
Radboud University Nijmegen

Faculty of Science

Crypto security optimizations
Making cutting edge algorithms useful in real life

scenarios

Thesis MSc Computer Science

Author:

Giacomo Bruno

Student number:

S1034730

Supervisor:

prof. dr. Lejla Batina

Second reader:

prof. dr. Wieb Bosma

November 2021

Abstract

Abstract. In 2011 the SIKE algorithm was first proposed as key
encapsulation mechanism (KEM) ready for a future dominated by
quantum computers. Later it was optimized and submitted to the
NIST competition for post quantum cryptography, but it remains one
of the most expensive algorithms, computation wise, amongst the ones
taking part in the competition. Despite this, it offers some advantages
in its key sizes and ciphertext sizes, making it a great candidate for
usage in low power micro controllers. To make this KEM work best
on such devices some device specific optimizations are required. In
chapter 5 we are going to show how an optimized implementation
for STM32F4 Discovery equipped with 32 bit ARM cortex-m4 micro
controllers is made and show its advantage in performance against the
implementation available in the latest NIST submission.

Internally, SIKE makes use of the SIDH algorithm. In 2019 Craig
Costello proposed an alternative approach to SIDH that could show
promising performance given the right parameters and could even
replace SIDH in the right scenarios. A necessary parameter that is
yet to be found is a smooth prime number of sufficient size. In chapter
4 we are going to see various approaches to finding such numbers and
see an optimized implementation of one such algorithm.

2

Acknowledgements

During my work on this thesis, much of my work would have been
more complex and abstruse were it not for the help I have received in
the process. In particular I want to thank my supervisor Lejla Batina,
who followed me through this endeavor and put me in contact with
other amazing people. I want to thank Michael Naehrig, Maria Corte-
Real Santos, Craig Costello, and Michael Meyer for their help and
support in looking for more and diverse ways to optimize the neighbors
search algorithm, as well as Joost Renes for his initial contribution
in the development of the neighbors search program, and continuous
support over time.

3

Contents

Notation List 6

1 Introduction 7
1.1 History . 7
1.2 Organization . 11

2 Modern cryptography 12
2.1 Diffie-Hellman key exchange 12

3 Preliminaries 15
3.1 Elliptic curve cryptography 15
3.2 Post-Quantum cryptography 17
3.3 Isogeny based cryptography 18
3.4 Supersingular isogeny key exchange 20
3.5 B-SIDH . 22
3.6 Supersingular Isogeny Key Encapsulation 23

4 Finding smooth twins 24
4.1 Methods of finding smooth neighbours 24
4.2 Optimizing the Extended neighbours method 27
4.3 Initial optimizations 28
4.4 Further reducing computations 30
4.5 Parallelism . 33
4.6 Good neighbors . 37
4.7 Better data structures 38
4.8 All together . 39

5 SIKE, cortex-m4 implementation 42
5.1 Initial general implementation 42
5.2 FPU registers as additional storage 43
5.3 Karatsuba’s multiplication 43
5.4 Karatsuba’s multiplication implementation 44
5.5 503bit implementation in detail 47
5.6 Results . 50

4

6 Conclusion and Future Work 53

5

Notation List

E elliptic curve
E/K elliptic curve over field K
#E number of points on the elliptic curve E
G cyclic group
g generator of a cyclic group
Fp finite field of prime order p
Fq finite field with q elements
Fpk finite field with pk elements, with p prime
Φ isogeny between elliptic curves
j(E) j-invariant of the elliptic curve E

6

1 Introduction

1.1 History

In the long history of human civilization technology has been our tool
to obtain more whilst working less and in fact, when developing new
tools, the main focus has always been on either what that tool does,
or on how much it cost for the tool do its job. The moment a tool
does something useful, whether it be a necessity or a commodity, and
at the same time its cost is less than the expense of doing the same
task without that tool, is the moment when a new product spreads
all around the people.

The discovery of technology from the first humans back in the pa-
leolithic age can be said to have created the first cracks separating
humans from the rest of the animal kingdom. From that point on
wards it’s possible to see example of many new and more diverse
tools spreading among the people according to their usefulness.

At the beginning of our species tools for hunting were made, then
fire was discovered, clothing, and eventually farming was developed
with its tools. With the progress of language came writing and with
it long distance communication. In the presence of wars, it became
clear very soon that being able to send and receive messages to and
from the troops gave an almost insurmountable strategic advantage
and the ability to intercept such messages will move this advantage
to the opposite side.

There is therefore a necessity to be able to protect the message with
the assumption that someone whom intercepts it won’t be able to
make use of it. Cryptography is born.

Like many technologies developed for war, the general public would
also benefit and make use of it in due time. Such is the case for Cryp-
tography, from an instrument to hide messages for military commu-
nications, to a tool used by the masses to hide personal information,
embarrassing conversations, share or hide secrets...

Cryptography has become the tool that, in our digital environment,

7

let us enjoy a feeling of security and confidentiality. But this tool
does not come for free, there is an associated cost, whether it be time,
money, or training, that needs to paid to make use of this tool.

The strength and focus of the digital environment that has been de-
veloped in the past century is its ease of use and unmatched speed.
It takes almost no effort to send a message to anyone on the other
side of the globe and the message reaches its destination in less than
a second. In its travel to the other side of the planet, we are mostly
sure the message is safe thanks to cryptography.

We have become so used to rely on this technology that any other
medium for communication has pretty much become mostly irrele-
vant. If we were to send a paper mail to someone far away, it would
take at least a few days to reach its destination, the message would
most likely not be encrypted in any way and therefore it’s not possible
to be sure that someone other than the recipient has not read your
message.

When sending a digital message, whether that’s just to chat with
someone or to log in your bank account, the software is in charge of
encrypting that message and making sure that it reaches its destina-
tion. While it’s not always 100% sure that the encryption is done in
a useful manner, we have many more guarantees and the time needed
to accomplish the complete task is orders of magnitude less. We got
used to this process that runs automatically after we put our finger
on the ”send” or ”log in” button: the message gets encrypted, sent
through a bunch of routers around the globe and reaches a destination
were it gets decrypted and shown to the recipient. All of this in less
than a second of time.

Over the years many algorithms to perform encryption and decryp-
tion have become standards and are widely used on many applica-
tions and a subdivision in methodology appeared. It’s been decided
to differentiate types of crypto algorithms based on whether the same
code can be used to both encrypt and decrypt a message or there
are two different codes for each purpose. We are talking respectively
of symmetric algorithms and asymmetric ones(also known as public-

8

key algorithms). The algorithms present in my thesis are public-key
algorithms. The sub field of public-key cryptography is not only re-
sponsible for developing these algorithms but also for finding ways to
bypass them and in fact, at the present moment, many of these stan-
dard algorithms have been found to not be as safe as it was thought.

The method driving public-key cryptography is the use of mathemat-
ical ”hard” problems to hide in plain sight an encrypted message.
In this context an hard mathematical problem consists of a problem
whose solution requires an incredibly expensive computation, be it
memory of time wise.

The algorithms for solving these problems are available to anyone but
the amount of time required to get a solution when the key is a big
number (more than 300 bits) is so much that in fact there are many
cases of such problems remaining unsolved from from 1990s.

A great example of this is the RSA Factoring Challenge[1], where is
given a semiprime number n, composed by the product of two prime
numbers, and it’s asked to find the two prime factors used to generate
it. The last number to be factored from this challenge is a number of
829bits and the solution was found in February 2020[2].

In practice, public key systems, are rather clumsy when used to trans-
mit long messages. They become instead extremely useful when used
in conjunction with symmetric cryptography, where the main issue
is sharing the secret key. Using a public-key algorithm, the secret
key of the symmetric algorithm is shared in a public channel safely.
Additionally this process is made even simpler by Key Encapsulation
Mechanisms (KEM).

A Key Encapsulation Mechanisms (KEM) uses a public key system
to share a symmetric key, that itself is derived from an element of the
underlying finite group of the public key system.

Making use of these problems it’s possible to bypass the encryption
only after thousands of years worth of computations (by today’s pro-
cessors). Back in 1980s the first ideas for quantum computers were
starting to surface and in 1994 it was shown that, through a quan-

9

tum computer, it’s possible to factorize numbers in a very short time.
Number factorization is one of the ”hard” problem that is widely
used in many algorithms today to guarantee privacy and the coming
of quantum computers would deny the security of any information
encrypted with algorithms that relied on factorization.

Obviously, researcher did not sit on their hands waiting for a security
apocalypse to happen. Work has been done to develop new algorithms
that rely on different ”hard” problems that are not easily solved even
through an quantum computer. At the present time there are more
than five directions being taken against it and the one I will focus on
is called ”supersingular elliptic curve isogeny cryptography”.

The contribution of this thesis is not in the development of such an
algorithm but instead on its implementation and optimization, in par-
ticular I’m going to show an approach to finding parameters capable
of speeding up the recently introduced B-SIDH algorithm. Through
these optimizations it was possible to find a bigger prime than the one
previously found with the same algorithm, and it was done in a frac-
tion of the time it would have previously took. The second part of my
contribution is in the form of an optimization of the implementation of
the SIDH/SIKE algorithm for Cortex-M4 micro controllers obtaining
almost a ten-fold increase in speed in large number multiplications.

10

1.2 Organization

This thesis is divided in two parts, the first part composed of two
chapters:

• Chapter 2: An introduction to modern public key-key cryp-
tography.

• Chapter 3: A showcase of the contemporary response in the
world of crypto to quantum computers and a more in depth
explanation of the algorithms relevant to this thesis (B-SIDH
and SIDH).

The second part of the thesis focuses on my contributions:

• Chapter 4: An in depth showcase of the optimizations im-
plemented in the program responsible for finding the necessary
number to a breakthrough in B-SIDH’s performance.

• Chapter 5: A thorough explanation of the architecture specific
optimizations introduced in SIKE/SIDH.

11

2 Modern cryptography

Before the digital era, cryptography was a simple manipulation of
traditional characters that gained its security by hiding what manip-
ulations were being done. This is called security by obscurity.

With the coming of computers, and the departure from security by
obscurity, cryptographers started to take advantage of the newfound
processing power and put into practice publicly known mathematical
algorithms to encode information.

Until June 1976 cryptography mainly consisted of encryption mech-
anisms that use the same key, shared between those who need to
decrypt the cipher text. This is called symmetric cryptography.

The problem of this method is that the parties involved in the com-
munication either need to know the secret key a priori or they are
forced to communicate the key unsafely.

This problem highlights the need at the time for a different method
of encryption that could guarantee the safety of the communication
without the shortcomings of symmetric cryptography and the solution
comes in the form of asymmetric cryptography, or public-key
cryptography.

2.1 Diffie-Hellman key exchange

In this section I’m going to show the first devised method that signified
the birth of asymmetric cryptography:
Diffie-Hellman key exchange.

In 1976, Whitfield Diffie and Martin Hellman published the first
known work showing a method of safely exchanging cryptographic
keys in a public channel[3].

In the Diffie-Hellman key exchange (D-H), two entities (Bob and Al-
ice) each have a secret and a public object. They use the other’s
public object to generate a new object that they then share to each

12

other. Finally they use their private object to generate a new private
object that’s the same for both of them and that will be used for
encryption/decryption.

Notice how I’m talking about objects and not something more precise.
That is because what the objects and how they are used to generate
new objects is not important to the general scheme. What is im-
portant is that, given the public objects and the first two generated
objects that are shared between Bob and Alice, going backwards and
finding the private objects is an ”hard mathematical problem”.

In the original implementation multiplicative groups of modulo p,
where p is a prime number, was used to make this exchange.

Diffie-Hellman key exchange importance comes from establishing this
general method of sharing secrets, thanks to this, when a ”hard math-
ematical problem” is not hard anymore and computing the private
objects backwards becomes ”easy”, one can swap the objects in this
algorithm for different ones in an effort to maintain the same(or bet-
ter) level of security as before whilst maintaining the same general
schema.

More specifically the objects used in Diffie-Hellman schema are cyclic
groups.

13

Definition 2.1. A cyclic group is a set of invertible elements with a
single associative binary operation between them. This set needs to
also contain an element g such that every other element of the set can
be obtained by (repeatedly) applying the group operation to g or its
inverse. This element g is called the generator of the group.

Definition 2.2. The order of a cyclic group G is the number of ele-
ments in G.

Historically, with the use of symmetric-key algorithms, where one key
is used to both encrypt and decrypt messages, it was necessary for the
two parties involved to both have that key available and the process
of sharing the key between them came to be called key-exchange.
Before Diffie-Hellman key exchange was introduced, the big problem
to these algorithms was precisely how to share the secret key in a
public and unsafe communication channel.
With Hellman’s PhD student Ralph Merkle’s ideas, in 1976, a new
method, that was later known as called Diffie-Hellman key exchange
(D-H),was first introduced to share a secret key safely in a public
channel.
It’s worth mentioning that the same idea behind these public channel
key exchanges actually goes back to 1973 when Malcolm J. Williamson,
James H. Ellis, Clifford C. Cocks from GCHQ(Government Communi-
cations Headquarters in UK) first came up with the idea but, because
they were working for British intelligence they could not publish any
of their work.

At the present moment, the D-H key exchange saw its uses with mul-
tiplicative groups and through elliptic curve cryptography (ECDH).
With the advent of quantum computers, both of these implementa-
tion of D-H key exchange cannot be considered to be safe anymore.
To overcome this new hurdle, researchers started looking towards su-
persingular elliptic curve isogeny graphs.

14

3 Preliminaries

3.1 Elliptic curve cryptography

Elliptic curve cryptography (ECC) is a type of public-key cryptogra-
phy based on Elliptic curves defined over finite fields.

An elliptic curve is a smooth projective algebraic curve of genus one
having a specified point O, or more simply a set of point satisfying
equations of shape:

y2 = x3 + ax+ b

An important property of elliptic curves for cryptography is that they
are horizontally symmetrical: any point on the curve can be reflected
over the x axis (by negating the y coordinate) and the resulting point
is still part of the curve.

Another important property is that a line intersecting two points on
the curve will also intersect a third point on the curve. If a line is
tangent in one point of the curve then it intersects one other point in
the curve.

−2 2

−5

−4

−3

−2

−1

1

2

3

4

5 y2 = x3 − x+ 1

−2 2

−5

−4

−3

−2

−1

1

2

3

4

5 y2 = x3 − x+ 1

B•A•

C•

D•

Using these properties the point addition operation on elliptic curves

15

is defined: given two points in the curve then their addition is the
reflection of the point obtained from the intersection between the line
intersecting both addendum points (A + B = D) as shown in the
figure).

If you repeatedly do this addition n times using always A as an ad-
dendum and the result of each addition as the second addendum it’s
impossible to figure out the value of n by just the value of A and
the final result of the repeated addition unless you do this process
anew.

In cryptography n represents the private key and finding n is called
the ”elliptic curve discrete logarithm problem”.

This is the ”hard” mathematical problem making ECC work, but
this is a problem that can be solved using Shor’s algorithm on a hy-
pothetical quantum computer. Not quantum computers would break
ECC cryptography, but it would also be easier to break ECC than to
break RSA algorithms, in terms of amount of qubits required for the
quantum computer to have.

16

3.2 Post-Quantum cryptography

We have seen how Quantum computers are going to be ruining cryp-
tography as we know it. Before diving into one of the possible solu-
tions (Isogeny based cryptography), I want to mentions other tech-
niques and approaches aiming to put on a fight against for the future
computers.

At the present moment five new fields of cryptography have started
to develop:

• Lattice-based cryptography: Nth Degree Truncated Polyno-
mial Ring Unit (NTRU) cryptosystems, Goldreich–Goldwasser–Halevi
(GGH) cryptosystems.

• Multivariate cryptography: Rainbow singature scheme.

• Hash-based cryptography: Lamport signature, Merkle sig-
nature scheme, XMSS, SPHINCS.

• Code-based cryptography: Niederreiter cryptosystems, McEliece
cryptosystems.

• Supersingular elliptic curve isogeny cryptography: SIDH,
B-SIDH.

The National Institute of Standards and Technology (NIST)[4] is cur-
rently organizing a competition to update their standards to include
post-quantum cryptography and amongst the competitors there are
many of the algorithms mentioned above and other (CRYSTALS-
KYBER, SABER, BIKE, NTRU Prime, SIKE, ...). The competition
started in 2016 and we are currently at the third submission and the
drafts for the new standards are planned to be released between 2022
and 2024.

17

3.3 Isogeny based cryptography

Before advancing into Supersingular elliptic curve isogeny cryptogra-
phy, it’s necessary to have some knowledge on isogeny based cryptog-
raphy first.

Definition 3.1. An isogeny is a morphism of algebraic groups that
is surjective and has a finite kernel

In the case of elliptic curves (E1, E2), an isogeny between them is a
rational morphism Φ : E1 → E2 that maps the point at infinity O of
E1 to the point at infinity O of E2. Elliptic curves have a distinguished
point(O) and a group structure therefore the isogeny Φ preserves this
structure.

Definition 3.2. Given two elliptic curves E1 and E2, let Φ : E1 → E2

be an isogeny between them over a field k and let k(E1) and k(E2) be
function fields of E1 and E2.
The degree of Φ is defined as deg Φ = [k(E1) : Φ ∗ (k(E2))], where
Φ∗ (k(E2)) is a sub-field obtained by the composition of Φ and k(E2).

Elliptic curves are the basis of elliptic curves cryptography (ECC),
but because an attacker needs to solve an instance of the discrete log-
arithm problem they are not safe from quantum computer attacks.

Isogeny based cryptography is the first evolution of ECC, [5] and
it’s security stems from the problem of finding an isogeny between
two elliptic curves, which is not made substantially easier to solve by
quantum computers.

The first algorithm making use of isogenies is Couveignes Rostovtsev
Stolbunov key exchange (CRS) but the problem with this algorithm
is that it’s unacceptably slow, taking several minutes for a single key
exchange.

Additionally in 2010[6] it was showed that solving an instance of
the abelian hidden-shift problem was enough to break the security
of the CRS scheme and this problem has a known sub-exponential
time quantum algorithm solving it[7].

18

Later CSIDH[8] was introduced, solving the speed problem of CRS,
but it fails to address the abelian hidden-shift problem showed in
2010.

The current evolution of ECC, supersingular elliptic curve isogeny
cryptography, aims to solve this problem by using all the supersingular
elliptic curves in a finite field of p2 elements.

Definition 3.3. Supersingular elliptic curves are a special class of
elliptic curves over a field of characteristic p > 0 with large endomor-
phism rings.

19

3.4 Supersingular isogeny key exchange

Supersingular isogeny Diffie-Hellman key exchange (SIDH) is an al-
gorithm analogous to the Diffie-Hellman key exchange algorithm, but
based on walks on a Supersingular Isogeny Graph.

Definition 3.4. Supersingular isogeny graph are a class of expander
graph having

• nodes: supersingular elliptic curves over finite fields

• labels: j-invariants of the curves

• edges: isogenies between the curves

The supersingular elliptic curves in Montgomery form represented
with:

Ea : y2 = x3 + ax2 + x (1)

and j-invariants are:

j(Ea) =
256(a2 − 3)3

(a2 − 4)
(2)

Definition 3.5. A j-invariant is a modular function, a complex ana-
lytic function on an upper half-plane H satisfying some equation with
respect to the group action (edges), defined on the upper half-plane
of complex numbers(H ≡ {x+ iy | y > 0;x, y ∈ R}).

The curves used in SIDH use primes of the form p = 2m3n − 1 and
each isomorphism is represented by a supersingular elliptic curve with
group order#E(Fp2) = (p+ 1)2 = (2m3n)2

Using the example given in Craig Costello’s paper on SIDH [9], using
p := 431 we have the following graph:

20

In a traditional Diffie-Hellman algorithm, we have a cyclic group G
with public generator g. Analogously the blue node with j-invariant
87i + 190 acts as the generator g. Alice would then choose a secret
integer that moves her along a subset of the graph until she reaches
the green node. This node will be used as a public key to be sent to
Bob. In the same way Bob moves from the blue node to the yellow
node and he shares this node to Alice. The both of them then move
from the received public key using their secret key and reach the red
node. These movements are done using the isogenies that were the
edges of our graph.

21

3.5 B-SIDH

In SIDH we have seen that only curves with group order #E(Fp2) =
(p+ 1)2 are used.
B-SIDH [10], additionally, uses curves of group order #E(Fp2) = (p−
1)2. The curves of these two sets are not isomorphic nor isogenous to
one another in Fp2 but they become isomorphic in Fp4, and therefore
they share the same j-invariant in Fp2

The whole point of B-SIDH, as explained in Craig Costello’s paper
on the matter, is remove the restriction of SIDH on the two sets of
quadratic twists. The advantage over SIDH is that the primes and
the public keys would be significantly smaller than those required in
SIDH.

The only claims in regards to B-SIDH’s performance are that on Al-
ice’s side there will be a clear improvement due to the size of the prime
being smaller. On Bob’s side there will almost always be a ”colossal
slowdown”

In that same paper have been shown that the two main obstacles
in making the performance of B-SIDH competitive with SIDH/SIKE
are

• faster methods of computing l-isogenies (isogenies of degree l)

• finding large enough primes p having p+1 and p-1 be as smooth
as possible.

The first part of this thesis will hinge on the second obstacle to B-
SIDH.

22

3.6 Supersingular Isogeny Key Encapsulation

The Supersingular Isogeny Key Encapsulation mechanism (SIKE) is
the only post-quantum key encapsulation mechanism based on super-
singular elliptic curves and their isogenies. It was proposed in 2011
by Jao and De Feo[11].

When compared to other algorithms submitted to NIST’s post quan-
tum competition it is one of the slowest, requiring the most number
of clocks. Its advantage comes in the size of keys it uses and the size
of the encrypted message. Because of this, SIKE is a good fit for
resource constrained devices as the Cortex-M4.

In SIKE, like in SIDH, the supersingular elliptic curve E0/Fp2 is pub-
lic, the prime p of shape leAA l

eB
B ± 1 is known and dependant on the

implementation. The values of lA and lB are fixed to 2 and 3, while eA
and eB are dependent on the security level of the implementation.

Parameter
Set

Security
Level

Public key
(B)

Chipher
Text (B)

Shared Se-
cret (B)

434bit 1 330 346 16
503bit 2 378 402 24
610bit 3 462 486 24
751bit 5 564 596 32

SIKE has four different primes to ensure NIST security level 1, 2, 3,
and 5, respectively of length 434, 503, 610 and 751 bits. The com-
putations over such huge numbers is a challenging problem especially
for resource constrained devices. The acceleration of these operations
is the main focus to improve SIKE and its timing, and energy con-
sumption.

23

4 Finding smooth twins

In this section I talk about the methods and ideas used to find greater
smooth prime numbers whilst taking meaningfully less time than be-
fore eventually discovering a larger result than the one previously
discovered through the same algorithm.

The reason we are looking for a large smooth prime is to make B-SIDH
useful in real scenarios and to do so a big enough prime number is
needed. This prime number p needs to have for neighbors b = p − 1
and B = p + 1 such that both b and B are smooth numbers for a
relatively low smoothness. The prime needs to be in between 200
and 300 bits of length and the smoothness needs to be too not much
higher than 1000.

Definition 4.1. A z-smooth number is a number only divisible by
numbers less or equal to z. The number z is called smoothness.

Finding primes with this property is an expensive task, and the fastest
method currently known first finds a smooth neighbour pair.

Definition 4.2. A smooth neighbour pair is a pair of two numbers
m and m+ 1 that are both z-smooth.

Once a neighbour pair is found, m is multiplied by two and if 2∗m+1
is a prime number then it’s also a z-smooth prime number.

4.1 Methods of finding smooth neighbours

Lenstra’s method. Using Størmer’s thorem [12] it is known that
for a given smoothness z the set of smooth neighbors is finite and it’s
possible to find all these neighbour pairs using the Pell equation.

A Pell equation is a Diophantine equation of type:

x2 − dy2 = 1

x2 − dy2 = −1

24

The standard method of solving these equations is through continued
fractions, by expressing

√
d in its continued fraction form.

Continued fractions of a square root are cyclic, meaning that the frac-
tions at a certain point start repeating themselves. One can truncate
the fraction at the end of a cycle to obtain an approximate solution
to the square root.

To solve the Pell equation x2 − 14y2 = 1...explain here continued
fraction

After we reach the first cycle we can calculate the fraction to obtain
a number of the form a

b . In the example from before we would get

that
√

14 = 15
4 . We let x = a and y = b and obtain a solution to the

equation. This solution obtained from the truncation up to the first
cycle of the continued fraction of the square root of d is called the
fundamental solution.

Størmer’s initial method for finding all smooth neighbors given a cer-
tain smoothness z involves calculating 3k Pell equations, where k is
the number of primes in [2− z]. This method was later on improved
and simplified by D. H. Lehmer[13] In his method you only need to
calculate the following Pell equation

x2 − 2qy2 = 1

for each z-smooth square free number q other than 2. Since each q is
generated as a product of a subset of the primes in [2 − z] with size
k, 2k − 1 Pell equations need to be calculated.

Since every smooth neighbor is of the form (xi−1)
2 and xi+1

2 we can
check for smoothness only the solutions to the Pell equation above
that also are of this form.

Because this method requires the usage of continued fractions, it’s
exponentially slow and it will not run in polynomial time. Meaning
that it’s not useful for finding neighbors pairs for large smoothness
(z > 150).

25

PTE-Method. This method showcased by Craig Costello[14] is
based on solving Prouhet-Tarry-Escot (PTE) problems where for mul-
tisets {a1, ..., an}, {b1, ..., bn} ai1 + ... + ain = bi1 + ... + bin holds for all
0 ≤ i ≤ n− 1

From this multiset we obtain the following polynomials:

a(x) =
n∏

i=1

(x− ai) b(x) =
n∏

i=1

(x− bi)

It’s proven that a(x) and b(x) differ only by a constant C ∈ Z. If you
can find d ∈ Z such that a(d) ≡ b(d) ≡ 0 modulus C then a(d) and
b(d) are the smooth neighbors you were looking for.

This method is great for limiting the search of a smooth prime to a
required bit length as it does not need to build up growing sets of
smooth pairs that would over time hinder the performance but it’s
not as reliable. The benefit you get from the constructive approach
is that you get all, or most, of the smooth pairs up to the required
smoothness.

Extending neighbours method. This is a constructive approach
that starts from an initial set of z smooth numbers (easily all num-
bers ≤ z) and generates new smooth neighbours and keeps repeating
this process until no new neighbour are found anymore. Given two
z-smooth numbers (b and B) it’s possible to find a new z-smooth
number by solving the following equation:

β

β + 1
=

b

b+ 1
× B + 1

B

26

4.2 Optimizing the Extended neighbours method

The main idea is that, given a smoothness z and two numbers b and
B that are z-smooth by solving this equation we find a new z-smooth
number β [15]

β

β + 1
=

b

b+ 1
× B + 1

B
(3)

We can apply this equation to sets of z-smooth numbers and obtain
an algorithm that keeps enlarging this set until no longer possible.

The first step of the algorithm is to decide on a starting set S to
work from. We can easily fill S with numbers less or equal to the
smoothness z.

The second step, which is usually referred to as ”the iteration”, consist
of taking all possible pairs (b, B) with (b < B) of this set S and then
finding the solution to (1) with each pairing. After we have found all
solutions, we store the new ones into the set S.

Finally we repeat the last step until we get no new results.

100 150 200 250 300 350
0

600

1,200

1,800

2,400

B

T
im

e(
s)

Program Speed

27

As we can see, this algorithm experience an exponential growth in
time needed as the smoothness increases.

4.3 Initial optimizations

From this initial description we can easily see that the number of
computations we do on each iteration is n2 where n is the number of
elements currently in S. Furthermore each iteration forgets what pair
it already tried and does the same computation again.

The first optimization that can be done is exactly focused on this
aspect.

Instead of having only a single set S, populated in the same way as
before, we also have an additional set T that will contain only all the
new results obtained from the previous iteration. Then the pairs for
each iteration are created from one element of T and one element of
S.

This simple operation removes all redundant computations.

Thinking about the computations themselves, is there a way to make
them faster? Looking at equation (1), what comes easy to do is

1. x = b ∗ (B + 1)

2. y = B ∗ (b+ 1)

3. calculate canonical form of x
y

4. check whether x− y = 1

5. save y if the check passes.

One can optimize this by removing one multiplication but there ac-
tually is a much better approach that does not require to calculate
the canonical form of x

y , which is the most expensive part of this
calculation.

Here we can see the intermediate steps before reaching the optimized
equivalent procedure.

28

1. g = GCD(x, y)

2. check that x
g −

y
g = 1

3. this is equivalent to saying ”check that B − b = g”

4. additionally GCD(bB + b, bB +B) = GCD(bB + b, B − b) = g

5. therefore we can simplify B − b = g to ((bB + b) modulo (B −
b)) = 0

This is the optimized procedure, completely removing the calculation
of any GCD, and calculating the resulting number only in the case
that that number satisfy our restrictions.

1. x = b ∗ (B + 1)

2. ∆ = B − b

3. d = x modulo ∆

4. check that d is equal to zero

5. save x
∆ − 1 if the check passes

In conclusion we have gone from n2 computations to n ∗ k computa-
tions where n is the number of elements in S and k is the number
of elements in T (with always k < n). In addition we made each
computation more lightweight.

29

100 150 200 250 300 350
0

600

1,200

1,800

2,400

B

T
im

e(
s)

Program Speed

Starting Program
Initial Optimization

4.4 Further reducing computations

From this point onward, each optimization applied is going to result
in a slight loss of total results found. The focus becomes to balance
this loss with enough speed to justify it.

The first thing that was done, was reducing the numbers of pairs that
are used in each iteration. Not every pair produces a new result,
and some pairs are better than others. Initially it was decided to
create pairs (b, B) such that b < B < k ∗ b where k is an arbitrary
constant usually ∈ [1, 2]. With decreasing value of k the number of
pairs reduces, and the speed goes up. At the same time the number
of results become lower.

It was found with increasing values of b, B k can decrease without
having a big impact on the results. The same is true the other way
around, with small values for b, B k needs to be bigger.

30

The biggest problem in this approach is the overhead in calculating
k ∗ b and finding this number inside the set S. Additionally it needs
to be considered that this calculation needs to be done twice for each
number in the set T .

One way to lessen this burden is to subdivide the set T in chunks and
do this operations only for the first and last element of each chunk,
thus reducing the overhead costs.

From the same line of reasoning, a somewhat easier but less reliable
approach comes about that would remove completely the overhead of
finding k ∗ b, constant ranges.

With constant ranges you are trying to guess ahead of time how many
numbers there are in between b and k ∗ b and iterate through the set
S for that amount of numbers when creating pairs.

Another approach that was explored was reducing the amount of work
the program does when it starts getting less results: once a new iter-
ation yields less new results than the previous one, instead of keeping
around the whole S set for pairings, only use the results from the
last two iterations to generate pairs. This approach was found to be
almost a free efficiency upgrade, with very little cost in the amount
of results obtained.

One can even decide to use a combination of constant ranges and this
pairing reduction: when only two small sets are used for pairings,
increase increase the constant range so that possibly more results are
squeezed out of the last operations.

One can also play around with variable ranges: the same as constant
ranges except they are different for each iteration based on the size
of S and T . Using pairs (b, B) such that b < B < k ∗ b as we saw
before can be considered a special kind of variable ranges, dependant
instead on the number being used for the pairing.

31

Figure 1: Number of neighbours found (higher is better)

Full
Set

Range
5000

Range
1000

K
calcu-
lation

3.36

3.38

3.4

3.42

3.44

·105

Full
Set

Range
5000

Range
1000

K
calcu-
lation

2

2.1

2.2

2.3
·106

z = 200 z = 300

Figure 2: Time required on 32 cores (lower is better)

Full
Set

Range
5000

Range
1000

K
calcu-
lation

0

100

200

300

400

Full
Set

Range
5000

Range
1000

K
calcu-
lation

0

0.5

1

·104

z = 200 z = 300

32

4.5 Parallelism

There are different approaches one can utilize with this algorithm in
regards to parallelism.

The simplest one would be to have a task for each number in the set T
and have the task do all the necessary work to pair t ∈ T correctly with
s ∈ S. The problem with this approach when constant ranges are not
being used is that the overhead on creating the pairs is applied to every
element of T and is a massive decrease in performance. Additionally
task management costs time and resources, making a task for each
element of T would result in the tasks fighting over resources and
slowing the whole process.

It’s been decided a fixed amount of task, decide at compile time, that
should be equal to the amount of threads the machine running the
code can sustain.

The process of ”creating pairs” has been replaced by giving the ele-
ments in T a range of elements to pair with in S. For example if we
have a number x the ranges r1 and r2 associated with it are going to
be

r1 = size({y ∈ S|y < x ∧ y > x/k})

r2 = size({y ∈ S|y > x ∧ y < x ∗ k})

By using these ranges we can then iterate through S starting from ele-
ment x and create pairs in this way. Additionally we can approximate
that close numbers in T are going to have close ranges r1 and r2 and
therefore create ”batches” of element in T using the same ranges: r1

computed from the first element of the batch and r2 computed from
the last element of the batch.

As one can imagine, having batches of too small a size does not im-
prove the situation compared to not having batches at all. Also having
batches too big in size become counterproductive: the ranges are go-
ing to become less and less accurate, often becoming way bigger than
they need to be and therefore generating a large amount of ”useless”
pairs.

33

After having calculated all the ranges for all the batches, each batch is
given to another task responsible for computing all the new neighbors
using the pairing generated by iterating through S.

Through trial and error, it’s been decided to make the size of the
batches dependant on the size of T whilst always staying in between
10 and 100 as this resulted in a good ration of speed and results
found.

Because of this, the process of generating batches, associating pairs,
and computing new smooth numbers is gonna be done multiple times
until the whole set T has been emptied.

34

Here two examples of how a batch is made and used, in the first ex-
ample there are batches without ranges, that are made of two subsets
of S, one for number bigger than t ∈ T and one lower, and a subset of
T . In this way there is more control in the number of pairs generated
by each batch.

35

The second example instead shows how a batch works with ranges.
Each batch is associated a range of elements of S to pair with each
t ∈ subset of T . There is going less accurate control in the number
of pairings being generated but the overhead of calculating the two
subsets of S is removed, leading to an important benefit in perfor-
mance.

36

4.6 Good neighbors

When finding solutions to (1), it was found that some numbers yield
more results while others less.

Smoothness Number #Twins Found

100 36875124 59
100 33669999 63
100 1534811544 7
100 486351112 6
200 1100322575 9

200 36875124 262
200 33669999 144
200 1534811544 72
200 486351112 37
200 1100322575 104

It can be seen in this table, that a number giving few results for
a certain smoothness might, at a different smoothness, yield more
results therefore we cannot make a precalculated table valid for all
smoothnesses to store either all the good neighbors or the bad ones.

Thanks to this notion, in each run of the program we can ”discard”
some of the results and only keep the ”good” ones for making pairs
in future iterations.

In each iteration, we have pairs (s, t) with s ∈ S and t ∈ T . Because
of how the code was structured, the pairs are computed somewhat
orderly, meaning that all pairs with the same t will be computed
together. It comes easy here to keep count of how many results each
t yields and remove all t that do not yield enough results from S
and store them separately in another set. In this way we reduce the
number of pairs we have in every future iterations at a very minimal
cost in number of results.

We unsuccessfully attempted to find a characterization for these num-
bers by looking at their factors and by looking at the d of the Pell
equation that can generate them. For now no good way of character-

37

izing such numbers has been found.

Work in this direction is still ongoing, but showing some results.

4.7 Better data structures

Another part of the algorithm that was mainly overlooked for the
majority of the project is the data structure representing the sets S
and T .

Initially S was a simple array. But this required doing additional
operations for ordering and was inefficient in search and allocation.

The code at this point got moved from plain C to C++ to make use of
the available standard library to simplify development. At this point
S had become an std :: set, a ordered data structure with O(logn)
search.

Last but surely not least, the std::set was replaced by red-black trees
with linked leafs. This change removed some of the overhead that
std::set has for being a type agnostic container, but more importantly
made iterating through the set, either from the beginning or from an
arbitrary node, both forwards and backwards more efficient.

It can be easily seen that iterating from one node to the next in

38

the given order is a constant operation with linked trees thanks to
the edge connecting elements next to each other. Normal Red-Black
trees don’t have this connection and need to do more operations to
reach the next(or previous) element in the order.

This is extremely useful and impactful in the current use case, because
it’s necessary to iterate through N nodes in order starting from any
arbitrary node in the tree. This operation is done for every element
and the upgrade in performance reaches up to 0.25x speedup with
only a small price in memory (having to store the connection between
nodes).

4.8 All together

Smoothness #Threads K1‖2 C.Ranges Range #Results Time

200 32 None No None 346192 143s
200 32 2.0 ‖ 1.5 No None 342102 24s
200 32 1.8 ‖ 1.3 No None 340813 20s
200 32 None Yes 10000 343957 29s
200 32 None Yes 5000 343337 18s
300 32 None No None 2316631 6000s
300 32 1.8 ‖ 1.3 No None 2262253 1003s
300 32 2.0 ‖ 1.5 No None 2278102 1379s
300 32 None Yes 10000 2265800 228s
300 32 None Yes 5000 2236364 124s

Splitting the execution of the algorithm and using different parame-
ters can be a great approach to finding most results. It’s possible to
from an initial set of precalculated numbers for a smaller smoothness
so that, when it’s affordable to slow the process down, we can maxi-
mize the number of results obtained, and when it’s expensive, we can
focus on speed and give up some of the results. Having an initial set
containing most (or all) result for a certain smoothness will then have
a meaningful impact on successive executions with higher smoothness
and speed-focused optimizations active. This will reduce the loss of

39

results whilst maintaining an acceptable speed.

By using small constant ranges (1000), and having a precalculated
initial set of 599-smooth numbers, we managed to calculate a 127
bit long smooth prime number with smoothness = 887. This was
obtained when running the program on a 64 core machine for around
6 hours, with a given smoothness bound of 1029.

The number found is:

140925620568672748356470714008628611199

And its neighbours are:

140925620568672748356470714008628611198 = 27 × 32 × 52 × 74 ×
112 × 132 × 292 × 372 × 732 × 832 × 1072 × 1132 × 1272

140925620568672748356470714008628611200 = 21×171×191×231×
311 × 411 × 791 × 1031 × 1091 × 1391 × 1731 × 1911 × 2271 × 2391 ×
3831 × 4091 × 4871 × 4991 × 8871

From the obtained results we can plot the bit length of the biggest
prime found at different smoothness. We can then see that there is
an upward trend in bit length with an increase in smoothness. We
can expect to be able to find smooth prime of 200 bits of length at
around smoothness equal to 210.

40

As seen above, running the algorithm with all the optimizations ac-
tivated only produced a 127bit length prime, more than 60 bit less
than the expected number. With this experiment it’s not possible to
know whether a 200bit prime exists and we missed it due to the loss
of results caused by the optimization or said number actually does
not exist and we need to go for a higher smoothness to have chances
of finding a 200bit prime.

To show how many results might have been lost during an execution
we made more runs with different optimization parameters. Other
than the parameters we also tried using different initial sets of neigh-
bours. An interesting result we found was that, with the same exact
parameters running the program to find 1029-smooth primes as above
but instead of starting from an initial set of the 599-smooth neigh-
bours the starting set was of 559-smooth neighbours. This simple
change produced millions less results and could not find the biggest
prime we now have.

41

5 SIKE, cortex-m4 implementation

The Cortex-M4 is an high performance processor developed by arm to
address the digital signal control markets that an efficient, easy-to-use
blend of control and signal processing capabilities.[16]

The Cortex-M4 processor is a low power device and in fact it is a very
efficient device. It comes with the advanced ArmV7-thumb instruc-
tion set, which will prove irreplaceable for the purpose of my work.
Additionally it features a Floating point processing unit (FPU), which
will come in handy later thanks to the additional on chip storage that
it provides.

Because the SIKE algorithm has very small key sizes and cipher text
sizes compared to the other algorithms proposed at the NIST com-
petition, small and resource constrained devices are some of the best
platforms where to run SIKE. On the other side SIKE is also very
computationally expensive, therefore, for it to be a good fit for such
machines, it needs to be heavily optimized to be considered usable in
real life scenarios.

This is why there have been interest in a cortex-m4 specific imple-
mentation of SIKE.

5.1 Initial general implementation

On the SIKE website is available a package containing the submitted
implementations of the algorithm, which include a reference, generic,
implementation, and optimized implementations for ARM64, AMD64,
ARM32 Cortex-M4, VHDL, and the compressed version of the algo-
rithm.

Unfortunately the Cortex-M4 optimizations available in the package
only has some optimization for the addition and subtractions opera-
tions, while the rest is the same as the generic implementation.

In this thesis cortex-m4 FPU registers will be used to reduce mem-
ory loads/store usage and three thumb instructions available to the

42

platform are going to be used to implement Karatsuba’s algorithm
without suffering from the overhead of the multiple additions typical
of this algorithm.

5.2 FPU registers as additional storage

The Cortex-M4 platform provides thirty-two 32bit registers (or six-
teen 64 bit registers) that can be used to store any intermediate value
without having to resort to use memory and therefore speeding up
multiple operations.

While doing Karatsuba’s multiplication, these registers are going to be
extensively used to store both inputs and intermediate results avoiding
to have to load the same inputs multiple time and to waste time
accessing memory.

Thanks to this approach a lot less memory accesses are needed but, as
we increase size of the factors in the multiplication, it becomes harder
to avoid loading the same memory more than once.

The problem of this method is that it’s not really scalable and it can
lead to over complicated code that is very difficult to read and as
difficult to write.

Nevertheless, as the size of the factors increase, it’s obvious that the
assembly code, regardless of using or not these FPU registers, becomes
more complex.

5.3 Karatsuba’s multiplication

Karatsuba’s algorithm for multiplication makes use of a divide and
conquer approach where the factors are expressed as their lower and
higher part and their product is a combination of multiplications/ad-
ditions of these lower and higher parts.

Through this approach the complexity of multiplications becomes

43

O(nlog23) making it faster than the naive approach, that has com-
plexity O(n2).

The only problem in this algorithm that makes it not that useful in
most cases is that there is an overhead in the recursion and that the
reduced number of multiplications is replaced by an increased number
of additions.

In fact, the algorithm is used in the libgmp library only in a certain
range of numbers.

As stated before, Karatsuba’s algorithm represents the two factors by
splitting them into a lower and higher part. If I have a number A,
I’m going to call A0(or low(A)) and A1 (or high(A)) the lower and
higher part respectively.

As we can see from the picture above, we need to do four multipli-
cations and four additions. By going through the equations it’s seen
that the number of multiplications can actually be reduced to three
and while this could seem to be better, because of the instructions
available on the m4 platform it actually is not the case.

5.4 Karatsuba’s multiplication implementation

The Cortex-M4 supports instructions sets Thumb and Thumb-2. In
particular with the second ISA, we can implement all multiplications
and additions of the Karatsuba’s algorithm with only three instruc-

44

tions, furthermore these instructions can do both multiplication and
addition at the same time.

Definition 5.1. A Karatsuba base case in 32bit cortex-m4 code is the
case in which the factors are small enough that they can be multiplied
directly by the processors without the need for further recursion (on
a new split of the factors).

Karatsuba’s algorithm does four multiplications (of half the size of
the factors) and four additions, but can also be expressed as three
multiplications and two subtractions. With the instructions available
doing four multiplications and four additions results in a total of four
instructions, instead, using the refined formula, we would need (need
to count) instructions.

Code optimized for thumb2 instructions set.

1 # CLEAR R9 AND R10

2 MOV R9, #0

3 MOV R10, #0

4

5 # LOW(A) * LOW(B) STORE RES IN R7,R8

6 UMULL R7, R8, R3, R5

7 # HIGH(A) * LOW(B) + R8 STORE RES IN R8 R9

8 UMLAL R8, R9, R4, R5

9 # LOW(A) * HIGH(B) + R8 STORE RES IN R8 R10

10 UMLAL R8, R10, R3, R6

11 # HIGH(A) * HIGH(B) + R9 + R10 STORE RES IN R9 R10

12 UMAAL R9, R10, R4, R6

Unoptimized code.

1 # CLEAR R9 AND R10

2 UMULL R7, R8, R3, R5

3 UMULL R9, R10, R4, R6

4

5 ADDS R11, R3, R4

6 ADCS R0, #0, #0

7

45

8 ADDS R14, R5, R6

9 ADCS R1, #0, #0

10

11 UMULL R3, R4, R11, R14

12

13 SUBS R4, R4, R8

14 SBCS R4, R4, R10

15

16 # and more ...

As we can see, thanks to the instructions available, doing multipli-
cations whilst doing additions and at the same time taking care of
eventual carries is very simple and very efficient on Cortex-M4. Here
is important to note that the cost of one multiplication (UMLAL,
UMULL, UMAAL) is one cycle, which is the same as one addition
or one subtraction. It becomes trivial to see that the implementation
with the least amount of instructions coincides with the fastest and
most efficient implementation.

Because the length of the factors is known there is no need to imple-
ment Karatsuba’s recursively, in fact the implementation is going to
unroll the recursion whilst trying to avoid any unnecessary calcula-
tions.

There are four different implementations needed, namely one for 434,
503, 610, and 751 bit length factors.

• 434bit → array of fourteen 32bit numbers

• 503bit → array of sixteen 32bit numbers

• 610bit → array of twenty 32bit numbers

• 751bit → array of twenty four 32bit numbers

Except for the 503bit case, all other cases flow towards uneven split-
tings in Karatsuba’s recursion. In such cases one can choose different
ways to split in two the factors and there is no performance difference
from way to way. The only difference to take in consideration is the
ease of development: some splittings are more confusing than other

46

to write down, especially in assembly.

5.5 503bit implementation in detail

The implementation for primes of 503bits is the simplest and most
straight forward as a 503bit number uses sixteen 32bit registers to
store and can therefore be split evenly throughout the algorithm.

First of all I’m going to make a distinction on three possible cases for
multiplication:

• 1: normal multiplication a ∗ b

• 2: multiplication and sum: a ∗ b+ c

• 3: multiplication and 2 sums: a ∗ b+ c+ d

These three cases are exactly what we need to do one Karatsuba
multiplication (A×B = C):

• First do case 1 on the low parts of A and B to obtain C0 and
C1, respectively the lower part of this multiplication and the
higher part of the multiplication

• Then do case 2 on the high part of A and low part of B, adding
C1 obtained before overwriting C1 with the low part of the new
result and storing the high part on C2

• Another time apply case 2, but this time on the low part of A
and the high part of B, again adding C1. We overwrite C1 with
the low part of the result and store the high part on C3.

• Finally apply case 3 on the high parts of A and B, adding C2
and C3. Store the results in C2 and C3 and the complete result
C is available as C0 C1 C2 C3.

These three operations are perfectly implemented by the thumb2 in-
structions UMULL, UMLAL, and UMAAL.

• UMULL: multiply two 32bit registers and store the 64bit result
in two other 32bit register

47

• UMLAL: multiply two 32bit registers, add one 64bit num-
ber(from two 32bit registers), and store the 64bit result in the
two 32bit registers used for the addendum

• UMAAL: multiply two 32bit registers, add two 32bit registers,
and store the 64bit result in the two 32bit registers used for the
two addendum.

Here we can see how these three instructions are used to implement
the various operations needed by Karatsuba’s multiplication.

First case normal multiplication of two numbers of 32bit each

1 # CLEAR R9 AND R10

2 MOV R9, #0

3 MOV R10, #0

4

5 # LOW(A) * LOW(B) STORE RES IN R7,R8

6 UMULL R7, R8, R3, R5

7 # HIGH(A) * LOW(B) + R8 STORE RES IN R8 R9

8 UMLAL R8, R9, R4, R5

9 # LOW(A) * HIGH(B) + R8 STORE RES IN R8 R10

10 UMLAL R8, R10, R3, R6

11 # HIGH(A) * HIGH(B) + R9 + R10 STORE RES IN R9 R10

12 UMAAL R9, R10, R4, R6

48

Second case multiplication of two numbers of 32bit each and addi-
tion of one 64bit number

1 # CLEAR R9 AND R10

2 MOV R9, #0

3 MOV R10, #0

4

5 # R7 and R8 contain the 64bit addendum

6

7 # LOW(A) * LOW(B) + R7 STORE RES IN R7,R8

8 UMAAL R7, R9, R3, R5 # UMLAL here makes no difference

9 # HIGH(A) * LOW(B) + R8 + R9 STORE RES IN R8 R9

10 UMAAL R8, R9, R4, R5

11 # LOW(A) * HIGH(B) + R8 STORE RES IN R8 R10

12 UMAAL R8, R10, R3, R6 # UMLAL here makes no difference

13 # HIGH(A) * HIGH(B) + R9 + R10 STORE RES IN R9 R10

14 UMAAL R9, R10, R4, R6

Third case multiplication of two numbers of 32bit each and addition
of one two 64bit numbers

1 # R7 and R8 contain the first 64bit addendum

2 # R9 and R10 contain the second 64 bit addendum

3

4 # LOW(A) * LOW(B) + R7 + R9 STORE RES IN R7,R8

5 UMAAL R7, R9, R3, R5

6 # HIGH(A) * LOW(B) + R8 + R9 STORE RES IN R8 R9

7 UMLAL R8, R9, R4, R5

8 # LOW(A) * HIGH(B) + R8 + R10 STORE RES IN R8 R10

9 UMLAL R8, R10, R3, R6

10 # HIGH(A) * HIGH(B) + R9 + R10 STORE RES IN R9 R10

11 UMAAL R9, R10, R4, R6

As it can be seen, the first two cases require two output registers to be
clean and therefore take two more cycles than the third case, which
makes use of all the values stored in the output registers.

Multiplying two numbers of 512bits each requires sixteen registers

49

for each number. The multiplication is divides the multiplication by
doing:

• low(A)×low(B) −→ C0 C1 (8 reg 1st case)

• high(A)×low(B) + C1 −→ C1 C2 (8 reg 2nd case)

• low(A)×high(B) + C1 −→ C1 C3 (8 reg 2nd case)

• high(A)×high(B) + C2 + C2 −→ C2 C3 (8 reg 3rd case)

This only shows the first split that’s being done, internally the multi-
plication is split until there are only factors made of two 32bit regis-
ters. The schema that each of these split multiplications follow is the
same as the one above.

5.6 Results

Here we can see how much these optimizations reduce the number of
cycles needed to perform various operations. The Original is referring
to the reference implementation with the inclusion of optimizations
to subtraction and addition operations.

Implementation p503 Fp mul p610 Fp mul p751 Fp mul

Original 14264 22018 31452
This work 1339 2184 3114

It is estimated that, with these optimizations in place, the time re-
quired to perform Key Generation, Encapsulation, and De Encapsu-
lation should be reduced by slightly less than three times.

Additionally it’s possible to shave off a few cycles by replacing the
generic 32bit multiplication with an assembly function of four instruc-
tions.

Modifying this function in this way is a simple yet effective trick to
improve performance without writing hundreds of new lines of code.
This function is called both by the original ”mp mul” function and

50

by the Montgomery Reduction function ”rdc mont”. Since the first
one has already been optimized separately, and the performance ob-
tained through this is, as expected, inferior to what we obtain with
Karatsuba, I’m going to ignore it there. In the case of Montgomery
reduction we can see an increase in speed by around 3%, that while
is not very impressive, it basically comes for free.

Here we can see how it’s implemented and the timings for the Mont-
gomery Reduction.

1 push {r3-r4}

2 umull r3, r4, r0, r1

3 stmia r2, {r3-r4}

4 pop {r3-r4}

Implementation p503 rdc mont p610 rdc mont p751 rdc mont

Original 10954 16646 23537
This work 10623 16127 22811

These results are similar to the one shown by Hwajeong Seo, Mila
Anastasova, Amir Jalali, and Reza Azarderakhsh in their paper for
the submission their implementation of SIKE for cortex-m4 during the
second round of the NIST competition [17]. Unfortunately I was not
able to compile and compare their implementation with my own. It
is unclear to me at the moment if the publicly available code includes
all of the optimization in their paper and how to get it to actually
work.

In their paper they use the Operand Scanning method instead of
Karatsuba because of the additional overhead Karatsuba brings when
implemented as shown in [18], where three multiplications are done
instead of four.

As shown in this thesis, Karatsuba can be implemented using only six
to four cycle, depending on whether it’s necessary or not to clean up
two output registers, to perform multiplication of two 64bit factors.

The results shown in their paper are slightly better than the ones I

51

obtained and that is most likely due to a better usage of the FPU reg-
isters, avoiding unnecessary additional memory accesses or redundant
movements from FPU to Core registers and vice versa.

There is more ground to cover to optimize SIKE on cortex-m4 de-
vices, starting from re-implementing various functions in assembly
and rewriting the Montgomery Reduction to make use of the advan-
tages of Karatsuba’s multiplication in this device. Unfortunately I
did not find the time to make introduce these optimizations myself.

52

6 Conclusion and Future Work

To conclude we have seen many improvements in the research for new
and bigger smooth prime numbers, the algorithm themselves have
gotten way faster than ever before and new large smooth primes are
starting to surface. In this direction it’s foreseeable in the near fu-
ture to find what we need for B-SIDH. Unfortunately we can also see
the approaching obstacles and one of them is the amount of memory
required to store our constructive sets of smooth neighbours. When
computing prime smooths for z = 1029 with different parameters
than the ones showcased before we run into issues were not only the
RAM was not enough anymore to store the necessary data, but it
was also not possible to store all this information in the albeit small
hard drive of the machine. It will become necessary to find ways to
distinguish between necessary and unnecessary data and try to purge
as much of that data as possible. Considering that our objective is
not to create a complete set of z-smooth primes but to find a single
z-smooth prime of more than 200 bits with a z < 10000, it becomes
not only acceptable, but also necessary to start dismissing some of
the results.

With regards to SIKE, the path that needs to be followed to obtain
great results on micro-controllers has been already cleared up and
pointed by Hwajeong Seo, MilaAnastasova, Amir Jalali, and Reza
Azarderakhs in their paper[17]. There are surely more improvements
to be made on this implementation by replacing the generic C code
with architecture specific assembly code and using different algorithms
that can take advantage of the architecture. The first example of this
is the function seen above, ”rdc mont”, which can be better imple-
mented as seen in [17] and that would speed up the whole Key Gen-
eration, Encapsulation and De Encapsulation by another three times.
But that is not the only place that could be better with some rewrit-
ing, there are other functions, doing either corrections, negations or
digit addition and subtraction that could be made more efficient by
rewriting them in arm assembly.

53

References

[1] Burt Kaliski. Announcement of ”rsa factoring chal-
lenge”, 1991. https://groups.google.com/u/1/g/sci.crypt/
c/AA7M9qWWx3w/m/EkrsR69CDqIJ.

[2] Paul Zimmermann. Factorization of rsa-250, 2020. https:

//lists.gforge.inria.fr/pipermail/cado-nfs-discuss/

2020-February/001166.html.

[3] Martin E. Hellman Whitefield Diffie. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22(6):644–
654, 1976. https://www.cs.utexas.edu/~shmat/courses/

cs380s/dh.pdf.

[4] Lily Chen, Dustin Moody, and Yi-Kai Liu. Post-quantum
cryptography, 2016. https://csrc.nist.gov/projects/

post-quantum-cryptography.

[5] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology
ePrint Archive, Report 2006/291, 2006. https://ia.cr/2006/

291.

[6] Alexander Rostovtsev and Anton Stolbunov. Public-key cryp-
tosystem based on isogenies. Cryptology ePrint Archive, Report
2006/145, 2006. https://ia.cr/2006/145.

[7] Andrew Childs, David Jao, and Vladimir Soukharev. Construct-
ing elliptic curve isogenies in quantum subexponential time.
Journal of Mathematical Cryptology, 8(1):1–29, Jan 2014.

[8] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes. Csidh: An efficient post-quantum commutative
group action. In Advances in Cryptology – ASIACRYPT 2018,
volume 11274 of Lecture Notes in Computer Science, pages 395–
427. Springer, 2018.

[9] Craig Costello. Supersingular isogeny key exchange for beginners.
Cryptology ePrint Archive, Report 2019/1321, 2019. https://

ia.cr/2019/1321.

54

https://groups.google.com/u/1/g/sci.crypt/c/AA7M9qWWx3w/m/EkrsR69CDqIJ
https://groups.google.com/u/1/g/sci.crypt/c/AA7M9qWWx3w/m/EkrsR69CDqIJ
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html
https://www.cs.utexas.edu/~shmat/courses/cs380s/dh.pdf
https://www.cs.utexas.edu/~shmat/courses/cs380s/dh.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://ia.cr/2006/291
https://ia.cr/2006/291
https://ia.cr/2006/145
https://ia.cr/2019/1321
https://ia.cr/2019/1321

[10] Craig Costello. B-sidh: supersingular isogeny diffie-hellman using
twisted torsion. Cryptology ePrint Archive, Report 2019/1145,
2019. https://ia.cr/2019/1145.

[11] Jao and De Feo. Qcryptov3.2. sidh library. github, 2011.
https://github.com/microsoft/PQCrypto-SIDH/releases/

tag/v3.2.

[12] Carl Størmer. Quelques théorèmes sur l’équation de pell x2 −
dy2 = ±1 et leurs applications. Christiania, 1897.

[13] D. H. Lehmer. On a problem of Størmer. Illinois Journal of
Mathematics, 8(1):57 – 79, 1964.

[14] Craig Costello, Michael Meyer, and Michael Naehrig. Sieving for
twin smooth integers with solutions to the prouhet-tarry-escott
problem. Cryptology ePrint Archive, Report 2020/1283, 2020.
https://ia.cr/2020/1283.

[15] J. B. Conrey, M. A. Holmstrom, and T. L. McLaughlin. Smooth
neighbors. Experimental Mathematics, 22(2):195–202, 2013.

[16] ARM holdings. Cortex-m4. www.arm.com, 2020. https://www.
arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4.

[17] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarder-
akhsh. Supersingular isogeny key encapsulation (sike) round 2
on arm cortex-m4. Cryptology ePrint Archive, Report 2020/410,
2020. https://ia.cr/2020/410.

[18] Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg
Sigl. 18 seconds to key exchange: Limitations of supersingular
isogeny diffie-hellman on embedded devices. Cryptology ePrint
Archive, Report 2018/932, 2018. https://ia.cr/2018/932.

55

https://ia.cr/2019/1145
https://github.com/microsoft/PQCrypto-SIDH/releases/tag/v3.2
https://github.com/microsoft/PQCrypto-SIDH/releases/tag/v3.2
https://ia.cr/2020/1283
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://ia.cr/2020/410
https://ia.cr/2018/932

	Notation List
	Introduction
	History
	Organization

	Modern cryptography
	Diffie-Hellman key exchange

	Preliminaries
	Elliptic curve cryptography
	Post-Quantum cryptography
	Isogeny based cryptography
	Supersingular isogeny key exchange
	B-SIDH
	Supersingular Isogeny Key Encapsulation

	Finding smooth twins
	Methods of finding smooth neighbours
	Optimizing the Extended neighbours method
	Initial optimizations
	Further reducing computations
	Parallelism
	Good neighbors
	Better data structures
	All together

	SIKE, cortex-m4 implementation
	Initial general implementation
	FPU registers as additional storage
	Karatsuba's multiplication
	Karatsuba's multiplication implementation
	503bit implementation in detail
	Results

	Conclusion and Future Work

