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Introduction

Toric geometry lies in the overlap of algebraic geometry and polyhedral geometry.
Algebraic geometry is known as a fascinating but also a technical and ‘hard’ area
of mathematics. It takes some work to develop the technical machinery and the
commutative algebra that is used in algebraic geometry. Polyhedral geometry on the
other hand is more friendly. The combinatorics and discrete geometry is easier to
learn. We have to ‘languages’ at our disposal:

• In algebraic geometry the building blocks are the affine varieties. These can be
glued together to give an algebraic variety.

• In polyhedral geometry the building blocks are cones. A composition of polyhe-
dral cones becomes a fan.

In toric geometry we relate the gluing of varieties with the composition of cones.
Using the more friendly language of polyhedral geometry we can view toric geometry
as an inviting and charming part of algebraic geometry. As noted by Cox [2], “the con-
creteness of toric varieties provides an excellent context for someone encountering
the powerful techniques of modern algebraic geometry for the first time”.

The objects of study in toric geometry are toric varieties. These are geometric
objects defined by combinatorial information. We shall define the affine toric variety
of a cone. When we have a fan consisting of cones, we can define the toric variety of a
fan by gluing together the affine toric varieties of the cones in the fan. We study these
varieties as we would in algebraic geometry.

Toric varieties are called ‘toric’ because they are equipped with a ‘torus action’. By
a torus we mean the linear algebraic group C∗× . . .×C∗, not the torus from topology.
A toric variety contains a torus as an open subset and this defines the torus action.
We study the torus action to understand what the toric variety looks like. At the heart
of this lies the Orbit-Cone correspondence (Section 3.2.2).

What makes toric varieties ‘sexy’ is that they provide an elementary viewpoint
on the basic concepts of algebraic geometry. We can take statements from algebraic
geometry and and look for their counterpart in polyhedral geometry, i.e. we look
for a combinatorial interpretation. These combinatorial statements are surprisingly
simple and this is what makes toric varieties so appealing. The interplay of algebraic
and polyhedral geometry is a recurring theme in this thesis.

iv



Introduction v

Literature. Toric varieties were first studied in the 1970’s, back then they were
referred to as ’toroidal embeddings’ [12]. Our main reference is the recent book by
Cox et. al. from 2011 [2]. This is a comprehensive introduction to the theory. It
assumes only a modest background and “leads to the frontier of this active area of
research”. There is enough literature on toric geometry, there are three earlier texts
which serve as the standard literature in the field.

• The standard book by Fulton [6] introduces toric varieties as an “elementary
way to see many examples and phenomena in algebraic geometry”.

• The book by Ewald [4] leans on the combinatorial side of the theory, it gives a
thorough introduction to polyhedral geometry and builds the theory of toric
varieties from there.

• Oda [13] takes a more analytic approach.

We follow the book by Cox et. al. Most of the examples and proofs presented in
this thesis are taken from [2]. Throughout the thesis I do not mention this for every
example or proof I take from from [2]. I tell a story about toric varieties and work
towards the theory of toric resolutions. In the course of the story I use ideas from the
literature, I do not claim that these are my original ideas.

Motivation for the project. This thesis is part of the research track of the mathemat-
ics’ master program. As a student I am interested in algebraic geometry, I do have to
admit that I tend to be overwhelmed by the powerful machinery that we encounter in
this branch of mathematics, I find the subject both dazzling and fascinating. For my
thesis project I wanted to go deeper into the world of algebraic geometry, at the same
time I felt the need for a more intuitive approach. Discrete mathematics appeals to
me for being a ‘more intuitive’ branch of mathematics. I informed Ben Moonen if he
could point me to an area of algebraic geometry which involves combinatorics. I also
asked if he would be available to supervise this project. Much to my satisfaction Ben
helped me with this and introduced me to toric geometry.

Toric geometry can be treated as a charming invitation to algebraic geometry. It
has given me a deeper understanding of concepts from algebraic geometry. I found
that toric varieties are pleasing to work with.

Organization of the thesis. The thesis gives an introduction to the world of toric
geometry. We focus on the interplay of algo-geometric concepts and their combi-
natorial counterparts. We are especially interested in singularity theory. Finding a
resolution of singularities is difficult problem in algebraic geometry. We work towards
‘toric resolutions’, a method for resolving a singularity in a toric variety, such that the
method lies within the realm of toric geometry. We give a brief overview of the topics
that will be treated. The first chapters develop the basic theory of toric geometry.

(1) We begin by giving a brief overview of the concepts we need from algebraic
geometry and polyhedral geometry;
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(2) We define affine toric varieties. There are several definitions but we are mainly
interested in constructing the affine toric variety of a polyhedral cone;

(3) We define the toric variety of a fan. We describe the relations between fans and
varieties. We describe singularities of a toric variety and we give a description
of a resolution of singularities within toric geometry;

(4) We describe the divisors of toric varieties. We show how to compute intersec-
tion numbers for ‘toric; divisors.

Now that we have set up a theory of toric varieties, we are ready to study toric resolu-
tions.

(5) We give full details on the toric resolution in the case of a surface. We de-
scribe an algorithm that finds an optimal solution to this problem. There is a
surprising relation to continued fractions;

(6) Finally, we discuss toric resolutions in higher dimensions.



1. Preliminaries

Before we get started on toric varieties we recall the definitions we need from algebraic
geometry. We next describe how a semigroup can define an affine variety. Finally we
give an introduction to polyhedral cones.

1.1 Affine varieties

We work in the space Cn equipped with the Zariski topology. We denote V for an
affine variety in Cn and we denote I(V ) ⊂C[x1, . . . , xn] for its defining ideal. We have
the coordinate ring A(V ) =C[x1, . . . , xn]/I(V ). These objects satisfy

V is irreducible � I(V ) is a prime ideal � A(V ) is a domain .

There is a one-to-one correspondence between points in a variety and maximal ideals
of its coordinate ring.

Let V be an irreducible affine variety. Given a non-zero f in A(V ) we denote the
localisaton of V at f :

D( f ) =V f =
{

p ∈V
∣∣ f (p) 6= 0

}
.

This is again an affine variety, its coordinate ring is A(V )[1/ f ]. For example with
V =Cn we have

C[t1, . . . , tn]t1···tn =C[t±1
1 , . . . , t±1

n ],

this is called the ring of Laurent polynomials. This construction is a useful way to get
open affine subvarieties.

Let p ∈V and denote m⊂ A(V ) for the corresponding maximal ideal. We say that
p is a smooth point if dim(m/m2) = dim(V ). A variety is called smooth if all of its
points are smooth.

A ring is called normal if it is integrally closed. This means that it is closed under
the adding of roots of monic polynomials. An irreducible affine variety V is normal
when its coordinate ring A(V ) is normal.

For affine toric varieties we will derive combinatorial expressions to capture these
properties. Normality has a very nice combinatorial interpretation and we will see in
Chapter 3 that this leads to a nice theory of divisors.

Most of the toric varieties we encounter are normal. In particular, a smooth
irreducible affine variety is normal.

8



Chapter 1. Preliminaries 9

1.2 Semigroups

A semigroup is a set S together with an associative operation + and a neutral element
0 ∈ S. This differs from a group in that elements need not have an inverse. A semi-
group is integral if S can be embedded as a subsemigroup in some lattice Zm . We
say S is finitely generated if there exists a finite set A such that S =NA . By an affine
semigroup we mean a finitely generated integral semigroup.

EXAMPLE 1.1. Observe that (C,+) is a semigroup which is not integral. Examples of
affine semigroups are (Nn ,+) =N{e1, . . . ,en} and S = {2,3, . . .} =N{2,3}.

Given a semigroup we get an associated semigroup algebra C[S]. It is generated
by elements χu indexed by elements u ∈ S. The semigroup operation + induces the
multiplication of the χu in C[S], thus χu ·χv =χu+v .

EXAMPLE 1.2. To Nn we associate C[t1, . . . , tn], where we denote ti = χei . To Zn we
associate C[t1, t−1

1 , . . . , tn , t−1
n ], the ring of Laurent polynomials. To {2,3, . . .} ⊂ N we

associate C[x, y]/(x3 − y2)

Observe that a morphism of semigroups induces a homomorphism of associated
C-algebras.

If S is an affine semigroup, then C[S] is a finitely generated domain, for the
embedding S ,→Zm induces an injective homomorphism C[S] ,→C[t±1

1 , . . . , t±1
n ] and

this is a domain. Hence for an affine semigroup we can take the spectrum Spec(C[S])
to get an affine variety.

EXAMPLE 1.3. The affine semigroup (Nn ,+) produces the variety SpecC[t1, . . . , tn] =
Cn . Likewise S = {2,3, . . .} ⊂N defines the affine variety Z (x3 − y2), a zero locus.

Points in affine varieties A point of Spec(C[S]) is given by a C-algebra homomor-
phism f : C[S] →C. This corresponds to a semigroup morphism ϕ : S → (C∗, ·) that
satisfies u 7→ f (χu).

REMARK 1.4. Let p be a point of Spec(C[S]) and letϕ : S → (C∗, ·). Then p corresponds
to ϕ when χu ∈C[S] sends p to ϕ(u).

Given a point p ∈V , we define the corresponding semigroup morphism S →C by
sending m 7→χm(p) .

Given a semigroup morphism ϕ : S →Cwe get an induced surjective map C[S] →
C. The kernel of this map is a maximal ideal and corresponds to a point. This extends
the earlier correspondence of points and maximal ideals:

PROPOSITION 1.5. Let V = Spec(C[S]) be the variety corresponding to the semigroup S.
Then we have bijective correspondence between

• Points p ∈V .
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• Maximal ideals m⊂C[S].

• Semigroup homomorphisms S →C.

1.3 Polyhedral cones

A convex polyhedral cone is a convex subset of a real vector space. The origin will be
the apex of the cone. A finite set of vectors can define a cone.

To see how this works we first take a single vector v . Then we can take the ray, or
halfline, through v defined to be

{
λv

∣∣λ ∈R,λ≥ 0
}
.

(2,1)

Figure 1: The ray in R2 given by (2,1).

A finite set of vectors gives a collection of halflines. By taking the convex hull of
these lines we obtain a cone. Figure 2 below illustrates how four vectors describe a
cone in R3.

Figure 2: A convex hull spanned by four rays.

Let ρ be a ray in Rn . Then ρ is rational if there is a point p ∈ Zn such that ρ is
the ray through p. Given a rational ray ρ consider the set of rational points ρ∩N .
Then there is a smallest lattice point along the ray other than the origin, this is called
the ray generator of ρ. In Figure 1 the ray generator is (2,1). We say that a cone in is
rational if it can be spanned by rational rays. So a rational cone in Rn is defined by
a set of points in Zn . The cones we come across are all assumed to be rational. So
when we work with cones we may actually work with lattice points.

Any lattice is isomorphic to Zn for some n. A lattice N gives the vector space
N

⊗
ZR, which is isomorphic to some Rn . A finite set of points in a lattice defines a
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cone in the corresponding vector space. This cone is rational, and this extends the
idea of a rational cone to vector spaces which have an underlying lattice. We give this
general definition in Definition 1.6.

Throughout this thesis we denote N for a lattice. We denote M for its dual lattice,
which we bring into use later on, and we have the usual pairing 〈,〉 : M ×N →Z. We
also have the dual vector spaces NR = N

⊗
ZR and MR = M

⊗
ZR.

DEFINITION 1.6 (Convex polyhedral cone). For a finite set S in a lattice N we define
the convex polyhedral cone σ= Cone(S) = {∑

u∈S λuu
∣∣λu ≥ 0

}⊂ NR.

The dimension of a cone σ is the dimension of Span(σ), the smallest vector space
containing the cone.

EXAMPLE 1.7. Low-dimensional cones make for neat pictures. Figure 3 shows a
2-dimensional cone and Figure 4 shows a 3-dimensional cone.

e1

e2

Figure 3: Cone(e1 +e2,e2)

(1,0,0)

(0,1,0)

(0,0,1)

(1,1,−1)

Figure 4: Cone(e1,e2,e3,e1 +e2 −e3)

DEFINITION 1.8 (Dual cone). Given a polyhedral cone σ⊂ NR we have the dual cone

σ∨ = {
m ∈ MR

∣∣ 〈u,m〉 ≥ 0 for all u ∈σ}⊂ MR,

so the dual cone sits inside the dual vector space. The dual of a convex polyhedral
cone is also a convex polyhedral cone and we have (σ∨)∨ =σ.
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EXAMPLE 1.9. For a cone in R2 its dual is also a cone in R2, as you can see in Figure 5
below.

e1

e2

Figure 5: The cone from Figure 3 and its dual Cone(e1,e2 −e1)

The dual of the cone in Figure 4 is also a cone in R3, namely Cone(e1,e2,e3 +
e1,e3 +e2). It is shown in in Figure 6.

e1

e2

e3

e1 +e2 −e3

e1

e2

e1 +e3

e2 +e3

Figure 6: The cone from Figure 4 and its dual Cone(e1,e2,e3 +e1,e3 +e2).

REMARK 1.10. When σ is a cone of maximum dimension, the dual cone σ∨ is also a
cone of maximum dimension.

Faces. We will now discuss what it means for a cone to have faces. The cone in
Figure 4 clearly has four 2-dimensional faces. Such a 2-dimensional face itself has
two faces, namely the boundary rays. These rays are also faces of the 3-dimensional
cone. Faces are described using hyperplanes. Let Hm denote the hyperplane given by
a dual lattice point m ∈ M :

Hm = {
v ∈ NR

∣∣ 〈v,m〉 = 0
}

We get the closed half-space:

H+
m = {

v ∈ NR

∣∣ 〈v,m〉 ≥ 0
}
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A hyperplane Hm ⊂ NR supports a cone σ⊂ NR if H+
m fully contains σ, we then

call H+
m a supporting half-space. Note that Hm supports σ if and only if m ∈σ∨. For

example, in Figure 4 we see that the hyperplanes defined by the origin, e1 and e1 +
e2 +e3 ∈ M are all supporting hyperplanes, while He3 is not as e3 ∉σ∨. Furthermore,
we can describe every polyhedral cone σ ⊂ NR as an intersection of finitely many
closed half-spaces. If m1, . . . ,ms generate σ∨, then it is easy to check that

σ= H+
m1

∩ . . .∩H+
ms

.

For example, taking the generators of the dual cone in Figure 6 we get

σ= H+
e1
∩H+

e2
∩H+

e3+e1
∩H+

e3+e2
.

DEFINITION 1.11 (Face). A face of a cone is the intersection of the cone with a sup-
porting hyperplane. We use the notation τ≺σ when τ is a face of σ.

A cone is a face of itself, it is the intersection with H0. An edge of a cone σ is a face
of dimension 1, so an edge is a ray contained in σ which is also face of σ. A facet of a
cone is a face of codimension 1. For example, the cone in Figure 4 has 10 faces: the
cone itself, four facets, four edges and the origin.

We can also give an algebraic description of when a convex subset of a cone is a
face.

PROPOSITION 1.12. Let σ⊂ NR be a cone and let τ⊂σ be a convex subset. Then τ is a
face if and only if whenever u, v ∈σ satisfy u + v ∈ τ then both u ∈ τ and v ∈ τ.

Proof. For a proof we refer to [2, Lemma 1.2.7].

For a polyhedral cone σ and its dual cone σ∨ we can relate their faces. Given a
face τ¹σ⊂ NR, we define

τ⊥ = {
m ∈ MR

∣∣ 〈m,u〉 = 0 for all u ∈ τ}
τ∗ = {

m ∈σ∨ ∣∣ 〈m,u〉 = 0 for all u ∈ τ}
=σ∨∩τ⊥.

We call τ∗ the dual face of τ because of the following proposition.

PROPOSITION 1.13. Let σ be a cone and σ∨ its dual. we can relate the faces. The map
τ 7→ τ∗ is an order-reversing bijection between the faces of σ and the faces of σ∨.

Proof. For a proof we refer to [2, Prop. 1.2.10].

Strongly convex cone. A convex polyhedral cone σ is called strongly convex if {0} is
a face of σ, or equivalently, if σ∩ (−σ) = {0} so σ does not contain any line through
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the origin. A strongly convex rational cone is always generated by the ray generators
of its edges.

From now on we simply write cone instead of strongly convex rational polyhedral
cone.

The variety of a cone. Given a cone σ ⊂ NR we have the dual cone σ∨ ⊂ MR. By
Gordan’s lemma [6, Prop. 1] Sσ = σ∨∩M is finitely generated and hence an affine
semigroup. This way we may obtain an affine variety from a polyhedral cone, we refer
to it as the variety Uσ = Spec(C[Sσ]).

EXAMPLE 1.14. Looking back at the cone from Figure 5 we see that Sσ = σ∨∩M is
generated by e1 and e2 −e1. Writing x =χe1 and y =χe2 we obtain C[Sσ] =C[x, x−1 y].
Taking the spectrum we get Uσ =C2.



2. Affine toric varieties

In the Introduction we mentioned the origin of the name toric variety. A torus is a
particular linear algebraic group. A toric variety contains a torus as an open subset
and is equipped with a torus action. We now make this precise.

DEFINITION 2.1. A linear algebraic group T is a torus if it is isomorphic to some (C∗)n .
The torus T inherits the action of (C∗)n on itself. This action on (C∗)n is given by
pointwise multiplication.

DEFINITION 2.2 (Affine toric variety). An irreducible affine variety U ⊂Cn is toric if it
contains a torus T ' (C∗)n as Zariski open subset such that the action of T on itself
extends to an algebraic action of T on U .

EXAMPLE 2.3. Clearly (C∗)n itself is toric, as well as Cn . Also V =Z (x3 − y2) is toric,
with torus embedding C∗ ,→ V given by t 7→ (t 2, t 3). The torus action of C∗ on V is
given by t · (u, v) 7→ (t 2u, t 3v).

EXAMPLE 2.4. For a slightly bigger example, consider Ĉd , the rational normal cone of
degree d . This is the image of the map Φ : C2 →Cd+1 given by

(s, t ) 7→ (s, st , . . . , st d ).

The torus action of (C∗)2 on C2 carries over to Ĉd .

2.1 Constructing affine toric varieties

We now go through the several ways for an affine toric variety to arise. The construc-
tion we will come back to most defines the variety corresponding to a cone.

The toric variety of a cone. We have seen how to get an affine variety Uσ from a
(strongly convex rational polyhedral) cone σ. This is in fact a toric variety. Let n
denote the rank of the lattice ZSσ. Then there is a torus T ' (C∗)n acting on Uσ.

DEFINITION 2.5 (The torus corresponding to a lattice). For a lattice N 'Zn we get a
torus TN ' (C∗)n . So the rank of the lattice equals the dimension of the torus.

TN = N ⊗ZC∗ ' HomZ

(
M ,C∗)

(2.1.1)

REMARK 2.6. When we view {0} as a cone in NR, the affine semigroup S{0} = M pro-
duces the variety Spec(C[M ]) = HomZ (M ,C∗). This gives a description of the torus
as the variety corresponding to a cone

TN =U{0}.

15



Chapter 2. Affine toric varieties 16

REMARK 2.7. For a coneσ⊂ NR the variety Uσ is actually a toric variety and it contains
the torus TN as open subset. As we shall see in Proposition 2.13, the fact that {0} ≺σ
implies that U{0} = TN is indeed an open subset. Let us describe the way in which the
torus acts on Uσ. For t ∈ TN and γ : Sσ→C a point in Uσ we get

t ·γ : Sσ→C, m 7→χm(t )γ(m). (2.1.2)

Further constructions. We’ve seen how affine semigroups, of which the Sσ are
special cases, can produce affine toric varieties. We discuss two more ways for an
affine toric variety to arise.

In general an affine variety in Cn can be defined by an ideal in C[x1, . . . , xn]. An
affine toric variety can be defined by a toric ideal.

DEFINITION 2.8 (Toric ideal). A toric ideal in C[x1, . . . , xn] is an ideal generated by
binomials, meaning polynomials with precisely two non-zero coefficients.

For instance the ideal 〈x3 − y2〉 ⊂C[x, y], occuring in Example 1.3, is a toric ideal.

The last construction for an affine toric variety that we present is via lattice points.
For a finite set of points A = {m1, . . . ,ms } in the dual lattice M we obtain characters
χmi : TN → C∗. These induce a map ΦA : TN → Cs given by t 7→ (

χm1 (t ), . . . ,χms (t )
)
.

We define the affine variety V = YA to be the Zariski closure of im(ΦA ).
We have the following result:

THEOREM 2.9. Let V be an affine variety. The following are equivalent:

(1) V is toric, in the sense of Definition 2.2.

(2) V = Spec(C[S]) for an affine semigroup S.

(3) V =V (I ) for a toric ideal I .

(4) V = YA for a finite set of dual lattice points A .

Proof. For a proof we refer to [2, Theorem 1.1.17].

We provide some examples to exhibit the various ways for a toric variety to arise.

EXAMPLE 2.10. Considerσ= Cone(e2,2e1−e2) in Figure 7. We see that Sσ is generated
by (1,0), (1,1) and (1,2) and we obtain a toric variety with coordinate ring C[Sσ] =
C[x, x y, x y2].

So we have presented Uσ as in (2) from Theorem 2.9. We now describe Uσ in other
ways. (1) We can identify C2 with Uσ via the map (s, t) 7→ (s, st , st 2). In this way the
torus (C∗)2 acts on the variety. (3) The variety can be described by the ideal 〈t v −u2〉
in C[t ,u, v], which is a toric ideal. (4) The dual lattice points (1,0), (1,1) and (1,2),
which generate Sσ, also describe Uσ.
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Figure 7: The cone σ and its dual Cone(e1,e1 +2e2)

EXAMPLE 2.11. We return to the rational normal cone in Example 2.4, which we’ve
seen to be toric in the sense of (1). We defined it as the image ofΦ(s, t ) = (s, st , . . . , st d ).

We again describe Ĉd in other ways. (4) The image of Φ is precisely the affine
toric variety defined by the lattice points (1,0), (1,1), . . . , (1,d). (2) These lattice points
define a cone which is dual to σ= Cone(e2,de1 − e2). So Ĉd = Spec(C[Sσ]). (3) The
toric ideal 〈xz − yd 〉 in C[x, y, z] also defines Ĉd .

Note that the cone from Example 2.10 is the rational normal cone Ĉ2.

REMARK 2.12. Given a toric variety there is no unique cone to which the variety
relates. The cones in Figure 8 both give the toric variety C[x, y, z]/〈xz − y2〉. These
cones are seen to be equal to one another through a change of basis. We define a
map by setting (1,0) 7→ (0,1) and (0,1) 7→ (−1,1), this sends (2,1) 7→ (1,1) and hence
this maps the first cone to the second cone.

Figure 8: The cones Cone(e2,2e1 −e2) and Cone(e2 +e1,e2 −e1)

Faces and varieties. Now that we have established the relation between cones and
varieties, we investigate how the varieties of the faces of a cone relate to each other.

An inclusion of faces τ ⊂ σ gives an inclusion of semigroups Sσ ⊂ Sτ, hence
C[Sσ] ⊂ C[Sτ], which induces a morphism Uτ → Uσ of affine toric varieties. This
morphism satisfies:

PROPOSITION 2.13. The morphism Uτ→Uσ is an open embedding if τ¹σ.

Proof. Let τ ¹ σ be an inclusion of faces and write τ = σ∩ Hm , m ∈ M . Then the
algebra of Uτ is the localisation of the algebra of Uσ at χm :

C[Sτ] =C[Sσ]χm
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Hence Uτ is a principal open subset of Uσ.

If τ¹σ then Uτ is a principal open subset of Uσ. For this reason we define a toric
variety by the dual cone, the ordering of the cones is the same as the ordering on
varieties.

EXAMPLE 2.14. Consider the basic cone σ= Cone(e1,e2), with variety Uσ =C2. We
have the faces ρ1 = Cone(e1), ρ2 = Cone(e2) and the origin. We can describe the faces
with hyperplanes generated by e2, e1 and e1 +e2 respectively, obtaining

C[Sρ1 ] =C[x, y]y =C[x, y, y−1],

as well as C[Sρ2 ] =C[x, x−1, y] and C[S0] =C[x, y, x−1 y−1]. These define the varieties
Uσ =C2, Uρ1 =C∗×C, Uρ2 =C×C∗ and U0 = (C∗)2. All of them are open subvarieties
of C2.

2.2 Properties of affine toric varieties

In the world of toric geometry we have on one side the polyhedral geometry of the
cones and on the other side we have the algebraic geometry of the varieties. In
the present section we exhibit some relations between an affine toric variety and
its defining cone. We wish to translate properties from the language of algebraic
geometry into the language of polyhedral geometry. We begin with normality.

Normality. At the end of section 1.1 we mentioned that most of the toric varieties
we encounter are normal. Normality corresponds to semigroups being saturated.

DEFINITION 2.15 (Saturated). An integral semigroup S in a lattice N is saturated if for
any s ∈ N , whenever a multiple ks, for (k ∈N≥0, lies in S, then s itself already lies in S.

The semigroup {2,3, . . .} ⊂N from Example 1.3 is a semigroup which is not satu-
rated. Given a cone σ⊂ NR the affine semigroup Sσ is saturated. In fact we have the
following result:

PROPOSITION 2.16. Let U be an affine toric variety. Then the following are equivalent.

• U is normal.

• U comes from a saturated affine semigroup

• U is the affine variety of a (strongly convex polyhedral) cone.

Proof. For a proof we refer to [2, Theorem 1.3.5]

The affine semigroup {2,3, . . .} is not saturated and the corresponding affine toric
variety Z (x2 − y3) is not normal. Hence this variety is not the variety of a cone.

Throughout the thesis we concern ourselves with toric varieties coming from
cones, hence the varieties we encounter are all normal.
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Smoothness. As we have seen at the end of Section 1.2, for affine varieties there is a
correspondence between points, maximal ideals and semigroup homomorphisms.

For a cone σ in NR we define a point pσ ∈ Uσ by the semigroup morphism
γσ : Sσ→C, given by

γσ(m) =
{

1 if m ∈σ⊥∩M

0 else
. (2.2.1)

We call pσ, or γσ, the distinguished point of σ.

PROPOSITION 2.17. If σ⊂ NR is a cone of maximum dimension, pσ is the unique fixed
point of the torus action and it is given by the maximal ideal〈

χm ∣∣ m ∈ Sσ \ {0}
〉⊂C[Sσ].

DEFINITION 2.18 (Hilbert basis). Let σ⊂ NR be a cone of maximal dimension. We
define the Hilbert basis

H = {
m ∈ Sσ

∣∣ m is irreducible
}
.

REMARK 2.19. The Hilbert basis is a finite set that generates Sσ. It contains the ray
generators of the edges of σ∨.

The Hilbert basis will play a crucial role in describing the smooth points of an
affine toric variety.

LEMMA 2.20. Consider a cone of maximal dimension σ⊂ NR. Then |H | = dimT (pσ),
where T (p) denotes the tangent space of Uσ at p.

The lemma enables us to check whether the distinguished point is a smooth point,
by only looking at the Hilbert basis rather than computing the actual tangent space.

Proof of the lemma. By definition T (pσ) is dual to m/m2, where m ⊂ A(Uσ) is the
maximal ideal corresponding to the point pσ.

m= {
f ∈C[Sσ]

∣∣ f (pσ) = 0
}

By Remark 1.4 we have the identityχm(pσ) = γσ(m), also, γσ(m) = 0 � m 6= 0. Hence

m= {
χm ∈C[Sσ]

∣∣ m ∈ Sσ \ {0}
}
.

Consider m2, which consists of elements of the form χm+n for m,n ∈ Sσ \ {0},
precisely the reducible elements in Sσ. Hence m/m2 is generated by χm for m ∈
H , the irreducible elements in Sσ. Thus dim(m/m2) = |H | and this proves the
lemma.

We are now ready to give the combinatorial interpretation of smoothness.
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DEFINITION 2.21 (Smooth cone). We say that a cone σ is smooth if it is generated by
(part of) a lattice basis.

THEOREM 2.22. A cone σ is smooth if and only if the variety Uσ is smooth.

Proof. We follow the proof of [2, Theorem 1.3.12] (⇒) We assume that σ is smooth, so
σ=Ne1 + . . .+Ner where e1, . . . ,er is part of a lattice basis e1, . . . ,en . Then Sσ =Ne1 +
. . .+Ner +Zer+1+. . .+Zen . We get the coordinate ringC[Sσ] =C[t1, . . . , tr , t±1

r+1, . . . , t±1
n ]

and this corresponds to the smooth variety Cr × (C∗)n−r .
(⇐) For the other way around we assume that Uσ is smooth. We first deal with

the case when σ has maximal dimension n.
In this case the dual cone σ∨ is strongly convex and Sσ = σ∨∩M has a Hilbert

basis H .
The variety Uσ is smooth in pσ, so by Lemma 2.20 we have |H | = n. Then σ∨ has

at least n edges since dimσ∨ = n by Remark 1.10. Also, σ∨ has at most |H | = n edges
since by Remark 2.19 each edge of σ∨ is an element of H . Hence σ∨ has exactly n
edges thus the same holds true for σ. The ray generators for σ∨ are the elements of
H . This means that ZSσ is generated by the n ray generators of σ∨, and these form a
basis for M . So σ∨ is smooth and hence σ is smooth.

When dimσ= k < n, then consider

Nσ = Span(σ)∩N .

We may split N = Nσ
⊕

N ′ and σ=σ′⊕{0}. It suffices to show that σ′ is smooth in N ′.
Decomposing M = M ′⊕M ′′ dually, we get a the relation Sσ = Sσ′

⊕
M ′′, now if we

take the varieties corresponding to the semigroups we obtain:

Uσ 'Uσ′ ×TN ′′ 'Uσ′ × (C∗)n−k .

Smoothness of Uσ implies that Uσ′ is smooth. Nowσ′ is a cone of maximal dimension
in N ′ and we have reduced to the previous case.

The affine toric varieties given in previous examples are all smooth. Except for
Z (x2 − y3).

Simplicial cones. We finish this section by giving the definition of a simplicial cone.

DEFINITION 2.23 (Simplicial). A cone σ⊂ NR is called simplicial if its minimal gener-
ators are linearly independent over R.

REMARK 2.24. It follows immediately from the definitions that a smooth cone is a
simplicial cone. Also a cone σ⊂ NR is simplicial if the number of edges equals dimσ.

A simplicial cone need not be smooth, see for instance the cone in Figure 7.
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DEFINITION 2.25 (Multiplicity of a cone). For a simplicial cone σ⊂ NR with minimal
generators u1, . . . ,uk we obtain the lattice Nσ = (Ru1 + . . .Ruk )∩N , we denote Lσ for
the sublattice

Lσ =Zu1 + . . .+Zuk ⊂ Nσ.

Then we define the multiplicity mult(σ) to be the index of the sublattice

mult(σ) = [Nσ : Lσ] = |Nσ/Lσ|.

REMARK 2.26. The variety Uσ is smooth when mult(σ) = 1



3. Fans and varieties

By the standard procedure in algebraic geometry, we wish to glue together affine
varieties to get more general varieties. Given a collection of cones in the same vector
space we obtain a collection of affine toric varieties. We can glue them together
depending on how the cones fit together. When two cones σ,σ′ meet in a common
face τ=σ∩σ′, then by Proposition 2.13 the variety Uτ sits inside both Uσ and Uσ′ .
So we can glue the affine varieties together along the common open part Uτ.

3.1 The toric variety of a fan

A collection of cones which we may turn into a variety is what we call a fan.

DEFINITION 3.1. A fan ∆ in NR is a collection of cones in NR such that:

(1) A face of cone in ∆ is itself a cone in ∆.

(2) The intersection of two cones in ∆ is a face of each.

REMARK 3.2. If we combine (1) and (2) then we have that the intersection of two
cones in a fan is again a cone in the fan.

Note that for a cone σ in NR the variety Uσ contains the torus TN . Hence a fan
in NR produces a collection of affine varieties, all of them containing the same torus
TN . We glue together the affine varieties, as described above, we denote X∆ for the
result. Now TN is an open part of X∆ and it is clear that TN acts on X∆. This is how
we obtain the toric variety of a fan. Note that the gluing together of affine varieties in
general gives a pre-variety. In the toric case the result after gluing is separated. Thus
the toric variety of a fan is an abstract variety [2, Theorem 3.1.5].

DEFINITION 3.3. Let ∆ be an n-dimensional fan. Then for j ≤ n the set ∆( j ) ⊂ ∆

denotes the collection of j -dimensional cones in ∆.

REMARK 3.4. Proposition 2.16 tells us that the affine patches are normal. Gluing
together normal varieties gives a normal variety. Hence the toric variety of a fan is
always normal.

A cone σ⊂ NR itself can be interpreted as a fan in NR, namely the cone and all
of its faces. Consider the cone σ from Example 2.14. Viewed as a fan σ contains
ρ1 = Cone(e1), ρ2 = Cone(e2) and the origin. The varieties involved are Uσ = C2,
Uρ1 = C∗×C, Uρ2 = C×C∗ and U0 = (C∗)2. They all sit inside Xσ = C2. In this case
there is no gluing.

22
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EXAMPLE 3.5. The fan ∆ in Figure 9 consists of two cones σ1,σ2, three rays ρ0, ρ1,ρ2

and the origin. Remark 2.13 tells us that Uρ0 is an open subset of Uσ1 and of Uσ2 . The
variety X∆ has two affine patches

Uσ1 ' Spec
(
C[x, y, x−1 y]

)
, Uσ2 ' Spec

(
C[x, y, x y−1]

)
.

The patches are glued along the common open part Uρ0 = Spec
(
C[x, y, x−1 y, x y−1]

)
.

Note that σ1, σ2 and ρ are generated by (part of) a lattice basis so they are smooth
cones. The patches are copies of C2 and they are glued along C×C∗. In the next
section we describe how X∆ is the blowing-up of C2 at the origin.

σ2

σ1

ρ1

ρ2 ρ0

Figure 9: The fan ∆.

EXAMPLE 3.6. The Hirzebruch surface Hr , for r ∈N, is the toric variety given by the
the fan in Figure 10. The fan has minimal generators

u1 = e2, u2 = e1, u3 =−e2, u4 =−e1 + r e2.

u4

u1

u2
u3

Figure 10: The fan of the Hirzebruch surface Hr .

The four cones in the fan are all smooth and we have the affine patches

Uσ1 ' Spec
(
C[x, y]

)
Uσ2 ' Spec

(
C[x, y−1]

)
Uσ3 ' Spec

(
C[x−1, x−r y]

)
Uσ4 ' Spec

(
C[x, y, x−1 y]

)
,
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neighbouring patches Uσi , Uσi+1 are glued together via Cone(ui+1) 'C×C∗.

EXAMPLE 3.7. Consider the fan in Figure 11, this contains the origin and two rays
spanned by e1 and −e1. This defines the toric variety P1. The rays define two copies
of C, which are the two charts of P1, they are glued along U0 =C∗. The gluing data is
given by x 7→ x−1.

Figure 11: The fan corresponding to P1.

EXAMPLE 3.8. Consider the fan in Figure 12. The fan has minimal generators ±e1,±e2.
There are four cones which span the quarters of the plane. Each of these represents
a copy of C2. Two neighbouring copies are glued together via C×C∗, just like in the
previous example. This way we obtain P1 ×P1 as a toric variety.

Figure 12: The fan of P1 ×P1.

The variety P1 ×P1 is an example of a Hirzebruch surface. When r = 0 we get
the fan from Figure 12, so H0 =P1 ×P1. We return to Hirzebruch surfaces when we
classify smooth toric surfaces in Chapter 5.

3.2 Relations between the fan and the variety

A fan ∆ is called smooth if all cones in ∆ are smooth. Theorem 2.22 holds for fans as
well:

PROPOSITION 3.9. The variety X∆ is nonsingular if and only if the ∆ is a smooth fan.

3.2.1 Toric morphisms

We have described what it means for a variety to be toric. We now describe what it
means for a morphism between toric varieties to be a toric morphism. This can be
expressed on the level of the varieties as well as on the level of the fans defining the
varieties.
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DEFINITION 3.10. Let N1, N2 be lattices with fans ∆i in (Ni )R. A map f : N1 → N2 is
compatible with the fans if for every cone σ1 ∈∆1 there is a cone σ2 ∈∆2 such that
f (σ1) ⊆σ2.

DEFINITION 3.11 (Toric morphism). Let X∆1 , X∆2 be toric varieties with fans ∆i in
(Ni )R. A morphism ϕ : X∆1 → X∆2 is said to be a toric morphism if ϕ maps the torus
TN1 ⊂ X∆1 into TN2 ⊂ X∆2 and the induced map TN1 → TN2 is a group homomor-
phism.

We can relate compatible maps to toric morphisms in the following way.

THEOREM 3.12. Let N1, N2 be lattices with fans ∆i in (Ni )R.
Let f : N1 → N2 be a linear map of lattices that is compatible with∆1 and∆2. Then

there is a toric morphism ϕ : X∆1 → X∆2 such that ϕ|TN1
is the map

f ⊗1: N1 ⊗ZC∗ → N2 ⊗ZC∗.

Conversely, let ϕ : X∆1 → X∆2 be a toric morphism, then ϕ induces a linear map
f : N1 → N2 that is compatible with ∆1 and ∆2.

Proof. For a proof we refer to [2, Theorem 3.3.4].

DEFINITION 3.13 (Complete). A variety V is called complete if for every variety X the
projection morphism V ×X → X is a closed map.

It turns out that you can easily tell when a toric variety is complete. This relies on
the properness criterion for toric morphisms.

THEOREM 3.14 (Properness criterion). Let ϕ : X∆ → X∆′ be a toric morphism corre-
sponding to a linear map f : N → N ′ that is compatible with fans ∆⊂ NR and ∆′ ⊂ N ′

R
.

Then

ϕ is a proper morphism � f −1(|∆′|) = |∆|,

where |∆| denotes the support of the fan.

Proof. For a proof we refer to [2, Thm. 3.4.11]

As a consequence we get:

COROLLARY 3.15. A toric variety X∆ is complete if and only if the support of the fan ∆
is the whole vector space, i.e.,

⋃
σ∈∆σ= NR.

For example, the fans of P1 and P1 ×P1, which are complete varieties, cover the
whole of R1 and R2, respectively.
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3.2.2 Orbit-cone correspondence

In the previous chapter we mentioned how the torus acts on a toric variety. As always
when working with a group action we may view the variety as a union of its orbits.
For the toric variety of a fan it turns out that each cone σ in the fan determines an
orbit O(σ). We set out to show how we can obtain the orbit structure of a toric variety
from its cone(s), this is called the orbit-cone correspondence.

EXAMPLE 3.16. Consider the basic cone σ= Cone(e1,e2), with variety Uσ =C2. It con-
tains (C∗)2 as torus. The torus action is simply given by (t1, t2) · (x1, x2) = (t1x1, t2x2).
There are four orbits, generated by the elements (0,0), (0,1) , (1,0) and (1,1). We may
relate these 4 orbits to the 4 cones. Observe that (0,0) is a fixed point and that it is the
distinguished point of σ. Likewise we relate the orbits of (0,1) and (1,0) to the rays ρ1

and ρ2. Finally we relate (C∗)2, the orbit of (1,1), to the origin.

Each cone σ ∈ ∆ has a distinguished point γσ ∈ Uσ ⊂ X∆, as defined in (2.2.1).
Recall how the torus acts on the semigroup morphisms, described in (2.1.2). This
gives an orbit

TN ·γσ = {t ·γσ
∣∣ t ∈ TN }.

We describe this orbit in the following lemma.

LEMMA 3.17. Let ∆ be a fan in NR. Given a cone σ in ∆, we can define a TN -orbit in
X∆ by

O(σ) = {
γ : Sσ→C

∣∣ γ(m) 6= 0 � m ∈σ⊥∩M
}
.

This is the orbit of the distinguished point γσ under TN .

REMARK 3.18. Before we prove Lemma 3.17, we note that{
γ : Sσ→C

∣∣ γ(m) 6= 0 � m ∈σ⊥∩M
}' HomZ(σ⊥∩M ,C∗).

We have that M(σ) =σ⊥∩M is a sublattice of M , however this is not in general
true for σ∩N . We can look at the subgroup Nσ = Span(σ)∩N and we get a quotient
lattice N (σ) = N /Nσ. The lattices N (σ) and M(σ) are dual to each other hence by
(2.1.1) we see:

O(σ) ' HomZ(M(σ),C∗) ' TN (σ).

The orbit O(σ) is the torus corresponding to the quotient lattice N (σ).

Proof of Lemma 3.17. By definition of the distinguished point we see γσ ∈O(σ) and
it is clear that O(σ) is invariant under TN . We show that TN acts transitively on O(σ),
this means that O(σ) is the orbit of γσ. By Remark 3.18 we have that O(σ) is the torus
TN (σ) of the quotient lattice N (σ). The torus TN (σ) is a quotient of TN itself via the
surjection

TN ' N ⊗ZC∗ → N (σ)⊗ZC∗ ' TN (σ),

so TN acts transitively on O(σ) ' TN (σ).
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We have seen how a cone σ in ∆ defines an orbit O(σ) in X∆. Now we are ready to
formulate the orbit-cone correspondence.

PROPOSITION 3.19. Let ∆ be a fan in NR defining the toric variety X∆. Then:

(1) There is a bijective correspondence between cones in ∆ and TN -orbits in X∆,
given by σ↔O(σ).

(2) For each cone σ, dimO(σ) = n −dimσ, where n = dim NR.

(3) The affine variety Uσ is the union of orbits

Uσ = ⋃
τ¹σ

O(τ).

Proof. (1) The injectivity of σ 7→O(σ) is immediate from the definition of O(σ). It is a
bijection by the following claim: Given a torus orbit O there exists a smallest cone σ
such that O ⊂Uσ. This cone satisfies O(σ) =O .
Proof of the claim. The variety X∆ is covered by open subsets Uσ. For two cones
σ1,σ2 we have Uσ1 ∩Uσ2 =Uσ1∩σ2 , hence there is a unique smallest affine patch Uσ

containing O . Take γ ∈O . Our aim is to show that γ ∈O(σ), then we may conclude
that O and O(σ) are the same orbit. Consider the set γ−1(C∗) ⊂ Sσ. For u, v ∈ Sσ
we have γ(u + v) = γ(u) ·γ(v). So u + v ∈ γ−1(C∗) implies u, v ∈ γ−1(C∗), hence by
Proposition 1.12 γ−1(C∗) is a face of σ∨. By Proposition 1.13 we can find a face τ≺σ
such that

γ−1(C∗) =σ∨∩τ⊥∩M .

We see that γ(m) = 0 for m ∉ τ⊥, hence γ can be identified with a semigroup homo-
morphism γ : τ∨∩M →C. Now γ ∈Uτ implies O ⊂Uτ and hence τ=σ by minimality
of σ. We have γ(m) 6= 0 � m ∈σ⊥ and we conclude γ ∈O(σ).

(2) The lattice N (σ) = N /(Span(σ)∩N ) has rank n−dimσ. As seen in Lemma 3.17
this lattice has O(σ) as a torus. Hence dimO(σ) = n −dimσ.

(3) As a variety Uσ is a union of orbits. For a face τ¹σ we get O(τ) ⊂Uτ ⊆Uσ. If
we now take an orbit O in Uσ then by part (1) this is O(τ) for the minimal τ such that
O ⊂Uτ. Then τ¹σ since σ is a cone such that O ⊂Uσ.

REMARK 3.20. Note that every fan contains the origin as a cone. This corresponds to
the orbit O(0) = TN . Since the origin does not have any faces, we get U{0} =O({0}) =
TN .

EXAMPLE 3.21. Reconsider the cone σ from Example 3. Viewed as a fan we have
σ, two rays ρ1,ρ2 and the origin. Then σ corresponds to pσ, the fixed point of the
torus action. The rays give 1-dimensional subvarieties of the form C×C∗. The origin
corresponds to TN ' (C∗)2.

EXAMPLE 3.22. The variety P1 ×P1 corresponds to the fan given in Figure 12. The fan
has nine cones, four maximal cones, four rays and the origin.
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The torus (C∗)2 acts on P1 ×P1 by (s, t) · ((X : Y ), (Z : W )
) = (

(sX : Y ), (t Z : W )
)

There are nine torus orbits:

• four fixed points of the form
(
(0 : 1), (1 : 0)

)
,

• four 1-dimensional orbits generated by elements of the form
(
(1 : 0), (1 : 1)

)
,

• one 2-dimensional orbit generated by
(
(1 : 1), (1 : 1)

)
.

This agrees with the orbit-cone correspondence.

Orbit Closures. We now discuss orbit closures. Consider a cone τ in NR. We want
to view the orbit closure O(τ) as a toric variety, such that O(τ) acts on it. Recall from
Remark 3.18 that O(τ) is the torus corresponding to the quotient lattice

N (τ) = N /Nτ, Nτ = N ∩Span(τ).

We construct a fan in N (τ)R that corresponds to the orbit closure O(τ).
Let∆ be a fan in NR. Each coneσ ∈∆with τ¹σ determines a cone in the quotient

lattice.
σ= (

σ+Span(τ)
)
/Span(τ) ⊂ N (τ)R

LEMMA 3.23. Let τ ∈∆ for a fan ∆ in NR. Then the collection

Star(τ) = {
σ

∣∣ τ¹σ}
is a fan in N (τ)R.

Proof. Note that if τ≺σ′ ≺σ then σ′ ≺σ. This goes both ways, a face of σ is of the
form σ′ for a face σ′ ≺σ containing τ.

Note that τ= {0} ∈ Span(τ). Hence for any cone τ¹σ we see that {0} is a face of σ
and so σ is strongly convex.

So Star(τ) is a collection of strongly convex cones in N (τ)R. We proceed to check
that it is indeed a fan. (1) For a cone σ a face is of the form ρ for τ¹ ρ ¹σ, so any face
of σ is itself a cone in N (τ)R. (2) Given two cones σ,σ′ ⊂ N (τ)R, their intersection is
the cone σ∩σ′ which is a face of each.

EXAMPLE 3.24. Reconsider the cone σ = Cone(e1,e2,e1 + e3,e2 + e3) from Figure 6.
The ray τ through e1 + e2 + e3 is contained in σ. In N (τ) the points e3 and −e1 − e2

become equivalent. Hence Star(τ) =σ= Cone(e1,e2,−e1,−e2) =Z2.

DEFINITION 3.25. Let τ ∈∆ for a fan ∆ in NR, we define the toric variety

V (τ) = XStar(τ).

The variety V (τ) contains the torus TN (τ). As we have shown in the proof of
Lemma 3.17, the torus TN (τ) coincides with O(τ). In fact V (τ) is the closure of the
orbit O(τ), as we will show in Proposition 3.26.
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Consider an affine patch Uσ of V (τ). The dual cone σ∨ is the image of σ∨ in
M(τ) = τ⊥∩M , which is the dual lattice of N (τ), so we identify Sσ with σ∨∩τ⊥∩M .
This describes a projection of Sσ onto Sσ, by sending m 7→ 0 for m ∉ τ⊥. This induces
a projection of C[Sσ] →C[Sσ] and we get a closed embedding

Uσ ,→Uσ.

These embeddings combine to give an embedding XStar(τ) ,→ X∆. We have the follow-
ing result:

PROPOSITION 3.26. For τ ∈∆ there is a closed embedding V (τ) ,→ X∆ such that V (τ) is
the closure of O(τ).

LEMMA 3.27. Let τ,σ be cones in a fan in NR. If τ 6¹σ then we have

V (τ)∩Uσ =;.

Proof. As a subset of X∆, the variety V (τ) is covered by the open sets Uπ for τ¹π. It
suffices to show that for cones πº τ we have(

V (τ)∩Uπ

)∩Uσ =;.

The intersection equals V (τ)∩Uπ∩σ. Write π′ = π∩σ. Then π′ is a face of σ and
π′ does not contain τ since τ 6¹ σ. We may find an element m ∈ σ∨ \τ⊥ such that
π′ = σ∩ Hm . This means that Uπ′ ⊂ Uσ is the principal open subset where χm is
non-zero, as shown in Proposition 2.13.

On the other hand, since m ∉ τ⊥ we have χm(x) = 0 for x ∈V (τ).
Hence

(
V (τ)∩Uπ

)∩Uσ =V (τ)∩Uπ′ =;, as desired.

Proof of Proposition 3.26. We have to show that V (τ) ,→ X∆ is a closed embedding,
we prove that V (τ)∩Uσ is closed in Uσ for all σ ∈∆.

When τ¹σ we have the closed embedding Uσ ,→Uσ.
When τ 6¹σ then by Lemma 3.27 we have V (τ)∩Uσ =;, which is closed.
Now it easily follows that V (τ) is the orbit closure, since O(τ) lies dense in V (τ).

We now have a nice description of the closure of a torus orbit. We can extend the
orbit-cone correspondence to orbit closures.

PROPOSITION 3.28. Let τ⊂ NR be a cone in a fan. Them we can view O(τ) as the union
of orbits

O(τ) = ⋃
τ¹σ

O(σ).

Proof. The variety O(τ) =V (τ) is a union of orbits so it suffices to prove

τ¹σ � O(σ) ⊆V (τ).
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When τ≺σ we get the inclusions O(σ) ⊂V (σ) ⊂V (τ). For the converse direction we
reason by contradiction. Suppose τ 6≺σ, then by Lemma 3.27 we have V (τ)∩Uσ =;.
Hence V (τ)∩O(σ) =; and O(σ) 6⊂V (τ).

REMARK 3.29. For any fan ∆, the origin is a face of every cone, hence the closure of
TN =O(0) contains all the orbits, O({0}) = X∆.

3.2.3 Refinements and blow-up

DEFINITION 3.30 (Refinement). We say that a fan ∆′ refines the fan ∆ if:

(1) every cone in ∆ is a union of cones in ∆′ ;

(2) the fans have the same support, meaning
⋃

{σ
∣∣σ ∈∆′} =⋃

{σ
∣∣σ ∈∆}.

An illustration of a refinement of fans is given in Figure 13.

Figure 13: A refinement of fans.

Blow-up. Recall that the blowing up of Cn at the origin is the closed subvariety of
Cn ×Pn−1 given by

{
(x1, . . . , xn ;Y1 : . . . : Yn)

∣∣ xi Y j = x j Yi for all i , j
}
. It is covered by

principal open subsets Wi =
{

(x1, . . . , xn ;Y1 : . . . : Yn) ∈ Bl0(Cn)
∣∣ Yi 6= 0

}
, so Wi = D(Yi ).

EXAMPLE 3.31. Reconsider the fan ∆ of Example 3.5. We show that the blowing C2 at
the origin is a toric variety, with defining fan∆. we set out to show that X∆ = Bl0(C2) ⊂
C2 ×P1. Both of them are covered by two open sets:

Uσ1 = Spec(C[x, x−1 y])

Uσ2 = Spec(C[x, x y−1])

W1 =
{
(x1, x2;Y1 : Y2) ∈ Bl0(C2)

∣∣ Y1 6= 0
}

W2 =
{
(x1, x2;Y1 : Y2) ∈ Bl0(C2)

∣∣ Y2 6= 0
}

We identify Uσ1 and Uσ2 with the principal open subsets W1 and W2 of Bl0(C2). We
view both of Uσ1 and Uσ2 as C2 with coordinates (x1,Y2/Y1) respectively (x2,Y1/Y2).

Going the other way around, we identify (u, v) ∈Uσ1 with (u,uv ;1 : v) ∈W1. This
gives bijective correspondences, so the varieties have the same open cover.

Figure 14 demonstrates that the fan ∆ is also a refinement of the upper right
quadrant. This corresponds to Bl0(C2) →C2. We replace the 2-dimensional cone for
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e1

e2

e1

e2 e0

Figure 14: The basic cone σ= Cone(e1,e2) and its refinement ∆.

two 2-dimensional cones and a ray. On the level of varieties we replace the origin for
a copy of P1. This shows that introducing a new ray within a cone changes the variety
at its distinguished point.

We proceed with the blowing-up of Cn at the origin. The toric variety Cn cor-
responds to the fan ∆⊂ Rn consisting of Cone(e1, . . . ,en) and its faces. Now define
e0 = e1 + . . .+en and define the fan

∆∗ = {
Cone(S)

∣∣ S ⊂ {e0,e1, . . . ,en}
∣∣ {e1, . . . ,en} 6⊂ S

}
.

Then we establish the blowing up as the toric variety Bl0(Cn) = X∆∗ . The reader may
verify that the refinement in Figure 14 is ∆∗ for n = 2.

PROPOSITION 3.32. The blowing-up of Cn at the origin is the toric variety

Bl0(Cn) = X∆∗ .

Proof. Denote σi = Cone(e0, . . . ,ei−1,ei+1, . . . ,en). Then ∆∗ is the fan consisting of
σ1, . . . ,σn and all their faces. We get affine semigroups

Sσi = 〈ei ,−ei +e1, . . . ,−ei +en〉.

The sets Wi = D(Yi ) form an open cover of Bl0(Cn) = X∆∗ . Just as in Example 3.31 we
can provide bijections between Uσi and Wi . The variety Uσi ' Cn has coordinates
u1, . . . ,un , and Wi has coordinates (x1, . . . , xn ;Y1 : . . . : Yn). We get the map Uσi →Wi

(u1, . . . ,un) 7→ (
u1ui , . . . ,ui−1ui ,ui ,ui+1ui , . . . ,unui ;u0 : . . . : ui−1 : 1 : ui+1 : . . . : un

)
,

and the map Wi →Uσi

(x1, . . . , xn ;Y1 : . . . : Yn) 7→
(

Y1
Yi

, . . . , Yi−1
Yi

, xi , Yi+1
Yi

, . . . , Yn
Yi

)
It follows that the varieties Bl0(Cn) and X∆∗ have the same open cover.

Stellar refinement. The refinement ∆∗ from Proposition 3.32 is a an example of a
so-called stellar refinement.
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DEFINITION 3.33 (Stellar refinement). Let σ⊂ NR be a cone and let ρ be any ray in
NR. Then we define

σ∗(ρ) =
{
σ if ρ*σ{
ρ+τ ∣∣ τ≺σ ∣∣ ρ* τ

}
if ρ ⊆σ

By ρ+τ we mean their sum as subsets of NR. If ρ is generated by uρ and τ =
Cone(u1, . . . ,uk ) then ρ+τ= Cone(uρ ,u1, . . . ,uk ).

If ∆ is a fan in NR and ρ a ray, then ∆∗(ρ) is the union of the σ∗(ρ) for σ ∈∆. We
call ∆∗(ρ) the stellar refinement of ∆ with center ρ.

For a fan ∆ and a ray generator uρ consider the stellar refinement ∆∗(ρ). Then
∆∗(ρ) admits those cones in ∆ not containing uρ . A cone in ∆ that contains uρ is
replaced for a set of cones which have ρ as an edge, as shown in Figure 15.

uρ

Figure 15: Stellar refinement.

Indeed ∆∗(ρ) is a fan and it refines ∆. This is proven in [2, Lemma 11.1.3].

EXAMPLE 3.34. The refinement in Figure 14 is the stellar refinement of Cone(e1,e2)
with center ρ = Cone(e1 +e2). More generally the fan ∆∗ from Proposition 3.32 is the
stellar refinement of Cone(e1, . . . ,en) with the ray through e0 as its center.

REMARK 3.35. For a smooth cone σ= Cone(u1, . . . ,uk ) ⊂ NR, the blowing up at the
distinguished point of the toric variety Uσ is also an instance of stellar refinement.
Define ρ0 to be the ray through u0 = u1 + . . .+uk . Then it turns out that Blγσ (Uσ) =
Xσ∗(ρ0), this is proved in [2, Theorem 3.3.15]. This generalizes Example 3.34.

3.3 Resolving singularities

We now have the know-how to develop concept of ‘toric resolutions’ of singularities.
The resolution of singularities is a classic problem in algebraic geometry. A variety

X can be separated into a smooth locus and a singular locus. We want to get red of
the singularities, so we wish to change X at the singular locus to obtain a smooth
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variety X̃ . The idea of a resolution is that we do not change X at the smooth locus.
Let XSing denote the singular locus.

DEFINITION 3.36. A resolution of singularities of a (nonsmooth) variety X is a smooth
variety X̃ , together with a proper birational morphismϕ : X̃ → X , such thatϕ induces
an isomorphism outside of the singular locus

X̃ \ϕ−1(XSing) ' X \ XSing.

For general varieties it is a difficult problem to find a resolution of singularities. A
well-known result due to Hironaka [9] states that, in characteristic 0, every variety
admits a resolution of singularities. In the toric case things turn out to be much
simpler and we can give resolutions in a ‘combinatorial’ way, we can describe a
resolution in terms of the fan.

Recall that a toric variety is smooth, or nonsingular, if and only if its defining
fan (or cone) is smooth. If a toric variety X∆ has a singular point p, then there is
a nonsmooth cone σ such that p ∈Uσ. In order to resolve the singularity at p, we
would like to replace the cone σ by a collection of smooth cones, which comes down
to a refinement.

REMARK 3.37. A refinement of fans gives a proper birational moprhism on the level
of varieties. Let ∆′ be a fan that refines the fan ∆ in NR, then Theorem 3.12 gives us a
morphism X∆′ →U∆. Since it corresponds to a refinement of fans, Theorem 3.14 tells
us that this morphism is proper.

If we now find a smooth fan ∆̃ that refines a given fan ∆, then by Proposition 3.9
the variety X∆̃ is smooth. Now we have the first two ingredients of a resolution of
singularities ϕ : X̃ → X . We still need that ϕ induces an isomorphism outside of the
singular locus.

We consider the singular locus. Since toric varieties are normal, the singular locus
is of codimension at least 2 [8]. So for a toric surface X∆ the singular locus consists of
points, the distinguished points of the nonsmooth cones in the fan. In general we
can describe the singular locus in terms of orbit closures.

PROPOSITION 3.38. For a toric variety X∆ we have the singular locus

(X∆)Sing =
⋃

σ nonsmooth
V (σ),

where V (σ) denotes the orbit closure. The smooth locus is

X∆ \ (X∆)Sing =
⋃

σ smooth
Uσ.

We need the following lemma, a proof of which can be found in [2, Proposition
11.1.2]
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LEMMA 3.39. Let σ be a nonsmooth cone. Then the distinguished point pσ is singular
and the same holds true for all points in its orbit O(σ).

Proof of Proposition 3.38. Whenever a cone is nonsmooth then so is every cone τ
that contains σ. By Proposition 3.28 we see that⋃

σ nonsmooth
V (σ) = ⋃

σ nonsmooth
O(σ). (3.3.1)

The complement is union of orbits O(σ) for the smooth cones. Note that whenever a
cone σ is smooth then so are all of its faces τ¹σ. Hence the orbit-cone correspon-
dence tells us that the complement of (3.3.1) is⋃

σ smooth
O(σ) = ⋃

σ smooth
Uσ. (3.3.2)

By Lemma 3.39 all points in (3.3.1) are singular. By Theorem 2.22 all points in (3.3.2)
are smooth. Since the sets are complementary they are the singular and the smooth
locus.

It follows that when we wish to find a resolution of X∆ we should leave the smooth
cones in ∆ unchanged. This brings us to our main result:

THEOREM 3.40. Let ∆̃ be a smooth fan that refines a given fan ∆, we write ϕ : X∆̃→ X∆

for the associated map on varieties. If ∆̃ does not refine any smooth cone in ∆ then
ϕ : X∆̃→ X∆ is a resolution of singularities.

Proof. The variety X∆̃ is smooth and the map ϕ is a proper birational map. Since the
smooth cones of ∆ are still cones in ∆̃, the map ϕ induces an isomorphism outside of
the singular locus

X∆̃ \ϕ−1 (
(X∆)Sing

)' X∆ \ (X∆)Sing.

The theorem tells us that a smooth refinement is enough to resolve a singularity.
It does not provide a way to find such a refinement. In Chapter 5 we describe an
algorithm for finding a smooth refinement in the 2-dimensional case. We deal with
the general case in Chapter 6, where we shall use stellar refinements.

Before we get to any resolutions we provide the necessary background of the
theory of toric divisors.



4. Divisors on toric varieties

In the present chapter we describe the divisors on a toric variety. We show how to
compute intersection products on a toric variety by working on the combinatorial
side of things, i.e., with lattice objects. This chapter can be seen as an intermezzo
before we get to the results on resolutions of singularities. In the next chapter we
describe a method for resolving a singularity on a toric surface. In order to show that
this method provides a resolution we need to compute some intersection numbers.
We work towards a result on self-intersection numbers of divisors on a toric surface.
When the reader simply assumes the results in this chapter, the reader may skip
ahead to Chapter 5 on resolutions of toric surface singularities.

We state the basic definitions of divisors before we discuss them in the toric context.
The theory of toric divisors is worked out in full detail in [2, Chapter 4].

4.1 Divisors

DEFINITION 4.1 (Divisor). A prime divisor D in a variety X is an irreducible subvariety
of codimension one, dimD = dim X −1. To a prime divisor we assign the following
subring of the field of rational functions C(X )

OX ,D = {
ϕ ∈C(X )

∣∣ϕ is defined on an open U ⊆ X with U ∩D 6= ;}
.

When X is normal we have a discrete valuation vD : C(X )∗ → Z, we call vD ( f ) the
order of vanishing of f along D . Then OX ,D consists of 0 and those rational functions
f ∈ C(X )∗ with order of vanishing vD ( f ) ≥ 0. So when X is normal we call OX ,D a
discrete valuation ring (DVR).

REMARK 4.2. Let f ∈C(X )∗ a rational function on a normal variety X . Then vD ( f ) 6= 0
for only a finite number of prime divisors D on X . This statement is proven in [2,
Theorem 4.0.9].

We define Div(X ) the free abelian group generated by the prime divisors on X .
Elements of Div(X ) are called Weil divisors. Such a divisor can be written as a formal
sum

D =∑
i

ai Di ∈ Div(X ).

A divisor is effective if all the ai are non-negative. The support of a divisor is

Supp(D) = ⋃
ai 6=0

Di .

We now define a special class of divisors.

35
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DEFINITION 4.3 (Principal divisor). Let f ∈ C(X )∗ be a rational function, to f we
associate the principal divisor

div( f ) =∑
D

vD ( f )D ,

this is well defined by Remark 4.2. We denote Div0(X ) for the set of principal divisors.

The principal divisors form a subgroup Div0(X ) ⊂ Div(X ).
We are interested in local properties of divisors. We may restrict a divisor on X

to an open subset U . If D =∑
i ai Di is a Weil divisor on X and U ⊆ X is a nonempty

open subset, then
D|U = ∑

U∩Di 6=0
ai (U ∩Di )

is a Weil divisor on U called the restriction of D to U .
Now that we have the notion of local properties of divisors we are ready to define

an important class of (Weil) divisors, the Cartier divisors.

DEFINITION 4.4 (Cartier divisor). We say that a divisor D on X is Cartier if it is locally
principal. So there exists an open cover X = ⋃k

i=1 Ui such that D|Ui is principal. If
D|Ui = div( fi )|Ui for 1 ≤ i ≤ k, then we say that D has local data

{
(Ui , fi )

}
(1≤i≤k).

The Cartier divisors, denoted CDiv(X ), form a subgroup of the Weil divisors. Since
a principal divisor is obviously Cartier, we obtain

Div0(X ) ⊂ CDiv(X ) ⊂ Div(X ).

The divisor class group. The principal divisors induce an equivalence relation on
the Weil divisors.

DEFINITION 4.5 (Equivalent divisor). Two Weil divisors D,E are said to be equivalent,
denoted D ∼ E , if D −E ∈ Div0(X ).

Indeed this is an equivalence relation, the quotient group

Cl(X ) = Div(X )/Div0(X ).

is called the divisor class group.

REMARK 4.6. The equivalence relation ∼ on Div(X ) descends to CDiv(X ). Let D,E be
equivalent Weil divisors on a normal variety, then D −E is Cartier since it is principal.
As the Cartier divisors form a subgroup it follows that

D is Cartier � E is Cartier .

We define the Picard group

Pic(X ) = CDiv(X )/Div0(X ).
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4.2 Toric divisors

Let ∆ be a fan in NR. By the orbit-cone correspondence we know that a ray ρ ∈ ∆
corresponds to an orbit O(ρ) and the orbit closure V (ρ) both of codimension one.
Hence V (ρ) is a divisor on X∆, the ray divisor. We use the notation Dρ to emphasize
that it is a divisor.

A ray divisor is a prime divisor on the normal variety X∆. Then OX∆,Dρ is a discrete
valuation ring hence we get a valuation vρ : C(X∆)∗ →Z. For m ∈ M the correspond-
ing character χm : TN → C∗ is a rational function in C(X∆)∗. We can compute the
valuation of this character in terms of lattice objects:

PROPOSITION 4.7. Let ∆ be a fan in NR and let ρ ∈∆ be a ray with ray generator uρ .
Denote χm for the character corresponding to m ∈ M. Then

vρ(χm) = 〈m,uρ〉.

Proof. For a proof we refer to [2, Proposition 4.1.1].

We can use this result to compute the divisor of a character.

COROLLARY 4.8. For m ∈ M the principal divisor of χm is given by

div(χm) = ∑
ρ∈∆(1)

〈m,uρ〉Dρ .

Torus invariant divisors. We describe how the TN -action works on divisors on the
toric variety X∆. On the level of points we have t ·p ∈ X∆ for t ∈ TN and p ∈ X∆. If D
is a prime divisor, the TN -action gives the prime divisor t ·D. Note that for a Weil
divisor D =∑

i ai Di we get t ·D =∑
i ai (t ·Di ). We say that a divisor D is TN -invariant

if t ·D = D .

DEFINITION 4.9 (Toric divisor). Let X∆ be a toric variety for a fan∆ in NR. We say that
a divisor on X∆ is a toric divisor if it is TN -invariant. We also refer to toric divisors as
T -Weil and T -Cartier divisors.

REMARK 4.10. A ray divisor is a toric divisor. By the orbit-cone correspondence a ray
divisor Dρ =V (ρ) is a union of torus orbits, hence TN -invariant.

In fact any toric divisor can be decomposed as a sum of ray divisors:

PROPOSITION 4.11. Given a fan ∆ in NR, the group of T -Weil divisors on X∆ is given

DivTN (X∆) = ⊕
ρ∈∆(1)

ZDρ ⊆ Div(X∆).

Proof. Since ray divisors are TN -invariant, it follows that a divisor
∑
ρ aρDρ is also

TN -invariant. Hence we have the inclusion
⊕
ZDρ ⊆ DivTN (X∆).
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For the converse, let D = ai Di be a T -Weil divisor. We show that each Di is
a ray divisor. Each Di is TN -invariant and thus a union of orbits. Since Di has
codimension 1, the torus TN , viewed as an orbit which has maximum dimension,
cannot be contained in Di . So we have Di ⊂ X∆ \TN . Hence the support of D satisfies⋃

i Di ⊂ X∆ \ TN . By the orbit-cone correspondence we have X∆ \ TN =⋃
ρ∈∆(1) V(ρ).

Hence each Di is a ray divisor.

Computing the class group. The following result makes it easy to compute the
divisor class group of a toric variety.

PROPOSITION 4.12. Given a fan ∆ in NR we have the exact sequence

M −→ DivTN (X∆) −→ Cl(X∆) −→ 0, (4.2.1)

where the first map sends m 7→ div(χm) and the second map sends a divisor to its class.

Proof. For a proof we refer to [2, Theorem 4.1.3].

By the exact sequence every divisor class has a representative in DivTN . So any
divisor, not necessarily toric, is equivalent to a toric divisor. Using Proposition 4.11
we see that Cl(X∆) is generated by the classes [Dρ] of the ray divisors. We also know
that for m ∈ M divisors of the form div(χm) are equivalent to 0. We now use these
facts to compute the divisor class group for some toric varieties.

EXAMPLE 4.13. Let σ be the cone in R2 with ray generators u1 = de1 −e2 and u2 = e2.
This gives the rational normal cone of degree d from Example 2.4. We compute the
class group. It is generated by the classes of the ray divisors D1,D2. Using the above
proposition, we see that the divisors are subject to the relations

0 ∼ div(χe1 ) = 〈e1,u1〉D1 +〈e1,u2〉D2 = dD1

0 ∼ div(χe2 ) = 〈e2,u1〉D1 +〈e2,u2〉D2 =−D1 +D2.

This means that the class group is generated by [D1] with d · [D1] = 0, in other words
Cl(Ĉd ) 'Z/dZ.

EXAMPLE 4.14. We return to the fan of Example 3.5 which corresponds to Bl0(C2) as
seen in Example 3.31. The ray generators are u1 = e1, u2 = e2 and u0 = e1 + e2. The
corresponding ray divisors satisfy the relations

0 ∼ div(χe1 ) =∑2
i=0〈e1,ui 〉Di = D0 +D1

0 ∼ div(χe2 ) =∑2
i=0〈e2,ui 〉Di = D0 +D2.

We see that the class group is generated by [D1] = [D2] =−[D0] and Cl(Bl0(C2)) 'Z.
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EXAMPLE 4.15. We return to the Hirzebruch surface Hr from Example 3.6. We have
four ray divisors corresponding to the ray generators u1 = e2, u2 = e1, u3 = −e2

u4 =−e1 + r e2. This gives relations

0 ∼ div(χe1 ) =∑4
i=1〈e1,ui 〉Di =−D2 +D4

0 ∼ div(χe2 ) =∑4
i=1〈e2,ui 〉Di = D1 +D3 + r D4.

We get generators [D4] and [D1], the class group is Cl(Hr ) 'Z2.

4.2.1 Toric Cartier divisors

Let D be a Cartier divisor on a toric variety. Since it is a divisor, by Proposition 4.12
we may find integers aρ such that D ∼∑

ρ aρDρ . Remark 4.6 tells us that
∑
ρ aρDρ is

Cartier as well, it even is T -Cartier. Let CDivTN (X∆) denote the group of T -Cartier
divisors. For m ∈ M the divisor div(χm) is T -Cartier. Now (4.2.1) reduces to the exact
sequence

M −→ CDivTN (X∆) −→ Pic(X∆) −→ 0. (4.2.2)

We want to describe when a TN -invariant divisor is Cartier. We first describe the
affine case.

PROPOSITION 4.16. Let σ⊂ NR be a cone. Then every T -Cartier divisor on Uσ is of the
form div(χm) for a unique m ∈ Sσ.

Proof. For a proof we refer to [2, Proposition 4.2.2].

COROLLARY 4.17. So in this case every Cartier divisor is principal. Hence for a cone σ
in NR the Picard group is

Pic(Uσ) = 0

and (4.2.2) reduces to
M −→ Div0(Uσ) −→ 0. (4.2.3)

EXAMPLE 4.18. We return to σ from Example 4.13. We’ve seen that Cl(Uσ) 'Z/dZ
and that it is generated by [D1] = [D2]. If D1 or D2 is Cartier then we would have
Cl(Uσ) = Pic(Uσ). Since Pic(Uσ) = 0 we see that D1,D2 are not Cartier if d > 1.

EXAMPLE 4.19. Let σ be the cone in R3 with ray generators

u1 = e1, u2 = e2, u3 = e1 +e3, u4 = e2 +e3

given in Figure 6. There are four ray divisors Di . Let D =∑4
i=1 ai Di be a divisor. Then

by Proposition 4.16 the divisor D on Uσ is Cartier if there exists m = m1e1 +m2e2 +
m3e3 in M such that D is the divisor of χm , which is

div(χm) = m1D1 +m2D2 + (m1 +m3)D3 + (m2 +m3)D4.
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We see m1 = a1, m2 = a2, m3 = a3 −a1 and m3 = a4 −a2, hence

D is Cartier � a1 +a4 = a2 +a3.

As in earlier examples, a computation gives 0 ∼ D1 +D3 ∼ D2 +D4 ∼ D3 +D4, hence
Cl(Uσ) 'Z. Since Pic(Uσ) = 0 none of the ray divisors Di is Cartier.

Cartier data. In general, for a toric variety we can describe the T -Cartier divisors in
terms of Cartier data.

PROPOSITION 4.20. Let X∆ be the toric variety of a fan ∆ in NR and let D =∑
ρ aρDρ .

Then the following are equivalent:

(1) D is Cartier.

(2) D is principal on the affine open subsets Uσ for σ ∈∆.

(3) For each σ ∈∆ there exists mσ ∈ M such that 〈mσ,uρ〉 = aρ for all rays ρ ≺σ.

(4) For each maximal cone σ ∈∆ there exists mσ ∈ M such that 〈mσ,uρ〉 = aρ for all
rays ρ ≺σ.

Proof. The divisor D = ∑
ρ∈∆(1) aρDρ is toric. For an affine patch we have D|Uσ =∑

ρ∈σ(1) aρDρ . If D is Cartier then so is D|Uσ and this is then principal by Proposi-
tion 4.16. When (2) holds true then by definition D is Cartier. This shows (1) � (2).
The divisor D is principal on the affine patch Uσ if and only if we can find mσ such
that D|Uσ = div(χmσ ). By Corollary 4.8 we have div(χmσ ) =∑

ρ∈σ(1)〈mσ,uρ〉Dρ . This
shows (2) � (3). It is immediate that (3) implies (4). For the converse, any cone τ
is the face of a maximal cone σ ∈∆. If mσ works for all the rays ρ ≺σ, then mσ also
works for the rays ρ ≺ τ≺σ. This shows (3) � (4).

So for a T -Cartier divisor D we have D|Uσ = div(χmσ ), in other words D has local
data

{
(Uσ,χmσ )

}
(σ∈∆).

DEFINITION 4.21. When D is a Cartier divisor then the data {mσ}σ∈∆ as in Proposi-
tion 4.20 is called the Cartier data.

PROPOSITION 4.22. The Cartier data satisfies:

(1) mσ is unique modulo M(σ) = M ∩σ⊥.

(2) If τ≺σ then mσ ≡ mτ mod M(τ).

Proof. Suppose mσ and m′
σ both work for all rays ρ ≺σ. Then for all rays ρ ≺σ we

have
〈mσ−m′

σ,uρ〉 = 0.

Then for all u ∈σ we have
〈mσ−m′

σ,u〉 = 0,
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which is equivalent to saying

mσ−m′
σ ∈σ⊥∩M = M(σ).

So mσ is unique mod M(σ). For (2) note that mσ also works for the rays ρ ≺ τ≺σ.
So both mσ and mτ work for all the rays ρ ≺ τ, we conclude mσ−mτ ∈ M(τ).

REMARK 4.23. By part (4) of Proposition 4.20, a Cartier divisor on an affine toric variety
Uσ corresponds to an element of M , which is determined mod M(σ). This shows
that CDivT (Uσ), the group of T -Cartier divisors on Uσ, is isomorphic to M/M(σ).
This agrees with (4.2.3), as σ⊥ is precisely the kernel of m 7→ div(χm).

We use the Cartier data to compute intersection numbers in the next section. Let
us give an example of how to find the Cartier data for a toric divisor.

EXAMPLE 4.24. Consider the toric surface whose fan ∆ in R2 has ray generators

u1 = e1, u2 = e2, u0 = 2e1 +3e2

and maximal cones

σ= Cone(u1,u0), σ′ = Cone(u2,u0).

We have ray divisors D0,D1,D2. Consider a divisor D = aD0+bD1+cD2, we want
to describe conditions on the integers for D to be Cartier.

The divisor is Cartier if we have Cartier data mσ,mσ′ . Let us write

mσ = ξe1 +ζe2, mσ′ = ηe1 +θe2.

Then
a = 〈mσ,u0〉 = 2ξ+3ζ b = 〈mσ,u1〉 = ξ
a = 〈mσ′ ,u0〉 = 2η+3θ c = 〈mσ′ ,u2〉 = θ

A small computation gives 6(ξ+ζ−η−θ) =−a +2b +3c, hence

D is Cartier � a ≡ 2b +3c mod 6,

and when this is the case we have the Cartier data

mσ = be1 + a−2b
3 e2, mσ′ = a−3c

2 e1 + ce2.

Fans and divisors. On a toric variety we can relate Weil and Cartier divisors. We
finish this section by stating two propositions, a proof can be found in [2, section 4.2].
When the defining fan is smooth the Weil and Cartier divisors coincide:

PROPOSITION 4.25. Let X∆ be the toric variety of the fan ∆. Then the following are
equivalent:
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• ∆ is smooth.

• Every Weil divisor is Cartier.

• Pic(X∆) = Cl(X∆).

This result has a simplicial analog:

PROPOSITION 4.26. Let X∆ be the toric variety of the fan ∆. Then the following are
equivalent:

• ∆ is simplicial.

• Every Weil divisor isQ-Cartier, i.e., has a positive multiple that is Cartier.

• Pic(X∆) has finite index in Cl(X∆).

4.3 Intersection products

On a normal variety we can consider the intersection of a (Cartier) divisor, which has
codimension one, and a (irreducible complete smooth) curve, which has dimension
one. When this intersection is finite and the divisor and the curve meet transversally,
then we may count the number of points where they intersect. This cannot be done
in general, but we do have the concept of an intersection product. This product is a
pairing of Cartier divisors and complete curves satisfying the following rules.

DEFINITION 4.27. Given a smooth irreducible complete curve C on a normal variety
X . Then for Cartier divisors D,D ′ on X we want to define an intersection product
D ·C such that:

• (D +D ′) ·C = D ·C +D ′ ·C ,

• D ·C = D ′ ·C whenever D ∼ D ′,
• When D ∩C is finite and C ,D meet transversally, we get D ·C = #(D ∩C ).

For the usual definition of the intersection product we refer to the standard
literature[5]. There you can also find the precise meaning of a divisor and a curve
meeting transversally.

REMARK 4.28. We can extend the definition of the intersection product for Cartier
divisors toQ-Cartier divisors. Let D be a divisor such that kD is Cartier for a positive
integer k. Given a curve C we may compute the intersection product

D ·C = 1
k (kD) ·C ∈Q.

4.3.1 Intersection products on a toric variety

We review the intersection product on a toric variety X∆ for a fan in NR. We show how
to compute the intersection product for a T -Cartier divisor D and a TN -invariant
irreducible complete smooth curve C . We are only interested in such curves so from
now on we drop the adjectives.
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Walls. A curve on a toric variety X∆ corresponds to a wall τ ∈∆.

DEFINITION 4.29 (Wall). Let ∆ be a fan in NR 'Rn . Then τ ∈∆(n −1) is a wall if it is
the intersection of two maximal cones σ,σ′ ∈∆(n). Then τ is a face of both and we
say that the wall τ separates σ and σ′, as illustrated in Figure 16.

τσ

σ′

Figure 16: A wall seperating two cones in a 2-dimensional fan.

REMARK 4.30. In a complete fan ∆, every τ ∈∆(n −1) is a wall.

PROPOSITION 4.31. Let C be a (torus-invariant irreducible smooth complete) curve
in a toric variety X∆ for a fan ∆ in NR ' Rn . Then C = V (τ) for a wall τ ∈ ∆(n −1)
separating two cones σ,σ′ ∈∆(n).

Proof. Since dimC = 1 it corresponds to a cone τ in ∆(n −1) and C = V (τ). Recall
that the orbit closure is V (τ) = XStar(τ) for the fan Star(τ) in N (τ)R. Since dimτ= n−1
the quotient lattice N (τ) = N /Nτ is 1-dimensional and we have N (τ)R ' R1. The
fan corresponds to the complete variety C so by Corollary 3.15 the support of the
fan Star(τ) is the whole of R1. Hence we can find σ,σ′ ∈ ∆ such that τ is a face of
both cones and 1 ∈σ and −1 ∈σ′. Then it follows that σ,σ′ ∈∆(n) and τ is the wall
separating these cones.

Toric intersection product. Let D be a Cartier divisor on a toric variety X∆. Let
τ ∈∆(n −1) be a wall separating two cones σ,σ′ ∈∆(n). These cones correspond to
Cartier data mσ, mσ′ . Also, pick a t0 ∈ σ′∩N that maps to a minimal generator t0

of σ′ in N (τ)R. These are the lattice objects we need to compute the intersection
product of D with the curve C =V (τ):

PROPOSITION 4.32. Let D be a Cartier divisor on X∆ and let τ=σ∩σ′ be a wall in ∆.
Then C =V (τ) is a curve and in this case the intersection product satisfies

D ·C = 〈mσ−mσ′ , t0〉.

Proof. For a proof we refer to [2, Proposition 6.3.8].

EXAMPLE 4.33. We return to Example 4.24. We have the divisor D = aD0 +bD1 + cD2

such that a ≡ 2b +3c mod 6, so D is Cartier with Cartier data

mσ = be1 + a−2b
3 e2, mσ′ = a−3c

2 e1 + ce2.
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Let τ be the ray through u0, which defines a curve C =V (τ). The wall τ separates the
maximal cones σ = Cone(u1,u0),σ′ = Cone(u2,u0). Recall that Nτ = Span(u0)∩Z2

and note that e1 + 2e2 and u0 form a basis for Z2. Hence t0 = e1 + 2e2 maps to
a minimal generator t0 of σ′ in N (τ) = N /Nτ. We are now ready to compute the
intersection product:

D ·C = 〈mσ−mσ′ , t0〉 = a−2b−3c
6 .

The fan ∆ is simplicial so every divisor is Q-Cartier, hence the above formula
works for arbitrary integers a,b,c . This gives the intersections of the ray divisors with
the curve V (τ):

D0 ·V (τ) =− 1
6 , D1 ·V (τ) = 1

3 , D2 ·V (τ) = 1
2 .

It will turn out that for simplicial cones we can compute the intersection numbers
for ray divisors in terms of the multiplicities of cones in the fan. This brings us to wall
relations in the next subsection.

REMARK 4.34. Remark that D0 = V (τ), so in Example 4.33 we have computed the
intersection number of D0 with itself. This is something particular for surfaces.

A ray divisor Dρ = V (ρ) on a toric surface is also a curve. When this curve is
complete we define the self-intersection number D2

ρ = Dρ ·Dρ .

4.3.2 Intersection products on toric surfaces

We give details for computing intersection numbers on toric surfaces. Let ∆ be a fan
in NR 'R2. Then we can give the ray generators u1, . . . ,ur ∈ N in clockwise order, as
illustrated in Figure 17. The rays ρi = Cone(ui ) correspond to ray divisors Di . The
goal is to compute the intersection numbers among the ray divisors.

u1

u2

u3

u4
u5

u6

Figure 17: The rays of a 2-dimensional fan in clockwise order.

REMARK 4.35. A 2-dimensional cone which is given by two generators is simplicial.
So the fans we are dealing with are all simplicial. By Proposition 4.26 it follows that
on a toric surface all divisors areQ-Cartier.
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Relations among the ray generators. Let m ∈ M , then we have the principal divisor

k∑
i=1

〈m,ui 〉Di = div(χm) ∼ 0.

Now let C be a curve in X∆, intersecting the divisor with C we find

k∑
i=1

〈m,ui 〉(Di ·C ) = 0,

which we rewrite into
〈

m,
∑k

i=1(Di ·C )ui
〉 = 0. Since this holds for all m ∈ M , this

gives the relation:
k∑

i=1
(Di ·C )ui = 0. (4.3.1)

We next describe the wall relation. Let τ be a wall in the toric surface X∆. So τ=
Cone(u) separates the cones σ1 = Cone(u, v) and σ2 = Cone(u, w) for ray generators
u, v, w . Then the vectors u, v , w ∈Z2 are linear dependent, this gives rise to the wall
relation:

κu +λv +µw = 0, κ,λ,µ ∈Z. (4.3.2)

Since v, w lie on opposite sides of the wall, we may assume λ,µ> 0. Note that (4.3.2)
is the wall relation for surfaces. The general version is given in [2, (6.4.4)].

Intersection formulas. We now combine the above relations to compute the inter-
section product of a ray divisor with a curve on a toric surface.

LEMMA 4.36. Let τ be a wall separating two cones σ and σ′ in a 2-dimensional fan. So
τ is an edge of σ, we use ρ to refer to the other edge of σ. The ray ρ corresponds to a ray
divisor Dρ and we may compute

Dρ ·V (τ) = 1

mult(σ)
,

where mult(σ) is the multiplicity of the cone from Definition 2.25.

Proof. Let u and v denote the minimal generators of τ and ρ. We can find m ∈ MQ

such that 〈m,u〉 = 0 and 〈m, v〉 =−1. By Remark 4.35 the divisor Dρ isQ-Cartier, we
take k ∈N such that kDρ is Cartier and we obtain the Cartier data for Dρ :

mσ = km, mσ′ = 0.

We may now compute

Dρ ·V (τ) = 1

k
(kDρ) ·V (τ) = 1

k
〈km, t0〉 = 〈m, t0〉,
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where t0 ∈σ′∩M maps to a minimal generator t0 of σ′ in N (τ). Remark that t0 and
u generate the lattice N , as Nτ =Zu and N (τ) = N /Nτ. Hence we may find positive
integers α,β such that v =−αt0 +βu. The minus sign appears because v and t0 lie
on opposite sides of the wall. We have the inclusion

Zv +Zu ⊂Zt0 +Zu = N

and we remark that Nσ = (Ru +Rv)∩N = N . We conclude that mult(σ) = α is the
index of Zv +Zu in Nσ. We may write t0 =− 1

α (v −u) =− 1
mult(σ) (w − v) and we get

Dρ ·V (τ) = 〈m, t0〉 =− 1

mult(σ)

(〈m,u〉−〈m, v〉)= 1

mult(σ)
.

PROPOSITION 4.37. Let τ = Cone(u) be a wall separating σ = Cone(u, v) and σ′ =
Cone(u, w) in a 2-dimensional fan ∆. Let Du , Dv and Dw denote the corresponding
ray divisors on X∆. Then the wall relation (4.3.2) equals the relation (4.3.1) up to a
constant. Furthermore

(1) Dρ ·V (τ) = 0 for all rays ρ ∉ {ρu ,ρv ,ρw }.

(2) Dv ·V (τ) = 1

mult(σ)
and Dw ·V (τ) = 1

mult(σ′)
.

(3) Du ·V (τ) = κ

λmult(σ)
= κ

µmult(σ′)
.

Proof. (2) This follows form Lemma 4.36. (1) Observe that if ρ ∉ {ρu ,ρv ,ρw }, then
ρ and τ never lie in the same cone of ∆, so that Dρ ∩V (τ) = ; by the Orbit-Cone
Correspondence. It follows that Dρ ·V (τ) = 0.

Taking the curve C =V (τ), the relation (4.3.1) reduces to the equation

(Du ·C )u + (Dv ·C )v + (Du ·C )w = 0. (4.3.3)

By part (2) the numbers (Du ·C ) and (Du ·C ) are positive, this means that (4.3.1)
equals the wall relation up to multiplication by a constant. This implies

λ(Du ·V (τ)) = κ(Dv ·V (τ)), λ(Dw ·V (τ)) =µ(Dv ·V (τ)),

and the assertion in (3) follows.

Complete surfaces. In a complete toric surface every ray is a wall, so we can com-
pute the intersection numbers among all of the ray divisors.

COROLLARY 4.38. Let∆ be a complete fan in NR 'R2 with ray generators u1, . . . ,ur ∈ N
in clockwise order. We have ray divisors Di on X∆. We may compute
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Di ·D j =


0 if |i − j | > 1

1

mult(σ)
if |i − j | = 1 and σ= Cone(ui ,u j )

κ

λmult(σ)
= κ

µmult(σ′)
if i = j

In the last case the coefficients come from the wall relation κui +λui−1 +µui+1 = 0
and the cones are σ= Cone(ui−1,ui ), σ′ = Cone(ui ,ui+1).

EXAMPLE 4.39. We re-do the computations in Example 4.33, this time using the
wall relations. The wall τ separates the maximal cones σ1 = Cone(u1,u0), σ2 =
Cone(u2,u0). We compute the multiplicities

mult(σ1) = 3, mult(σ2) = 2.

The curve is V (τ) = D0 and Corollary 4.38 implies

D1 ·D0 = 1
3 , D2 ·D0 = 1

2 ,

and the relation
(−1) ·u0 +2 ·u1 +3 ·u2 = 0

implies
D0 ·D0 = −1

2·3 = −1
3·2 =− 1

6 .

For a Cartier divisor D = aD0 +bD1 +cD2 we get the same intersection product
as computed in Example 4.33.

4.3.3 Smooth surfaces.

We investigate the theory of toric divisors in the special case of divisors on a smooth
toric surface. When the variety X∆ is smooth, all multiplicities of the cones are 1.
Hence the relation (4.3.3) reduces to(

Dρu ·V (τ)
)
u + v +w = 0.

So we can assign an integer to each ray which is also a wall:

LEMMA 4.40. Let∆ be a smooth complete fan in NR 'R2 with ray generators u1, . . . ,ur .
Then we can find integers b1, . . . ,br−1 such that

ui−1 +ui+1 = bi ui .
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So for smooth complete toric surfaces Corollary 4.38 reduces to:

PROPOSITION 4.41. Let ∆ be a smooth complete fan in NR ' R2 with ray generators
u1, . . . ,ur ∈ N in clockwise order. We have ray divisors Di on X∆. We may compute

Di ·D j =


0 if |i − j | > 1

1 if |i − j | = 1 ,

−bi if i = j

where bi is the integer from Lemma 4.40.

COROLLARY 4.42. For a divisor D =∑
i ai Di we get get the intersection product

D ·D j = a j−1 −bi ai +a j+1.

EXAMPLE 4.43. The Hirzebruch surface Hr is a smooth complete toric surface. There
are four ray divisors coming from the ray generators

u1 = e2, u2 = e1, u3 =−e2, u4 =−e1 + r e2.

The ray ρ2 gives the relation
u1 +u3 = r ·u2

and we find b2 = −r . Likewise we can find b1 = 0, b3 = 0 and b4 = r . This gives
selfintersection numbers

D2
1 = 0, D2

2 =−r, D2
3 = 0, D2

4 = r,

and the the intersection numbers

D1 ·D2 = D2 ·D3 = D3 ·D4 = D4 ·D1 = 1.

REMARK 4.44. For a smooth toric surface which is not complete we can still use the
intersection formulas. If a ray generator u j corresponds to a wall then D j is a curve,
and in this case the formulas from Proposition 4.41 make sense.



5. Resolution of toric surface
singularities

In this chapter we review the singularities in a toric surface X∆. As we discussed at
the end of Chapter 3, a refinement of the fan can lead to a resolution of singularities.
We repeat our main result:

THEOREM 3.40. Let ∆̃ be a smooth fan that refines a given fan∆, we writeϕ : X∆̃→ X∆

for the associated map on varieties. If ∆̃ does not refine any smooth cone in ∆ then
ϕ : X∆̃→ X∆ is a resolution of singularities.

In general we have to be careful not to refine any smooth cone. For instance, a
nonsmooth 3-dimensional coneσmay have a smooth 2-dimensional face τ. So when
we provide a smooth provide refinement of σ we should not refine τ.

However, in dimension 2 this is not a problem. We fix a lattice N ' Z2 for the
remainder of this chapter.

Let σ be a nonsmooth cone in NR. Its edges are smooth cones. A smooth refine-
ment of σ still contains the edges of σ. This means that we only change Uσ at the
singular point pσ.

Now consider a 2-dimensional fan ∆ in NR. Suppose we find a smooth refine-
ment for each nonsmooth cone in ∆. Let ∆̃ denote the refinement of ∆ where the
nonsmooth cones are replaced by their smooth refinements. Then the smooth cones
of ∆ are also cones in ∆̃ and Theorem 3.40 leads to a resolution of singularities of the
surface X∆.

5.1 Problem statement

We see that the problem of a resolution of singularities for toric surfaces reduces to
refining nonsmooth cones. Refining a 2-dimensional cone σ means introducing rays
Cone(ui ) for ui in σ. To resolve the singularities in Uσ we want to insert rays in such
a way that they subdivide σ into smooth cones. The problem we set out to solve is:

PROBLEM 1. Let σ be a cone in NR with ray generators u, v . We need to find a
sequence u = u1, . . . ,un = v of primitive vectors in σ such that subsequent pairs form
a basis for the lattice. This gives then a smooth refinement of σ, this is illustrated in
Figure 18.

49
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u

v

−→

u1 u2

u3

u4

u5

Figure 18: A smooth refinement of the cone.

5.2 The algorithm for solving the problem

In this section we develop a recipe to solve Problem 1. We describe an algorithm that
finds the optimal solution to the problem.

5.2.1 A toy example and the normal form.

EXAMPLE 5.1. Fix a lattice basis (e, f ). Consider the cone generated by f and 2e − f
in N . This corresponds to the affine variety Z (xz − y2) ⊂ C3 which is singular at 0.
We refine σ by inserting the ray through e. This subdivides σ into the smooth cones
σ1 = Cone( f ,e) and σ2 = Cone(e,2e − f ).

f

e

u

v

f

e

u1

u2

u3

Figure 19: Resolution of Cone( f ,2e − f ).

In this example it was slightly obvious to insert the ray through e. Consider the
cone σ′ = Cone(5e +3 f ,e + f ). In this case it is not immediately clear which ray to
insert, consider the dashed arrows in the left side of Figure 20.

f

e

u

v

f ∗

e∗
u

v

Figure 20: The cone σ′ presented in two different ways.
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Note however that this is the cone generated by f ∗ and 2e∗− f ∗, for e∗ = (3,2) ;
f ∗ = (5,3). Hence via change of basis we see Uσ′ =Uσ. It follows naturally to insert
the ray through e∗ = 3e +2 f .

It turns out that through a change of basis we may arrive at a cone for which it is
obvious to insert the ray through e. This change of basis will be the main ingredient
for resolving a surface singularity. Let us first describe the form of a cone for which it
is obvious to introduce the ray e.

DEFINITION 5.2 (Normal Form). Fix a lattice basis (e, f ). Given a cone σ= Cone(u, v)
for primitive vectors u, v , we say that σ is in normal form, with respect to the basis, if:

• u = f and

• v =λe −µ f , for natural numbers 0 ≤µ<λ.

f

e

v

u

Figure 21: A cone in normal form.

The normality means that v lies within the checkered area in Figure 21. The
circled coordinates are the ones which extend f to a basis. When refining a cone as
in Problem 1 these are the candidates for u2. Indeed it is obvious to choose u2 = e.

REMARK 5.3. If µ= 0 then v = e since it is a primitive vector, and σ is a smooth cone.

REMARK 5.4. A nice property of the normal form is that the dual cone is contained in
the upper-right quadrant. This means Aσ ⊂C[x, y] ⊂C[x, x−1, y, y−1].

We claim that using a change of basis we can always write a cone in normal form.
In fact:

PROPOSITION 5.5. Given a cone σ there exists a unique basis with respect to which σ is
in normal form.

We prove this using modified euclidean division, note the minus sign:

LEMMA 5.6. Given integers a,b with a > 0 we can find integers k,r with 0 ≤ r < a such
that b = ka − r .
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Proof of Proposition 5.5. Let σ be a cone with ray generators u, v . We first prove
existence. Since u is primitive we can extend it to a lattice basis (e∗,u), for some
(primitive) vector e∗. Write v = ae∗+bu and note that a 6= 0, otherwise we would
have v =±u. We may assume a > 0, replacing e∗ for −e∗ if necessary. By Lemma 5.6
we get integers k,r with 0 ≤ r < a such that b = ka − r . We obtain

v = ae∗+ (ka − r )u.

Now we define e = e∗+ku and we may write v = ae − r u. Setting f = u,µ= r and
λ= a we see that σ is in normal form with respect to the basis (e, f ):

v =λe −µ f , 0 ≤µ<λ.

We now prove uniqueness. Suppose (e, f ) and (e ′, f ′) are both bases with respect
to which σ is in normal form. Then f ′ = u = f . We may write e ′ =αe +β f for some
natural numbers α,β. Combining this with v =λe −µ f and v =λ′e ′−µ′ f ′ we obtain

0 = (λe −µ f )− (λ′e ′−µ′ f ′)

=λe −λ′e ′+ (µ′−µ) f

= (λ−αλ′)e + (µ′−µ−βλ) f .

This implies λ=αλ′ and µ=µ′−βλ.
Recall that we have 0 ≤µ<λ and 0 ≤µ′ <λ′. Rewriting µ≥ 0 gives µ′−αβλ′ ≥ 0.

Combining this with µ′ < λ′ we must have αβ= 0. Since λ,λ′ are both positive we
have α 6= 0, hence β= 0. Now e ′ =αe and since e ′ is a primitive vector we have α= 1.
We conclude (e, f ) = (e ′, f ′).

5.2.2 The algorithm for resolving an affine toric surface singular-
ity.

We arrive at an algorithm to resolve a singularity in an affine toric variety Uσ for some
cone σ in NR.

To solve Problem 1 we need to introduce primitive vectors. To this end we write
σ in normal form and we introduce the ray generated by the basis vector e. This
subdividesσ into the upper right quadrant and a cone which lies inside the checkered
area of Figure 21. So we have reduced the problem to finding a smooth refinement of
this smaller cone.

Algorithm 1 repeats this process of writing a cone in normal form and proceeding
with the bottom cone. We prove that the algorithm terminates and produces a
resolution. It will turn out that this coincides with the calculation of a continued
fraction.
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ALGORITHM 1: Resolution of affine toric surfaces
input :A cone σ= Cone(u, v) as in Problem 1.
output :A sequence of primitive vectors in σ.
Set a counter i = 1 and set σ1 =σ, e(1) = 0 ;
while v 6= e(i ) do

Apply Proposition 5.5 to σi , finding a basis (e, f ) and natural numbers
0 ≤µ<λ ;
Store f (i ) = f ,e(i ) = e,µ(i ) =µ,λ(i ) =λ ;
Set ui = f ;
Update the counter ;
Set σi = Cone(e, v) ;

end

REMARK 5.7. Iterating the process produces a sequence of bases
(
e(i ), f (i )

)
such that:

• f (i ) = ui

• f (i+1) = e(i )

• v =λ(i )e(i ) −µ(i ) f (i )

THEOREM 5.8. The produced sequence ui is a solution to Problem 1, i.e. (1) the output
is sensible and (2) the algorithm terminates.

Proof. For (1), Remark 5.7 tells us that Cone(ui ,ui+1) = Cone( f (i ),e(i )) is smooth. For
(2) we investigate how the sequence develops. The algorithm terminates when we
arrive at an i such that v = e(i ), or, by Remark 5.3, when µ(i ) = 0.

Given f (i+1) = e(i ) and assuming µ(i ) 6= 0 we follow the construction as in Propo-
sition 5.5 to get e(i+1). Setting e∗ = − f (i ) gives a basis (e∗, f (i+1)). Rewriting v =
λ(i )e(i ) −µ(i ) f (i ) we obtain

v =µ(i )e∗+λ(i ) f (i+1).

Since µ(i ) > 0 we may find integers k,r with 0 ≤ r <µ(i ) such that λ(i ) = kµ(i ) − r . We
now define:

• e(i+1) = e∗+k f (i+1),

• λ(i+1) =µ(i ),

• µ(i+1) = r.

Observe that we indeed maintain

λ(i+1)e(i+1) −µ(i+1) f (i+1) =µ(i )e∗+ (kµ(i ) − r ) f (i+1)

=−µ(i ) f (i ) +λ(i )e(i )

= v.

We see that the µ(i ) form a strictly decreasing sequence. Hence there is an i for which
µ(i ) = 0 and the algorithm terminates.
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REMARK 5.9. Rewrite λ(i ) = kµ(i ) − r to get µ(i+1) = kµ(i ) −µ(i−1). Note that k can be
defined as dµ(i−1)/µ(i )e, providing a recursive definition for the µ(i ).

This recursive relation extends to the vectors ui . Rewrite e(i+1) = e∗+k f (i+1) to
get

ui+2 =−ui +kui+1, for k = dµ(i−1)/µ(i )e.

This recursion brings us to the relation with continued fractions.

5.2.3 Continued fractions

The Hirzebruch-Jung continued fraction [10, 11] of a rational number q is the expan-
sion

q = a1 − 1

a2 − 1

. . .− 1
ar

for natural numbers ai ≥ 2, these are the partial quotients of the continued fraction.
Note the minus signs in the continued fraction, we abbreviate the expression by

[[a1, . . . , ar ]].

Given a (finite) expansion we define numbers mi ,ni recursively:

mi =


0 if i = 0

1 if i = 1

ai−2mi−1 −mi−2 if i ≥ 2

ni =


−1 if i = 0

0 if i = 1

ai−2ni−1 −ni−2 if i ≥ 2

The rational numbers mi
ni

are called the convergents of the HJ-continued fraction.
These numbers are the result of ‘cutting off’ the continued fraction, i.e.

mi

ni
= [[a1, . . . , ai−2]], i ≥ 3.

The convergents are rational approximations of q satisfying

m3

n3
> . . . > mr−1

nr−1
> mr

nr
= q,

These properties are proven in [2, Proposition 10.2.2]. We represent these num-
bers in Table 1 for good measure.

Given a cone σ as in Problem 1, denote (e, f ) for the basis with respect to which σ
is in normal form, we get associated natural numbers 0 ≤µ<λ.

PROPOSITION 5.10. The algorithm computes the Hirzebruch-Jung continued fraction
of λ/µ. Furthermore, the columns of Table 1 represent the introduced rays:

ui = mi e −ni f .
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i 1 2 3 4 . . .
ai a1 a2 . . .
mi 0 1 m3 m4 . . .
ni −1 0 n3 n4 . . .

Table 1: The table of convergents.

Proof. Run the algorithm on σ, producing the decreasing sequence

µ(1) >µ(2) > . . . >µ(n) = 0.

Set µ(0) =λ and define ai = dµ(i−1)/µ(i )e, for 1 ≤ i ≤ n −1. We now claim:

λ/µ= a1 − 1

a2 − 1

. . .− 1
an−2

. (5.2.1)

Remark 5.9 gives the recursive relation µ(i−1) = aiµ
(i )−µ(i+1), for i ≤ n−2 we have

µ(i ) >µ(i+1) > 0 and we may rewrite the relations as

µ(i−1)/µ(i ) = ai − 1

µ(i )/µ(i+1)
. (5.2.2)

We splice these relations together. We begin with µ(0)/µ(1) and we can use (5.2.2)
to construct a ‘chain’ of fractions. Splicing the relations for i = 1, . . . ,n −2 we get the
continued fraction

µ(0)/µ(1) = [[
a1, a2, . . . ,µ(n−2)/µ(n−1)]] .

As µ(n) = 0 the recursive relation µ(n−2) = an−1µ
(n−1) −µ(n) reduces to

µ(n−2)/µ(n−1) = an−2

and we arrive at the continued fraction (5.2.1).
We now show that the convergents mi /ni correspond to the introduced rays

mi e −ni f . We define u1 = f ,u2 = e in accordance with

m1 = 0, n1 =−1,
m2 = 1, n2 = 0.

We prove by induction on i . Suppose ui = mi e −ni f and ui+1 = mi+1e −ni+1 f . By
Remark 5.9 we have ui+2 = ai ui+1 −ui . So ui+2 = (ai mi+1 −mi )e − (ai ni+1 −ni ) f =
mi+2e +ni+2 f , which finishes the induction.
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EXAMPLE 5.11. Consider Cone( f ,11e −7 f ), which is in normal form. It is a nons-
mooth cone. We run the algorithm to find a smooth refinement.

In each step we are given f (i ), e(i ), λ(i ), µ(i ), k = dλ(i )/µ(i )e ; we compute

f (i+1) = e(i ), e(i+1) =− f (i ) +ke(i ), λ(i+1) =µ(i ), µ(i+1) = kµ(i ) −λ(i ).

The result is given in Table 2. The rays ui are represented in Figure 22.

i f (i ) e(i ) λ(i ) µ(i ) dλ(i )/µ(i )e ui

1 f e 11 7 2 f
2 e − f +2e 7 3 3 e
3 − f +2e −3 f +5e 3 2 2 − f +2e
4 −3 f +5e −5 f +8e 2 1 2 −3 f +5e
5 −5 f +8e −7 f +11e 1 0 −5 f +8e
6 −7 f +11e

Table 2: The results of running the algorithm on Cone( f ,11e −7 f ).

f

e

u1

u2

u3

u4

u5

u6

Figure 22: Resolution of Cone( f ,11e −7 f ).

The rays in Figure 22 can also be given by means of a continued fraction, as seen
in Proposition 5.10. We calculate the HJ continued fraction expansion of λ/µ. We
consider the sequence of the µ(i ). We have µ(0) =λ(1) = 11 and µ(1) = 7. By Remark 5.9
we have the recursive relations for the µ(i ):

µ(2) = 2 ·7−11 = 3

µ(3) = 3 ·3−7 = 2

µ(4) = 2 ·2−3 = 1

µ(5) = 2 ·1−2 = 0
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The HJ continued fraction expansion is

λ/µ= 2− 1

3− 1
2− 1

2

.

The convergents are shown in Table 3, in which the columns also represent the rays
in Figure 22. The convergents give the approximations 2

1 > 5
3 > 8

5 > 11
7 .

i 1 2 3 4 5 6
ai 2 3 2 2
mi 0 1 2 5 8 11
ni −1 0 1 3 5 7

Table 3: The convergents of λ/µ.

5.2.4 Optimality of the algorithm

The algorithm produces a resolution of singularities in affine toric surfaces by refining
a given cone σ. For a toric surface X∆ in general we may refine all cones σ ∈ ∆ to
obtain a smooth refinement ∆̃ of ∆ and hence a resolution of singularities X∆̃→ X∆.
We set out to show that the resolution found by the algorithm is the optimal solution,
in the following sense.

DEFINITION 5.12 (Minimal resolution). We say that a resolution of singularities
ϕ : X̃ → X is minimal if for every other resolution ψ : Y → X there is a morphism
ρ : Y → X̃ such that ρ ◦ϕ=ψ.

The theorem we set out to prove is:

THEOREM 5.13. The resolution of singularities given by the algorithm is minimal.

REMARK 5.14. For surfaces we can state the concept of a minimal smooth refine-
ment of fans. A smooth refinement ∆̃ of the fan ∆ is minimal if for another smooth
refinement Γ of ∆, the fan Γ refines ∆̃.

Theorem 5.13 implies that the smooth refinement ∆̃ of ∆ provided by the algo-
rithm is the minimal refinement. In this sense the algorithm produces the optimal
solution to Problem 1.

The remainder of this section is devoted to proving Theorem 5.13. It suffices
to prove this in the affine case. Let σ be a singular cone. We run the algorithm,
introducing a sequence of rays ρ1, . . . ,ρr .

A resolution is minimal if there were no ‘unnecessary’ blow-ups. The following
theorem tells us when this is the case.
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THEOREM 5.15 (Castelnuovo). Given a divisor D on a smooth surface we have D2 =−1
if and only if D is the exceptional curve of some blow-up (it can be ‘blown down’).

Proof. For a proof we refer to [8, Theorem 5.7].

So we set out to find possible divisors on X∆̃ with self-intersection -1.

LEMMA 5.16. Let σ be a 2-dimensional cone. If σ is nonsmooth then Uσ has a unique
singular point pσ.

REMARK 5.17. As a consequence, the resolution produced by the algorithm is a finite
sequence of blow-ups in pσ. We may conclude that the only candidates for divisors
with self-intersection −1 are those corresponding to the introduced rays.

The following lemma investigates these ray divisors.

LEMMA 5.18. For a divisor Dρ corresponding to an introduced ray ρ in the algorithm.
If ρ = Cone(ui ) then the self-intersection number D2

ρ = −ai−1 where a j is the j th

coefficient in the continued fraction.

Proof. By Remark 5.9 the vectors u0, . . . ,ur satisfy

ui−1 +ui+1 = ai−1ui .

The lemma follows from Proposition 4.41.

REMARK 5.19. In Table 1 and Table 3 the columns represent the introduced rays and
the self-intersection numbers of the corresponding divisors are given at the top.

Proof of Theorem 5.13. The coefficients in a HJ-continued fraction expansion are all
≥ 2, hence there is no divisor on X∆ with self-intersection number −1. The affine
case of Theorem 5.13 now follows directly from Theorem 5.15. The general case
follows.

5.3 Further remarks on surfaces and resolutions

Resolution graph. We can visualize the concept of resolutions of a surface with a
resolution graph. This is a graph displaying the curves of a resolution of singularities
and shows the self-intersection numbers.

We first explain how we can provide a graph of the T -invariant curves on a smooth
complete surface X . The complete curves on X come from walls in the fan. We can
show how these curves intersect. When two curves meet, their intersection number
is 1 since we work on a smooth toric surface. In the picture we also show the self-
intersection numbers for the curves. In Example 5.20 we produce a graph for the
curves on a Hirzebruch surface from Example 3.6.
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EXAMPLE 5.20. The Hirzebruch surface is smooth and complete. There are four
curves coming from the walls. Neighboring wall divisors intersect each other. We
picture this as four lines forming a square. In Example 4.43 we computed the self-
intersection numbers of the corresponding divisors.

0 0

r

−r

Figure 23: The complete curves on the Hirzebruch surface Hr .

For any toric surface X∆ we may run the algorithm to find a smooth variety X∆̃.
The resolution graph of X∆ is the graph showing the curves in X∆̃ corresponding to
new rays introduced by the algorithm.

EXAMPLE 5.21. Reconsider the resolution of Cone( f ,2e − f ) from Figure 19. When
we write σ= Cone(v, w) and introduce the ray ρ = Cone(e) we find

v +w = 2e.

Hence Dρ has self-intersection number −2.

−2

Figure 24: The resolution graph for Cone( f ,2e − f ).

EXAMPLE 5.22. In the resolution of Cone( f ,11e−7 f ) we find four curves. Neighboring
wall divisors intersect, hence the four divisors form a chain. The self-intersection
numbers are the coefficients in the HJ-continued fraction of 11/7.

−2
−3 −2

−2

Figure 25: The resolution graph for Cone( f ,11e −7 f ).

The Hilbert basis. We can view the vectors given by the algorithm in another way.
They form the Hilbert basis from Definition 2.18.
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PROPOSITION 5.23. Let σ= Cone(e2,λe −µ f ) be in normal form and let u1, . . . ,un be
the ray generators found by the algorithm. Define S = {e2,u1, . . . ,un ,λe −µ f }, then S is
the Hilbert basis of the semigroup σ∩N .

Proof. For a proof we refer to [2, Proposition 10.2.8].

We return to Cone( f ,11e −7 f ) from Example 5.11. The ray generators produced
by the algorithm form the Hilbert base as shown in Figure 26.

f

e

u1

u2

u3

u4

u5

u6

Figure 26: The Hilbert base inside Cone( f ,11e −7 f ).

Classification of toric surfaces. We called a variety minimal if it cannot be ‘blown
down’. A classic problem in algebraic geometry is to find a minimal model of a given
variety. By a model we mean a representative of the birational equivalence class of
a variety. For surfaces every birational equivalence class has a relatively minimal
model[8, Remark V 5.8.4].

Toric varieties are rational varieties, which means that they are birationally equiv-
alent to a projective space. To see this, let X∆ be a toric variety of dimension n, then
X∆ contains an n-dimensional torus T ' (C∗)n as open subset. The varieties X∆ and
Pn are birationally equivalent since (C∗) is an open subset of Pn .

In the case of rational surfaces the minimal models are precisely P2 and the
Hirzebruch surfaces Hr for r = 0 or r ≥ 2 [8, Remark V 5.8.2].

This means that the toric surfaces which are minimal, i.e. they cannot be ‘blown
down’, are P2 and the Hirzebruch surfaces Hr for r = 0 or r ≥ 2. We note that H1 is a
blow-up of P2. Hence we have the result:

THEOREM 5.24. Every smooth complete toric surface is obtained from either P2 or a
Hirzebruch surface after a finite sequence of blow-ups.



6. More on toric resolutions

We have investigated resolution of singularities in a toric surface. We now turn our
attention to toric varieties in dimension ≥ 3. In higher dimensions we lose some of
the nice properties from the surface case. The key ingredient of the algorithm was
to bring a cone into normal form. This concept of a normal form does not translate
to dimensions ≥ 3. Furthermore, for surfaces the alogirthm provided the optimal
solution, in dimension ≥ 3 there is no unique optimal solution, as we shall show in
Example 6.1.

What does not change is that we can resolve a singularity by finding a smooth
refinement as in Theorem 3.40. So we set out to solve:

PROBLEM 2. Let ∆ be a fan in NR where dim(NR) = n. We want to find a smooth fan
∆̃ refining ∆ such that the smooth cones in ∆ are in the refinement ∆̃.

We mentioned at the end of Chapter 3 that we can use stellar refinements to find
such a smooth refinement.

6.1 Stellar refinements

EXAMPLE 6.1. Consider the 3-dimensional cone σ in Figure 27. This cone has four
edges so the ray generators are certainly not part of a (lattice) basis, hence σ is not
smooth. We now want to find a smooth refinement of σ.

e1

e2

e1 +e3

e2 +e3

e3

Figure 27: The cone σ= Cone(e1,e2,e3 +e1,e3 +e2).

We reconsider stellar refinements from Definition 3.33. Let ρ1 and ρ2 be the rays
generated by e1 respectively e2. We take the stellar refinement of σ with ρ1 as center.
By definition this is the fan

σ∗(ρ1) = {
ρ1 +τ

∣∣ τ≺σ ∣∣ ρ1 * τ
}
.

61
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So we take the faces of σ which do not contain e1, and we gather them in a fan by
adding e1 to these cones. The resulting fan consists of

Cone(e1,e1 +e3,e2 +e3), Cone(e1,e2,e2 +e3)

and all their faces, see Figure 28. This figure also shows the fan σ∗(ρ2).

e1

e2

e3

e1

e2

e3

Figure 28: The stellar refinements σ∗(ρ1) and σ∗(ρ2)

Both these fans are smooth refinements of σ. Both of these are minimal resolu-
tions. However they are not refinements of each other. So Remark 5.14 no longer
holds true in dim ≥ 3.

Example 6.1 illustrates how stellar refinement can lead to a smooth refinement.
Whilst this is in general not true, we can find a simplicial refinement in this manner.

Consider a cone in normal form σ= Cone(e2,λe1 −µe2), 0 ≤µ<λ. Let ρ be the
ray through e1, then σ∗(ρ) consists of two cones Cone(e1,e2) and Cone(e1,λe1 −µe2)
and their faces. So the introduction of the ray ρ is an instance of stellar refinement.
Hence we have:

REMARK 6.2. The introducing of rays in the algorithm is an instance of iterated stellar
refinement.

6.2 Resolutions

We follow the idea by Fulton [6] and break down the Problem 2 in two steps. Let ∆ be
a fan as in the problem.

(1) We first find a simplicial fan ∆′ refining ∆;

(2) Next we find a smooth fan ∆̃ refining ∆′.

(1) Simplicializing. We first find a simplicial refinement of ∆. We can refine in such
a way that the simplicial cones are unchanged:
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LEMMA 6.3. Every fan ∆ has a simplicial refinement ∆′ such that the simplicial cones
of ∆ are also cones in ∆′. This can be achieved by iterated stellar refinement.

We follow the proof from Barthel-Fieseler-Kaup[7, Lemma 3.2]. We define:

DEFINITION 6.4. A ray ρ is a splitting edge of a cone σ if there is a complementary
facet τ of σ, i.e. a facet such that σ= τ+ρ. A cone is stout if it has no splitting edges.

The cone in Figure 27 is a stout cone, none of the four edges has a complementary
facet.

Recall from Remark 2.24 that a d-dimensional cone is simplicial if and only if it
has exactly d edges and the corresponding ray generators are linearly independent
over R. This means that all the edges are splitting edges. Furthermore, each face of a
simplicial cone has splitting edges. Therefore:

REMARK 6.5. A cone is simplicial if (and only if) it does not include any stout face.
Hence a fan that does not contain any stout cones is a simplicial fan.

Proof of Lemma 6.3. Let ∆ be a fan and let ρ be an edge included in a cone σ in the
fan. Then the stellar refinement σ∗(ρ) does not contain any stout cones, since by
construction a cone τ+ρ in σ∗(ρ) has ρ as splitting edge. The idea is now to use
stellar refinements to lower the number of stout cones. Taking edges of stout cones
as centers, we see that we can use a sequence of stellar refinements to get rid of all
the stout cones. The result is a fan ∆′, which is simplicial by Remark 6.5.

Finally, we claim that no simplicial cone get in∆ get subdivided, i.e. the simplicial
cones of ∆ are still in the refinement ∆′. Note that the fans have the same edges

∆(1) =∆′(1). (6.2.1)

Let σ be a simplicial cone in ∆. We show that σ is also a cone in ∆′. If σ′ ∈∆′ lies
in σ, then (6.2.1) implies σ′(1) ⊂σ(1), hence σ′ is a face of σ as the latter is simplicial.
So the collection {σ′ ∈∆′ ∣∣σ′ ⊆σ} supports σ and all of the σ′ are faces of σ. It follows
that some σ′ in the collection equals σ which shows σ ∈∆′ as desired.

(2) Smoothening. Let ∆ be a simplicial fan. Then we can refine in such a way that
the smooth cones are unchanged:

LEMMA 6.6. Every simplicial fan ∆ has a smooth refinement ∆̃, such that the smooth
cones of ∆ are also cones in ∆̃. This can be achieved by iterated stellar refinement.

As stated in Remark 2.26 a (simplicial) cone is smooth whenever its multiplicity
is 1. So a fan ∆ is smooth when mult(σ) = 1 for all cones σ ∈ ∆. To find a smooth
refinement of a simplicial fan we would like to lower the multiplicity of cones in the
fan. The idea is that we subdivide a cone of mult > 1 into cones of lower multiplicity.
We first give some useful properties of the multiplicity of a cone.
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PROPOSITION 6.7. Let σ⊂ NR be a simplicial cone with minimal generators u1, . . . ,ud

and let e1, . . . ,ed be a basis for Nσ = Span(σ)∩N . When we write ui =∑
j ai j e j , then

we have
mult(σ) = ∣∣det(ai j )

∣∣ .

Proof. It is standard linear algebra that the determinant is the index of the sublattice
Zu1 + . . .+Zud inside Nσ, see for instance [14, corollary 9.63].

PROPOSITION 6.8. Let σ⊂ NR be a simplicial cone with minimal generators u1, . . . ,ud .
Then the generators span the fundamental parallelotope

Pσ =
{

d∑
i=1

λi ui
∣∣λi ∈R and 0 ≤λi < 1

}
,

and the multiplicity of the cone is the number of lattice points inside the parallelotope

mult(σ) = |Pσ∩N | .

Proof. Observe that the composition of maps

Pσ∩N ,→ Nσ→ Nσ/(Zu1 + . . .+Zud )

is a bijection and by definition mult(σ) = [Nσ :Zu1 + . . .+Zud ].

Note that if σ is a face of τ then Pσ ⊂ Pτ. So counting points inside the parallelo-
tope gives the following result:

COROLLARY 6.9. For cones σ¹ τ we have mult(σ) ≤ mult(τ).

These properties make it easier to compute multiplicities. The following lemma
shows that a stellar refinement may lower the multiplicity of a cone.

LEMMA 6.10. Let σ⊂ NR be a cone which has multiplicity > 1. Denote u1, . . . ,ud for
the minimal generators of σ and assume we have a lattice point in the parallelotope:

uρ =∑d
i=1λi ui ∈ Pσ∩N , for 0 ≤λi < 1.

Let σ∗(ρ) be the stellar refinement with the ray through uρ as center. Then we have

mult(τ+ρ) < mult(σ), for cones in σ∗(ρ). (6.2.2)

Proof. Let τ+ρ be a cone in∆∗(ρ), i.e. τ is a face ofσ that does not contain the ray ρ as
subset. We denote u1, . . . ,ud for the minimal generators of σ. Then there is a minimal
generator ui which is not contained in τ. Let δ j denote the facet of σ not containing
u j , so δ j is generated by the other minimal generators. Then (τ+ρ) ≺ (δ j +ρ) and
Corollary 6.9 gives

mult(τ+ρ) ≤ mult(δ j +ρ)
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Recall that ρ is the ray generated by uρ =∑d
i=1λi ui , for 0 ≤λi < 1. Compare the

cones δ j +ρ and σ, these cones have mostly the same generators except for uρ and
u j . We use Proposition 6.7 to compute

mult(δ j +ρ) =λ j mult(σ)

and since λ j < 1 we conclude mult(τ+ρ) < mult(σ)

So Lemma 6.10 describes a suitable refinement in the sense that we subdivide a
cone σ into cones of lower multiplicity. This is the key ingredient to finding a smooth
refinement of a simplicial fan.

Proof op Proposition 6.6. Let ∆ be a simplicial fan. Define the multiplicity of the fan
to be

mult(∆) = max
σ∈∆

{mult(σ)}.

We assume ∆ is nonsmooth so mult(∆) > 1 and we pick a cone σ of maximal multi-
plicity, i.e. mult(∆) = mult(σ). Since mult > 1 we have by Proposition 6.8 that Pσ∩N
is non-empty. So we may pick a lattice point in the parallelotope, let ρ denote the ray
though this point. Now consider the stellar refinement of ∆ with center ρ. Now ∆∗(ρ)
does not contain σ and each newly introduced cone satisfies (6.2.2). We conclude
that ∆∗(ρ) is a refinement of ∆ such that

• either mult
(
∆∗(ρ)

)< m,

• or mult
(
∆∗(ρ)

)= m but ∆∗(ρ) has less cones of maximal multiplicity.

Note that ∆∗(ρ) does not change the simplicial cones in ∆. We may repeat this
process until we have lowered all the multiplicities in the cone. This gives the desired
refinement.

Note that a smooth cone is a simplicial cone. So when we combine Lemmas 6.3
and 6.6 we see that any fan has a smooth refinement leaving the smooth cones
unchanged. This solves Problem 2 with a sequence of stellar refinements. The result
is a resolution of singularities by Theorem 3.40.

Exceptional locus. We have arrived at a resolution of singularities ϕ : X̃∆→ X∆, so
we have an isomorphism outside of the singular locus:

X∆̃ \ϕ−1 (
(X∆)Sing

)' X∆ \ (X∆)Sing.

The pre-image ϕ−1
(
(X∆)Sing

)
is what we call the exceptional locus In Proposi-

tion 3.38 we described the singular locus of a toric variety in terms of orbit closures

X∆ \ (X∆)Sing =
⋃

σ smooth
O(σ).
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We can do the same for the exceptional locus. The locus corresponds to the new
cones ∆̃, these cones are proper subsets of the nonsmooth cones in ∆.

E = ⋃
σ∈∆̃\∆

O(σ).

Note that if a cone σ′ is nonsmooth, then so is every cone that contains σ′ as a
face. Hence by the Orbit-Cone correspondence we have E =⋃

σ∈∆̃\∆V (σ).

Techniques to solve resolutions. We have proved the existence of toric resolutions.
Every toric variety has a resolution of singularities which is also a toric variety. A toric
resolution is given by a smooth refinement. We ‘smoothen’ the fan by choosing lattice
points, for a nonsmooth cone σ in the fan we pick a lattice point in the parallelotope
Pσ. These points describe a sequence of stellar refinements and hence a sequence of
blow-ups. However, given a toric variety it is not clear which are ‘good choices’ for
lattice points.

In dimension 2 we had a unique minimal refinement of a fan, as explained this
no longer exists in dim ≥ 3. There are some tactics which lead to choose lattice
points. For more information of toric singularities in higher dimensions we refer to
the literature.

• [2] discusses the Barycentric refinement at the end of section 11.1. Next, section
11.2 discusses other types of resolutions.

• [3] provides an overview of toric singularities in dimension 3, “it focuses, in
particular, on a toric version of Reid’s desingularization strategy”. In [3, p. 176]
the reader may also find an overview of the classification of singularities in
terms of cones.
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