing any k-DFAO, which will give us
a more efficient way of getting ||a||k than using a SAT/SMT solver. We
also look at translating k-DFAOs to a higher base kp and their respective
effects on complexity.

1

Contents

1 Introduction 3

2 Basic Definitions and Properties 4
2.1 Minimization of DFAOs . 5
2.2 Smaller input languages . 6

3 The effects of local changes in sequences and their effects 8
3.1 Changing the first n+1 elements of arbitrary k-automatic sequences 8
3.2 Changing only a single element an of an arbitrary k-automatic

sequence . 11
3.3 Changing a range [m,n] of elements in an arbitrary k-automatic

sequence . 13
3.4 Combining two arbitrary k-automatic sequences 15
3.5 Optimizing fuse . 17

4 Expressing DFAOs in SMT formulae 18
4.1 Examples of minimal representations of k-automatic sequences

for Theorem 2 . 20
4.2 Examples of (N)k- and (N)Rk -minimal k-DFAOs for Theorem 3 . 21
4.3 Exponential Time Complexity . 22

5 Minimization Algorithms for DFAOs 22
5.1 Finding the minimal k-DFAO in (N)k 26
5.2 Minimization of large construct k-DFAOs 28

6 Translating k-DFAOs to higher bases 30

7 Conclusion and Future Work 31

A Appendix 33

2

1 Introduction

One of the classic questions in automata theory is what the smallest equivalent
automaton of any given automaton is. A very interesting set of automata is
the set of k-DFAOs, DFA’s that parse k-ary representations of natural numbers
and give an output accordingly. An example of a k-DFAO is the automaton
displayed in Figure 1.

q0/0 q1/1

0 0

1

1

Figure 1: An example of a 2-DFAO mapping the natural numbers to either 0
or 1 depending on whether their binary representation contains an odd or even
number of 1’s.

For example, this automaton would map the number 5 (or 101 in binary)
to state q0 which gives 0 as an output, whereas 2 (or 10 in binary) would map
to state q1 giving 1 as an output. Using this we can make an infinite sequence
called a k-automatic sequence where the i-th element is the output the automata
would produce for the k-ary representation of i. The 2-automatic sequence of
the 2-DFAO in Figure 1 would look as follows: thue = 0011120314... (For clarity
the corresponding natural number has been written in subscript).
In this paper we will be looking at the complexity ||a||k, which is the size of the
smallest possible k-DFAO representing the k-automatic sequence a. For exam-
ple ||thue||2 = 2 as no smaller k-DFAO equivalent to the one in Figure 1 exists.
We will also be looking at the reverse ||a||Rk , which is the size of the smallest
possible k-DFAO representing the k-automatic sequence a, for which the DFAO
parses the k-ary representation of natural numbers in reverse direction, from
right to left instead of the usual left to right.
In the research done by Hans Zantema in [4] and its continuation in collabo-
ration with Wieb Bosma in [5], removing the first element of any k-automatic
sequence a or adding a new element at the start increases its respective com-
plexity ||a||k by a factor of k, and by a power of k for the reverse ||a||Rk . Using
a combination of removing and adding new elements we can alter the first n
elements, but this would mean that the new complexity will be much bigger
than the old one.
In this paper, we will show that a local change f that alters the first n elements,
can be done more efficiently than by combining removing and adding elements.
We will even show that the complexity increase of ||f(a)||k and ||f(a)||Rk com-
pared to the original complexity of ||a||k and ||a||Rk is actually independent of
the original complexity of a.

First in Section 2 we give a brief introduction to DFAOs, k-automatic se-

3

quences and k-DFAOs. Then in Section 3 we discuss various local changes f on
k-automatic sequence and their effects on the complexity ||f(a)||k and ||f(a)||Rk
of the respective automata. The local changes that we will take a look at are:
changing the first n + 1 elements, changing only a single element, changing all
elements in a range [m,n] and replacing the first n+1 elements of a k-automatic
sequence a with the elements of a k-automatic sequence b also known as fuse.
In Section 3.5 we discuss a specific case in which we can further reduce the
complexity given for the last local change. In Section 4 we take a look at algo-
rithmically finding the smallest possible k-DFAO representing any k-automatic
sequence using SMT/SATsolvers. In Section 5 we take a look at creating a min-
imization algorithm for DFAOs and k-DFAOs. And in section 6 we take a look
at what happens to the complexity of our k-DFAOs by increasing the size of our
input language. In Section 7 we summarize our findings and discuss questions
that we were unable to answer in this paper.

2 Basic Definitions and Properties

The k-DFAOs and k-automatic sequences discussed in this paper will be ac-
cording to the same definitions as in [5] and [1]. We summarize the definitions
used in our paper, here:

Definition 1. A DFAO D is defined as D = (Q,Σ, δ, q0,Γ, τ), where:

• Q 6= ∅ is the finite set of states,

• Σ is the finite input alphabet,

• δ : Q× Σ→ Q is the transition function,

• q0 ∈ Q is the initial state,

• Γ 6= ∅ is the finite output alphabet,

• τ : Q→ Γ is the output function.

A k-DFAO is a DFAO with the input alphabet Σk = {0, 1, ..., k − 1}.

Definition 2. Given any w = σ1σ2...σn ∈ Σ∗, we write δ((δ(δ(q, σ1), σ2)...), σn)
shorthand as δ(q, σ1σ2...σn).
If w = ε then δ(q, ε) = q.

Definition 3. Given any n ∈ N, we have (n)k, (n)Rk ∈ Σ∗k where (n)k is the
unique k-ary representation of n and (n)Rk is the reverse k-ary representation of
n, e.g. : (6)2 = 110 and (6)R2 = 011

Definition 4. Conversely, given any w ∈ Σ∗k, we have [w]k ∈ N as the number
that the k-ary representation w expresses, and [w]Rk ∈ N as the number that the
reverse k-ary representation w expresses, e.g. : [110]2 = 6 and [011]R2 = 6.

4

Definition 5. Given any infinite sequence a ∈ ΓN, we call this sequence k-
automatic if and only if there exists a k-DFAO D = (Q,Σk, δ, q0,Γ, τ) such that
for all n ∈ N, we have τ(δ(q0, (n)k)) = an.
We refer to the k-DFAO D as the representation of a.

Definition 6. Given any infinite sequence a ∈ ΓN, we call this sequence k-
automatic if and only if there exists a k-DFAO D = (Q,Σk, δ, q0,Γ, τ) such that
for all n ∈ N, we have τ(δ(q0, (n)Rk)) = an.
We refer to this k-DFAO as the reverse representation of a.

Note: each k-DFAO is both the representation of a k-automatic sequence a,
and the reverse representation of a k-automatic sequence a′, with a and only a′

possibly being the same k-automatic sequence.

Definition 7. Given any k-automatic sequence a, we define ||a||k as the number
of states, also referred to as size or complexity of a, of the smallest k-DFAO
representing a.
Given any k-automatic sequence a, we define ||a||Rk as the size of the smallest
k-DFAO being the reverse representation of a.

Definition 8. Given any word w = σ1σ2...σn ∈ Σ∗ and i, j ∈ N with 0 ≤ i ≤
j ≤ n; we define the subword w[i, j] = σi+1σi+2...σj−1σj.
If i = j, we define the subword as w[i, j] = ε.

2.1 Minimization of DFAOs

Definition 9. Given any two DFAOs D = (Q,Σ, δ, q0,Γ, τ) and
D′ = (Q′,Σ, δ′, q′0,Γ, τ

′), D and D′ are considered equivalent if and only if
∀w∈Σ∗ [τ(δ(q0, w)) = τ ′(δ′(q′0, w))].

Definition 10. A DFAO is considered minimal if and only if no smaller equiv-
alent DFAO exists.

Definition 11. Given DFAO D = (Q,Σ, δ, q0,Γ, τ) and D = (Q′,Σ, δ, q0,Γ, τ)
and language L ⊆ Σ∗, D and D′ are considered L-equivalent iff for all w ∈ L
we have τ(δ(q0, w)) = τ ′(δ′(q′0, w)).

Definition 12. Given any DFAO D = (Q,Σ, δ, q0,Γ, τ), and states q, p ∈ Q,
q and p are considered equivalent if and only if for all words w ∈ Σ∗ we have
τ(δ(q, w)) = τ(δ(p, w)).

Two equivalent states p, q are denoted with p ∼ q.
We refer to two states p, q that are not equivalent as ’distinct’, and denote these
as p � q.

Theorem 1. Any two states p, q are equivalent if and only if τ(p) = τ(q) and
for all σ ∈ Σ we have δ(p, σ) ∼ δ(q, σ).

5

Proof (⇒). As p and q are equivalent, we have τ(δ(p, ε)) = τ(p) = τ(q) =
τ(δ(q, ε)). Thus the first half holds; we will prove the second half using contra-
diction. Given that a σ ∈ Σ exists with δ(p, σ) � δ(q, σ), then a word w ∈ Σ∗

exists that differentiates δ(p, σ) and δ(q, σ). However this would also mean that
σw would differentiate p and q, which contradicts the fact that they are equiv-
alent.
Proof (⇐). We will prove that p and q are equivalent using case distinction on
words w ∈ Σ∗:
Case 1: w = ε. We have τ(δ(p, ε)) = τ(p) = τ(q) = τ(δ(q, ε)).
Case 2: w = σw′ with σ ∈ Σ and w′ ∈ Σ∗. Which gives us: τ(δ(p, σw′)) =
τ(δ(δ(p, σ), w′)) = τ(δ(δ(q, σ), w′)) = τ(δ(q, σw′)).
With both sides proven we now also have an inductive definition of state equiv-
alence.

2.2 Smaller input languages

Because we will only be looking at the k-ary representation of natural numbers,
the input language for k-DFAOs is a strict subset of Σ∗k namely:

(N)k = {(n)k|n ∈ N} = Σ∗k \ {0w|w ∈ Σ∗k}
And for the reverse k-ary representation of natural numbers, we have the fol-
lowing:

(N)Rk = {(n)Rk |n ∈ N} = Σ∗k \ {w0|w ∈ Σ∗k}
Because of this smaller input language, a k-DFAO might have an equivalent
smaller automaton, whereas a normal DFAO would not have one and thus be
minimal. An example of this is the following set of DFAOs:

q0/1

q1/0

q2/1

0

1

0, 1

0, 1 q0/1 0, 1

Figure 2: Two equivalent DFAOs unless the limited input language (N)2 is used.
Both automata represent the k-automatic sequence a = 111....

In Figure 2 the left DFAO has a different ouput than the right DFAO for words
starting with 0. However since the input alphabet for k-ary representation of
natural numbers does not contain words starting with a 0, these two k-DFAOs
are considered equivalent in at least some way. Because of this we will now
define a variation of earlier properties for when we are using a smaller input
language L, such as (N)k and (N)Rk .

6

Definition 13. Given any two DFAOs D = (Q,Σ, δ, q0,Γ, τ) and
D′ = (Q′,Σ, δ′, q′0,Γ, τ

′) and language L ⊆ Σ∗, we call D and D′ L-equivalent
if and only if ∀w∈L[τ(δ(q0, w)) = τ ′(δ′(q′0, w))].

Definition 14. A k-DFAO D is considered minimal in (N)k if and only if there
exists no smaller (N)k-equivalent k-DFAO.
And for the reverse, a k-DFAO D is considered minimal in (N)Rk if and only if
there exists no smaller (N)Rk -equivalent k-DFAO.

Definition 15. Given any DFAO D = (Q,Σ, δ, q0,Γ, τ) and language L ⊆ Σ∗,
a state q ∈ Q is considered reachable in L if and only if:

∃w∈Σ∗ [δ(q0, w) = q ∧ (w /∈ L⇒ ∃w′∈Σ∗ [ww
′ ∈ L])]

This tells us that, if q is reachable in L, there should either exist a word
w ∈ L that ends up in q or a word ww′ ∈ L that goes through q. If there are
no words in L that end up in q, but q is still reachable, then we call it hidden
as its output remains hidden. Languages such as (N)Rk can have hidden states,
such as the state q1 as seen in Figure 2.

q0/1

q1/?

q3/1

q2/0

0

1

0

1

0, 1

0, 1

Figure 3: A (N)Rk -minimal k-DFAO of k-automatic sequence a = 110111...
(Note: As no input will ever end at state q1 its output does not matter.)

7

3 The effects of local changes in sequences and
their effects

In this section we will discuss different local changes f on k-automatic sequences
a, these are changes in which only a finite number of elements of the infinite
sequence are changed. We will then construct k-DFAOs representing the new
k-automatic sequences f(a), thus providing an upper-bound for ||f(a)||k and
||f(a)||Rk . We will look at the specific set of transformation on any k-automatic
sequence a, in which the first n elements are possibly altered to different values
of Γ. Throughout this section we will use summations in the shape of Σmax

i=1 k
i for

calculating the size of the new constructed k-DFAOs. We opt to not write these
as their closed formula, as Σmax

i=mink
i more closely represents all words w ∈ Σk

with a character length between min and max.

3.1 Changing the first n+1 elements of arbitrary k-automatic
sequences

Definition 16. Given k-automatic sequence a and xm, ..., xn ∈ Γ and m,n ∈ N
with 0 ≤ m < n, we define the sequence a[m, ..., n 7→ xm, ..., xn] as follows:

a[m, ..., n 7→ xm, ..., xn]i =xi iff m ≤ i ≤ n
ai otherwise

In [5] it was shown that removing the first element or adding an element to
the start of a k-automatic sequence increases the size of the k-DFAO either by
a factor k or to the power of k if we look at its reverse. Altering the first n
elements of a k-automatic sequence using a combination of these two methods,
would be very inefficient. Thus we will use a different method to create a way
smaller resulting k-DFAO, namely:

Theorem 2. Given any k-automatic sequence a we have
||a[0, ..., n 7→ x0, ..., xn]||k ≤ ||a||k + n+ 1.

And ||a[0, ..., n 7→ x0, ..., xn]||Rk ≤ ||a||Rk +
∑blogk(n)c
i=0 ki ≤ ||a||Rk + 1 + d nkk−1e

Proof. For k-automatic sequence a with k-DFAO D = (Q,Σk, δ, q0,Γ, τ),
we define the following k-DFAO D′ = (Q ∪ P,Σk, δ′, p0,Γ, τ

′):

• P = (p0, p1, ..., pn) and Q ∩ P = ∅

• δ′(q, σ) = δ(q, σ) for q ∈ Q
δ′(pi, σ) = pki+σ iff ki+ σ ≤ n
δ′(pi, σ) = δ(q0, (i)kσ) otherwise

• τ ′(q) = τ(q)
τ ′(pi) = xi

The resulting k-DFAO D′ has a size of ||a||k + n + 1. To prove that D′

represents a[0, .., n 7→ x0, .., xn], we will first need to prove the following claim.

8

Given w ∈ Σ∗k. If [w]k ≤ n then δ′(p0, w) = p[w]k , otherwise δ′(p0, w) = δ(q0, w).
Proof. By induction over w ∈ Σ∗k we have:
Base case: w = ε. We have [ε]k = 0 and we can see that δ′(p0, ε) = p0.
Induction step: Given any w ∈ Σ∗k that satisfies our claim, there are two
cases:
Case 1: δ′(p0, w) = p[w]k . δ′(p0, wσ) = δ′(p[w]k , σ).
Case 1a: k[w]k + σ ≤ n. δ′(p0, wσ) = pk[w]k+σ = p[wσ]k

Case 1b: k[w]k + σ > n. δ′(p0, wσ) = δ(q0, ([w]k)kσ) = δ(q0, wσ)
Case 2: δ′(p0, w) = δ(q0, w). δ′(p0, wσ) = δ′(δ(q0, w), σ) = δ(q0, wσ).

Now that we have proven our claim through case distinction and induction,
we can continue proving our original theorem.
Given any i ∈ N, we can make the following case distinction:
Case 1: i ≤ n. τ ′(δ′(p0, (i)k)) = τ ′(pi) = xi.
Case 2: i > n. τ ′(δ′(p0, (i)k)) = τ ′(δ(q0, (i)k)) = τ(δ(q0, (i)k)).
Conclusion: Through case distinction we have proven that D′ represents
a[0, ..., n 7→ x0, ..., xn].
As an example, constructing the k-DFAO of thue[0, 1, 2, 3 7→ x0, x1, x2, x3] would
look as follows:

p0/x0

p1/x1

p2/x2p3/x3

q0/0 q1/1

1

1 0

0
1

01

0 0

1

1

pε/x0

p0/x0 p1/x1

p00/x0 p01/x2 p10/x1 p11/x3

q0/0 q1/1

0
1

0 1 0 1

0

1 0
1 0

1 0

1

0 0

1

1

Figure 4: k-DFAO for thue[0, .., 3 7→ x0, x1, x2, x3] left, and its reverse represen-
tation on the right

Proof for reverse: Given any k-automatic sequence a with reverse k-DFAO
D = (Q,Σk, δ, q0,Γ, τ). We will construct the reverse k-DFAO D′ = (Q ∪
P,Σk, δ

′, pε,Γ, τ
′) as follows:

• P = {pw|w ∈ Σ∗k, [w]Rk ≤ n,w has a character length no longer than that of (n)k}
and P ∩Q = ∅.

9

• Given any σ ∈ Σk, we define δ′ as follows:
δ′(q, σ) = δ(q, σ) for any q ∈ Q.
δ′(pw, σ) = pwσ iff [wσ]Rk ≤ n and wσ is not longer than (n)Rk .
δ′(pw, σ) = δ(q0, wσ) otherwise.

• τ ′(q) = τ(q) for any q ∈ Q.
τ ′(pw) = x[w]Rk

.

Because of the construction of P, we know the resulting k-DFAO will have a

size of ||a||Rk +
∑blogk(n)c
i=0 ki.

We will now prove that the constructed k-DFAO represents a[0, .., n 7→ x0, .., xn].
To do so we will first prove the following claim:
Given any w ∈ Σ∗k, if [w]Rk ≤ n and w is not longer than (n)Rk , then δ′(pε, w) =
pw. Otherwise δ′(pε, w) = δ(q0, w).
We will prove this claim via induction over w ∈ Σ∗k:
Base case: w = ε. This gives us δ′(pε, ε) = pε. We also have [ε]Rk = 0 which is
always smaller than n, thus the condition is satisfied.
Induction step: For the induction step we will make a case distinction on w:
Case 1a: δ′(pε, w) = pw and [wσ]Rk ≤ n and wσ is not longer than (n)Rk . This
will give us δ′(pε, wσ) = δ′(pw, σ) = pwσ. And the condition also holds as we
have [wσ]Rk ≤ n.
Case 1b: δ′(pε, w) = pw but [wσ]Rk > n or wσ is longer than (n)Rk . This
gives us δ′(pε, wσ) = δ′(pw, σ) = δ(q0, wσ). And as by our case’s definition the
condition does not hold.
Case 2: δ′(pε, w) = δ(q0, w) and [w]Rk > n or w is longer than (n)Rk . This gives
us δ′(pε, wσ) = δ′(δ(q0, w), σ) = δ(δ(q0, w)σ) = δ(q0, wσ). And we have either
[wσ]Rk ≥ [w]Rk > n or wσ is longer than w which is longer than (n)k, thus the
condition does not hold.
Conclusion: By induction and case distinction we have proven our claim. We
will now go on to prove that given any i ∈ N, we have τ ′(δ′(pε, (i)

R
k)) = xi if

i ≤ n, and τ ′(δ′(pε, (i)
R
k)) = τ(δ(q0, w)) otherwise. We will do this through case

distinction on i ∈ N:
Case 1: (i)Rk ≤ n. As (i)Rk ≤ n, we have (i)Rk is not longer than (n)Rk . This
gives us τ ′(δ′(pε, (i)

R
k)) = τ ′(p(i)Rk

) = x[(i)Rk]Rk
= xi.

Case 2: (i)Rk > n. This gives us τ ′(δ′(pε, (i)
R
k)) = τ ′(δ(q0, (i)

R
k)) = τ(δ(q0, (i)

R
k)).

Conclusion: The constructed k-DFAO represents the reverse sequence of
a[0, .., n 7→ x0, .., xn].

Earlier in this proof we only showed that P has at most a size of
∑blogk(n)c
i=0 ki.

This bound can also be more precisely written as the following closed formula:
||a||Rk + 1 + d nkk−1e.
Given any arbitrary length m > 0, there are (k− 1)km−1 words in Σmk that are
also in (N)Rk as these are all the words not ending in a 0. This leaves us km−1

words that are not in (N)Rk . Thus given an arbitrary length m > 0, 1
k−1 of all

words in Σmk are not in (N)Rk . This means that for all the states in P , we have
1 state pε representing the emptyword, we have n states representing a word in
(N)Rk . And thus we have d n

k−1e states representing a word not in (N)Rk . The re-

10

sulting size of our automaton is thus ||a||Rk +1+n+d n
k−1e = ||a||Rk +1+d nkk−1e.

3.2 Changing only a single element an of an arbitrary k-
automatic sequence

Definition 17. Given a k-automatic sequence a, n ∈ N and x ∈ Γ; we define
the sequence a[n 7→ x] as follows:

ai[n 7→ x] =x iff i = n

ai otherwise

The sequence a[n 7→ x] can also be expressed as a[0, .., n−1, n 7→ a0, .., an−1, x],
using the previously discussed method would yield a minimizable k-DFAO if
n ≥ 2. Thus we will use a closer approximation of the resulting k-DFAO:

Theorem 3. For any k-automatic sequence a we have ||a[n 7→ x]||k ≤ ||a||k +
blogk(n)c+ 1.
And for the reverse we also have ||a[n 7→ x]||Rk ≤ ||a||Rk + blogk(n)c+ 1

Proof for part 1. For k-automatic sequence a with k-DFAOD = (Q,Σk, δ, q0,Γ, τ),
we define the following k-DFAO D′ = (Q ∪ P,Σk, δ′, p0,Γ, τ

′):

• P = p0, p1, ..., pblogk(n)c and Q ∩ P = ∅

• Given any σ ∈ Σk, we define δ′ as follows:
δ′(q, σ) = δ(q, σ) for q ∈ Q
δ′(pi.σ) = pi+1 iff σ is the i+ 1th character in (n)k
δ′(pi, σ) = δ(q0, (n)k[0, i]σ) otherwise

• τ ′(q) = τ(q) for q ∈ Q
τ ′(pi) = x iff i = blogk(n)c
τ ′(pi) = τ(δ(q0, (n)k[0, i])) otherwise

The resulting k-DFAO D′ has a size of ||a|| + blogk(n)c + 1. To prove that
D′ represents a[n 7→ x], we will first need to prove the following claim.
We claim that, for any w ∈ Σ∗k, if there exists an i ∈ N such that w = (n)k[0, i]
then δ′(p0, w) = pi, otherwise δ′(p0, w) = δ(q0, w).
Proof. Through induction over w ∈ Σ∗, we have:
Base case: w = ε. We find i = 0, we have ε = (n)k[0, 0] and we have
δ′(p0, ε) = p0.
Induction step: Given a w ∈ Σ∗ we have the following two possible cases:
case 1a: w = (n)k[0, i], and σ is the i + 1th character of (n)k. We have
δ′(pi, σ) = pi+1.
case 1b: w = (n)k[0, i], and σ is not the i + 1th character of (n)k. We have
δ′(pi, σ) = δ(q0, (n)k[0, i]σ) = δ(q0, wσ).
case 2: There exists no i such that w = (n)k[0, i]. Thus δ′(p0, w) = δ(q0, w).
Thus δ′(p0, wσ) = δ′(δ(q0, w), σ) = δ(q0, wσ).
Conclusion: Through case distinction we have proven the induction step and

11

thus also through induction we will have proven our claim.
We can now prove that for all w ∈ Σ∗k we have τ ′(δ′(p0, w)) = τ(δ(q0, w)), unless
w = (n)k, in which case τ ′(δ′(p0, w)) = x. We will do so through case distinc-
tion:
Case 1: w = (n)k. Since w = (n)k = (n)k[i, blogk(n)c] we have τ ′(δ′(p0, w)) =
τ ′(pblogk(n)c) = x.
Case 2: w = (n)k[0, i] with i 6= blogk(n)c. τ ′(δ′(p0, w)) = τ ′(pi) = τ(δ(q0, w)).
Case 3: There is no i such that w = (n)k[0, 1]. With the previous claim we
will see that τ ′(δ′(p0, w)) = τ ′(δ(q0, w)) = τ(δ(q0, w)).
Conclusion: We have proven that the constructed k-DFAO D′ has a size of
||a||+ blogk(n)c+ 1. And represents the k-automatic sequence of a[n 7→ x].

A similar proof exists for the reverse, in this we will work from right to left
instead of left to right. Besides that the proof will follow the exact same struc-
ture of our original proof.

Applying the theorem’s method on thue[13 7→ x] will give us the following
k-DFAO:

p0/0 p1/1 p2/0 p3/0 p4/x

q0/0 q1/1

0
0

1

1

1 1 0 1

0
0 1 0

0

1

Figure 5: k-DFAO of thue[13 7→ x]

The k-DFAOs size can be reduced for some examples. An easy example would
be (a[n 7→ x])[n 7→ an] as this actually reduces the number of states in a[n 7→ x],
and brings us back to the original sequence a. Furthermore if we have a[n 7→
x][m 7→ y] in which (m)k is a subword of (n)k, the resulting size is the same as
a[n 7→ x]’s k-DFAO.
But for other k-DFAOs the resulting k-DFAO can not be reduced. For example
the k-automatic sequence thue[n 7→ x] with any x 6= an, will always have the

12

exact complexity as described by our theorem.

3.3 Changing a range [m,n] of elements in an arbitrary
k-automatic sequence

Another potential case exists, where we want to change only a part of the first
n elements of a. If we want to change elements am, .., an to different values
and m and n both have a matching prefix in their k-ary representations (m)k
and (n)k and have the exact same length; we are able to give an even closer
approximation of the resulting k-DFAO, namely:

Theorem 4. Given any k-automatic sequence a and m,n ∈ N. If there exists
a µ, ν ∈ N such that µkν ≤ m ≤ n < (µ + 1)kν , or as we can also see it
∃i∈N, (m)k[0, i] = (µ)k = (n)k[0, i] , then we have:

||a[m, .., n 7→ xm, .., xn]||k ≤ ||a||k+1+blogk(µ)c+
ν∑
i=1

ki = ||a||k+blogk(µ)c+1− kν

1− k

Proof. Given any k-automatic sequence a with k-DFAOD = (Q,Σk, δ, q0,Γ, τ),
we construct the following k-DFAO D′ = (Q ∪ P ∪R,Σk, δ′, p0,Γ, τ

′):

• P = {p0, ..., pdlogk(µ)e} and P ∩Q = ∅.

• R = {rw|0 < [w]k < kν} and R ∩Q = ∅.

• δ′(q, σ) = δ(q, σ) for q ∈ Q
δ′(plogbµc, σ)) = rσ
δ′(pi, σ) = pi+1 if σ is the i+ 1th character in (µ)k
δ′(pi, σ) = δ(q0, (µ)kσ)) otherwise
δ′(rw, σ) = rwσ iff [wσ]k < kν

δ′(rw, σ) = δ(q0, (µ)kwσ) otherwise.

• τ ′(q) = τ(q) for q ∈ Q
τ ′(pi) = τ(δ(q0, (µ)k[0, i]))
τ ′(rw) = xµkν+[w]k iff m ≤ µkν + [w]k ≤ n τ ′(rw) = τ(δ(q0, (µ)kw))

The resulting k-DFAO D′ has a size of ||a||k + 1 + logkbµc+
∑ν
i=1 k

i. To make
our proof easier, we will first prove the following claim:
Given any w ∈ Σ∗k, only one of the following holds:

• δ′(p0, w) = pi if and only if there exists an i such that. w = (µ)k[0, i]

• δ′(p0, w) = ru if and only if there exist a (u) < kν with w = (µ)ku.

• δ′(p0, w) = δ(q0, w) otherwise.

13

We will prove this claim via induction over w ∈ Σ∗k:
Base case: w = ε. We then have δ′(p0, ε) = p0 and ε = µ[0, 0]
Induction step: For the induction step we will make a case distinction on w:
Case 1aa: δ′(p0, w) = pi with w = (µ)k[0, i] with i < logbµc and σ is the i+1th
character . This gives us δ′(p0, wσ) = δ′(pi, σ) = pi+1, and wσ = (µ)k[0, i+ 1].
Case 1ab: δ′(p0, w) = pi with w = (µ)k[0, i] with i < logbµc and σ is not the
i+ 1th character. This gives us δ′(p0, wσ) = δ′(pi, σ) = δ(q0, wσ).
Case 1b: δ′(p0, w) = pblogk(µ)c with w = (µ)k. This gives us δ′(p0, wσ) =
δ′(plogbµc, σ) = rσ and wσ = (µ)kσ.
Case 2a: δ′(p0, w) = ru with w = (µ)ku and [wσ]k < kν . This gives us
δ′(p0, wσ) = δ′(ru, σ) = ruσ and we have wσ = ((µ)ku)σ.
Case 2b: δ′(p0, w) = ru with w = (µ)ku and [wσ]k ≥ kν . This gives us
δ′(p0, wσ) = δ′(ru, σ) = δ(q0, wσ). Since w = (µ)ku there exists no i such that
w = (µ)k[0, i].
Case 3: δ′(p0, w) = δ(q0, w). This will give us δ′(p0, wσ) = δ′(δ(q0, w), σ) =
δ(q0, wσ).
Conclusion: we have now proven our claim through induction and are now
able to finish up the original proof. We will do so using case distinction on
w ∈ Σ∗k corresponding to the three cases in our claim:
Case 1: w = (µ)k[0, i]. This gives us τ ′(δ′(p0, w)) = τ ′(pi) = τ(δ(q0, (µ)k[0, i])) =
τ(δ(q0, w)).
Case 2a: w = (µ)ku where m ≤ µkν + [u]k ≤ n. This gives us τ ′(δ′(p0, w)) =
τ ′(ru) = xµkν+[u]k . And µ+ kν + [u]k = [µu]k = [w]k.
Case 2b: w = (µ)ku where not m ≤ µkν + [u]k ≤ n. τ ′(δ′(p0, w)) = τ ′(ru) =
τ(δ(q0, (µ)kw.
Case 3: w is anything but the possibilities listed above. this means that
m ≤ [w]k ≤ n is not true. Which gives us τ ′(δ′(p0, w)) = τ(δ(q0, w)).
Conclusion: Through case distinction and the usage of our claim we have
shown that D′ represents ||a[m, .., n 7→ xm, .., xn]||k.
If we create the k-DFAO of thue[28, 29, 30, 31 7→ a, b, c, d]as described in our
theorem:

We can construct a version of this for the reverse as well by using the k-DFAO
constructed in Theorem 2 and then merging all untouched branches into the orig-
inal k-DFAO. However if m ≤ kblogk(n)c, there will be no minimizable branches.

14

p0/0 p1/1 p2/0

p3/1

r0/0r1/1

r00/ar01/br10/cr11/d

q0/0 q1/1

1 1

1

1 0

0101

01 0 1 0
1

0 1

0

0

0

0 0

1

1

Figure 6: The k-DFAO of thue[28, 29, 30, 31 7→ a, b, c, d]

3.4 Combining two arbitrary k-automatic sequences

The last local change to k-automatic sequences that we will take a look at is a
variant of a[0, .., n 7→ x0, .., xn] in which x0, .., xn can be seen as the first n+ 1
elements of a k-automatic sequence b, we define this transformation as follows:

Definition 18. Given k-automatic sequences a, b, we define the sequence fuse(b, n, a)
as follows

fuse(b, n, a)i = bi iff i ≤ n
= ai otherwise

Theorem 5. Given any two k-automatic sequences a, b and n = kp− 1 for any
p ∈ N, we have ||fuse(b, n, a)||k ≤ ||a||k + (p+ 1)||a||k||b||k
and ||fuse(b, n, a)||Rk ≤ ||a||Rk + (p+ 1)||a||Rk ||b||Rk .

Proof. For k-automatic sequences a with k-DFAODa = (Qa,Σk, δa, qa0,Γa, τa)
and b with k-DFAO Db = (Qb,Σk, δb, qb0,Γb, τb), we can construct the k-DFAO
D = (Qa ∪ P,Σk, δ, pqb0,0,qa0 ,Γa ∪ Γb, τ) as follows:

15

• P = {pqb,i,qa |i ∈ [0, p], qa ∈ Qa, qb ∈ Qb} and Qa ∩ P = ∅. We will
abbreviate pqb0,0,qa0 as p0.

• δ(q, σ) = δa(q, σ) for q ∈ Qa, σ ∈ Σk
δ(pqb,i,qa , σ) = pδb(qb,σ),i+1,δa(qa,σ) iff i < p− 1
δ(pqb,i,qa , σ) = δa(qa, σ) otherwise

• τ ′(q) = τa(q) for q ∈ Qb.
τ ′(pqb,i,qa) = τb(qb).

The constructed k-DFAO D consists of the original k-DFAO Da, and a (p+1)×
||a|| × ||b|| cube of states, which helps us keep track of which state we would be
at in Da and Db after i steps, respectively.
The constructed k-DFAO D has a size of ||a||k + (p+ 1)||a||k||b||k. And we will
now prove that it does indeed represent fuse(b, n, a).
For any w ∈ Σ∗k if [w]k ≤ n then δ(pqb0,0,qa0 , w) = pqb,i,qa with i being the length
of w, qa = δa(qa0, w) and δb(qb0, w). Otherwise δ(q0, w) = δa(qa0, w).
We will prove this claim through induction over w ∈ Σ∗k.
Base case: w = ε. [ε]k = 0 ≤ n and δ(q0, ε) = q0,qa0,qb0 .
Induction step: Given a σ ∈ Σk and any w for which the claim holds. We
will make a case distinction on w.
Case 1a: δ(p0, w) = pqb,i,qa and i < kp−1. This would give us δ(p0.wσ) =
δ(pqb,i,qa , σ) = pi+1,δ(qa,σ),δ(qb,σ). Since we have qa = δ(qa0, w) and qb =
δ(qb0, w) we also have δa(qa, σ) = δa(qa0, wσ) and δb(qb, σ) = δb(qb0, wσ).
Case 1b: δ(pqb,i,qa , σ) = pi+1,δa(qa,σ),δb(qb,σ) and i ≥ kp−1. This would give us
δ(p0, wσ) = δa(qa, σ) = δa(qa0, wσ) since qa = δa(qa0, w).
Case 2: δ(q0, w) = δa(qa0, w). This would give us δ(q0, wσ) = δ(δa(qa0, w), σ) =
δa(qa0, wσ).
Conclusion: Through case distinction and induction we have proven our claim.
Now with the claim proven we can easily finish up our proof.
For any w ∈ Σ∗k, we have two possibilities:
Case 1: [w]k ≤ n. τ(δ(q0, w)) = τ(qqb,i,qa) = τa(qa) where qa = δa(qa0.w).
Case 2: [w]k > n. τ(δ(q0, w)) = τ(δb(qb0, w)).
Conclusion: The constructed k-DFAO D represents fuse(a, n, b).

16

p0,0,0/0

p0,0,1/0

p1,0,0/1

p1,0,1/1

p0,1,0/0

p0,1,1/0

p1,1,0/1

p1,1,1/1

p0,2,0/0

p0,2,1/0

p1,2,0/1

p1,2,1/1

0

1

0

1

0

1

q0/0

q1/1

0

1

0

1

0

0

11

b0/0 b1/1

0 0

1

1

a0/0 a1/1

1 1

0

0

Figure 7: The k-DFAO of fuse(odd0, 3, thue), unreachable states have been col-
ored gray, and transitions from unreachable states are not drawn. On the right
are the k-DFAO of thue (bottom) and odd0 (top)

The proof for the reverse follows the exact same structure, except that it is
right to left.
The constructed k-DFAO will very likely be minimizable. For example, if Qa =
{qa0, qa1} then P0,qa1,qb0 will never be reachable. There are numerous other
circumstances in which our k-DFAO can be further reduced, which mostly boils
down to states being unreachable, however we will not discuss those here.
It is clear that given any n = kp − 1, instead of using a[0, ..., n 7→ x0, .., n], we
can create an identical k-automatic sequence using fuse(b, n, a) in which b is a
k-automatic sequence that for any i ≤ n has bi = xi. Depending on n, k and
||b||, the upper bound given in Theorem 5 might thus be smaller than the one
given in Theorem 2. Theorem 5 unfortunately only works if n = kp − 1, of
course we would like to be able to make a more generalised solution for any n,
if we combine Theorem 5 and Theorem 4 we can construct a k-DFAO satisfying
cases in which n 6= kp − 1.

3.5 Optimizing fuse

The method used in Theorem 5 can be further improved if at least one of the k-
DFAOs has the structure shown in Figure 8. We will refer to these k-automatic
sequences as cyclic sequences.

Theorem 6. Given any two k-automatic sequences a, b and n = kp− 1. If a is
cyclic, we have ||fuse(b, n, a)||k ≤ ||a||k + blogk(n)c||b||k.

Proof. Because of the specific structure of the k-DFAO of a, we don’t have
to separately keep track of what state in a we would be in after i transitions,
instead we know that we would be in qi mod ||a||.

17

q0/x0 ... qn−1/xn−1

0, .., k 0, .., k

0, .., k

Figure 8: k-DFAO for sequence a with a0 = x0 and ai = xblogk(i)c mod n.

Given the k-DFAO D = (Q∩P,Σk, δ, q0,Γa ∩ Γb, τ) of fuse(b, n, a) as is defined
in Theorem 5. We will show that given any qi,qj ,qb ∈ P if j 6= i mod ||a|| then
qi,qj ,qb is unreachable; we wil do so using induction over i:
Base case: i = 0. We know from construction that the only state reachable
with i = 0 is q0,q0,qb0 .
Induction Step: Given i at which only elements ofDom = {qi,qi mod ||a||k ,qb

|qb ∈
Qb} are reachable. We have the image δ[Dom,Σk] =
{qi+1,δa(qi mod ||a||k ,σ),δb(qb,σ)|qb ∈ Qb, σ ∈ Σk} in which δ(q(i mod ||a||k), σ) =
q(i mod ||a||k)+1 = q(i+1 mod ||a||k). Thus the hypothesis holds.
Conclusion: Through induction we have proven that for each i ≤ blogk(n)c
only states of the form q(i,q(i mod ||a||k),qb) are reachable thus we can reduce the

original k-DFAO D to a size of ||a||k + blogk(n)c||b||k.
Note that a similar proof can be given for the reverse and cases in which b is
cyclic.

4 Expressing DFAOs in SMT formulae

To show that our maximum bounds can not be further optimized, we will want to
find examples of (N)k- or (N)Rk -minimal k-DFAOs of the exact size our theorems
predict their maximum size to be.

We will try to find these examples with the use of a SAT solver. By repre-
senting k-DFAOs and their k-automatic sequences as SAT/SMT formulae, we
can optimize over the variable n, which represents the smallest possible size
of the k-DFAO. The SAT/SMT formula represents the question of whether a
k-DFAO of size n exists with τ(δ(q0, (i)k)) = ai.

Theorem 7. If a SAT/SMT formula representing k-automatic sequence a with
n = x is unsatisfiable, then no k-DFAO exists of size x or smaller representing
a.
If the SAT/SMT formula representing k-automatic sequence a with n = x is
satisfiable, but the the SAT/SMT formula representing k-automatic sequence a
with n = x− 1 is unsatisfiable, than the k-DFAO found with n = x is minimal
and we have ||a||k = x.

We will define our k-DFAO as follows:

18

• We can opt to either represent our states and input alphabet as finite sets,
or as natural numbers.

• The transition function δ will be defined either as:
d : (Q× Σk)→ Q or
d : (N× N)→ N
If we opt to represent our states as natural numbers we will introduce the
following constraint:

A∧
q=0

∧
s∈Σk

(0 ≤ d(q, s) < A)

• The output function τ will be defines either as:
t : Q→ N or
t : N→ N

We can then represent a specific element ai in the k-automatic sequence a by
stringing together i transition functions and one output formula. If we do this
for a large portion of our sequence, we can say with quite some certainty whether
our automata is correct or not. When using natural numbers for representation,a
size of n = 12, and checking only the first 127 elements, our SMTLib formula
would look something like this:

(benchmark smp . txt
: l o g i c QF UFLIA

: ex t ra funs (
(d Int Int Int)
(t Int Int)
)

: formula (and
(>= (d 0 0) 0)
(< (d 0 0) 11)
(>= (d 0 1) 0)
(< (d 0 1) 11)

. . .
(>= (d 10 0) 0)
(< (d 10 0) 11)
(>= (d 10 1) 0)
(< (d 10 1) 11)

(= (t 0) 0)
(= (t (d 0 1)) 1)
(= (t (d (d 0 0) 1)) 1)
(= (t (d (d 0 1) 1)) 0)

. . .

19

(= (t (d (d (d (d (d (d (d 0 1) 0) 1) 1) 1) 1) 1)) 0)
))

4.1 Examples of minimal representations of k-automatic
sequences for Theorem 2

One example of a minimal k-DFAO for sequences of the form a[0, .., n 7→
x0, .., xn] is the k-DFAO of k-automatic sequence thue[0, .., 3 7→ 1, 0, 1, 0]:

p0/1

p1/0

p2/0p3/1

q0/0 q1/1

1

1 0

0

1

0

1

0 0

1

1

Figure 9: k-DFAO for thue[0, .., 3 7→ 1, 0, 0, 1]

However the moment we use n > 3 we will discover that we can not in fact
discover any configuration of x0, .., xn that yields a minimal k-DFAO. This is
because the states in P of which all of the transitions lead to states in Q, mimic
the behaviour of a state in Q except for output. This means that we can only
have |a|k(|Γ| − 1) unique configurations, so for kblogk(n)c > |a|k(|Γ| − 1) our
method as described in Theorem 2 will always create a minimizable k-DFAO.

When looking at k-DFAOs, representing the reverse of k-automatic sequences,
through our SAT-solver, we will see that for n ≥ 2, we will always get a k-DFAO
of a size smaller than what we would get with our construction technique. This
is because we have states such as state p01 in Figure 4 that end on a 0. This
means that there will be no n ∈ N that will end in this state, at most go through
it. Thus the states representing a k-ary word ending on a 0 that does not con-
nect to a state in P can be removed. This means that previous set bound of
||a[0, .., n 7→ x0, .., xn]||Rk ≤ ||a||Rk + d knk−1e can be further reduced.

Besides these states, the same problem exists as we had with the non-reverse,
in which only ||a||Rk (#Γ − 1) unique configurations exist. Thus if kblogk(n)c >
||a||Rk (#Γ− 1) we can also reduce our k-DFAO by merging states.

20

4.2 Examples of (N)k- and (N)Rk -minimal k-DFAOs for The-
orem 3

When we look at examples of (N)k- and (N)Rk -minimal k-DFAOs representing
k-automatic sequences of the form a[n 7→ x], we can find plenty of examples.
We will list a couple of them here:

p0/0 p1/1 p2/0 p3/0 p4/0

q0/0 q1/1

0
0

1

1

1 1 0 1

0
0 1 0

0

1

Figure 10: k-DFAO of thue[13 7→ 0]

q0/0 q1/0

q2/0

q3/0

p0/0 p1/0 p2/1 p3/1

0

1 0

1 0

1

0

1

0

1 01

0

1 0

1

Figure 11: k-DFAO of paper[5 7→ 0]

It is very easy to find examples of both (N)k- and (N)Rk -minimal k-DFAOs
representing k-automatic sequences of the form a[n 7→ x] for varying values of k
and n, with a size complexity we give as maximum in Theorem 3. It is thus safe
to assume, that for nonspecific k-automatic sequences, the given upper bound
cannot be further reduced.

21

q0/0 q1/0

q2/0

q3/1

p0/0 p1/0 p2/0 p3/0

0

1 0

1 0

1

0, 1

0

1

0

1

0, 1

0, 1

Figure 12: k-DFAO of the reverse paper[5 7→ 0] sequence

4.3 Exponential Time Complexity

Since basically every non-trivial k-DFAO as constructed by Theorem 5 is not
minimal in (N)k or (N)Rk , due to the fact that not every state is instantly reached,
we would like to discuss examples of k-DFAOs that while minimizable are still
closer to the smallest possible k-DFAO than the one we would construct using
Theorem 2. Unfortunately a standard SATsolver such as Yices will not be
able to find k-DFAOs of sizes of 12 or more in a timely fashion. This is because
given a k-DFAO D = (Q,Σk, δ, q0,Γ, τ) there exist a total of |Q|2×|Σk| different
configurations for δ alone. This combined with the exponential nature of SAT
solving, leaves us with a lot to be desired. One possibility for this would be using
the construction techniques described in this paper to construct a k-DFAO and
than use a minimization algorithm on the k-DFAO.

5 Minimization Algorithms for DFAOs

Our first step to creating a minimization algorithm for k-DFAOs is to adjust
the standard minimization algorithm for DFAs, to a version for DFAOs. The
algorithm that we will use, will require a DFA to have no unreachable states;
for finding all unreachable states in a DFA, DFAO or k-DFAO representing a
reverse k-automatic sequence we will use the following algorithm:

22

Algorithm 1: An algorithm that finds all reachable states in O(ns)
time, with n being the amount of states and s the size of our input
alphabet.

C ← {q0};
F ← {q0};
while F 6= ∅ do

Remove q from F ;
for σ ∈ Σ do

if δ(q, σ) /∈ C then
C ← C ∪ {δ(q, σ)};
F ← F ∪ {δ(q, σ)};

end

end

end

When this algorithm terminates, C will contain all reachable states in Q,
from this we can easily construct a version without unreachable states. The
minimization algorithm we will use is the Hopcroft algorithm as described in
[2], which does minimization on standard DFAs in O(n log n) time complexity.
The original Hopcroft minimization algorithm looks as follows:

Algorithm 2: The original Hopcroft minimization algorithm

Data: Any DFA D = (Q,Σ, δ, q0, F) of which all states are reachable.
1 P ← {Q,Q \ F} ;
2 W ← P ;
3 while W 6= ∅ do
4 Remove A from W ;
5 for σ ∈ Σ do
6 X ← {q ∈ Q|δ(q, σ) ∈ A};
7 for Y ∈ P with Y ∩X 6= ∅ and Y \X 6= ∅ do
8 Replace Y in P with Y ∩X and Y \X;
9 if Y ∈W then

10 Replace Y in W with Y ∩X and Y \X ;
11 else
12 Add Y ∩X and Y \X to W ;
13 end

14 end

15 end

16 end

This algorithm sorts the states in Q into classes that might be equivalent.
Or to be more precise, two states p, q ∈ Q are only in different classes/partitions
Pi, Pj ∈ P if we already know that they are not equivalent. The algorithm then
splits partitions into a smaller partition by finding a character σ, for which their
transition would lead them to states that are known to be not equivalent. As
the algorithm terminates, each element in P will be an equivalence class, from

23

which we can construct a new DFA of size |P | by creating the transitions as
follows: for states Pi, Pj ∈ P we have δ(Pi, σ) = Pj if and only if there are
states pi ∈ Pi, pj ∈ Pj with δ(pi, σ) = pj . The equivalence relation ∼⊆ Q × Q
on states in DFAs is defined as follows:

p ∼ q ⇐⇒ (p ∈ F ⇔ q ∈ F) ∧ ∀σ∈Σ[δ(p, σ) ∼ δ(q, σ)]

As per Theorem 1, the equivalence on states in DFAOs can also be induc-
tively written as follows:

p ∼ q ⇐⇒ (τ(p) = τ(q)) ∧ ∀σ∈Σ[δ(p, σ) ∼ δ(q, σ)]

We will now alter the Hopcroft algorithm to reflect this new equivalence by
only changing the initialization of P (and thus W) at line 1 to:

P ← {Qγ = {q ∈ Q|τ(q) = γ}|γ ∈ Γ};

To prove that this small change, makes the algorithm work on DFAOs instead
of DFAs, we will first prove the following:

Theorem 8. As algorithm 2 with the alterations to line (1) terminates with
DFAO D = (Q,Σ, δ, q0,Γ, τ)as input, the following properties hold:

• Any state q ∈ Q is an element of exactly one partition Y ∈ P .

• ∀p,p′∈P [p 6= p′ ⇒ ∀q∈p,q′∈p′ [q � q′]]

• Each set Y ∈ P is an equivalence class, with the equivalence relation for
states of a DFAO.

Proof. We will provide the proof of this one item at a time. However first
we will prove a couple of intermediate claims that will help us:
Claim 1: At line 15, the following property holds: ∀Y ∈P,σ∈Σ[∃q∈Y [δ(q, σ) ∈
A]⇒ ∀q∈Y [δ(q, σ) ∈ A]]. This property holds as in each iteration of the for loop
at line 7, if a class Y contains both states that lead to a state in A on σ, namely
Y ∩X, and states that don’t Y \X, then Y gets split up in those two halves.
Claim 2: W ⊆ P at each iteration of the while loop on line 3. On initialisation
this clearly holds, as W = P . On line 4, content is removed from W , however
this does not affect our claim. On line 8, an element Y ∈ P gets split into two
halves, however these two halves are added to W , thus our claim holds.
Item 1: At the start of our algorithm we know that P each state q ∈ Q exactly
once, as each state has exactly one output τ(q) . After that P only gets altered
on line 8, in which a set Y is divided into two halves Y ∩X and Y \X. Which
means that an element previously contained in Y will be in one of these smaller
subsets, and only once a state is either in X or not in X.
Item 2: ∀p,p′∈P [p 6= p′ ⇒ ∀q∈p,q′∈p′ [q � q′]]. At the start of our algorithm we
know that two elements contained in different subsets in P , will not be similar,
as they will have different output. As P gets only altered on line 8, we need to
show that for each element q ∈ Y/capX, and q′ ∈ Y \X, we have q � q′: Since

24

δ(q′, σ) /∈ A and δ(q, σ) ∈ A, they can not be equivalent, thus we have q � q′

and our condition does not only hold on termination, it holds for each iteration
for every loop in our algorithm, both for P , and as per claim 2 also for W .
Item 3: We will prove the last item using inversion and the previous claims.
Since we know that the sets in P are separated by their output upon initial-
ization, if the sets Y ∈ P are not equivalence classes then the following claim
should hold: ∃Y,Y ′∈P [∃q,q′∈Y,σ∈Σ[δ(q, σ) ∈ Y ′ ⇒ δ(q′, σ) /∈ Y ′]]. However as per
claim 1, and the fact that each set Y ∈ P has been in W at some point, we know
that this property can not hold. Thus as per inversion P is a set of equivalence
classes with the equivalence relation on states in a DFAO.

With these properties proven, we will claim that we can generate an equiv-
alent DFAO to the original DFAO, using the algorithm:

Theorem 9. Given any DFAO D = (Q,Σ, δ, q0,Γ, τ)and DFAO
D′ = (P,Σ, δ′, p0,Γ, τ

′) with δ′(Y, σ) = Y ′ iff ∃q∈Y [δ(q, σ) ∈ Y ′], p0 = Y ∈ Q
iff q0 ∈ Y , and τ ′(Y) = γ iff ∃q∈Y [τ(q) = γ] where P is the set of equivalence
classes of DFAO D generated by algorithm 2. D and D′ are equivalent DFAOs.

Note that, because P is the set of equivalence classes, the properties for δ′

and τ ′ hold for each state q ∈ Y if it holds for at least one q′ ∈ Y .
Proof. To prove this theorem, we will first prove this intermediate claim:
For all w ∈ Σ∗ we have δ(q0, w) ∈ δ′(p0, w).
We will prove this claim using induction over w ∈ Σ∗:
Base Case: w = ε. This gives us δ(q0, ε) = q0 ∈ p0 = δ′(p0, ε).
Induction Step: w′ = wσ with our claim holding for w. This gives us
δ′(p0, wσ) = Y with δ(q, σ) ∈ Y and q ∈ δ′(p0, w). As we know δ(q0, w) ∈
δ′(p0, w), and thus δ(q0, wσ) ∈ Y = δ′′(p0, wσ).
Conclusion: With our claim proven, we can show that ∀w∈Σ∗ [τ(δ(q0, w)) =
τ ′(δ′(p0, w))], as δ(q0, w) = q ∈ δ′(p0, w) and thus τ(q) = τ ′(δ′(p0, w)).
Now that we know that our algorithm returns an equivalent DFAO with each
state being distinct, we can prove that the DFAO constructed is actually mini-
mal.

Theorem 10. Given any DFAO D′ = (P,Σ, δ′, p0,Γ, τ
′) as constructed in the-

orem 9, that DFAO is minimal.

Proof. This proof is identical to the proof for DFAs in [3]. However we will
give a short summary of the proof. Given that a smaller equivalent DFAO D
would exist, then there would be an equivalence mapping between the states of
D and D′. However as D′ has more states than D, at least two states in D′

would be equivalent to the same state in D, and thus each other. However as
each state in D′ is distinct, this is impossible.

25

5.1 Finding the minimal k-DFAO in (N)k
Now that we have a minimization algorithm for DFAOs, we can start looking
at using it to minimize k-DFAOs in (N)k.
If we look at DFAOs as a mapping from each word w ∈ Σ∗ to a value in Γ,
then k-DFAOs are mappings from either (N)k or (N)Rk to Γ. Since each word in
(N)k is either the empty word ε or can be constructed as σw with any non-zero
σ ∈ Σk and w ∈ Σ∗k, each k-DFAO also contains k− 1 DFAOs mapping w ∈ Σ∗k
to Γ. If we can find these minimal ’subDFAOs’, then we can at least find a lower
bound for ||a||k.

Theorem 11. Given any k-automatic sequence a, a minimal
DFAO D = (Q,Σk, δ, q0,Γ, τ) and non-zero σ ∈ Σk with τ(δ(q0, σw)) = a[σw]k

for all w ∈ Σ∗k. Then we have ||a||k ≥ |Q|.

Proof. We can prove this easily using contradiction. Given a k-DFAO
D′ = (Q′,Σk,
δ′, q′0,Γ, τ

′) with |Q′| < |Q| , we can construct a DFAO equivalent to D by
taking δ′(q′0, σ) as our initial state instead. However this contradicts that D is
minimal, and thus it is impossible for a smaller k-DFAO to exist.

With this theorem we can construct an algorithm for finding the smallest
(N)k-equivalent k-DFAO of a k-DFAO. One possibility would be to, for every
non-zero σ ∈ Σk, find the smallest minimal DFAO with τ(δ(q0, σw)) = a[σw]k

for all w ∈ Σ∗k. And then put all of these minimal DFAOs together to get a
DFAO equivalent to our k-DFAO, however this is very inefficient. Luckily for
us, for the Hopcroft minimization algorithm, the initial state does not matter,
as all it does is group states together into equivalence classes. First we will
use the following algorithm to remove any unreachable states, and Figure out
if one of the DFAOs contained in our k-DFAO contains the initial state q0:

Algorithm 3: An algorithm that finds all reachable states in O(ns)
time, and detects wether we can revisit q0

C ← {δ(q0, σ)|σ ∈ Σk ∧ σ 6= 0};
F ← {δ(q0, σ)|σ ∈ Σk ∧ σ 6= 0};
while F 6= ∅ do

Remove q from F ;
for σ ∈ Σ do

if δ(q, σ) /∈ C then
C ← C ∪ {δ(q, σ)};
F ← F ∪ {δ(q, σ)};

end

end

end

When this algorithm terminatesk, {q0}∪C will be the collection of all reach-
able states in the k-DFAO. If q0 ∈ C then one of the subDFAOs contains q0

thus the resulting minimal DFAO will also q0. In this case we will just pass C

26

to the Hopcroft algorithm, from which we will generate our k-DFAO minimal
in (N)k.
If q0 /∈ C then q0 is not revisited and thus q0 is not contained in one of the
subDFAOs. We can then pass C to the Hopcroft algorithm, from which we can
generate the minimal subDFAO D. We will now see if there is a state Y0 ∈ P
that would work as our initial state, or if we have to add an initial state to D.
We do this by checking whether a state Y0 ∈ P exists with τ ′(Y0) = τ(q0) and
for all non-zero σ ∈ Σk δ

′(Y0, σ) = Yσ with δ(q0, σ) ∈ Yσ. If no such state can
be found we will add q0 to our minimal DFAO D with τ ′(q0) = a0 and for all
non-zero σ ∈ Σk we have δ′(q0, σ) = P with δ(q0, σ) ∈ P .

Theorem 12. Given any k-DFAO Dinitial = (Q,Σk, δ, q0,Γ, τ), and k-DFAO
Dfinal being the k-DFAO generated as described above. Dfinal is (N)k-equivalent
to Dinitial, and is (N)k-minimal.

Proof. Given Dinitial, we know that D′ = ({q0}∪C, ...) is equivalent, as only
states q ∈ Q with no word w ∈ (N)k with δ(q0, w) = q are removed. We also
know that for any non-zero σ ∈ Σk, Dσ = (C,Σk, δ, δ(q0, σ),Γ, τ) is a subD-
FAO of Dinitial with the property as described in theorem 11. Algorithm 2 for
DFAOs, will then generate the minimal DFAO D′′ = (P,Σk, δ

′′, ,Γ, τ ′′) equiv-
alent to Dσ with Yσ ∈ P as initial state, where δ(q0, σ) ∈ Yσ. This means that
the k-DFAO (N)k-equivalent to Dinitial is at least as large as D′′. We will now
make a case distinction on whether q0 was revisited in the initial k-DFAO.
Case 1. q0 ∈ C. As q0 is revisited, q0 is part of one of the subDFAOs Dσ and
thus also part of one of an equivalence class Y0 ∈ P . This means that D′′ is
(N)k-equivalent to Dinitial with Y0 as initial state. And as per Theorem 11 we
know that no smaller (N)k-equivalent k-DFAO can exist, thus D′′ is minimal in
(N)k.
Case 2. q0 /∈ C. Now, we want to know whether a Y ∈ P exists, with
the following property: τ ′′(Y) = τ(q0) and for each non-zero σ ∈ Σk we have
δ(Y, σ) = Yσ. If it does, D′′ with Y as our initial state, will be (N)k-equivalent
to Dinitial. Since D′′ is our minimal subDFAO, this k-DFAO is also minimal.
If no such Y exists however, we will add a state q′′0 with δ′′(q′′0 , σ) = Yσ for
each non-zero σ ∈ Σ and τ ′′(q′′0) = τ(q0), to D′′ as our initial state. It is clear
that this k-DFAO is (N)k-equivalent to Dinitial, however we will need to show
that it is also minimal in (N)k. As we know that D′′ is already minimal, it will
be sufficient that none of its states would be a suitable initial state, and thus
at least 1 state has to be added to make it (N)k-equivalent to Dinitial. Each
state Yσ is unique, as if another state Y ′σ with the same property woulkd exist,
they would be equivalent, which would mean that D′′ is not minimal. Thus our
initial state needs to have the property that Y should have; as no such state
exists, we will have to add an initial state.

27

5.2 Minimization of large construct k-DFAOs

Now that we have an algorithm to find a (N)k- or (N)Rk -minimal k-DFAO with
a smaller time complexity than our SATsolver, we can try to construct large,
possibly not minimal, k-DFAOs and try to find their respective (N)k- or (N)Rk -
minimal equivalent. Namely we will take a look at a large k-DFAO that we
would construct using our fuse approach as described in theorem 5, and then
run these through our algorithm. When constructing a k-DFAO representing
fuse(thue, 511, paper), we end up with a k-DFAO with 74 states. We already
know this can be reduced, due to the fact that we will always have unreachable
states using the prescribed construction method. Using an implementation of
the algorithm as described in 5.1 in python, we get the minimized k-DFAO
within seconds. The (N)k-minimal k-DFAO as found by our algorithm, has a
size of 39 states, something that would have taken forever using a SAT/SMT-
solver approach.

In Figure 13 we have plotted out two different fusecombinations. In the
upper graph, we see that the complexity of our k-automatic sequence scales
linearly with p for p ≥ 7. When the complexity starts scaling linearly it also
becomes parallel to upper bound given by out theorem, implying that for at
least some combinations the upper bound can only be improved by a constant
value. In the bottom graph, the complexity and upper bound are not parallel,
which means that for some combinations the upper bound can be improved.

28

1 2 3 4 5 6 7 8 9 10 13 15 20

5
10
20
30

50

70

90

110

130

p

n
u

m
b

er
o
f

st
at

es
Complexity of fuse(paper, 2p − 1, thue)

Upper bound given by theorem
Number of reachable states

Minimal size

1 2 3 4 5 6 7 8 9 10 13 15 20

5
10

20

30

50

70

90

p

n
u

m
b

er
of

st
at

es

Complexity of fuse(odd0, 2p − 1, thue)

Upper bound given by theorem
Number of reachable states

Minimal size

Figure 13: Graph containing various complexities of different fuse configurations

29

6 Translating k-DFAOs to higher bases

Definition 19. Given any w ∈ Σ∗kd , with d ∈ N>0, we define w/d as the
shorthand style of writing ([w]kd)k.
We define dw/de as w/d but with the minimum amount of 0’s added to the left,
to make its length divisible by d, e.g. 21 ∈ Σ4/2 = 110, while d21/2e = 0110.
As the difference between w/d and dw/de is only dependent on the left-most
character, they have the following properties:

• ∀w,w′∈Σ∗
kd
, dw/dedw′/de = dww′/de.

• ∀w,w′∈Σ∗
kd
, w 6= ε =⇒ (w/d)dw′/de = (ww′)/d.

• ∀σ∈Σ
kd
, σ 6= 0 =⇒ dσ/de = 0d−|σ/d|(σ/d)

Theorem 13. Given a k-automatic sequence a with k-DFAOs in k, and d ∈
N>0. We have ||a||kd ≤ 1 + ||a||k and we have ||a||Rkd ≥ d||a||

R
k .

Informal proof. We can rewrite every word in Σkd as a word in Σk, that is d
times as large. This means that our new transition function just has to mimic
the d transitions it would normally take. However when we have a word such
as 12 in k = 4, and translate it to |1|10| (with vertical lines added for clarity,)
in k = 2, we can see that the leftmost letter does not always become d times as
large. When we parse a word from left to right, we only have to keep this in
mind for our first transition (see Figure 6). However, when parsing in reverse
direction, we will have to add intermediate states, so we can keep track of how
many 0’s we will have to add, if this is not the last letter.
Proof. Given k-automatic sequence a with k-DFAO D = (Q,Σk, δ, q0,Γ, τ)
with size ||a||k, we cconstruct the kd-DFAO D′ = (s ∪ Q,Σkd , δ′, s,Γ, τ ′) as
follows:

• s /∈ Q.

• δ′(s, σ) = δ(q0, σ/d).
δ′(q, σ) = δ(q, dσ/de).

• τ ′(s) = τ(q0).
τ ′(q) = τ(q).

This DFAO has a size of 1 + ||a||k.
We have τ ′(δ′(s, ε)) = τ(δ(q0, ε)). We will now prove that for all w ∈ Σkd/{ε}
we have δ′(s, w) = δ(q0, w/d) by induction over w:
Base case: w = σ ∈ Σkd . δ′(s, σ) = δ(q0, σ/d).
Induction step: Given any w inΣ+

kd
, we have: δ′(s, wσ) = δ′(δ(q0, w/d), σ)Co =

δ(δ(q0, w/d), dσ/de) = δ(q0, wσ/d)
Conclusion: With our proof for the empty word, and our induction proof for
any w ∈ Σ+

kd
, we can conclude that the constructed k-DFAO D′ represents a.

Proof for Reverse. Given k-automatic sequence a with k-DFAOD = (Q,Σk, δ, q0,Γ, τ)
with size ||a||Rk . We construct the kd-DFAO D′ = (P,Σkd , δ

′, p0,q0 ,Γ, τ
′) as fol-

lows:

30

• P = {pi,q|i ∈ [0, d− 1], q ∈ Q}.

• δ′(pi,q, 0) = p0,δ(q,0d+i).

δ′(pi,q, σ) = pj,q′ where j = d − |σ/d| and q′ = δ(q, σ/d0i). (Note that
00 = ε.)

• τ ′(pi,q) = τ(q).

The resulting k-DFAO has d×|Q| states. We will now show that for any w ∈ Σ∗kd
we have τ ′(δ′(p0,q0 , w) = τ(δ(q0, ([w]kd)k)), by induction over w:
Case ε: w = ε.

τ ′(δ′(p0,q0 , ε) = τ(δ(q0, ([ε]kd)k))

τ ′(δ′(p0,q0 , ε) = τ(δ(q0, ε))

τ ′(p0,q0) = τ(q0)

τ(q0) = τ(q0)

We will claim that: Given any word σw ∈ Σ+
kd

we have δ′(p0,q0 , σw) = pj,q′

for which we have j = d − |σ/d|, and q′ = δ(σw/d). And given any word
0w ∈ Σkd , we have δ′(p0,q0 , 0w) = p0,q′ for which we have q′ = δ(q0, 0

ddw/de).
We will prove this claim through induction over σw ∈ Σ+

kd
:

Base case 0: σw = 0. This gives us δ′(q0,q0 , 0) = p0,q′ with q′ = δ(q0, 0
d) =

δ(q0, 0
ddε/de).

Base case σ: σw = σ, with σ 6= 0. This gives us δ′(p0,q0 , σ) = pj,q′ where
q′ = δ(q0, σ/d).
Induction step 0: We have 0w with δ′(p0,q0 , 0w) = p0,q with q = δ(q0, 0

ddw/de).
We have δ′(p0.q0 , 00w) = p0,q′ with q′ = δ(δ(q0, 0

ddw/de), 0d) = δ(q0, 0
d0ddw/de).

For any other σ 6= 0, we have δ′(p0,q0 , σ0w) = δ(p0,q.σ) = pi,q′ , with i = d−|σ/d|
and q′ = δ(q, σ/d) = δ(q0, (σ/d)0ddw/de) = δ(q0, (σ0w)/d).
Induction step σ: We have σw with δ′(p0,q0 , σw) = pi,q with i = d − |σ/d|,
and q = δ(q0, (σw)/d). This gives us:
δ′(p0,q0 , 0σw) = p0,q′ and q′ = δ(q, 0d+i) = δ(q0, 0

d+i(σw/d)) = δ(q0, 0
dd0w/de).

And for any other σ′ 6= 0, we have δ′(p0,q0 , σ
′σw) = pj,q′ with j = d − |σ′/d|

and q′ = δ(q, (σ/d)0i) = δ(q0, (sigma
′/d)0d−|σ/d|(σw)/d) = δ(q0, (σ

′σw)/d).
Conclusion: Since we have τ ′(pi,q) = τ(q). The constructed DFAO D′ repre-
sents the k-automatic sequence a.

7 Conclusion and Future Work

We have shown that smaller upper bounds exist for finite changes to k-automatic
sequences than the upper bounds we would have by using a combination of re-
moving and adding the left-most element. To be more precise we have found
the following upper bound for changing the first n + 1 elements: ||a[0, .., n 7→
x0, .., xn]||k ≤ ||a||k + 1 + n which is smaller than the bound obtained by re-
peatedly removing and adding elements as per [5]: ||a[0, .., n 7→ x0, .., xn]||k ≤

31

q0/0 q1/1

1 1

0

0

p0,q0/0 p1,q0/0

p0,q1/1 p1,q1/1

0, 3

1

2

0, 3

1

0, 1, 3

2

2

0, 1, 3

s/0

q0/0 q1/1

1, 3 2
1, 2

0, 3 0, 3

Figure 14: A list of different minimal DFAOs; the original 2-DFAO in the
bottom-left, its 4-DFAO counterpart in the top-left, and its reverse 4-DFAO on
the right

k2(n+1)||a||k.
Similarly for the reverse we have shown that changing the first n + 1 elements
of any k-automatic sequence gives us the following upper bound: ||a[0, .., n 7→
x0, .., xn]||Rk ≤ ||a||Rk + 1 + d nkk−1e which is also smaller than the exponential
bound obtained by repeatedly removing and adding elements as per [5].
We have also given further optimized bounds for the instance in which only
the element an of an arbitrary k-automatic sequence a is changed: ||a[n 7→
x]||k ≤ ||a||k + 1 + blogk(n)c and ||a[n 7→ x]||Rk ≤ ||a||Rk + 1 + blogk(n)c for the
reverse. Both for which we have shown examples of thue and paper in which the
given upper bound is the exact complexity of the k-automatic sequence using a
SAT/SMT solver. Which leads us to believe that this upper bound can not be
reduced.
Optimized bounds where also obtained for the instance in which only element
am up to and including an are changed, and for the fuse instance. In which the
first n+1 elements of a are not changed to arbitrary values, but to the first n+1
elements of a different k-automatic sequence b. However we have also shown
that this bound can still be improved upon as was shown with the examples in
Figure 13.
Throughout the paper we have used a SAT/SMT solver to show that automata
can not be further improved upon, however the exponential nature of SAT/SMT
solving has made it unfeasible to do this for large automata. Thus we have given
an algorithm for the minimization of DFAOs and an algorithm that uses this
to minimize k-DFAOs in (N)k in polynomial time. However no such algorithm
was discovered for the minimization of k-DFAOs in (N)Rk . And the question
remains whether a polynomial algorithm exists for DFAOS in (N)Rk or any other
arbitrary sub-language L ⊆ Σ∗k.
In the final section we have given an upper bound for translating known k-

32

DFAOs to kd-DFAOs, showing that using a larger language can in fact cause
the complexity to increase as is shown by the minimal k-DFAOs in Figure 14.

A Appendix

q0/0 q1/1

0 0

1

1

Figure 15: k-DFAO for sequence thue

q0/0 q1/1

1 1

0

0

Figure 16: k-DFAO for sequence odd0

A python implementation of the pseudocode in this paper can be found at:
https://github.com/FlipvanSpaendonck/k-DFAORedux

33

https://github.com/FlipvanSpaendonck/k-DFAORedux

References

[1] Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences: Theory, Ap-
plications, Generalizations. Cambridge University Press, 2003.

[2] John Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. In Zvi Kohavi and Azaria Paz, editors, Theory of Machines and
Computations, pages 189 – 196. Academic Press, 1971.

[3] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., USA, 2006.

[4] Hans Zantema. Complexity of automatic sequences. In Alberto Leporati,
Carlos Mart́ın-Vide, Dana Shapira, and Claudio Zandron, editors, Lan-
guage and Automata Theory and Applications, pages 260–271, Cham, 2020.
Springer International Publishing.

[5] Hans Zantema and Wieb Bosma. Complexity of automatic sequences, await-
ing publishing. Elsevier, 2020.

34

	Introduction
	Basic Definitions and Properties
	Minimization of DFAOs
	Smaller input languages

	The effects of local changes in sequences and their effects
	Changing the first n+1 elements of arbitrary k-automatic sequences
	Changing only a single element an of an arbitrary k-automatic sequence
	Changing a range [m,n] of elements in an arbitrary k-automatic sequence
	Combining two arbitrary k-automatic sequences
	Optimizing fuse

	Expressing DFAOs in SMT formulae
	Examples of minimal representations of k-automatic sequences for Theorem 2
	Examples of (N)k- and (N)kR-minimal k-DFAOs for Theorem 3
	Exponential Time Complexity

	Minimization Algorithms for DFAOs
	Finding the minimal k-DFAO in (N)k
	Minimization of large construct k-DFAOs

	Translating k-DFAOs to higher bases
	Conclusion and Future Work
	Appendix

