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Abstract

This master thesis deals with finding an efficient mathematical algorithm to determine in

what extent Alliander’s medium voltage distribution networks satisfy the so-called m-1

principle. An electricity distribution network satisfies the m− 1 principle if the network

has a reconfiguration for any possible broken cable. In particular, the number of edges

that may be used in a switchover for a broken cable is bounded by a positive integer k.

Furthermore, a reconfiguration for a broken cable must not exceed a voltage or current

capacity as computed by a load flow computation. We transformed this question of

checking the m− 1 algorithm into a mathematical problem.

We develop mathematical algorithms to check the m − 1 principle for different

values of k. They consist of different graph algorithms having a low time complexity for

its purposes. More specific, as a reconfiguration of the network is a spanning tree, we

use a spanning tree enumeration algorithm. In addition, we use a bridge enumeration

algorithm to determine the graph-theoretically unswitchable edges. Besides the algo-

rithms, we use two reduction methods to diminish the networks and therefore decrease

the number of spanning trees, for we prove that the number of spanning trees grows

very rapidly with the number of edges.

We implement the algorithms in software program R and test the implemented

algorithms on Alliander’s medium voltage networks. In the case of physical values chosen

corresponding to a present state of the networks, our implementation took 2 hours and

8,5 hours for k = 1 and k = 3, respectively, on Alliander’s entire medium voltage network

of about 60.000 cables. If we accept 0,05 % of the edges to be undecided at the end of

the computation, the algorithm for the case k = 5 takes less than a day on the entire

network. Which is a considerable improvement compared to the currently used methods.

Furthermore, we test a case corresponding to a future state of the network on different

medium voltage networks consisting of about 100 up to 5000 edges. For those cases, the

implementation of the algorithms took up to 160 seconds, 16 minutes and 10 hours for

the cases k = 1, k = 3 and k = 5, respectively. The results demonstrate that the end

product of this thesis enables checking the m−1 principle on large electricity distribution

networks, which was previously not feasible for large networks within Alliander.
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Chapter 1

Introduction

This research project is a M.Sc. Mathematics graduation project at the Radboud Uni-

versity in Nijmegen, in collaboration with the company Alliander. The aim of this

project is to find an efficient algorithm to get insight in the reliability of Alliander’s

electricity networks. This algorithm is also useful to assess future energy scenarios on

the electricity distribution grids.

First, this chapter gives some background information about Alliander and her

challenges. After this, we describe the structure of the electricity distribution networks

and hereafter the reliability principle of the studied medium voltage networks, called the

m− 1 principle. Finally, we formulate the main research question and provide a report

overview.

1.1 Alliander

Alliander is an energy network company, meaning that she distributes electricity, gas

and heat to customers, mainly households. She tries to give her three million customers

access to energy every day. Alliander operates in the regions of Gelderland, Friesland,

Flevoland, Noord-Holland and parts of Zuid-Holland. The production of the energy is

no part of the work of Alliander. More background about Alliander can be found in her

annual report [23]. In this project, we focus on the electricity distribution networks.

In the current energy transition, a lot of things change in the energy distribution

networks, as described by Van Westering et al. (2016) [19]. With the use of new energy

sources, like wind energy and solar energy, customers not only consume energy but pro-

duce energy too. The superfluous energy is delivered to the distribution network, which

leads to a reciprocity of exchange of energy over the network. Whereas the distribution

of energy was a one-way system in the past, it now requires two-way interaction. Fur-

thermore, the new techniques operate independently from power consumption - because

they depend on the weather - instead of the conventional power plants that match their

power supply to the power demand.

These current developments present new challenges to the organization of the

networks. The peaks of superfluous solar or wind energy could give overloads on the
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cables, leading to a less safe and reliable energy supply. Unfortunately, the replacement

of cables is very expensive and the cables ought to stay in place for about 40 years. This

creates the demand for a good prediction of the future energy use and generation by

customers. Moreover, there is a need for insight in the state of the network, both now

and in the future.

1.2 The structure of the electricity distribution networks

The book Netten voor Distributie van Elektriciteit by Van Oirsouw (2012) [16], par-

ticularly chapter 2, presents a comprehensive description of the electricity distribution

networks in the Netherlands. The electricity distribution networks are split in three do-

mains: the high voltage networks (HV), the medium voltage networks (MV) and the low

voltage networks (LV). The high voltage networks transport energy over long distances,

with a voltage of 110.000 to 380.000 Volt (V). The medium voltage networks operate

at city scale and cover 10.000 to 20.000 Volt. The power is transported and partly dis-

tributed to big consumers. The low voltage networks distribute power at a district scale

mainly to households, at a level of 400 V. The different domains are connected via trans-

formers, which can change the voltage level. In this thesis, we only study the medium

voltage networks. The MV networks of Alliander together contain about 35.000 km of

underground cables. Chapter 4 covers some important information about the physics in

the network.

The MV networks have some particular properties. First of all, not all cables in

an MV network are used to distribute electricity to the consumers at a certain point in

time. A combination of cables used is called a configuration. There are a lot of possible

configurations that distribute the electricity to every household. The total number of

cables, used or not, will be called m.

Due to the additional cables, an MV network has a meshed structure: it contains

cycles. On the other hand, an actual configuration should be radial: it should not

contain a cycle. In a radial network, one can detect disturbances more easily. Thus,

cables from the complete network should be ‘turned off’ until the remaining network is

radial. Furthermore, every bus (node) should be connected via a path to precisely one

HV/MV transformer, this is a connection with the high voltage network. This warrants

the provision of electricity to every household, but prevents dangerous situations of big

voltage differences by connecting HV/MV transformers to each other.

To give an indication of the size of the total electricity distribution network of Al-

liander: there are about 350 HV/MV transformers, connecting the high voltage networks

and the medium voltage networks, and about 45.000 MV/LV transformers, distributing

energy between the MV networks and the low voltage networks. In some MV network,

containing some HV/MV transformers and a lot of MV/LV transformers, there are more

cables than buses. Generators and transformers are examples of buses. Altogether, there

are about 60.000 cables in the entire MV network.
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1.3 The m− 1 principle

Of course, the delivery of the electricity to the customers needs to be reliable. Alliander

wants the number of outages to be minimized. The way Alliander monitors the quantity

of outages is as follows: she measures the outage consumer minutes (OCM). This unit

expresses the mean number of outage minutes per customer per year. In this way, the

quantity of outages can be compared over different years.

To be able to shorten the duration of an outage, a medium voltage network should

have the following property, called the m− 1 principle:

If an outage in a cable in the MV network appears, the MV network can be

switched into another configuration not using the damaged cable in such a

way that every customer can be provided electricity.

The cable with the outage could be any cable, so this m − 1 principles guarantees a

possible switch-over for every possible broken cable. By requiring the principle as a

condition of an MV network, the duration of an outage can be limited to the time it

takes to switch some cables on and off, instead of the whole time it takes to repair the

broken cable. This principle is called the m − 1 principle because the principle states

that if we remove one cable, we could still rearrange the remaining network with m− 1

cables in a well functioning electricity distribution network.

In addition, there are at least two requirements for the new configuration:

1. The current capacities of the cables in the configuration are not exceeded, as well

as the voltage capacities of the buses.

2. Only a certain amount of cables can be switched on or off to obtain the new

configuration from the original one. Say the maximum number of switched cables

is k. (The switched cables do not include the outage cable.)

Alliander generally takes k to be 6. One remark about the first requirement: the current

and voltage magnitudes change if one switches some cables on and off, from one config-

uration to another. This is why one needs to check whether the capacities are exceeded

each time one tries another configuration. The current and voltage magnitudes belong-

ing to a certain configuration can be calculated using load flow equations, explained in

chapter 4, Physical Background.

One other note should be made: not every cable has a switch, although we assumed

it hitherto. Logically, we could only switch cables that have a switch. Nevertheless, we

can assume that the cables that are turned off in the original configuration have a switch.

For if it were not, such a cable is quite useless: it is not in use now and we cannot quickly

put it into service. In the sequel, we will assume these cables have a switch. Besides,

the cables that are turned on not necessarily have a switch. However, we could quite

easily make an opening in the network near the cable, which will function as a one-way

switch: from ‘on’ to ‘off’. Therefore, we do not have to care about the presence of a
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switch concerning switched-on cables.

At this point it is probably clear that it is desirable that an MV network satisfies the

m − 1 principle. However, one needs to test whether the principle applies to a certain

MV network. Alliander has a software tool to do this, it is implemented in the software

program Vision. Unfortunately, it takes a long time to run such a test. For an MV net-

work with 136 cables, it takes 33 minutes on an ordinary laptop. To test the principle

on the combination of all MV networks is almost impossible. Therefore, once a year,

this big computation is done using an external server. This gives static results of the

calculation, which are not actual during the year. The business management depart-

ment of Alliander would probably like to have a tool to test the principle on the topical

state of the network. Moreover, there is a team within Alliander, named ANDES, that

develops a model to calculate the overloads of the networks in the future. It would be

very useful to add the m− 1 calculation to this model.

The challenge of this project is to establish an algorithm, using mathematical

structures, that more quickly calculates whether the m− 1 principle holds for a certain

network.

1.4 Research question

At this point we can formulate the main research question as:

What mathematical algorithm checks the m − 1 principle for MV networks

in a reasonable time?

The algorithm found will be implemented in the program R and will be tested on several

MV networks of Alliander. In this way, ‘reasonable’ is initially defined as ‘faster than

the Vision function’. The precise mathematical formulation of the research question and

the detailed constraints on the configurations can be found in chapter 2, Mathematical

View.

Note the possible difference between the mathematical definition of ‘fast’ and the

actual time it takes to run an algorithm. The mathematical definition will be in terms

of the complexity. We will study both the complexity and the execution time of the

algorithms used.

1.5 Structure of this thesis

The remainder of this thesis presents a detailed description of the mathematical meth-

ods, the physical requirements, an overview of the implementation and the results of

our algorithm to check the m-1 principle. Chapter 2, Mathematical View, formulates

the main research question as a mathematical problem and proposes some potential

solution strategies. Besides, it provides the relevant background in graph theory and

complexities. Chapter 3, Spanning Trees, examines the feasibility of the chosen research
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strategy. It proposes two reduction methods to diminish the networks and to render the

outlined strategy feasible. It also proposes a required algorithm for the strategy and

proves some statements regarding its characteristics. Chapter 4, Physical Background,

explains the necessary physics for this project. This includes the load flow equations that

should be calculated in each configuration to compare the values with the capacities.

Chapter 5, More Graph-theoretical Tools, continues developing the required methods for

the overall algorithm to check the m − 1 principle. After that, chapter 6, Implemen-

tation & Overview, displays and explains the eventual combination of the algorithms

and other tools. Based on the implementation in R corresponding to the presented al-

gorithm, chapter 7, Results & Conclusion, depicts the results of the algorithm applied

to Alliander’s entire MV network and some smaller test networks. We conclude on

the performance of the algorithm afterwards. The last chapter, chapter 8, Discussion

& Future Work, proposes some improvements of the eventual algorithm. Additionally,

it generalises the solution to the m − 1 problem to other topics and it suggests some

interesting extensions of this project.





Chapter 2

Mathematical View

As formulated in chapter 1, the main research question is:

What mathematical algorithm checks the m − 1 principle for MV networks

in a reasonable time?

In this chapter we translate this question into a more precise mathematical problem.

Afterwards, we recall some basic principles of graph theory. Third, we approach this

problem in several mathematical ways. The next chapters will refine and elaborate on

the chosen approach. Last, we present the relevant background on complexities.

2.1 Mathematical problem

We abstract an MV network to a graph G = (V,E). V comprises the nodes: the

generators, transformers and load buses in the network. E comprises the edges: the

cables between the nodes. The number of nodes is n, the number of edges is m. As the

graph G represents an MV network, it has a meshed structure with a lot of cycles. We

assume that the graph does not have loops (edges having identical ends), but it may

have parallel edges. Therefore, the graph is not necessarily simple, for a simple graph

does not have loops nor parallel edges.

To start with a basic case, we expect only one HV/MV transformer in a network.

In general, there could be more HV/MV transformers, but HV/MV transformers cannot

be connected to each other, which makes that case more complicated. Later on, we will

study the extended case with more than one HV/MV transformer, particularly in section

5.2.

The graph G represents a complete MV network. Besides, we have the graph

GA, which represents a state of the network actually used, a configuration. Exactly

the edges in GA transport power to the consumers. The edges in G \GA represent the

redundant edges that are switched off and consequently have no flowing current. By the

safety reasons explained in chapter 1, GA should be a spanning tree of G, so a radial

configuration of G that connects all nodes.
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Given G and GA, we need to check for every edge e in GA which at most k edges

of G \ {e} need to be switched with respect to GA \ {e} to obtain a well-functioning

reconfiguration Ge, if it exists. Well-functioning means for now that the reconfiguration

is a spanning tree of G.

Keep in mind that we should also calculate the load flow of the new configuration

Ge and compare the results with the current and voltage capacities. We will first neglect

this to simplify the problem. We will append this aspect to the algorithm later on: each

time we want to try a new configuration, we calculate the load flow. If at least one of

the current or voltage capacities is exceeded, we delete the configuration and search for

another optional solution.

The main research question is equivalent to finding a fast algorithm with the follow-

ing input and output:

Wanted: efficient algorithm to check m− 1 principle

Input: Graph G and corresponding graph GA, a number k.

Output: For every edge e of GA a list of at most k edges of G \ {e} that

need to be added to or deleted from GA \ {e} to obtain a spanning tree of

G, or the sentence “no possible reconfiguration”.

2.2 Background in graph theory

The graduate textbook Graph Theory by Bondy and Murty (2008) [1] provides a solid

foundation for the terminology and principles of graph theory. The most basic definitions

will not be given in this thesis, but can be found in the first chapter of Bondy and Murty

(2008). Here we give some definitions and propositions relevant for the next chapters

(they can be found in Bondy and Murty (2008), sections 1.1, 4.1 and 4.2). Sometimes

they are just stated to avoid ambiguity between different possible definitions for one

object. We do not prove the theorems and propositions, but the reader would be able

to prove the theorems oneself, in all likelihood.

Recall the fact that we only look at graphs without loops. If we consider a graph

G, it will be a such a graph, unless explicitly indicated differently. Note that the graph

is not necessarily simple, for it may have parallel edges. Besides, a default assumption

is that the graph is undirected. As may be expected from the context of real networks,

we assume the graphs are finite.

Remark 2.1. A (simple, undirected) graph G on n nodes has at most
(
n
2

)
= n(n−1)

2

edges. A simple graph on n nodes with exactly
(
n
2

)
edges is called a complete graph

and is denoted by Kn. A subgraph (of a graph G) on n′ nodes that is complete is called

a n′-clique (of G).

Definition 2.2. A path is a (sub)graph whose vertices can be arranged in a linear

sequence such that two vertices are adjacent if and only if (iff ) they are consecutive



2.2. Background in graph theory 13

in the sequence. Likewise, a cycle is a (sub)graph whose vertices can be arranged in

a cyclic sequence such that two vertices are adjacent iff they are consecutive in the

sequence. (A cyclic sequence means a linear sequence where the first element equals the

last element.) The length of a path or a cycle is the number of its edges.

Remark 2.3. A path and a cycle can both be represented by a sequence of vertices (as

in the definition) and by a sequence of edges. We require that in either manner vertices

or edges cannot repeat in the sequence.

Example 2.4. A complete graph on four vertices, a path of length three and a cycle of

length four, respectively:

1

2

3

4

1

2

3

4

5
6

1

2

3

4

1

2

3

1

2

3

4

1

2

3

4

Definition 2.5. A graph is connected if, for every partition of its vertex set into two

nonempty sets V1 and V2, there is an edge with one end in V1 and one end in V2.

Proposition 2.6. A graph is connected iff for each pair {v1, v2} of its vertices there

exists a path between v1 and v2.

Definition 2.7. The degree of a vertex v in a graph G, denoted by d(v), is the number

of edges of G incident with v. A vertex of degree zero is called an isolated vertex. A

vertex of degree one is called a leaf.

Theorem 2.8. Let G be a graph in which all vertices have degree at least two. Then G

contains a cycle.

Definition 2.9. An acyclic graph is a graph that contains no cycles. A connected

acyclic graph is called a tree.

Proposition 2.10. Let T be a tree on n ≥ 2 nodes. The following statements are true:

(1) Any two vertices of T are connected by exactly one path.

(2) T has at least two leafs.

(3) The number of edges m equals n− 1.

Definition 2.11. A spanning subgraph G′ of a graph G is a subgraph such that

VG′ = VG (and EG′ ⊂ EG). A spanning tree of a graph is a spanning subgraph that is

a tree.
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Theorem 2.12. A graph is connected iff it has a spanning tree.

For the sake of clarity, we give the next result that follows from the previous proposition

and theorem:

Proposition 2.13. Let G be a graph with n vertices. Then the following are equivalent:

(a) G is a tree.

(b) G is connected and has n− 1 edges.

(c) G has no cycles and has n− 1 edges.

(d) There is a unique path in G between any two vertices.

Definition 2.14. Let G be a connected graph. An edge e in G that disconnects G upon

removal, is called a bridge of the graph G.

Remark 2.15. Note that a bridge e of connected graph G is in every spanning tree of

G. Notice also that e = (u, v) is a bridge of G iff there is no path without e from u to

v in G, by proposition 2.6.

We now gathered some basic facts about (spanning) trees. Subsequently, we present

some definitions and properties about the search for a spanning tree in a given connected

graph. An extended description of this so-called tree-search can be found in Bondy and

Murty (2008) [1], section 6.1.

Definition 2.16. Let G be a graph and let X be a set of vertices of G. The set of edges

of G with precisely one end in X is called the edge cut of G associated with X and is

denoted ∂(X). Note that ∂(X) = ∂(VG \X). For a subgraph G′ of G, we simply write

∂(G′) for ∂(VG′).

Remark 2.17. Let T be a tree in a graph G. We distinguish two cases:

1. VT = VG: Then T is a spanning tree of G by definition.

2. VT ⊂ VG: We have again two possibilities:

(i) ∂(T ) = ∅: Then there does not exist a path between any vertex in VT and

any vertex in VG \ VT . In that case, G is disconnected, so no spanning tree

of G exists by theorem 2.12.

(ii) ∂(T ) 6= ∅: In this case, by adding an edge e ∈ ∂(T ) to T (and hereby adding

a new vertex to T ), the obtained subgraph is again a tree in G. Verify this by

noting that the obtained subgraph is connected (as one end of e was already

in T ) and does not contain cycles (as the edge e has one end that is a leaf in

the extended subgraph, so cannot create a cycle).
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Given this remark, we can search for a spanning tree of a graph (if it exists). Using the

above distinctions, we can generate a sequence of rooted trees in G, starting with a tree

consisting of a single vertex r that is the root. We are finished when either a spanning

tree of the graph is found or when a tree of the graph is found whose edge cut is empty.

We call this procedure a tree-search and the resulting tree a search tree.

Finally, we note that we possibly have a choice in adding a new edge (and vertex)

to the tree. To determine ∂(T ) we need to scan the adjacency lists of the vertices already

in the tree. Suppose we add a new edge to T in the order of the adjacency lists. Then

the order in which we consider these adjacency lists can provide additional information

on the structure of the eventual spanning tree. We will distinguish two commonly used

criteria for selecting the edge and vertex to be added to the tree T . In both cases, the

criterion depends on the order in which the vertices in the tree were added. Suppose for

the moment that the graph is connected. Then a tree-search will give a spanning tree.

Definition 2.18. Breadth-first search is a tree-search in which the adjacency lists

of the vertices of T are considered on a first-come first-served basis, i.e. they are kept

in a queue where a new vertex is added to one end (the tail) and a vertex from which

the current tree will be grown is taken from the other end (the head of the queue). The

spanning tree returned in this way is called a breadth-first search tree or BFS-tree.

Depth-first search is a tree-search in which the vertex added to the tree T is one

which is a neighbour of as recent an addition to T as possible (a last-come first-served

basis). I.e. we keep the list of vertices in a stack where a vertex is added on its top and

used as next if possible or else is immediately removed. The spanning tree returned in

this way is called a depth-first search tree or DFS-tree.

Example 2.19. A connected graph with associated BFS-tree and DFS-tree:
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We will end with some useful definitions for describing properties of search trees in later

chapters.

Definition 2.20. Let T be a tree with root r. The level of a vertex v in T is the

length of the (unique) path between r and v. Furthermore, each vertex on that path,

including the vertex v, is called an ancestor of v. Each vertex of which v is an ancestor

is a descendant of v. An ancestor or descendant of a vertex is proper if it is not the

vertex itself.

In the remainder of this thesis, we assume the given definitions and theorems are known.

2.3 Research strategies

Given the desire to find a mathematical graph algorithm to check the m − 1 principle,

one could start to search for such an algorithm. We observe that one can search for

possible reconfigurations in two ways. The first and most straightforward way is to

start with an edge e and search for a suitable reconfiguration without e. Subsequently,

one can repeat this procedure for all other edges of GA. The second way is to start

searching for suitable reconfigurations and hereafter match possible ‘broken’ edges e to

these reconfigurations. In other words, first search for the solutions and subsequently

find broken edges for the solutions. An advantage of the second search strategy is that

we might reduce the number of computations and we can find multiple solutions at once.

As a side note, we stress that we initially want to determine with 100% certainty to

what extend an MV network meets the m−1 principle. We do not want to approximate

the answer to the question by concluding for example: “With 99% certainty, the MV

network meets the m − 1 principle insofar”. Consequently, we look at the problem

deterministically and avoid approximation algorithms. However, in case of disappointing

results for large networks one could try such algorithms too, but in this thesis we will

refrain from doing so.

We propose a research strategy using spanning trees, in line with the second search

strategy. Hereafter, we make a comment that we only need more than one switch in a

switchover if we check the load flow in the strategy.

Strategy: Spanning trees

As a reconfiguration of G should be a spanning tree, a possible research strategy is to

find all spanning trees of G and then compare a spanning tree Tj with the network

GA. If the number of edges in the symmetric difference Tj4GA is greater than k+ 1, Tj

cannot be constructed from GA by switching at most k edges. (Note that we do not need

to take the outage edge into account.) In that case, Tj is not a solution for any outage

edge e. In the other case, the edges in GA \ Tj are possible outage edges for which Tj is

a suitable reconfiguration. Let e be one of the edges in GA \ Tj . The edges that need to

be added or deleted to GA \ {e} to obtain Tj are precisely the edges in (Tj4GA) \ {e}.
To conclude, by comparing each spanning tree with GA, we can decide which edges have
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a possible reconfiguration. Besides, if there is a possible reconfiguration for a certain

damaged edge, we find one or more lists of at most k edges that need to be switched.

The most difficult part in this research strategy is to find a list of all spanning

trees of G. The next chapter, chapter 3, deals with this issue by proposing an algorithm

to find all spanning trees of a graph. Before presenting the description of this algorithm,

we consider the number of spanning trees of graphs (in the next chapter). This is an im-

portant aspect regarding the feasibility of applying such an algorithm to large networks.

We already give away that the number of spanning trees grows very rapidly with the

size of the graph. Consequently, we will try to reduce the original graph G to diminish

the number of spanning trees to be considered. For example, we could only search for

spanning trees that differ at most k + 1 edges from the configuration GA. Even though

this proposal requires to extract different subgraphs of G and use the spanning tree

algorithm on all these subgraphs, the total number of considered spanning trees will be

much less. Additionally, we will reduce the network graphs in some other way using the

so-called ‘Andrei-Chicco reduction’.

Needing more switches because of the load flow computation

Here we will show: if we need more than one switch (in particular cases), then it is

because of the load flow computation. In other words, if we accept a switchover imme-

diately if it is graph-theoretically correct, then all switchovers could consist of only one

switch. We prove this statement using the following lemma.

Lemma 2.21. Let G be a connected graph and let T be a spanning tree of G. Let edge

e ∈ G. Then e is a bridge in G iff there is no edge d ∈ G \ {e} such that (T \ {e})∪ {d}
is a connected graph.

Proof. Let edge d ∈ G \ {e}. If e is a bridge in G, then e is a bridge in any spanning

subgraph of G. In particular, e is a bridge in T∪{d}. Thus, (T \{e})∪{d} is unconnected.

On the other hand, suppose there is no edge d ∈ G \ {e} such that (T \ {e})∪ {d}
is a connected graph. As T is a spanning tree, T \ {e} consists of two components,

say X1 and X2. By the assumption, none of the edges in G \ {e} connects these two

components. As a result, the ends of an edge in G \ {e} either lie both in X1 or both in

X2. Then the same holds in G \ {e} itself, i.e. each edge lies either completely in X1 or

completely in X2. As X1 and X2 form a partition of the vertices, the graph G \ {e} is

unconnected. To conclude, e is a bridge in G.

A consequence of the lemma is that an edge e is not a bridge if and only if there is an

edge d that ‘repairs’ T upon removal (‘break down’) of e. Thus, we conclude that we can

either switch an edge by using one other edge as switch or we cannot switch the edge

at all (in that case it is a bridge, a graph-theoretically unswitchable edge). As a result,

only if we add the load flow condition, then it could be useful to look at switchovers

using more switches.
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We point out that if we include the load flow computation and physical condition

check, then a switchover for some edge could indeed need more than one switch. A

reason for this is that more switches could provide a more balanced distribution of the

current over the network, whereby no voltage or current capacity is exceeded. Chapter

4 explains the details of the load flow computation. However, we deduce already that

we only need more than one switch if we include the load flow computation before we

accept a switchover. Consequently, the use of the maximum number of switches k is

also only useful if we include the physical condition check. As the use of the spanning

tree strategy presented above is dependent on k, it is also only useful if we include the

physical conditions. In fact, the case k = 1 is much easier than the other cases and we

could compute that case without using spanning trees. We present the solution to this

specific case in subsection 6.3.2.

Moreover, we note here that the cases k = 2p+1 and k = 2p+2 for p ∈ N are equal.

We need one more edge to close than to open, if another edge breaks down, because the

initial configuration and reconfiguration of the network are both spanning trees having

the same number of edges, namely n−1. An example: if k = 4, then we may switch four

other edges than the broken edge. However, if we close three optional edges, we have to

open precisely two edges, which in total exceeds k. If we close two optional edges, we

have to open precisely one edge. Then we have used only three switches. Thus, the case

k = 4 contains precisely the same possible switchovers as the case k = 3.

2.4 The speed: Time complexity

As we need the algorithm that checks the m− 1 principle to be fast, we need some mea-

sure of the speed of an algorithm. The mathematical method to measure the speed of an

algorithm is the time complexity of an algorithm. We can measure the required mem-

ory space of an algorithm too, using the space complexity. As we are interested in the

speed, we will focus on the time complexity. We will give some mathematical definitions,

following Sipser’s book Introduction to the Theory of Computation (2006) [2], section 7.1.

Before we define the time complexity, we notice a couple of things. First, the time

complexity is expressed in the number of steps an algorithm uses on a particular input.

However, this input may depend on several parameters. In our case, the input could

depend on the number of nodes n, the number of edge m and/or some other property

of a given graph. Here, we simplify the time complexity of an algorithm to a function of

the size of the input and do not worry about the specific shape of the input. This could

be a binary string representing the input, combining all parameters. When we compute

the complexity of a particular algorithm in a later chapter, we will specify it in terms of

the size of the specific input if possible.

Second, we can choose between two viewpoints: considering the longest running

time for inputs of a particular size, the worst-case analysis, or the average time for
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inputs of a certain size, the average-case analysis. We will focus on the worst-case

analysis:

Definition 2.22. Let a be a deterministic algorithm that halts on all inputs. The time

complexity of a is the function ta : N → N, where ta(x) is the maximum number of

steps that a uses on any input of size x.

Similarly, the space complexity of a is the function sa : N → N, where sa(x) is

the maximum amount of memory (in certain predefined units) that a uses on any input

of size x.

Usually, we define the time complexity of a Turing machine instead of the time com-

plexity of an algorithm. However, for our usage of the term it suffices to define it over

algorithms. This saves us from an extensive and comprehensive description of Turing

machines.

To avoid unnecessary determination of constants, we will use the big-O notation to

estimate the time complexity of an algorithm:

Definition 2.23. Let functions f, g : N → R>0 be given. We say that f(x) = O(g(x))

if positive integers c and x0 exists such that for every integer x ≥ x0: f(x) ≤ c g(x).

Then we say that g(x) is an asymptotic upper bound for f(x).

Example 2.24. Let t(x) = 5x3 + 20x2 + 3.

Then t(x) = O(x3), for take c = 6 and x0 = 21. t(x) 6= O(x2), as we could not assign c

and x0. On the other hand, t(x) = O(x4), as x4 is larger than x3 for |x| > 1. Of course,

the case where g (as in the definition) is as small as possible is the most interesting case.

For constant factors we simply write O(1), so if t(x) = 25, then t(x) = O(1).

As one can see, in this way we suppress constant factors. If t is a polynomial, we consider

only the highest order term of t and disregard the coefficient of that term too. We will

use the time complexity to measure the behaviour of an algorithm on large inputs. In

such cases, the highest order term will dominate the other terms. This justifies the big-O

estimation for the time complexity if it is a polynomial.
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Spanning Trees

Before we present an algorithm to find all spanning trees of a given graph, it is useful to

know the number of spanning trees of that graph. Hereafter, we look at how the number

of spanning trees of graphs increases when the number of vertices n or the number of

edgesm grows. As we would like to apply the final algorithm to large electricity networks,

we need to be aware of the scalability of the algorithm, which is dependent of the number

of spanning trees. The third section describes how the number of spanning trees can be

reduced without losing possible reconfigurations. The last section provides an algorithm

to find all spanning trees of a graph.

3.1 The number of spanning trees

In the end of the nineteenth century, Kirchhoff contrived a way to calculate the number

of spanning trees of a graph using its incidence matrix. Before we state Kirchhoff’s

theorem, also called the Matrix tree theorem, we need some definitions. This section

follows the book Topics in Algebraic Combinatorics by Stanley (2013) [3], chapter 9.

Definition 3.1. Let G = (V,E) be a directed graph without loops having vertices

V = {v1, . . . , vn} and edges E = {e1, . . . , em}. Then the n ×m incidence matrix IG

of G is defined by:

(IG)i,j =


1 if ej starts in vi

−1 if ej ends in vi

0 else

In case of an undirected graph, one can arbitrarily choose which end of an edge is

the starting point (and which the end point). It is probably clear that the rows of the

incidence matrix represent the nodes of the graph, the columns represent the edges. Note

that the sum of matrix entries along a column is zero, for each edge has one starting

point and one end point. There is a one-to-one correspondence between a directed graph

G and its incidence matrix IG.



22 Chapter 3. Spanning Trees

Example 3.2. An undirected graph G and a corresponding incidence matrix IG:

1

2

3

4

5

1 2

3
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6


1 0 0 0 0 −1

−1 1 1 0 0 0

0 −1 0 1 0 0

0 0 −1 −1 1 0

0 0 0 0 −1 1



Definition 3.3. Let M be a p × q matrix. We define the (p − 1) × q matrix M̃ as M

without its last row.

We can now state Kirchhoff’s theorem, connecting the number of spanning trees of a

graph with an incidence matrix corresponding to the graph.

Theorem (Kirchhoff’s theorem, Matrix tree theorem). Let G be a connected graph

without loops. The number of spanning trees of G equals det(ĨG · ĨG
T

).

Applying Kirchhoff’s theorem to example 3.2, we see that the graph contains 11 span-

ning trees.

At this point, the correctness of the theorem may be unclear. In the remainder of this

section, we will prove Kirchhoff’s theorem using some lemma’s. Before that, we first

explain why the choice of a direction of an undirected graph does not influence the

number det(ĨG · ĨG
T

). Furthermore, we clarify why we could equally well choose another

row to remove from a matrix M to define M̃ .

Although there are several incidence matrices belonging to one undirected graph,

the different incidence matrices IG
i for a particular undirected graph G give the same

result when computing ĨG
i · ĨGi

T
. The only difference between two incidence matrices

of G is the exchange of the 1 and −1 in some columns of an IG. In the computation of

IG · IGT elements of a column are only multiplied with elements in the same column. By

the exchange of the 1 and −1, all the individual multiplications in the computation of

IG ·IGT give the same result, because the only elements of a column are 0’s and precisely

one 1 and −1. In the same way, ĨG
i · ĨGi

T
is the same matrix for every i, because it

is only a part of the matrix IG · IGT . To conclude, we do not have to worry about the

choice of the incidence matrix of an undirected graph: ĨG · ĨG
T

is unique.

Second, note that (1, . . . , 1) · IG = 0, so we could remove an arbitrary row from

IG without losing information. Thus, instead of defining M̃ as M without its last row,

we could have taken another row. As a consequence, det(ĨG · ĨG
T

) is not dependent on

the node numbering, for we do not necessarily need to remove the row corresponding to

the last node, but could take any other row, corresponding to another node.
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Before we prove Kirchhoff’s theorem, it is useful to get some insight in the meaning of

ĨG · ĨG
T

. Therefore, we need the following definition and lemma.

Definition 3.4. Let G be a graph. The n× n Laplacian matrix LG is defined by:

(LG)i,j =


d(vi) if i = j

−l if i 6= j and there are precisely l edges between nodes vi and vj

0 else

Clearly, LG is symmetric.

Lemma 3.5. Let G be a graph without loops and let an incidence matrix IG be given.

Then LG = IG · IGT .

Proof. By the definitions of matrix multiplication and the transpose, we have for nodes

vi and vj :

(IG · IGT )i,j =
∑
ek∈EG

(IG)i,k(IG)j,k . (3.1)

We consider the following cases separately:

i = j: If ek is an edge with vi one of its ends, then (IG)i,k will be either 1 or −1, so

(IG)i,k(IG)i,k = 1. If ek does not have vi as one of its ends, then (IG)i,k = 0 and

(IG)i,k(IG)i,k = 0. By (3.1) we now see: (IG · IGT )i,i = d(vi).

i 6= j: We solely have (IG)i,k(IG)j,k 6= 0 if the edge ek has ends vi and vj . For (IG)i,k 6= 0

iff vi is an end of ek. In case edge ek has ends vi and vj , one of (IG)i,k and (IG)j,k
equals 1 and the other −1, so (IG)i,k(IG)j,k = −1. By (3.1): (IG · IGT )i,j = −l, if

there are precisely l (parallel) edges between vi and vj .

Hence by the definition of the Laplacian matrix, LG = IG · IGT .

Later on in this report, we will use this result about the meaning of IG ·IGT . For now we

know ĨG · ĨG
T

equals the Laplacian matrix LG without its last row and its last column.

Currently we need the link between the number of spanning trees and determinants of

certain matrices. After the following lemma and Cauchy-Binet’s theorem, we arrive at

the proof of Kirchhoff’s theorem.

Lemma 3.6. Let the graph G without loops be given, where G has n vertices and n− 1

edges. If the graph G forms a spanning tree, then det(ĨG) = ±1. If not, then det(ĨG)

= 0.

Proof. Suppose G forms a spanning tree. Note: in the (n − 1) × (n − 1) matrix ĨG

the row of vertex vn is removed with respect to IG. Let e be an edge connected to vn.

Then the column of ĨG indexed by e has precisely one nonzero entry, being ±1. We

form the (n − 2) × (n − 2) matrix ĨG
′

by deleting the column and row containing this

nonzero entry from ĨG. This new matrix corresponds to ĨG′ of the tree G′ where edge e
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is contracted (e is removed and the ends of e are merged into a single vertex v′n−1). We

notice that det(ĨG) = ± det(ĨG
′
). By induction on the number of vertices n, we have

det(ĨG′) = ±1. (The case n = 1 is trivial, this concerns the determinant of the empty

matrix.) To conclude, det(ĨG) = ±1.

Now suppose G does not form a spanning tree. Then G contains a cycle. Let

C ⊂ EG be the set of edges that forms one such cycle. Let C be represented by the

cyclic edge sequence (b1, . . . , bt). Without loss of generality, we can modify G into a

directed graph where C is a directed cycle. Then each vertex in C is just as often a

starting point as an end point in C. Let IG[C] be IG limited to the columns indexed by

b1, . . . , bt. Then each vertex in C has as many 1’s as −1’s in its row in IG[C]. Thus, if

we add the columns indexed by b1, . . . , bt, we get the 0-column. Hence the columns of

IG are linearly dependent, so are the columns of ĨG. To end, det(ĨG) = 0.

Theorem 3.7 (Cauchy-Binet’s theorem). Let A be an p × q matrix, let B be an q × p
matrix. If p > q, then det(A ·B) = 0. If p ≤ q, then

det(A ·B) =
∑

S⊂{1,...,q}
|S|=p

det(A[S]) · det(B{S}) ,

where A[S] abbreviates: matrix A limited to the columns indexed by the elements in S

and B{S} abbreviates: matrix B limited to the rows indexed by the elements in S.

We will not prove Cauchy-Binet’s theorem, but a proof can be found in chapter 6 of the

book Introduction to Linear Algebra by Marcus and Minc (1965) [4]. Now we will prove

Kirchhoff’s theorem:

Theorem 3.8 (Kirchhoff’s theorem, Matrix tree theorem). Let G be a connected graph

without loops. The number of spanning trees of G equals det(ĨG · ĨG
T

).

Proof. Note that ĨG is an (n − 1) × m matrix. n − 1 ≤ m, for G is connected. By

Cauchy-Binet’s theorem (theorem 3.7), we have:

det(ĨG · ĨG
T

) =
∑

S⊂{e1,...,em}
|S|=n−1

det(ĨG[S]) · det(ĨG
T
{S}) .

In general, MT {S} = M [S]T , so the last equation becomes:

det(ĨG · ĨG
T

) =
∑

S⊂{e1,...,em}
|S|=n−1

(det(ĨG[S]))
2
.

According to lemma 3.6, if S forms the set of edges of a spanning tree of G, then

det(ĨG[S]) = ±1. In the other case, det(ĨG[S]) = 0. Therefore, (det(ĨG[S]))2 = 1 if S

forms a spanning tree, and is 0 otherwise. Hence det(ĨG · ĨG
T

) denotes the number of

spanning trees of G.
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Kirchhoff’s theorem gives a fast and easy method to calculate the number of spanning

trees of a graph. We have implemented this method in R. It is a straightforward imple-

mentation using matrices. In the implementation, the graph is represented by its edges

and the edges are given by their endpoints.

Note that we do not yet know which specific spanning trees a particular graph

contains, we only know the number of spanning trees of that graph. Section 3.4 presents

an algorithm to enumerate all spanning trees of a particular graph.

The number of spanning trees depends on the incidence matrix of the graph, as

Kirchhoff’s theorem shows. As a result, the number of spanning trees of a graph is

dependent on the structure of the graph, meaning the specific image of the graph. Only

knowing the number of nodes and the number of edges is not enough to determine the

number of spanning trees.

Although the method following from Kirchhoff’s theorem is very efficient to com-

pute the number of spanning trees of a specific graph, it does not give insight in the

number of spanning trees of graphs in general. One could wonder how the number of

spanning trees depends on the kind of graph and whether the number of spanning trees

grows exponentially when n and m grow. These issues are covered in the next section.

3.2 The growth of the number of spanning trees

This section focuses on the growth of the number of spanning trees in general. First, we

give a lower bound for the number of spanning trees of any simple connected graph with

a certain amount of nodes and edges. Second, we estimate the growth of the number of

spanning trees as a graph grows in its number of nodes or edges.

Bogdanowicz (2009) [5] proves Boesch’s conjecture, providing a simple connected graph

that has the least number of spanning trees of all simple connected graphs on the same

number of nodes n and number of edges m. The simple connected graph having the

least number of spanning trees, given n and m, is graph Ln,m:

Definition 3.9. Let n,m be given natural numbers and n− 1 ≤ m. Let k be the least

positive integer such that m ≥ 1
2(n− k)(n− k − 1) + k := z. Define Ln,m to be a graph

consisting of an (n−k)-clique, joined to k−1 vertices of degree one and one other vertex

joined to m− z + 1 vertices of the clique.

Note that k = n− 1 always satisfies the inequality m ≥ 1
2(n− k)(n− k− 1) + k, because

n− 1 ≤ m. As a result, n− k is always positive and the (n− k)-clique is well-defined.

We note that several graphs meet the definition of Ln,m (for fixed n and fixed m).

However, those graphs all have the same number of spanning trees, so we can treat them

as if they were just one graph for convenience.
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Example 3.10. Let n = 8 and m = 12, then k = 4, z = 10. Then a graph L8,12 is:
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The subgraph consisting of the four dark nodes forms the (n−k)-clique. Nodes 5, 6 and

7 form the k− 1 nodes of degree one. Node 8 is the vertex joined to m− z + 1 nodes of

the clique.

Theorem 3.11 (Boesch’s conjecture). Let n, m be positive integers such that there

exists a simple connected graph on n nodes and m edges. Then any simple connected

graph G with n nodes and m edges has at least the number of spanning trees Ln,m has.

The proof of Boesch’s conjecture is very technical, but can be found in Bogdanowicz

(2009) [5].

Now we know which simple connected graph has the least number of spanning

trees, given n and m. We still need to calculate the number of spanning trees that Ln,m

has. Fortunately, we know the number of spanning trees of a complete graph:

Theorem 3.12 (Cayley’s theorem). The number of spanning trees of Kn equals nn−2.

There are a lot of ways to prove this theorem, discovered by Cayley in 1889. One could

show it using the eigenvalues of the Laplacian matrix. To get more sense for the theorem,

we give the combinatorial proof by Prüfer, as presented in the last appendix in Stanley

(2013) [3].

Proof. We will define a map f : {spanning trees of Kn} → {1, . . . , n}n−2. If S is a

spanning tree of Kn, then the sequence f(S) = (a1, . . . , an−2) is called the Prüfer code

of S. Afterwards, we prove that f is a bijection.

Assume that the nodes are numbered from 1 to n. Let S be a spanning tree of

Kn. Let v be the leaf with the largest node number of S. Then there is a unique edge

e = {v, w}. Define a1 = w and delete v (and therewith e) from S, giving a spanning tree

on n−1 nodes. We continue this procedure to find a2, . . . , an−2. In the end, there remain

only two vertices and one edge of S. This map is well-defined: a spanning tree always

has a leaf and taking the leaf with the largest node number determines ai uniquely.
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Now we prove this map is a bijection. Let s = (a1, . . . , an−2) ∈ {1, . . . , n}n−2 be

given. We try to construct a spanning tree T such that f(T ) = s by reasoning back

from the sequence s. The first vertex to be removed from T should be the vertex with

the largest node number of Kn missing from s. For if a vertex is in the sequence, it is

connected to another vertex in a subgraph of T in an intermediate step, so it cannot

be removed in the first step. Suppose the largest vertex of Kn missing from s, called

v, is not deleted in the first step. Then this vertex cannot be a leaf (otherwise it was

taken), so the vertex has at least degree two. Then a neighbour of v is removed in an

intermediate step and v is put on the sequence s, else we would not end with only one

edge. This cannot be the case, so the first deleted vertex is the largest vertex missing

from s. Now we know the edge {v, a1} is part of tree T . We can continue this argument

on the remainder of the sequence (a2, . . . , an−2) and the remainder of the graph Kn−{v},
in a similar way. We can repeat this reasoning n − 2 times and we find n − 2 edges of

T . In the end, there are only two vertices not removed, they form the last edge.

Note: there will always be a largest vertex not in the sequence, as the sequence

contains at most n−2 different elements and there are n different vertices. In each step,

we remove one element from the sequence and one vertex from the graph. To conclude,

given a sequence s = (a1, . . . , an−2) ∈ {1, . . . , n}n−2, we find at least one spanning tree

T such that s = f(T ). Moreover, we find exactly one spanning tree T , as a spanning

tree is determined by its n − 1 edges and we find n − 1 edges that must be part of the

tree.

To sum up, each sequence belongs to precisely one spanning tree. Therefore, the

map f is injective and surjective. Given this bijection, the number of spanning trees

of Kn equals the number of elements of {1, . . . , n}n−2. The latter equals nn−2, thereby

completing the proof.

Combining the last two theorems, we derive the following result:

Corollary 3.13. Let n,m ∈ N and n−1 ≤ m. Define: k =
⌈
n− 3

2 −
√

9
4 − 2n+ 2m

⌉
.

If there exists a simple connected graph on n nodes and m edges, then every such graph

has at least (n − k)n−k−2 =
(
n−

⌈
n− 3

2 −
√

9
4 − 2n+ 2m

⌉)n−2−
⌈
n−3

2−
√

9
4−2n+2m

⌉

spanning trees.

As one can see, we now have a direct formula for the minimum number of spanning trees

of a simple connected graph, given only n and m.

Proof. Let natural numbers n and m be given such that a simple connected graph on

n nodes and m edges exists. Using the abc-formula and doing some straightforward

calculations, one can transform the statement:

“ Let k be the least integer such that m ≥ 1
2(n− k)(n− k − 1) + k ”

into: “ k =

⌈
n− 3

2 −
√

9
4 − 2n+ 2m

⌉
”.

Using theorem 3.11 we know Ln,m has the least number of spanning trees of all simple

connected graphs on n nodes and m edges. We know Ln,m has an (n − k)-clique, so
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Ln,m contains at least (n − k)n−k−2 spanning trees, using theorem 3.12. (Note that

Ln,m could have many more spanning trees, but this depends on the number z :=
1
2(n − k)(n − k − 1) + k : what degree the last node of Ln,m needs to get. Since this

degree equals 1 in some cases, we keep it general and only count the number of spanning

trees of the (n− k)-clique.)

We conclude from the corollary that the minimum number of spanning trees in simple

connected graphs equals roughly f(n,m) =
√
−2n+ 2m

√
−2n+2m

. Let −2n + 2m grow

linearly, then the function f grows eventually slower than any exponential function,

as the exponent grows less than linearly (note that the base grows too, but the linear

growth of the exponent is essential to have an exponential function). Of course, the

function f eventually grows faster than all polynomial functions. Concluding, f cannot

be approximated by a polynomial function nor an exponential function, but lies in

between those two categories. f eventually exceeds any root function in logarithmic

scale, as such a function has a fixed base and f has not. We call such a root function in

logarithmic scale a root exponential function.

We now give some results with respect to the growth of the minimum number of

spanning trees of a simple connected graph, depending on n and m:

1. For fixed n, the minimum number of spanning trees grows at least root exponen-

tially if m increases.

2. For fixed m, the minimum number of spanning trees grows at least root exponen-

tially if n decreases.

3. The minimum number of spanning trees grows at least root exponentially if m

increases more than n.

For the sake of completeness, we can be more precise about the exact number of spanning

trees of Ln,m and, consequently, about the genuine least number of spanning trees of

any simple connected graph on n nodes and m edges. However, since those formulas are

more complex, it is harder to reason about the growth of the number of spanning trees

at a glance. The conclusions derived above still hold.

Theorem 3.14. Let Kw
n be the graph consisting of an n-clique combined with one addi-

tional vertex n+ 1 of degree w connected to vertices n−w+ 1, . . . , n. Then the number

of spanning trees of Kw
n equals w · (n+ 1)w−1 · nn−w−1.

Proof. (Sketch) Similar to the proof of Cayley’s theorem, one can define a (somewhat

more complicated) Prüfer code for spanning trees of Kw
n . In this case, we define the

map f : {spanning trees of Kw
n } → {1, . . . , w} × {1, . . . , n + 1}w−1 × {1, . . . , n}n−w−1.

The map f is defined in a similar way as in the proof of Cayley’s theorem: one takes the

leaf v with the largest node number and writes down the other end u of the edge ending

in v. Then we remove vertex v and the corresponding edge and repeat this procedure

recursively (until just one edge remains).
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A difference with the proof of Cayley’s theorem is the place in the sequence s =

(a, b1, . . . , bw−1, c1, . . . , cn−w−1) where we write down u. If the largest leaf equals n+ 1,

we define a = u. If the largest leaf is in the set {n − w + 1, . . . , n}, we define bi = u

where i is the least number such that bi is not yet defined. If already all bj ’s are defined,

we define cl = u where l is the least number such that cl is not yet defined. Lastly, if

the largest leaf is in the set {1, . . . , n−w}, we define cl = u where l is the least number

such that cl is not yet defined.

To prove that f is well-defined, we first need to show that it cannot happen that

there is no place for u in the sequence, i.e. it cannot be the case that we should have

either a = u, bi = u or cj = u, but we defined all a’s, bi’s or cj ’s already, respectively. We

need to distinguish the three cases a = u, bi = u and cj = u to prove this. Second, we

need to show that u ∈ {1, . . . , w}, u ∈ {1, . . . , n+1} or u ∈ {1, . . . , n} if it is allocated to

an a, bi or cj , respectively. For this we need to distinguish the cases v ∈ {1, . . . , n−w},
v ∈ {n− w + 1, . . . , n} and v = n+ 1. After we have done so, we have proved that f is

well-defined.

To prove that f is a bijection, we take an approach similar to the proof of Cayley’s

theorem (theorem 3.12), i.e. we use the same method to prove that f is a bijection.

Particularly, we take a sequence s = (a, b1, . . . , bw−1, c1, . . . , cn−w−1) ∈ {1, . . . , w} ×
{1, . . . , n + 1}w−1 × {1, . . . , n}n−w−1 and try to construct a spanning tree T such that

f(T ) = s by reasoning back from the sequence s. Ultimately, we will see that each

sequence belongs to precisely one spanning tree. Thus, f is a bijection and the number

of spanning trees of Kw
n equals the number of elements of {1, . . . , w}×{1, . . . , n+1}w−1×

{1, . . . , n}n−w−1. The latter equals w · (n + 1)w−1 · nn−w−1, thereby completing the

proof.

The number of spanning trees of an Ln,m purely depends on the (n−k)-clique in combi-

nation with the additional vertex joined to m− z + 1 vertices of the clique, because the

other edges are edges in branches, which are bridges. Every spanning tree contains the

bridges, whereby these edges cannot increase the number of spanning trees of the entire

graph. To conclude, the number of spanning trees of an Ln,m is precisely the number of

spanning trees of Km−z+1
n−k . Combining the previous theorem and this last note, we have

the following corollary:

Corollary 3.15. The following two observations are correct:

1. The number of spanning trees of Ln,m equals w · (n− k + 1)w−1 · (n− k)n−k−w−1,

where we can view k and w either as:

(i) k the least integer s.t. m ≥ 1
2(n− k)(n− k− 1) + k := z and w := m− z+ 1,

or:

(ii) k :=
⌈
n− 3

2 −
√

9
4 − 2n+ 2m

⌉
and w := m+ 1− 1

2(n− k)(n− k − 1)− k.

2. The number of spanning trees of any simple connected graph on n vertices and m

edges equals at least w · (n− k + 1)w−1 · (n− k)n−k−w−1.
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We now see that the number of spanning trees of the graph L8,12 in example 3.10 equals

w · (n−k+ 1)w−1 · (n−k)n−k−w−1 = 3 · 52 · 40 = 75. In particular, any simple connected

graph having 8 vertices and 12 edges contains at least 75 spanning trees.

Example 3.16. Let n = 10. The plot displays the minimum number of spanning trees

of a simple connected graph with 10 nodes and m edges:

n = 10
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The figure shows the at least root exponential growth of the minimum number of span-

ning trees for fixed n and increasing m. One can see that the number of spanning trees

of a graph with 10 nodes and 30 edges already exceeds 100.000.

Last, note that we do not assume that the graphs corresponding to the MV networks

are simple. However, in general, they have only a few parallel edges (and no loops

by assumption), wherefore the minimum number of spanning trees of simple connected

graphs approximates the minimum number of spanning trees of the MV network graphs.

As a consequence, the number of spanning trees of the MV network graphs grows very

fast for fixed n and increasing m. Therefore, we need to reduce the number of spanning

trees of these graphs.

3.3 Reducing the number of spanning trees

The previous section showed that the minimum number of spanning trees is growing

very rapidly with the number of edges for a fixed number of nodes. Therefore, in this

section we will try to reduce the number of considered spanning trees for a given cyclic

network graph. We do this by reducing the original graph G. We try to remove edges and

nodes that we do not need to find all essential different spanning trees that are possible

reconfigurations. After we have done so, we can search for the remaining spanning trees
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using a spanning tree enumeration algorithm, which is presented in the next section

(section 3.4). After listing the spanning trees, we can convert the solutions back to the

original graph.

We will reduce the original graph in two ways. The first and most simple way,

called the k reduction, is based on the fact that only k switches are allowed. The second

manner is called the Andrei-Chicco reduction and is based on the ideas of Andrei and

Chicco (2008) [6] to reduce an electricity network graph without losing important infor-

mation. We first describe the k reduction and afterwards the Andrei-Chicco reduction.

We explain how we implemented the combination of the two reduction methods and

other algorithms in chapter 6, in particular in section 6.2.

3.3.1 k reduction

Let r be the number of edges of G \ GA. r represents the number of residual edges:

the edges that are not used in the present configuration GA but could be used in a

reconfiguration. We also call the residual edges optional edges, as well as open edges

in some cases. We now look at the maximum number of edges that could be closed (or

opened).

Given a damaged edge e, we allow at most k edges to be switched. Note that we

do not count e as one of the switches. The same number of edges should be opened

and closed with respect to GA, for both GA and the reconfiguration should be spanning

trees with n − 1 edges. The edge e is an opened edge, but does not count as one of

the k switches. To conclude, if we close c ≤
⌈
k
2

⌉
edges of the r residual edges, we have

to open c − 1 edges of the original configuration GA. If so, we have switched at most⌈
k
2

⌉
+
⌈
k
2

⌉
− 1 ≤ k edges in total, which is allowed.

As we require at most
⌈
k
2

⌉
edges from the r residual edges to be closed, most

likely a lot of all spanning trees of G are not permitted. Those spanning trees would

have more than
⌈
k
2

⌉
edges from the r residual edges closed (assuming

⌈
k
2

⌉
< r). To avoid

computing such ineffective spanning trees, we could reduce the graph G to a subgraph

of it having only
⌈
k
2

⌉
residual edges. Then all of the spanning trees of the subgraph

are permissible reconfigurations (ignoring still the load flow condition). Unfortunately,

there could be a lot of such subgraphs, but in most cases the sum of the numbers of all

spanning trees of all these subgraphs will still be less than the number of spanning trees

of G. This is because the minimum number of spanning trees grows root exponentially

with one additional edge. Furthermore, we may assume that k is relatively small (k = 6

in Alliander’s case) and r is substantially larger than k, which is advantageous for the

k reduction method.

To sum up, the k reduction procedure consists of splitting graph G in

(
r⌈
k
2

⌉)
graphs consisting of GA added with

⌈
k
2

⌉
residual edges of G. For convenience, we

call the consecutive execution of (a) the selection of
⌈
k
2

⌉
residual edges (to extend the

initial spanning tree), (b) the enumeration of all spanning trees in this graph and (c) the

deduction of possible switchovers for certain edges, a ‘k reduction’ itself. In other words,
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we mean by a k reduction: the computation of spanning trees and the determination of

switchovers (including the load flow check) of one k reduced graph. One can see this as

one iteration of the total k reduction procedure.

Although the k reduction procedure ensures that we limit our attention to accept-

able spanning trees (reconfigurations) and avoid the computation of a lot of unacceptable

reconfigurations, the number of k reductions is in some cases still too many to perform

all within an acceptable time period. For example, if we take the western part of Allian-

der’s MV network of about 25.300 cables, 22.500 nodes and r = 2800, then the number

of k reductions equals (if k = 6):

(
r⌈
k
2

⌉) =

(
2800

3

)
= 3.654.747.600. This is a quite

extreme case, but even if a k reduction would only take 0,001 seconds, then the total

time to check the m−1 principle for this network would take over 42 days. For the sake

of clarity, we would then have completely computed whether each edge in the western

region has a switchover or not, including physical conditions. We will explain how the

k reduction method still is useful, but present a solution to the problem of too many k

reductions in Alliander’s case afterwards.

Usefulness

First of all, this k reduction method could work for smaller MV networks. For example,

if we take an MV area of about 1800 cables, 1600 nodes and r = 200 (still k = 6),

then

(
r⌈
k
2

⌉) =

(
200

3

)
= 1.313.400. This could be a manageable number if the com-

putations within a k reduction are quite fast. In that case, we could complete all k

reduction computations within a couple of hours. At that point, we know a switchover

for each switchable edge and can conclude that all remaining undecided edges after all k

reductions are not switchable, for we have tried all possible reconfigurations before the

termination of all k reductions.

In addition, this method also works for larger MV networks for which all graph-

theoretically switchable edges have at least one acceptable reconfiguration (so they have

a switchover). For in this case, we do not need to execute all k reductions, because

we can stop if we have determined a switchover for all theoretically switchable edges.

We can determine all graph-theoretically unswitchable edges beforehand, these are the

bridges of the graph. Section 5.1 explains how to find all bridges.

If we shuffle the possible combinations of
⌈
k
2

⌉
remaining edges to add to the initial

configuration beforehand too, we would most likely find all needed switchovers long

before the execution of all k reductions. We implemented this randomized k reduction

procedure in R. It indeed functioned fast for Alliander’s entire MV network, provided

that all edges that graph-theoretically have a switchover actually have a switchover

(accepted by the load flow). However, we are also interested in edges that have a

switchover graph-theoretically, but in practice turn out not to have a switchover that is

accepted by the load flow. We need another good idea for this case, which is presented

below.
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Improvement

We would like to check the m − 1 principle for Alliander’s entire MV network at once,

but as we look at the entire network, a lot of the combinations of
⌈
k
2

⌉
remaining edges

are not that interesting. For example, in all likelihood a combination of three remaining

edges of which one in Amsterdam, one in Arnhem and one in Den Helder will be equally

informative as the addition of each of the three remaining edges one at a time. For

the remaining edges are too far apart to provide switchover information using multiple

remaining edges at once. (An edge in Amsterdam cannot be switched by using an edge

in Den Helder or Arnhem.) To conclude, a large part of the k reduction combinations

is not useful.

As a result, we would like to limit the k reductions to the (possible) useful com-

binations. We achieve this by using certain information about ‘substation areas’. A

substation area (Dutch: OS-gebied) is a part of the MV network consisting of just one

HV/MV transformer and associated nodes and edges. The required information is which

substation areas are interrelated at the MV level and which are not. Then we can take

all combinations (of
⌈
k
2

⌉
remaining edges) within each substation area and all combina-

tions within neighbouring substation areas, but we miss the unnecessary combinations

in areas far apart.

We go deeper into what we call ‘neighbouring’ substation areas. Suppose we have

a list of all MV links between substation areas, each MV link given as a specific MV

edge that connects two specific substation areas (having certain names). These MV

links are always optional edges, for different HV/MV tranformers may not be connected

to each other. Suppose that such an edge that forms a link between two substation

areas is included in both substation areas. The remainder of this subsection considers

the interesting cases for Alliander, these are the cases that we add one, two or three

optional edges in a k reduction. In the case that we add only one optional edge, we just

take each optional edge one by one in the k reduction procedure.

Take therefore the case that we add two optional edges in each k reduction. If we

do not include an MV link as at least one of the two optional edges, then it only makes

sense to take combinations of optional edges inside one substation area. We determine

these combinations for all substation areas anyway. On the other hand, if we do include

an MV link as one of the two optional edges, it makes sense to combine that edge with

any edge in either the first or the second substation area that edge belongs too (this

could be an edge that is also connected to a third area). However, as the MV links lie

in both substation areas, we have already included these combinations after we took all

combinations of optional edges within one substation area. To conclude, in the case we

add two optional edges in a k reduction, it suffices to take all combinations of optional

edges within substation areas.

Now we look at the case that we add three optional edges. In the first place, we

take all combinations of three optional edges within each substation area, comparable

to the previous case. In addition to this, we also take the combinations of one MV
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link, one optional edge in the first substation area the link belongs to and one optional

edge in the second substation area the link belongs to. These are suitable combinations

of three optional edges. Additionally, we show that we then have formed all suitable

combinations of three optional edges.

We consider the most extreme but suitable case, where we combine three optional

edges that are all MV links and combine four different substation areas. Say optional

edge 1 connects areas A and B, optional edge 2 areas B and C, optional edge 3 areas

C and D. In the first instance, it seems like we should combine four substation areas

to include this combination. However, as MV links belong to both substation areas, we

did include this combination of areas yet. For if we take the combinations in substation

areas B and C, we include the combination of these optional edges.

The other suitable combinations of three optional edges belong to at most three

substation areas. If we consider combinations in precisely three substation areas, then

we need at least two MV links to connect these areas (so to make the combination suit-

able). The two MV links have a substation area in common, so for the three optional

edges together we need only two substation area names. Thus, we found such a combina-

tion already. Concluding, we find all suitable combinations by taking all combinations of

three optional edges within each substation area and taking all combinations of three op-

tional edges in two substation areas, of which one optional edge is a connection between

the areas.

Using this selection of only suitable combinations of
⌈
k
2

⌉
optional edges, the num-

ber of k reductions of the western part of Alliander’s MV network equals 2.164.671 (if

k = 6), which is much more feasible. Chapter 6, particularly subsection 6.3.1, presents

an overview of all elements of the eventual algorithm to check the m− 1 principle. The

k reduction that is part of the scheme includes this extension of the k reduction notion.

The data table osgraph, described in subsection 6.1.2, allows for this improvement of

the k reduction in the implementation in R.

3.3.2 Andrei-Chicco reduction

Andrei and Chicco (2008) [6] describe a realistic reduction of an electricity distribution

network to find all radial configurations (the spanning trees). They assume the same

properties of an electricity distribution system as we described in chapter 1 and 2. We

will use some of their findings to develop our own reduction algorithm. Based on their

ideas, we divide the process for finding the relevant spanning trees into the following

steps:

1) Create a reduced network. The number of vertices and edges will be reduced

according to the application of three key principles described below. In addition

to the reduction, we store some information about the reduction. We could also

find switchover solutions for some of the edges of GA using the reduction only.
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2) Identify all spanning trees by applying a spanning tree enumeration algorithm (free

to choose) to the reduced network. As already mentioned, the next section (section

3.4) presents such an algorithm.

3) Convert the spanning trees found in step 2) to ‘general’ spanning trees of the

original network. By ‘general’ we mean the structure of some comparable spanning

trees of the original graph. If required, one could distinguish the different spanning

trees of one general structure using the reduction information.

Note that we would apply a spanning tree enumeration algorithm as in step 2) anyway,

but now we would apply it to the reduced network. Step 1) executes the reduction it-

self, hereafter called the Andrei-Chicco reduction. This is what we will describe in more

detail in this subsection. As we apply the spanning tree enumeration to the reduced

network instead of the original network, we need step 3) to transform the results on the

reduced network to the original network. We will deal with the details of this trans-

formation at the end of this subsection and return to it in chapter 6 (sections 6.2 and 6.3).

The key principles of the Andrei-Chicco reduction

As announced, in step 1) we need some procedures to actually reduce an original network

graph. Eventually, we save the reduced graph and a list of the original edges subdivided

into categories, groups of similar edges. We allocate a certain integer to each category.

Using the categories and the reduced graph, we could largely recover the original graph.

(We save the original graph too, so this is not necessary, but it is useful to have certain

structures of the graph together quickly.) These are the three key principles of the

Andrei-Chicco reduction to reduce a graph:

1. Suppose there is a leaf v in the graph G. If the edge e connected to v breaks

down, then v can never be powered without using e. Therefore, we can conclude

that e has “no possible reconfiguation”. Besides, we remove e from G, because we

know e will be part of every spanning tree of G but has no effect on the rest of the

tree. Furthermore, every edge in the branch (the string/strand) ending in v has no

possible reconfiguration, as a defect of the edge will isolate v too. Consequently,

we also note that the edges in the branch have “no possible reconfiguration” and

we delete them from G. All edges in branches get category zero.

2. Let p be a path in G where all intermediate vertices have degree two, but the

starting point and end point of p have degree greater than two. (By ‘path’ we

mean such a specific path hereafter.) Then we know that either all edges in p

will be in use in a spanning tree of G or precisely one edge of p will be opened,

for otherwise a part of the path would be isolated. Thus, there are only two real

different options for p in every spanning tree. Therefore, we can regard the path p

as just one edge in G from the starting point to the end point of p. To be clear, we

remove all intermediate vertices and all edges of p and add one edge from start to

end of p, the path edge. On top, we remember all removed edges by storing them
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as additional information of the reduction. We give the removed edges of one path

all the same category, a certain positive integer. (We allocate different categories

to different paths.) In this way, we know in the end which edges form a deleted

path. Given a spanning tree of the reduced graph, we can find a spanning tree of

G by using all edges of the path if the path edge is used in the reduced spanning

tree. In the other case where the path edge is not in use in the reduced spanning

tree, we open precisely one edge of the path.

3. After executing principle 2, we possibly have created a loop (an edge with identical

ends). A spanning tree of the reduced graph will never contain this loop and as a

consequence the corresponding path in the original graph has precisely one opened

edge. Which edge in the path will be opened can be chosen freely. Therefore, we

can remove the loop from the reduced graph. Besides, we give the original path a

special category, namely the initial category with a minus sign. We know that if an

edge of the original path (which forms the loop) breaks down, we can reconfigure

the network by closing the edge in the path that is opened.

Example 3.17. The sequential execution of the three key principles on an exemplary

graph G:
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Comparing our reduction principles with the reduction of Andrei and Chicco (2008) [6],

there are two main differences. First, Andrei and Chicco (2008) assume several supply

points to the network, being HV/MV transformers in our case. We assume only one

HV/MV transformer per network primarily. However, we treat the case of multiple

HV/MV transformers too, but only in section 5.2. Second, Andrei and Chicco (2008)

do not mention the case of forming a loop separately, but we thought this is useful to

reduce the graph even further.

We notice three things about the key reduction principles. First of all, we note

that we reduce the graph in the order of the key principles: we first remove the branches,

afterwards remove the vertices of degree two (in certain paths) and finally remove arisen

loops. If we would change the order, the reduced graph would possibly change too. For

example, if we would apply key principle 1 later on, there could arise a vertex of degree

two that will not be removed as we already executed principle 2. Moreover, we have

to add that the resulting graph after the sequential execution could still be reduced

according to one of the three principles. We come back to this at the very end of this

section.

Second, we remark that the Andrei-Chicco reduced graph is not necessarily a

simple graph, even if the original graph G is. (We could perform the Andrei-Chicco

reduction on any graph, but in practice only execute it on a graph without loops.) An

example: G can have two internally disjoint paths with the same starting point and end

point of degree greater than two, where all intermediate vertices have degree two. In the

reduction, both paths will be replaced by a single edge, giving multiple edges between two

points. Fortunately, this does not matter for the spanning tree enumeration algorithm.

There are of course no loops in the reduction by the third principle.

Last, as the three principles either remove leafs, nodes of degree two or loops (and

some nodes of degree ≥ 3 associated with edges in branches, we will come back to that),

the principles have no effect on graphs without loops with only vertices of degree greater

than two, because there are no edges in branches in that case. Thus, any graph without

loops with minimum degree greater than two reduces in no way after the execution of
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the principles. In particular, any complete graph where n ≥ 4 remains the same after

the ‘reduction’.

This sounds as if the Andrei-Chicco reduction is not so suitable, for the number of

spanning trees of graphs with only vertices of degree greater than two is especially large,

because these graphs have relatively many edges. However, we should not forget which

kind of graphs we are studying: Alliander’s MV networks. In practice, these network

graphs turn out to have a lot of nodes of degree two. Therefore, the Andrei-Chicco

reduction is still a good option to decrease the number of spanning trees. Andrei and

Chicco (2008) designed their algorithm especially for electricity distribution networks to

find spanning trees. Subsection 6.2.2 comes back to the specific reduction factor result-

ing from this reduction on Alliander’s networks.

Suppose the actual state of the network GA of the exemplary graph G in example 3.17

is:
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In other words, edges 3, 4 and 9 are the residual (optional) edges of the network. Using

Kirchhoff’s theorem (theorem 3.8), we see that the number of spanning trees of the

original graph G equals 33, whilst the number of spanning trees of the Andrei-Chicco

reduced graph equals only 5. Thus, in this example, the reduction lowered the number

of spanning trees substantially.

The additional reduction information associated with the Andrei-Chicco reduction

of G, called the categories, is:

Category Edges

0 10, 11, 12, 13

1 1

2 2, 4

3 3

4 5, 6

−5 7, 8, 9

Note that all edges in the same path in the original graph G that is reduced to one edge

in the reduced graph get the same category. Edges in different paths in the original
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graph get different categories. In the first place, all such paths get a positive number as

category. If the resulting edge in the reduced graph is a loop, then the corresponding

edges in the original graph get a negative category (the initial category with a minus

sign).

Further note that each edge in a branch gets category zero. This is always the case

for edges in branches, even if there are multiple branches or branches that intersect (as

in the example). It is okay to give all edges in branches the same category, for we do not

need more specific information about them. This is because the edges in branches are

unswitchable and this is immediately enough as ‘switchover information’ (actually ‘no

switchover information’). As all four edges 10, 11, 12 and 13 in the example are edges

in branches, we see that branches could contain intermediate vertices having degree ≥ 3

(here vertex 9).

In our implementation in R, we remove the edges in branches in the following

manner (and we save these edges by assigning them to category zero): we first remove

all edges having an end of degree one (a leaf). These edges are definitely edges in

branches. We move on by deleting all edges having a leaf as end in the intermediate

graph, i.e. the resulting graph after one such move. We keep on iterating this procedure

until the resulting graph does not contain any leaf. In the example above, we would first

remove edges 10, 12 and 13, and hereafter remove edge 11 in the next iteration. After

that, the graph does not contain any leaf anymore.

We will briefly explain why this method correctly removes all edges in branches.

First, we note that this method only removes edges in branches. An edge not in a

branch will not get a leaf as end, because each end is incident with at least one other

edge not ending in a branch (verify that it is in a branch otherwise). Then both ends

of the non-branch retain degree ≥ 2 (with the edge itself included). Consequently, the

procedure will not remove the non-branch.

On the other hand, if an edge is in a branch, then at least one end is only incident

with branches. By recursion on the edges incident with that end (not the edge itself), we

conclude that we eventually delete all edges incident with that end with this procedure.

At that time, the end is a leaf, so we delete the edge itself. Thus, this method removes

precisely all edges in branches.

Deriving switchover information from the Andrei-Chicco reduction

For the sake of clarity, note that the two outputs of the Andrei-Chicco reduction are

the reduced graph (vertices and edges) and the list of original edges subdivided into

categories. We can derive switchover information from these outputs without using

spanning trees, if we combine these with the edges in the original configuration (or

equally well with the list of original optional edges). For each of the three key principles

we can determine certain switchover information already:

1. As mentioned before, all edges in branches are unswitchable. Therefore, we imme-

diately save the ‘switchover information’ of these edges by concluding “no switch
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possible”. We could do this immediately if we detect edges in branches or later on

by using the category zero. (In our implementation, we first completely Andrei-

Chicco reduce the graph and draw switchover conclusions in the main algorithm

afterwards.)

2. Here we confine ourselves to paths that do not become a loop during the reduction

(we take a closer look at the loops afterwards). As explained in key principle 2, at

most one edge of a path could be open, for a part of the path would be isolated

otherwise. Consequently, there is at most one optional edge in each path. Using

the list of edges in the initial spanning tree, we know which edges are optional,

namely the rest of the edges. We find each path with associated path edge by

taking each occurring category that is a positive integer one by one. Take such

a path (in the original graph) and associated path edge e (in the reduced graph).

Using the list of optional edges in the original graph, we can easily check whether

one of the optional edges occurs in the path. If this is not the case, then all edges

in the path are in use and we cannot directly determine switchover information.

If, however, there is an optional edge q in the path (so exactly one), then we can

switch all other edges in the path by using the optional edge. We can immediately

save this switchover information, so listing for each edge in the path except q that

a switchover of the edge consist of just q. (We still need to check the load flow, as

in chapter 4.)

Verify that we could indeed switch some edge e in the path with optional edge q,

for the difference is that the edges between e and q are now connected to the rest of

the graph via the edge q instead of via the edge e. This does not disconnect a part

of the graph, as we may assume the initial graph was connected. Furthermore, this

change cannot form a cycle.

3. Now we look at the paths that become a loop during the reduction. In such case the

starting point equals the end point of the path, so the path is a cycle. Still there is

at most one optional edge in the path. However, there is at least one optional edge

too, for the path is a cycle and the configuration does not contain cycles. Take a

path and associated loop edge e by taking a negative integer occurring as category.

Then there is precisely one optional edge q, so we can switch all other edges in

the path by using the optional edge, for the same reason as above. We save this

switchover information as we did for the other paths.

Using these rules, we find the following switchover information for the graph in example

3.17:
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Edge Switches if possible Key principle

2 4 2

7 9 3

8 9 3

10 no switch possible 1

11 no switch possible 1

12 no switch possible 1

13 no switch possible 1

We see that we obtain quite a lot of switchover information already using the Andrei-

Chicco reduction, without the use of new spanning trees. However, remember that we

could still reject these switchovers by the physical conditions.

The only undecided edges in the example are edges 1, 5 and 6, as we only need

to decide switchovers for the edges of GA and not for the optional edges (edges 3, 4

and 9). We need one or more spanning trees of the Andrei-Chicco reduced graph to

find switchovers for edges 1, 5 and 6. Section 2.3 explained this extraction of switchover

information from spanning trees globally. Below, we will describe this method in com-

bination with the Andrei-Chicco reduction, which belongs to step 3) in the beginning of

this section. We assume we executed step 2) correctly, although we only describe how

to do this in the next section (section 3.4).

Using spanning trees in the Andrei-Chicco reduction

As shown in section 2.3, we can find switchovers by comparing the initial spanning tree

with a new spanning tree found. In particular, we look at the symmetric difference

between the spanning trees. We first describe some consequences of the Andrei-Chicco

reduction on the initial spanning tree. After that, we present the logical rules for finding

switchovers using spanning trees in the Andrei-Chicco reduction.

We present the logical rule to find the initial spanning tree in the Andrei-Chicco reduced

graph (ACR graph). We indicate this graph by Gacr and the initial spanning tree in the

ACR graph by GAacr. Let an original network graph G, a corresponding initial spanning

tree GA and the corresponding Andrei-Chicco reduced graph Gacr be given. We derive

the initial spanning tree GAacr corresponding to Gacr in the following way: a path is

completely in the initial spanning tree GA iff the path edge is in the ACR spanning tree

GAacr. We explain why this is a wise choice to transform the initial spanning tree.

If a path is completely in the initial spanning tree GA, then all edges in the path

are closed. Therefore, it makes sense to close the path edge, i.e. the path edge is present

in the ACR spanning tree GAacr .

On the other hand, if a path is not completely in the initial spanning tree GA,

then there is precisely one optional edge in the path (as we saw before). The starting

and end point of the path must apparently not be connected via the path, for there was

no optional edge in the path otherwise. If we would close the optional edge in the path,
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then there is a cycle in the initial ‘spanning tree’ GA, for the spanning tree contains too

many edges at that moment. The Andrei-Chicco reduced graph Gacr preserves most

of the structures of the original graph (except for the branches and loops). Therefore,

we should still not connect the starting and end point of the path via the reduced path

in Gacr, to make sure GAacr really is a spanning tree in Gacr. As the reduced path is

just the path edge, this path edge should be open in Gacr. To conclude, if the path is

not completely in the initial spanning tree GA, then the path edge is not in the ACR

spanning tree GAacr.

Although this definition of the initial ACR spanning tree GAacr is a logical definition

in a sense, it has a bit of a strange effect on the optional edges in Gacr: an edge e is

optional in Gacr iff only one of the edges in the corresponding path in the original graph

G (of which e is the path edge) is optional.

For by definition, the optional edges in Gacr are the edges in Gacr\GAacr. However,

by the definition of GAacr, edge e is optional in Gacr iff the corresponding path is not

completely in the initial spanning tree GA. The latter means that it has precisely one

optional edge among the edges in the path. Thus, we have to take into account that an

optional edge in Gacr does not lead to only optional edges in the associated path in G.

In the example of this subsection, we have the following Andrei-Chicco reduced

graph Gacr and corresponding initial ACR spanning tree GAacr, respectively:
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Note that GAacr is indeed a spanning tree. However, it is somewhat confusing that the

edges 2 and 3 in Gacr are optional edges, but the edges 2 and 3 in G are not necessarily

optional edges. In fact, edge 2 in G is not an optional edge. The only thing we know

is that precisely one edge of the corresponding path in G is optional. In the example,

edge 4 is an optional edge in the path consisting of edges 2 and 4 in G.

We now describe some consequences of the Andrei-Chicco reduction for the determi-

nation of switchovers using new spanning trees found. We first recapitulate the old

approach without the Andrei-Chicco reduction. Let Tj be a new spanning tree found

(which differs at most k + 1 edges from GA, we may assume this by the application of

the k reduction). Section 2.3 explained that we can switch edges in GA \ Tj using the

symmetric difference Tj4GA. In particular, we can switch edge e ∈ GA \ Tj by turning

on or off precisely all edges in (Tj4GA) \ {e}. The number of edges in (Tj4GA) \ {e}
is equal to or less than k, which is precisely accepted.
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Incorporating the Andrei-Chicco reduction in this strategy needs some care, be-

cause the edges in the Andrei-Chicco reduction represent whole chains of edges (the

paths) in the original graph. Let Tj now be a new spanning tree of Gacr and let path

edge e ∈ GAacr \ Tj . Then e is open in the graph corresponding to Tj . Similar to the

definition of GAacr, we note that precisely one original edge in the path corresponding to

e is open in the reconfigured original graph. On the other hand, e is present in GAacr and

thus all original edges in the path were closed in the original graph. Within this path

of closed edges, we have now to open precisely one edge. Consequently, we can possibly

find switchovers for all original edges in the path corresponding to e, as we have a choice

of which edge to open in this path.

We have a similar choice for some of the path edges in (Tj4GAacr) \ {e}. We first

present the case where we have no choice. If d ∈ (Tj4GAacr) \ {e} was open in GAacr,

then it is closed in Tj . Therefore, we have to close the single open (optional) edge in the

original path in G corresponding to d. Thus, if we close an edge with respect to GAacr,

then it is certain which original edge in GA we have to turn on.

By contrast, if d ∈ (Tj4GAacr)\{e} was closed in GAacr, then all edges in the original

path corresponding to d were closed in GA. As d /∈ Tj , we have to open precisely one

edge of this original path in the reconfiguration. Concluding, we have again a choice of

which edge we open.

Let still e ∈ GAacr \ Tj . For the sake of completeness, for each original edge

corresponding to e, we try each combination of possible edges to open given by the path

edges in (Tj4GAacr) \ {e}, until we find a possible reconfiguration accepted by the load

flow. We explain this in more detail by means of the example. We display GAacr and

some new spanning tree Tj , respectively:

1

2

4

1

5

1

2

4

1

2

Here GAacr \ Tj = {5}, so take e = 5. Then (Tj4GAacr) \ {e} = {2}. Using the original

graph and the subdivision into categories, we see that the original edges corresponding

to the path edge 5 are the edges 5 and 6. Similarly, the original edges corresponding to

the path edge 2 are the edges 2 and 4. Using the above, we know we can find at least one

switchover using (Tj4GAacr) \ {e} for both edge 5 and edge 6, as we can choose which

one to open. A switchover consists of turning on or off original edges corresponding to

(Tj4GAacr) \ {e}. As path edge 2 was open in GAacr, we have to close the optional edge

in the corresponding original path. This is the optional edge 4. Thus, we can switch

original edge 5 using original edge 4 and switch original edge 6 using edge 4 too.
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Note that we do not have a choice between switchovers in this example. Here we

only have a choice in the edges that we switch. In other cases, we could have more

choices, which we would then check one by one, until we have found a switchover for all

original edges corresponding to the path edges in GAacr \ Tj , or until we have tried all

choices.

Combining switchovers from the Andrei-Chicco reduction and spanning trees

We mention a point of attention with regard to all possible switchover combinations.

This section explained both how to find switchovers using the Andrei-Chicco reduc-

tion itself and how to find switchovers using new spanning trees (in the Andrei-Chicco

reduction). However, it could be useful to combine switchovers from both methods. Es-

pecially if the physical conditions did not yet accept a switchover for a particular edge,

another possibility could lie in the combination of a switch within a path (or loop) and

a switchover given by a new spanning tree. Nonetheless, we must never switch more

than k edges.

First note that we combine these switchovers as combinations of edges in the

original graph. Thus, if we computed the switchover information using the Andrei-

Chicco reduction and using new spanning trees, we combine the findings afterwards.

Second, without using the Andrei-Chicco reduction, we did not have to worry

about forgetting certain possible switchovers. For all possible switchovers were captured

in the spanning tree strategy. However, by the Andrei-Chicco reduction we could both

switch within a path (or loop) and between different path edges using spanning trees. As

we consider these findings only separately, it is important to combine them afterwards.

Only then we are sure we did not skip possible switchovers.

Further note that we could aggregate switches within loops, paths and across

different paths (using spanning trees) in any combination, provided the combination

preserves that the reconfiguration of the network is a spanning tree and does not switch

more than k edges. For example, we could combine two switchovers coming from loops,

or two switchovers from paths, or one from a loop with one from a spanning tree, etcetera.

In the particular case where we may switch only one edge (k = 1), we clearly cannot

combine these switchovers and so we do not have to.

We further discuss this important notion of combining switchovers in chapter 6, in

particular in subsections 6.2.4 and 6.3.1, where we really add this notion in the eventual

algorithm. There it is important to limit the computation time of these additional

possibilities as much as possible. It would be a pitfall to repeatedly compute the same

combinations, or to forget some of the combinations. As the required computation

of combinations depends on the order of the reductions and algorithms used and the

number k, we only describe this in chapter 6, where we deal with the implementation of

the check of the m− 1 principle in R.

If we again look at the example on page 36, it could happen that switching edge 7

using edge 9 (switching within a loop) is not accepted by the physical conditions, even as
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switching edge 5 using edge 4 (switching using a new spanning tree). However, perhaps

it is acceptable to switch edge 7 by turning on or off edges 9, 5 and 4. Then we have a

switchover that is a combination of a switch within a loop and a switch coming from a

new spanning tree. Note that there are multiple combinations like this that are possibly

suitable.

Considerations on repeating the Andrei-Chicco reduction

We now come back to the possibility of reducing the reduced graph. After the completion

of the reduction using the principles sequentially, we could perhaps use some of the three

principles on the reduced graph again. Looking at example 3.17, we see that after the

reduction we could again apply principle 2, for the removal of the loop has created a

vertex of degree two, namely vertex 1. Vertex 1 forms a reducible path with starting

point 2 and end point 4. In general, it could take any number of applications of the

principles before no reduction is possible any more. If we look at a graph of the following

shape for example:
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Here G′ is some complex graph, meaning that G′ does not disappear completely after

using the reduction principles several times. If we apply principle 2, node 1, 2, 3, 5 and

6 disappear, leading to two edges between the remaining vertices 4 and 7 and a loop

situated at vertex 4. After applying principle 3, the loop disappears and 4 is of degree

two. Hence we can apply principle 2 again, giving a loop situated at vertex 7. After

using principle 3 again, vertex 7 is just a leaf. After using principle 1, only the part G′

remains. One can check for oneself that performing these steps in this order gives this

result.

This graph is just an example, but leads to the understanding that we could use

the principles multiple times such that the remaining graph reduces significally. We can

even go further and state that G′ could also have the given shape of the example graph,

so we could apply the principles once again multiple times. As G′ has to be finite but

could be arbitrarily large and therefore could have this shape an arbitrary number of

times, we discover that we could use the three principles an arbitrary number of times

on certain graphs.
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3.4 An algorithm to find all spanning trees

An often cited article giving an algorithm to find all spanning trees of a given connected

undirected graph is the article by Gabow and Myers (1978) [7]. Their algorithm finds

spanning trees in depth-first search order (see section 2.2), has time complexity O(n +

m + n · s), where s equals the number of spanning trees in the graph, and has space

complexity O(n+m). As may be clear, we are interested in the time complexity, as this

is the mathematical way to express the speed of an algorithm. Recall the definition of

time complexity in section 2.4.

Gabow and Myers (1978) state that their algorithm is optimal with respect to

the time complexity. Later articles (Matsui (1993) [8], Kapoor and Ramesh (1995) [9],

Shioura and Tamura (1995) [10]) confirm this, however, noting that the time complexity

can be lowered if one not explicitly needs a list of all spanning trees. The optimal time

complexity is O(n+m+ s) for an algorithm enumerating all spanning trees in compact

form, i.e. an algorithm listing only the relative changes (different edges) between two

consecutive spanning trees found, instead of listing all entire spanning trees (given by

their edges). We would like to know the entire spanning trees, as this simplifies the

comparison with the initial configuration a lot. Therefore, we will use an algorithm that

outputs all spanning trees and has time complexity O(n+m+ n · s).
Several other algorithms that explicitly output all spanning trees also have time

complexity O(n + m + n · s). The algorithm by Matsui (1993) is more flexible than

the algorithm by Gabow and Myers (1978), in the sense that one can adapt the algo-

rithm such that it finds the spanning trees in depth-first order, breadth-first order or in

best-first order if the graph is weighted. In chapter 6, Implementation & Overview, par-

ticularly subsection 6.2.3, we will see that the number of spanning trees of the k reduced

and Andrei-Chicco reduced graph is small, wherefore this limitation to the algorithm

by Gabow and Myers does not matter that much for the overall algorithm (to check the

m − 1 principle). Conversely, the algorithm by Gabow and Myers is less complex than

the algorithm by Matsui and as a result easier to implement in a programming language.

In this section, we describe the algorithm and mathematical background given by

Gabow and Myers (1978). First, we give some definitions and present the algorithm.

Second, we prove some graph-theoretically properties assumed in the algorithm. Last,

we prove the time complexity of the algorithm is indeed O(n+m+ n · s).

3.4.1 The algorithm by Gabow and Myers

As mentioned before, for a given connected graph G, the algorithm by Gabow and My-

ers (1978) [7] prints a list that contains each spanning tree exactly once. Gabow and

Myers (1978) present their algorithm for directed graphs, but give an adaption to use

it for undirected graphs too. We present here the algorithm for directed graphs and

subsequently explain how to use it on undirected graphs.
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Let a connected directed graph G with root r be given. A spanning tree (rooted at r)

of G is a subgraph having a unique directed path from r to any vertex of G. An edge e

is a bridge if G \ {e} is not rooted at r (so G \ {e} can still be connected in some sense,

but not such that there exists a path from r to each other vertex). Then the bridge e is

in every spanning tree.

The goal is yet to find all spanning trees rooted at r. We describe the general

approach by Gabow and Myers (1978). At the end of this subsection, we display an

example (example 3.18).

The approach

Suppose we have a given tree T rooted at r. We want to find all spanning trees containing

T . Let ∂(T ) be the directed edge cut of G associated with T , i.e. the set of edges

{e1, e2, . . . , el} directed from a vertex in T to a vertex not in T . We can first try to find

all spanning trees containing T ∪ {e1} and then delete e1 from the graph (as we already

have all spanning trees containing T ∪{e1}). Afterwards, we can search for all spanning

trees containing T ∪ {e2} (in the modified graph, so without e1) and then delete e2. To

continue, we repeatedly choose an edge ei from ∂(T ). We search for all spanning trees

containing T ∪ {ei} (in the modified graph) and then delete ei. We could repeat this

until we have done this for all edges in ∂(T ), but we take a somewhat smarter approach

to this.

Assume that we have repeated this procedure up to edge ek ∈ ∂(T ). Suppose ek

is a bridge in the modified graph. Then ek is in every spanning tree of the modified

graph, so all spanning trees containing T of the modified graph are already in the set

spanning trees containing T ∪ {ek} of the modified graph. To conclude, the first time

we find an ek ∈ ∂(T ) that is a bridge in the modified graph, we have found all spanning

trees containing T . Moreover, we have found all spanning trees containing T exactly

once. As a spanning tree found in the step using ei does not contain any of the edges

e1, . . . , ei−1, but the spanning trees found in the previous steps did contain at least one

ej ∈ {e1, . . . , ei−1}.
If T = {r}, we would find all spanning trees rooted at r. However, to implement

the idea outlined in practice, we should recursively use this idea on subgraphs and sub-

trees. We will explain this in more detail while presenting the algorithm in pseudo code.

For now it is enough to know that T will grow step-by-step recursively.

Depth-first search

Given the approach, we need an efficient method to detect whether an edge ek is a

bridge. Suppose that we find all spanning trees in depth-first order. We will clarify how

this simplifies the detection of a bridge.

We let T grow as depth-first as possible, i.e. we add the edge e = (u, v) to T that

gives the greatest depth (if we have a choice). Formally, this means the vertex v added

to the tree T is one which is a neighbour of as recent an addition to T as possible, as
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described in section 2.2.

Suppose we have found all spanning trees containing T ∪ {e} and we need to test

whether e = (u, v) is a bridge. If L is the last spanning tree found that contains T ∪{e},
then v has the fewest descendants possible among all spanning trees containing T ∪{e}.
This is intuitively clear, as the last spanning tree found should be the least depth-first.

In lemma 3.21, we will prove that e is a bridge iff no edge goes from a non-descendant

of v to a proper descendant of v. (Here the descendant relationship is based on L, but

we test the property on the modified graph.) Then we can simply check this property

to see whether e is a bridge. This gives an efficient bridge test, according to Gabow and

Myers (1978). Thus, if we find all spanning trees in depth-first order, we have a suitable

bridge test. We now explain the depth-first search in greater detail.

In the algorithm, we will use F to represent ∂(T ), i.e. as a list of all edges directed

from vertices in T to vertices not in T . F should treat vertices on a last-come first-served

basis, as we need a depth-first tree search. Thus F needs to behave as a stack: new

edges are pushed onto the top of F and an edge e to enlarge T is popped from the top

too. Besides this, some other edges are removed from F when e is removed from F and

added to T , because ∂(T ) changes if T changes. However, at a later stage, e is removed

from T (when we have found all spanning trees containing T ∪ {e}) and F should be

identical to F before the pop of e (except for e as e is removed from G). In other words,

at that point, all edges that we removed from F when e was added to T need to be

at their original place in F as before. To conclude, the removal and restorage of edges

in F should leave the order of edges in F unchanged. This warrants the tree-search is

depth-first.

The algorithm

Below, we display the pseudo algorithm as presented by Gabow and Myers (1978) [7]. As

said, T is the current tree of G that we extend in recursive invocations of the algorithm

until we find a spanning tree. Thereafter T shrinks. T will expand to another spanning

tree later on, then it will shrink again, and so on. If we execute a recursive call of

GROW, we take the most recent values of G, r, T and F as its input arguments.

In the paper, T is represented as a real subgraph, so as a combination of vertices

and edges. In the computer program in R, we represent T as a set of edges. This

determines the vertices too as T is connected. (Except in the initial case where T

consists of only one vertex and hereby no edge. Though, by defining F = ∂(T ) as the

directed edges starting in this vertex, T is determined too.)

As mentioned before, F represents ∂(T ) and leaves the order of edges unchanged

by removal and subsequent restorage of the same edges. Besides F , local lists FF are

used to reconstruct F after a recursive invocation. Lastly, we denote by L the last

spanning tree found thus far. This spanning tree L is given by its edges (like T ).
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GROW: function to find all spanning trees rooted at r containing T

Input arguments: G (given by its edges), r, T , F

1. if T has n− 1 edges then L := T ; output(L);

2. else make FF an empty list, local to GROW;

3. repeat

4. new tree edge: pop an edge e from F , let e go from T to vertex v,

v /∈ T ;

5. add e to T ;

6. update F : push each edge (v, w), w /∈ T , onto F ;

7. remove each edge (w, v), w ∈ T , from F ;

8. recurse: GROW;

9. restore F : pop each edge (v, w), w /∈ T , from F ;

10. restore each edge (w, v), w ∈ T , in F ;

11. delete e: remove e from T ; remove e from G; add e to FF ;

12. bridge test: if there is an edge (w, v), where w is not a descendant

of v in L then b := false; else b := true;

13. until b

14. reconstruct G: pop each edge e from FF , push e onto F , add e to G;

To find all spanning trees rooted at r, we need the following two initial declarations:

let T only contain the root r and let F contain precisely all edges (r, v). Then invoking

GROW results in a list of all spanning trees rooted at r. Note that in the program R

we represent T by its edges only. There we define T initially empty, but F should still

contain all edges (r, v). In the first invocation of GROW, the first edge in F is added to

T . From then on, the representation of T in R is similar to that in the pseudo code.

We note another little difference in the pseudo code compared to the implemen-

tation in R. In R, the edge e is removed from G before line 10 instead of in line 11. As

a result, we do not restore edge e in F in line 10. We should not do that, as we already

found all spanning trees containing T ∪ {e} in the recursive call(s) in line 8. Only when

T is shrunk, we eventually want to use e again. This is provided by the use of FF that

will restore e after the repeat loop.
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The undirected case

We can adapt the method to find all directed spanning trees rooted at r easily to the

undirected case of finding all spanning trees. We make an undirected graph G directed

by giving each undirected edge both directions, so splitting each edge in two directed

edges in opposite directions. It may be clear that both representations (directed and

undirected) are equivalent. Furthermore, the root r can be arbitrarily chosen, as an

undirected tree could have any node as root, but the root is not relevant at the same

time. With these two modifications, the function GROW finds all spanning trees of G.

We prove the correctness of the algorithm in the next subsection.

Example 3.18. An undirected graph G (r = 1) and the result of the invocation of

GROW. We display all eleven spanning trees (given by its edge numbers) in depth-first

order:

1

2

3

4

5

1 2

3

4

5

6

1 2 4 5

1 2 4 6

1 2 3 5

1 2 3 6

1 2 5 6

1 3 4 5

1 3 4 6

1 4 5 6

2 3 5 6

3 4 5 6

2 4 5 6

In this example, the first invocation of GROW calls 25 other (recursive) invocations of

GROW in total.

3.4.2 Proofs: Correctness of the algorithm

In this subsection, we proof that the function GROW behaves correctly in the sense that

it finds all spanning trees of a given directed or undirected graph. To do this, we first

prove that the tree T grows in depth-first order. Afterwards, we show that the imple-

mentation of the bridge test (using the descendant relationship) is correct. Finally, we

prove that GROW functions properly.

Before showing that the tree T grows in depth-first order, we first prove in the following

lemma that F manages the edges on the border of the tree T and keeps them in depth-

first order.

Note that the original graph G is modified in the execution of GROW, as in lines

11 and 14 of the pseudo algorithm edges are removed and replaced, respectively. For

this reason, we call the state of G at a certain point in the computation the present

graph G.
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Lemma 3.19. Let GROW be invoked with input arguments G, r, T and F . In partic-

ular, F contains the sequence of edges (vi, wi), i = 1, . . . , |F |. (The edge (v1, w1) is on

the top of the stack F .) Then we have:

(i) F = ∂(T ), i.e.:

{(vi, wi) | 1 ≤ i ≤ |F |} = {(v, w) | v ∈ T, w /∈ T, (v, w) is in the present graph G}.

(ii) F contains the edges in depth-first order, i.e.:

If j ≤ i, then vj is a descendant of vi in T .

Proof. In the first place, note that F on exit from GROW is identical to what F was

on entry. This is because the changes to F in the beginning of GROW are undone in

later parts of GROW. Specifically, lines 4, 6 and 7 are undone by lines 14, 9 and 10,

respectively. Furthermore, note that T on exit from GROW is identical to what it was

on entry, as the only changes to T are made in lines 5 and 11 and they cancel each other.

Next we proof clauses (i) and (ii) at the same time, using induction. The base

case: In the first call to GROW, we have T = {r} and F contains precisely all edges of

the form (r, v). Then v /∈ T as the graph G cannot contain loops, so (i) holds. (ii) holds

too, as each vi = r and a vertex is a descendant of itself.

The inductive case: Suppose (i) and (ii) hold on entry of a recursive call of GROW.

By the preliminary remark, we know they hold on exit from this computation of GROW

too, because T and F are on exit identical to their input values. We only need to check

that (i) and (ii) hold for the input values for each new recursive call to GROW in line

8. We first assume this new recursive call is in the first iteration of the repeat loop. We

come back to the other cases at the end of this proof. In the first iteration of repeat,

the differences of T and F in line 8 compared to their input values are as follows: T is

extended with the first edge e = (v1, w1) of F (line 5), e is removed from F (line 4), all

edges (w1, w), w /∈ T , are added to F (line 6) and all edges (w,w1), w ∈ T , are deleted

from F (line 7). To prove that (i) holds: we need that F = ∂(T ) for the new T and F .

The differences between the old and new ∂(T ) are: (1) edges ending in w1 (so e too)

need to be removed, as w1 is now part of T , and (2) edges starting in w1 that do not

end in the new T should be added to F , for the same reason. This is exactly what is

done in lines 4, 6 and 7. Thus, (i) holds.

We need to check property (ii) only for the new (added) edges, as by the induction

hypothesis (ii) holds for the other edges. Of course, it does not matter for (ii) that some

of the ‘old’ edges are removed now. Each new edge is of the shape (w1, w), w /∈ T . All

these edges are added at the top of F . As these edges all have starting point w1, (ii)

holds pairwise for the new edges. Take a new edge (w1, w) and an edge (vi, wi) that was

already in F on entry of GROW. w1 is a descendant of v1 in T , as e is in T . Besides, v1

is a descendant of vi as the ‘old’ F has property (ii). Combining these observations and

knowing that the relation ‘descendant of’ is transitive, we have that w1 is a descendant

of vi in T . To conclude, (ii) holds for all edges in the new F .
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Lastly, we have hitherto ignored the presence of the repeat-until loop. This means

we have proved the lemma’s correctness if line 3 and 13 did not exist. We now know

(i) and (ii) hold for the first recursive call of GROW (in line 8) and we will show they

also hold for recursive calls of GROW in later iterations of the repeat loop. The only

difference between the first and second iteration of the repeat loop is the absence of the

edge e that was popped from F in the first iteration. Except this edge, everything is

restored at the end of the first iteration as before the first iteration. The edge e does not

exist in the present graph of the second iteration, but that does not really matter: (ii)

still holds with the removal of an edge of F . Furthermore, e does not exist in all G, F

and T , so (i) still holds too. Therefore, by induction, (i) and (ii) hold in each iteration

of the repeat loop and with the previous observations for all calls of GROW.

A useful corollary of the lemma asserts that T is a depth-first tree at any point in the

computation of GROW:

Corollary 3.20. Let ej, 1 ≤ j ≤ |T |, be the edges in T , indexed in the order they are

added to T . Let ej = (wj , vj). Then the descendants of any vj in T are vertices vk,

j ≤ k ≤ J , for some J .

Proof. It suffices to proof that the descendants of a given vertex v are added to T

consecutively (starting with v itself, as v is a descendant of v). If v has no descendants

but itself in T , this is of course true (then J = j). Suppose therefore that v has at least

two descendants in T . When v is added to T (via an edge e), edges (v, w) are pushed

onto the top of F (line 6). There is at least one such edge pushed, for otherwise v has

no descendants but itself in the end: If there is no (v, w) to add to F at that moment,

there is never a (v, w) to add to F . Since such edges can only be dropped from F in

later recursive calls (in line 7) and not added as v ∈ T yet.

Knowing there are edges (v, w) pushed onto the top of F , lemma 3.19(ii) now

shows that as long as any of those edges (v, w) is in F , the edges added to T join

descendants of v (as well as when new edges are pushed onto the top of F in other

recursive calls). When the last edge (v, w) is removed from F , lemma 3.19(i) shows that

there are no edges from descendants of v to vertices not in T , as they would be pushed

onto F otherwise and (v, w) would not be removed. (Use the same reasoning as before:

when T grows, there will only be fewer edges of that shape.) Thus, no other edges can

have an end that becomes a descendant of v than those that were consecutively added

after v.

For the sake of clarity, we now know that T grows in depth-first order. We continue by

proving that the bridge test (implemented in line 12) is correct. For this we can assume

now that we find the spanning trees in depth-first order.

Lemma 3.21. The bridge test (in line 12) sets b to true iff edge e = (u, v) is a bridge

of the present graph G. In other words, there is no edge (w, v) 6= e in G, where w is not

a descendant of v in L, iff e is a bridge of the present graph G.



3.4. An algorithm to find all spanning trees 53

Proof. Let e = (u, v) and let Dv denote the descendants of vertex v in the latest spanning

tree L. Clearly, r /∈ Dv. We will use the following claim:

Claim: The present graph G has no edge (w, x), where w /∈ Dv, x ∈ Dv\{v}.

We first explain how this claim proves the lemma and we proof the claim afterwards.

e is not a bridge iff there exists some path P not containing e from r to v (see section

2.2). Suppose e is not a bridge and we have such a path P . If there are no edges (w, x)

as above, P must end in an edge (w, v), w /∈ Dv. Conversely, if e is a bridge and there is

no path without e from r to v, then G\{e} consists of the components Dv and G\Dv, if

we accept the claim. If there were an edge (w, v), w /∈ Dv, then this edge would connect

the separate components, which is not the case. Thus, the claim proves the lemma.

Currently, it suffices to prove the claim. Let L, the last found spanning tree, have

edges ej , j = 1, . . . , n− 1, in the order we added them in the formation of L. Let e = ei.

By the recursion, the bridge test was already executed on edges ej , j = n− 1, . . . , i+ 1,

and now we test ei = e. Then we know: for j > i, this bridge tests set b to true, for

otherwise, another spanning tree would be found after L (we would perform another

iteration of the repeat loop and find another spanning tree).

Consider any vertex x ∈ Dv \ {v}. By corollary 3.20, the edge in L directed to x

must be some ek, k > i. Then the bridge test for ek is set to true. Therefore, no edge

(w, x), w /∈ Dv, exists when that bridge test is executed.

Then an edge (w, x), w /∈ Dv, is in the present graph only if it is added in an

execution of line 14 (by “add e to G”) following the bridge test of some el, where

i < l ≤ k. By corollary 3.20, el has descendants of v as its ends. The edges added after

the bridge test of el precede el in the list F (by the way we use FF in lines 11 and 14).

By lemma 3.19(ii), these edges start in Dv. In summary, no edge (w, x), w /∈ Dv, is

added. Thus no edge (w, x), where w /∈ Dv, x ∈ Dv \ {v}, is in the present graph.

As we have yet proved the correctness of the bridge test, we can now prove that the

function GROW finds all spanning trees rooted at r, if it has the prescribed initial

declarations.

Theorem 3.22. The function GROW, having as input: a directed graph G rooted at r,

T only containing the root r and F containing exactly all edges (r, v), finds all spanning

trees rooted at r of G.

Proof. Let GROW be called with T a tree rooted at r and let A be the present graph

when GROW is called. We claim that it suffices to show that GROW finds all spanning

trees rooted at r of A containing T . For in the initial call of GROW, T contains only

the root r and A = G.

We proof the claim by induction, where we order the calls to GROW to assure

that the size of T is non-increasing. The base case: T contains n − 1 edges. Then line

1 behaves correctly, as there is exactly one spanning tree containing a (spanning) tree

having n− 1 edges.
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The inductive case: suppose T contains less than n−1 edges. Let F contain edges

ei, i = 1, . . . , |F |. We define:

Ti = {R | R is a spanning tree rooted at r and T ∪ ei ⊆ R ⊆ A \ {ej | 1 ≤ j < i}}.
By induction we can show that GROW finds the trees in

⋃k
i=1 Ti, where ek is the first

edge for which the bridge test sets b to true (in line 12). For we leave GROW shortly

after this first (and only) positive bridge test. In the i-th iteration of the repeat loop,

for 1 ≤ i ≤ k, GROW finds Ti, as in that iteration ei is popped from F and added to T .

To fill in the last details, lemma 3.21 proofs ek is a bridge in the graph A\{ej | 1 ≤
j < k−1}. Thus, any spanning tree R of A that contains T contains some ej , 1 ≤ j ≤ k,

so R ∈ Tj ⊆
⋃k
i=1 Ti. To conclude, GROW finds the desired spanning trees. As sets Ti

are disjoint, GROW finds each spanning tree exactly once.

Knowing the correctness of Gabow and Myers’ algorithm, we can proceed by estimating

the algorithm’s efficiency. We do this in the next subsection, using the time complexity.

3.4.3 Proofs: Complexity of the algorithm

We need to give some implementation details before we can estimate the complexity of

GROW. First, we discuss how F is managed, and second, we discuss how the bridge test

is performed.

F should be a kind of doubly linked list of edges. Line 7 of the pseudo code traverses

the list of edges directed to v, from beginning to end. Each edge directed from T to v is

deleted from F . The values of the links are not removed nonetheless. Line 10 traverses

the list of edges directed to v in reverse order. Here, each edge directed from T to v

is inserted back in F , at the position given by its link values. In this way, each edge

is restored in its original position. In the implementation in the program R, we do not

really remove and insert the edges in F , but let F behave as a stack where each item

consists of two elements: the edge number and a boolean that represents whether the

edge is in use (really in the stack) or not (temporarily removed).

Now we discuss the implementation of the bridge test. We can efficiently detect

descendants by numbering the vertices in preorder associated with L. To explain this, we

give some definitions and a lemma that relates a preorder with the descendant relation.

These definitions and observation are derived from the book The Design and Analysis

of Computer Algorithms by Aho, Hopcroft and Ullman (1974) [11], pages 53-55.

Definition 3.23. Let T be a tree having root r and let v1, . . . , vk, k ≥ 0, be all vertices

such that (r, vi) ∈ T . Note that a vertex v with all its descendants is called a subtree

of T , whose root clearly is v. A preorder traversal P of T is defined recursively as

follows:

1. Visit the root r first.

2. Visit in preorder the subtrees with roots v1, . . . , vk in that order.
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We simply call P a preorder. We regard P as a function on the vertices of T : for a

vertex v that is visited as i-th vertex, P (v) = i. Then we define the function H on the

vertices in the following way: H(v) is the highest preorder number of a descendant of v.

Remark 3.24. As one can see: P (r) = 1 and P (v1) = 2. If w1 is the root of the first

subtree of the subtree with root v1, then P (w1) = 3, etc.

Another important observation is that all vertices in a subtree with root v have preorder

number no less than v.

We have the following property that combines the preorder numbers with the descendant

relationship. It follows clearly from the definition and remark.

Lemma 3.25. Let T be a tree and v a vertex in T . If Dv is the set of descendants of v,

we have: w ∈ Dv iff P (v) ≤ P (w) < P (v) + |Dv|. In other words, if vertex v has |Dv|
descendants, its descendants have preorder numbers P (v), . . . , P (v) + |Dv| − 1.

Proof. By induction on the definition of a preorder traversal of T .

It may be clear that the lemma provides an easy check to determine whether a vertex is

a descendant of another vertex in a tree, if we know a preorder of the tree. Specifically:

w is a descendant of v iff P (v) ≤ P (w) ≤ H(v). (3.2)

Notice that H(v) = P (v) + |Dv| − 1. (3.2) gives us an efficient test as part of the bridge

test in line 12. We compute and store the values of P and H in line 1, when L is formed.

Note that after the initial assignment of a preorder P and H, we can answer the

question of whether w is a descendant of v in a fixed amount of time, independent of

tree size.

Although we are not interested in the space complexity, we need to know the space

complexity to compute the time complexity. Fortunately, the computation of the space

complexity is quite straightforward.

Theorem 3.26. Let G be a directed or undirected graph having n vertices and m edges.

All spanning trees of G can be found by GROW in space O(n+m).

Proof. Note that we do not save the spanning trees found, but only output them. There-

fore, we do not include the space needed for the spanning trees in the space complexity.

Ideally, the graph G is stored as a collection of doubly linked lists of edges to and from

each vertex. Then this uses O(m) space. In the computation, an edge e may be on the

list F or on at most one list FF (if e is in some FF , then it is not in F and hereby

cannot be put on another FF list). For this reason, F and all lists FF together use only

O(m) space. For T , P and H, we need O(n) space, as should be evident. Combining

all of this, the space complexity is O(n+m).

In connected graphs: n ≤ m + 1, so in practice, the space complexity of Gabow and

Myers’ algorithm approximates O(m).
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Knowing the space complexity, the implementation of F and the implementation

of the bridge test (given by the descendant relationship, in turn given by the preorder),

we can prove the time complexity of the algorithm on undirected graphs:

Theorem 3.27. Let G be an undirected graph having n vertices, m edges and s spanning

trees. All spanning trees of G can be found by GROW in time O(n+m+ n · s).

Proof. We estimate the time spent on each line of the pseudo algorithm. To begin with,

line 1 does a preorder traversal and outputs each spanning tree. As the preorder traversal

visits each vertex once and the spanning tree found has n− 1 edges, the time needed in

one execution of line 1 is O(n). We execute line 1 once for each spanning tree found, so

we spend O(n · s) time in line 1 in total (by multiple calls of the recursive function).

Now we analyze the time spent in lines 4-12 for one particular edge e = (u, v)

added in line 4. However, we temporarily ignore the recursive call in line 8. The time

spent in these lines is proportional to the number of edges incident to v, as we need to

store and delete these edges. We note that the time spent in lines 4, 5 and 11 is O(1).

As we already computed P and H in line 1, we only need to compare the values P (v),

P (w) and H(v) in line 12, which is O(1) for a single vertex w. As there are at most

n− 1 edges ending in v, O(n) time is spent in line 12 on all edges (w, v) in total. Thus,

we spend at least O(n) time in lines 4-12 for one edge e = (u, v) added in line 4. Now

we only need to focus on the time devoted in lines 6, 7, 9 and 10. We distinguish two

cases and show that both cases lead to a total time of O(n · s) spent in lines 4-12:

1. Suppose e turns out to be a bridge after the bridge test (in a particular present

graph A).

Then each edge f that has v as one of its ends is in some spanning tree R containing

T ∪{e}. We may assume the time spent on f in R is O(1). Hereby the time spent

on R is O(n). Concluding, the total time spent on bridges in lines 4-12 is O(n · s).

2. Suppose e is decided not to be a bridge after the bridge test (in a present graph

A).

We look at the time spent in lines 4-12 (actually, only at lines 6, 7, 9 and 10) in

a certain iteration in which e is popped from F . We need to push, pop, remove

and restore particular edges with end v. As there are at most n edges connecting

v with some other vertex, the time spent on these edges is O(n). Thus, the time

spent in lines 4-12 in a given iteration in which e is popped is O(n).

We will now proof that there are exactly s − 1 ‘nonbridges’, edges that turn out

to be no bridge in the present graph immediately after the bridge test. Let a

nonbridge e correspond to the tree L used in the bridge test of e. As e is not a

bridge, e will be deleted and another spanning tree is grown before the next bridge

test of another edge (in the algorithm we have another iteration of the repeat

loop). Therefore, a given tree L corresponds to at most one nonbridge, i.e. at

most one bridge test with outcome ‘no bridge’ is done on some tree L, as this

outcome immediately leads to the production of a new L. On the other hand, if
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L is a spanning tree but the last one found (after the termination of GROW), it

is used in the bridge test for some nonbridge, for otherwise no new spanning tree

will be found (but this is the case). Thus, each spanning tree but the last one

corresponds to precisely one nonbridge.

We conclude that the total time spent in lines 4-12 on nonbridges is O(n · s), as

we have s− 1 nonbridges and each nonbridge uses O(n) time in these lines.

Thus, for both bridges and nonbridges (after the bridge test in line 12) we need O(n · s)
time in lines 4-12. The total time spent in lines 4-12 is then O(n · s) too. As we already

took into account all executions of lines 4-12 (although caused by the repeat loop and

recursion), we can neglect the time spent in lines 2, 3, 13 and 14, as these lines itself

take only O(1) time.

Lastly, we may assume the allocation of a given amount of memory takes a propor-

tional amount of time too. Hence we need at least O(n+m) time to allocate the memory

in the algorithm, by theorem 3.26. Combining this with the ‘actual’ computation time

required in the algorithm, we conclude that the time complexity is O(n+m+n · s).

In general, we have a lot of spanning trees in a connected undirected graph. For section

3.2 showed that the number of spanning trees grows very rapidly with the number

of edges for a fixed number of nodes. As a consequence, the time complexity of the

algorithm is very dependent on the number of spanning trees s.

A last note concerns why the time complexity of the algorithm is optimal for the

exercise of finding all spanning trees. We noticed that O(n · s) time is required for the

output of all spanning trees as lists of edges. The factor O(n+m) can be neglected for

almost all cases, because s is many times greater than n and m as just seen. Thus, the

algorithm is optimal to within a constant factor.





Chapter 4

Physical Background

To model a real electricity distribution grid, one should take into account the rules

of physics regarding electricity. The first section mentions some basic rules concerning

quantities as current, voltage, resistance and power. The way to perceive these quantities

as complex measures is explained too. The second section presents a commonly used

method to model and calculate the values of these quantities in an electricity distribution

grid. This method is called the load flow model. The third section gives an alternative

to the load flow model, called the linear model. This model approximates the values

of the physical quantities in the electricity distribution network. The linear model is

recently developed at Alliander and computes the values much faster than the load flow

model. Lastly, we describe the application of the load flow model or linear model in the

m−1 problem, especially how we use one of the models to check the current and voltage

capacities: whether a current or voltage limit is exceeded in a new configuration.

4.1 Electricity physics

In an electricity distribution grid, power P is transported from bus (node) to bus,

through a cable with a certain resistance R. This power is caused by a voltage difference

∆U between the buses, inducing a current I through the cable between the buses. To

give an overview of the important quantities and associated units in the physics of

electricity distribution networks:

Quantity Abbreviation Unit Abbreviation

Voltage U Volt V

Current I Ampère A

Resistance R Ohm Ω

Power P Watt W

Two basic physical laws concerning electricity are:

Ohm’s law: R =
∆U

I
Joule’s law: P = ∆U · I
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In general, one perceives these quantities as complex numbers. The voltage, current

and power have a real and a reactive (imaginary) component. The word resistance,

however, is used for the real physical quantity. The complex ratio U
I is called the

impedance Z, where the real component is the resistance and the complex component the

reactance. In this way, one can consider the values of physical quantities as vectors in the

complex plane. To understand this vision, one first needs to understand the generation of

alternating current, which is explained in the lecture notes Wisselstroom by Christianen

(2014) [22]. A more extensive description of alternating current and complex physical

quantities can be found in the book Physics for Scientists and Engineers by Serway and

Jewett (2008) [17].

4.1.1 Alternating current

One generates alternating current (AC) by spinning a coil in a magnetic field, illustrated

in figure 4.1. In the coil, the spinning raises a time dependent voltage U(t), where:

U(t) = U0 cos(ωt+ φU ) .

U0 is called the voltage amplitude and ω is called the angular velocity, the speed of

the spinning coil. φU comprises the voltage angle, the starting angle relative to the

magnetic field. The voltage U(t) depends on the alternating angle between the coil and

the magnetic field. We assume the angular velocity is perpendicular to the magnetic

field.

Suppose the coil is connected to a power circuit with resistance R. Then the time

dependent current I(t) equals (using Ohm’s law):

I(t) =
U0

R
cos(ωt+ φU ) = I0 cos(ωt+ φI) .

Here I0 = U0
R and φI = φU . I0 is called the current amplitude and φI indicates the

current angle. In general, the voltage angle and current angle can be different, this will

be clear in the complex notation. However, in the case of a real valued resistance like

here, the angles are equal. We call ωt+φU the phase of the voltage and ωt+φI the phase

of the current. As in Joule’s law, the power output per second equals: P (t) = U(t)I(t).

Figure 4.1: The generation of alternating voltage and alternating current (AC) by
spinning a coil in a magnetic field. source:

http://macao.communications.museum/eng/exhibition/secondfloor/MoreInfo/2 4 1 ACGenerator.html
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Furthermore, the period T and the frequency v of both the alternating voltage and the

alternating current are given by:

T =
2π

ω
and v =

1

T
=

ω

2π
.

The period signifies the time between two consecutive moments with the same phase,

expressed in seconds. The frequency denotes the number of periods per unit of time.

The unit of the frequency is Hertz. In general, the period and frequency of voltage and

current could be different, but in reality they often turn out to be almost equal.

4.1.2 Complex notation

Now we move on to the complex notation of the voltage and current:

U(t) = U0 e
j(ωt+φU ) and I(t) = I0 e

j(ωt+φI) .

Observe that Re(U0 e
j(ωt+φU )) = U0 cos(ωt + φU ), so the complex notation is a well-

defined extension of the real time dependent voltage. The same holds for the current. U

and I are yet time dependent rotating vectors in the complex plane. The real component

is the measurable physical quantity (at a certain point in time). Note that the letter j

is used instead of the letter i to represent the complex number
√
−1, as is often done in

electrical engineering.

As mentioned before, the complex ratio U
I is called the impedance, Z. If there is

a phase difference ψ = φU − φI , we have:

Z =
U0

I0
ejψ = |Z| cos ψ + j|Z| sin ψ, where |Z| = U0

I0
.

Note that Z is time invariant. Remember, the real part is called the resistance and the

imaginary part the reactance. The former is the actual resistance of the assets in the

circuit and expresses the permeability. If ψ = 0, the impedance is a real number and

corresponds to an ideal resistance. We define the admittance to be 1
Z .

Example 4.1. Sample vectors of the voltage U , the current I and the impedance Z in

the complex plane at a certain point in time after a multiple of the period T :

Re

Im

U0

U

φU

I0

I

φI

|Z|

Z

ψ
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We remark that U and I rotate counter-clockwise over time with the same speed ω, but

Z is time invariant and stays stationary in the complex plane. After one period, U and

I made precisely one round.

Hitherto we regarded the physical quantities as time dependent objects (apart from the

impedance Z). However, it is more practical to work with constant values for those

quantities. This can be realized as the waves will be flattened out over a big time scale,

so it is acceptable to consider their mean values. To that end, we define the voltage

magnitude as UM = 1
2

√
2 U0 and the current magnitude as IM = 1

2

√
2 I0. We reduce

the complex voltage and current to U = UM ejφU and I = IM ejφI , respectively. Remark

that this does not change the impedance Z = U
I .

Furthermore, the power can be seen as a constant complex vector. We denote S

to be the complex power, also called the apparent power, defined by:

S = U I = UM IM ejψ = P + jQ,

where I is the complex conjugate of I. One can understand this equation as the complex

variant of Joule’s law. P is called the active power, this is the real power as mentioned

before. Van der Meulen (2015) [20] showed that the average real power equals U0I0
2

cos(ψ). Since this expression equals UM IM cos(ψ), we conclude that the real component

of S equals P . The complex component Q comprises the reactive power. From now on,

we only use the constant values of the physical quantities, which we assume to be complex

numbers.

In the next section, we explain the load flow model. This model computes the values of

the physical quantities in an electricity distribution grid. The load flow model combines

graph theory, linear algebra and electromagnetism.

4.2 Load flow model

Electric power flow is a nonlinear quantity as it is the solution to a set of nonlinear

equations. The problem of how to solve these nonlinear equations is called the load flow

problem. We will discuss the load flow equations and the associated problem after we

have treated some definitions. We use the lecture notes Introduction To Load Flow by

Kirtley (2011) [21].

4.2.1 Load flow problem

In an electricity distribution network, current flows through the cables, induced by the

voltage differences in the nodes. This power flow is determined by the voltage at each

node and the impedances of the cables. These values allow us to compute the current

in the cables. The power flow into and out of a node is the sum of the power flows of all

cables connected to the node. We depict the power flow in node i by Si. The load flow
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problem consists of finding the voltage magnitude UMi and voltage angle φU i in each

node. We assume the impedances of the cables are known in advance.

Recall the definition of the n ×m incidence matrix IG of a graph G as given in

definition 3.1 in section 3.1. Then we can define two admittance matrices:

Definition 4.2. LetG be a network graph with nodes {v1, . . . , vn} and cables {e1, . . . , em}
and let Zi be the impedance of cable ei. We define the m ×m edge admittance matrix

AG by:

(AG)i,j =

 1
Zi

if i = j

0 else

The n× n node admittance matrix YG is defined by: YG = IG ·AG · IGT .

Notice that the edge admittance matrix AG is nothing more than the admittance of

each cable in the right place on the diagonal. The node admittance matrix YG can be

seen as an extension of the Laplacian matrix such that the admittances of the cables are

included, as we have for the Laplacian matrix: LG = IG · IGT . As a result, we can show

in a similar way to the proof of LG = IG · IGT in lemma 3.5 in section 3.1:

• (YG)i,i equals the sum of all admittances of the edges connected to node vi.

Compare: (LG)i,i = d(vi).

• If i 6= j, then (YG)i,j equals minus the sum of the admittances of all edges con-

nected directly between nodes vi and vj . (In a simple graph this is at most the

admittance of one edge.) As a consequence, YG is symmetrical.

Compare: if i 6= j, then (LG)i,j equals minus the number of edges connected directly

between nodes vi and vj.

We conclude from these observations that the node admittance matrix YG represents

the sum of the admittances of the cables connected to a certain node (on the diagonal)

and the sum of the admittances of the cables between two nodes (not on the diagonal).

The name of the matrix is therefore well chosen.

The current Ii of the node vi is the sum of the currents in the cables connected to vi

flowing away from vi, so we multiply a current with −1 if it flows into vi. Let IN be

the vector of complex node currents and let UN represent the vector of complex node

voltages. Then we have: IN = YG·UN , as a multivariate variant of Ohm’s law. Moreover,

we have for each individual node: Ii =
∑n

j=1 (YG)i,j Uj . Hereby the complex power flow

at node i equals:

Si = Ui Ii = Ui

n∑
j=1

(YG)i,j Uj . (4.1)

The load flow problem consists of solving these n load flow equations, given nodes with

different constraints. At each node, six different quantities could be specified: voltage

magnitude and angle, current magnitude and angle, real and reactive power. To set
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up the load flow problem, we need to know two of these six quantities for each node.

Typical constraints for different types of nodes (buses) are:

• Generator bus: real power P and voltage magnitude UM

• Load bus: real power P and reactive power Q

• Slack bus: voltage magnitude UM and voltage angle φU

The type ‘Slack bus’ is a voltage source, in our case an HV/MV transformer. This node

does not have real nor reactive power constraints.

To sum up, the load flow problem consists of computing the node admittance matrix

YG from the graph G and the m impedances of the cables, assumed to be known. Fur-

thermore, the values of two quantities at each node are given and we need to found

the solutions to the equations (4.1). Since n is large in an electricity distribution net-

work, equations (4.1) form an extensive system of nonlinear equations. Customarily,

we approximately solve (4.1) using the Newton-Raphson iterative technique. The next

subsection explains how this method is applied to the load flow problem.

4.2.2 Solving the load flow equations

Since n is large and the equations are nonlinear, solving equations (4.1) exactly is gener-

ally too complex and takes too much time. To speed up the calculations, most commonly

the solutions are approximated using an iterative technique. The Newton-Raphson

method is used most frequently. First, we argue how one finds the cable currents given

the node voltages. Hereto, it suffices to focus on finding the node voltages in the first

place. Second, we will explain the Newton-Raphson method applied to the load flow

equations.

As described in the previous subsection, we have one slack bus without power constraints,

but with given voltage magnitude and angle. On top, we have generator buses and load

buses. We know the real and reactive power at each load bus and the real power and

voltage magnitude at each generator bus. We would like to know the voltage magnitudes

and angles at all nodes, because these allow us to check whether the voltage capacities

have been exceeded. Moreover, we can then calculate the current magnitudes and angles

in the cables using the impedances and the incidence matrix:

IE = AG · IGT · UN , (4.2)

where IE is the vector of the complex cable currents. This is because the complex

currents in the nodes are given by IN = YG · UN and we convert the cable currents to

node currents by IN = IG ·IE . Combining this gives: IG ·AG ·IGT ·UN = IG ·IE . Although

not necessarily IE = AG · IGT · UN in this case (as IG possibly has no left-inverse), of

course equality holds if we take IE to be AG · IGT · UN .
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We give another argument why equation (4.2) holds. We could find a cable current

by calculating the complex voltage difference between the ends of the cable (we already

computed the node voltages) and then using I = ∆U
Z , as we know the impedances. This

results in the same current per cable as calculating IE = AG · IGT · UN , for IG
T · UN

actually computes the voltage difference for each cable (check this) and multiplication

with AG is the same as multiplication with 1
Zi

per cable.

To conclude, given the voltage magnitudes and angles of the nodes, we find the

current magnitudes and angles of the cables in two straightforward matrix multiplica-

tions. Hence we can check the current capacities.

We now formulate the Newton-Raphson iteration applied to the load flow equations. We

follow the lecture notes Modelling and Analysis of Electric Power Systems by Andersson

(2008) [18], sections 6.2 and 6.3.

We need to know the voltage angles of the generator buses and the voltage mag-

nitudes and angles of the load buses. Suppose {v2, . . . , vg} are the generator buses and

{vg+1, . . . , vn} are the load buses (v1 is the slack bus). Let X be the vector of unknown

voltage angles and magnitudes (in order of the node numbers) and let f be a function of

X that depicts the difference between the solution of equations (4.1) applied to X and

the given known real and reactive powers:

X =



φU 2
...

φUn

UMg+1
...

UMn


:=

(
φU

UM

)
and f(X) =



P2(X)− P2

...

Pn(X)− Pn
Qg+1(X)−Qg+1

...

Qn(X)−Qn


:=

(
P (X)− P
Q(X)−Q

)

Notice that Pj(X) denotes the active power flow out of node vj given by equations (4.1)

provided certain ‘guessed’ values of X. Pj denotes the measured value of the active

power in node vj . Similar meanings hold for Qj(X) and Qj with regard to the reactive

power flow out of node vj . P (X) − P are all active power mismatches, Q(X) − Q all

reactive power mismatches. The load flow equation can now be written as:

f(X) =

(
P (X)− P
Q(X)−Q

)
= 0

Of course, finding the values of X without power mismatches means finding the solution.

As the Newton-Raphson technique only approximates the solution, we have to define an

acceptable error ε > 0 beforehand. Let X0 be an initial guess of X, this is the starting

value, and let the iteration counter p = 0. The Newton-Raphson technique creates a

sequence X1, X2, . . . of improved values of X, until at some iteration z values are found

such that |fi(Xz)| ≤ ε. In that case, we have an approximate solution. We give an

outline of the Newton-Raphson algorithm:
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1. Compute f(Xp).

2. Test the convergence: if |fi(Xp)| ≤ ε for all i, then Xp is the approximate solution:

stop.

3. Compute the Jacobian matrix J(Xp).

4. Update the solution: ∆Xp = −J−1(Xp) f(Xp), so Xp+1 = Xp + ∆Xp.

5. Update the iteration counter: p→ p+ 1 and go to step 1.

Some clarifications to the steps of the Newton-Raphson algorithm:

• The Jacobian matrix J in this case equals:

J =


∂P (X)

∂φU

∂P (X)

∂UM

∂Q(X)

∂φU

∂Q(X)

∂UM


• The iterative updates to the solutions ∆Xp = Xp+1−Xp are determined from the

equation: (
P (Xp)− P
Q(Xp)−Q

)
+ J(Xp)∆Xp = 0

This is based on the Taylor expansion:

f(Xp + ∆Xp) ≈ f(Xp) + J(Xp)∆Xp

It should be noted that the Newton-Raphson iteration does not always converge, but in

the case applied to the load flow equations it generally does.

Instead of computing the Jacobian in each iteration, we could opt for a constant Ja-

cobian: J(Xp) = J(X0). This increases the number of iterations needed for convergence,

but the computation burden for each iteration is lower. As the overall performance may

be better in this way, it is worth considering.

Figure 4.2: Sketch of the Newton-Raphson iterative technique (univariate case).
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4.3 Linear model

Although electric power flow is a nonlinear quantity, it can be studied as if it were

linear, thereby avoiding the calculation of multiple iterations as in the Newton-Raphson

method. This makes solving the equations computationally less expensive and therefore

yields this model applicable to a large scale distribution grid. Werner van Westering

developed this so called linear model recently at Alliander. He models the load buses

and generator buses as ‘constant impedances’ instead of buses with constant power

demands. Therefore, one needs to convert the power use into an equivalent resistance.

To realize this idea, Van Westering adds to each node (apart from the slack bus) a virtual

cable connected to the ground. The power demand of the node is then translated to

a resistance of the additional cable. This is done by combining Ohm’s law and Joule’s

law:

Ri =
Uref

2

Pi
. (4.3)

Here Ri is the equivalent resistance of the additional cable at node vi and Pi is the known

real power of the node vi. Uref is an assumed reference voltage, as the voltage at the node

is not known (otherwise there is no load flow problem). Hereby the solution will have

an error, but can nevertheless be a good approximation. The network now consists of

a voltage source (slack bus), resistors and ground connections. The ground connections

are additional nodes (resulting from the additional cables) and have a voltage of 0 Volt.

Note that Uref = ∆U in this case, consistent with Ohm’s law and Joule’s law. We still

use the equation:

IN = YG · UN , where YG = IG ·AG · IGT , (4.4)

as in the previous section. However, the vectors and matrices are extended with the n−1

additional nodes and n − 1 additional cables at the beginning, i.e. the vectors IN and

UN have the additional nodes as first nodes. AG still consists of all cable admittances

on the diagonal, where the first n− 1 elements on the diagonal are the resistances Ri of

the additional cables. The first n− 1 columns of IG correspond to the additional cables

and the first n− 1 rows of IG correspond to the additional nodes. We assume all cable

resistances (including the new ones) are known, as well as the structure of the graph, so

we can calculate AG, IG and then YG.

We want to solve equation (4.4), but we neither know vector IN nor UN completely,

hence we cannot solve this equation directly. For this reason, we split the equation in

two separate equations that can be solved. We partition the rows of IN , YG and UN

such that the segments I2 and U1 are defined:

IN =

(
I1

I2

)
, YG =

(
K L

LT M

)
and UN =

(
U1

U2

)
.

Then I2 consists of the currents in the load buses and generator buses, as no power enters

or leaves the network in these buses, so I2 = 0. U1 consists of the voltages at the new

ground connections and the voltage at the slack bus, as these values are known. Note
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that this is a well-defined partition, as I1 and U1 concern the new ground connections

and the slack bus, and I2 and U2 concern the load buses and generator buses. This forms

an actual splitting of the nodes. We now have, using equation (4.4) and the segmenting:

0 = LT U1 +M U2 , or: M U2 = −LT U1

Only U2 is not known in this equation. We prefer to avoid the computation of a large

matrix inverse, in this case M−1, but we could calculate U2 with a (sparse) QR decom-

position method, for example.

After this computation, we know all node voltages UN . The cable currents can be

found in the same way as before by: IE = AG · IGT · UN .

We present some considerations made by Van Westering with regard to the accuracy of

his model:

• If the power demand of some node is almost zero, then the equivalent resistance

tends to infinity by equation (4.3). This is undesirable and prone to computational

errors. However, we can avoid this problem by letting the power consumption be

at least a few Watts. This has no big influences on the calculation.

• As may be noted, the model only uses real powers and resistances (instead of

impedances). Therefore, the model neglects the reactive currents. We could solve

a separate identical problem to find the reactive currents and afterwards combine

the results. In practice, however, the reactance is at least an order of magnitude

lower than its resistance. Similar results hold for the reactive power. To simplify

the calculations, the reactive components are omitted.

4.4 Load flow in the m− 1 problem

As announced in chapter 1, we have to check that a possible reconfiguration of the MV

network does not have current or voltage values that exceed the capacities. In chapter

2 and 3 we only focused on solving the mathematical part of the problem, but now we

need to add the physical boundary conditions. This involves making some assumptions

on the known values of the physical quantities (something we can never be completely

sure of as we do not know all these values in reality). On the other hand, we need to

take the voltage and current capacities into account, which includes the calculation of

the load flow.

We take the same assumptions as outlined in section 4.2 about the load flow model.

This means that we assume the impedances of the cables are given beforehand as well

as two quantities per node typical for the kind of node: slack bus, load bus or generator

bus. This possibly involves complex numbers.

As a reconfiguration changes the way the power flows through the network, it

probably changes the values of the physical quantities in the network. Some nodes will

have a higher voltage than before, other cables a lower current, for example. Of course,

the voltages and currents are not allowed to have all values in practice, as this could
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overheat some assets in the network and can cause dangerous situations. Therefore,

we have certain boundary conditions for each node and each cable, called the capacity

conditions:

• Each node vi has its own voltage boundaries: lower limit Umini and upper limit

Umaxi . This means its voltage Ui in a certain configuration should be between the

bounds: Umini ≤ Ui ≤ Umaxi .

• Each cable ei has its own current boundary: upper limit Imaxi . This means its

current Ii in a certain configuration should be under the upper limit: Ii ≤ Imaxi .

We assume the node voltages Ui and cable currents Ii can be calculated either by the

load flow model or the linear model. As we are searching for reconfigurations of the

MV network in the m− 1 problem, we need to check the voltage and current capacities

each time we try a new reconfiguration. Thus, we use the physical model for each

possible reconfiguration in combination with the predetermined assumed values of some

quantities. If one of the capacities is exceeded in the reconfiguration, the algorithms (in

R) search for another reconfiguration. Otherwise, the results of the reconfiguration are

used: a possible switch-over may be found for certain ‘broken’ cables.

As the linear model calculates the values much faster than the load flow model, it

is possibly more suitable to use over and over again to check possible reconfigurations.

Therefore, we ultimately decided to only incorporate this model in the implementation.

For completeness, we explained the classical load flow model here too.





Chapter 5

More Graph-theoretical Tools

Before we can explain the practical implementation of our solution to the m−1 problem

in the program R, we need some more mathematical tools to handle the problem. This

chapter addresses these graph-theoretical algorithms and methods. In the next chapter,

chapter 6, we show the relevance of these tools in practice, although for some means the

utility will already be clear.

We start with the presentation of an algorithm to find all bridges of a graph,

these are the graph-theoretically unswitchable edges. Second, we introduce a solution

to generalize the eventual algorithm over the whole MV network at once, instead of

restricting the network to an MV area having only one HV/MV transformer. Last, we

discuss how to anticipate a problem concerning the initial state of the network. In fact,

the initial configuration is not necessarily a spanning tree.

5.1 An algorithm to find all bridges

In the practical algorithm in R, we try to match spanning trees with multiple edges to

discover switching solutions, as explained in section 2.3. We will continue this process

until we found a switchover for each edge, in case it exists. For this reason, it is useful

to know the edges that cannot be switched beforehand. With respect to the physical

condition, we could not determine this in advance. However, we could compute the

graph-theoretically unswitchable edges. This could save us computation time in the

overall algorithm, as we do not go on to search for switchovers that do not exist.

Recall the definition of a bridge (in a connected undirected graph G): an edge

that disconnects the graph upon removal. For the sake of clarity, we mean bridges of the

entire MV network, not of some configuration which is a spanning tree. In a spanning

tree, each edge is a bridge. We are thus interested in finding the bridges of the entire

graph, i.e. the edges that are unswitchable at all, even without the computation of the

physical values. Note that such edges ensure that the network does not satisfy the m−1

principle, but we want to know to what extend it does, as we noted before.

Before we treat an algorithm to find all bridges, note that we have found special

kinds of bridges already by the Andrei-Chicco reduction, namely the edges in branches.
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The first step in this reduction deletes the edges in the ‘network outflows’, as these edges

do not have a switchover. These edges in branches are bridges (and we have already

filtered them out), but there could be more bridges. For example edge 3 in the following

graph is a bridge, but it is not in a branch:
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Multiple articles present algorithms to find all bridges of a graph. Even a lot of linear-

time algorithms have been given, meaning that the time complexity of these algorithms

is just O(n + m). The algorithms use different graph structures, like ‘ear decomposi-

tions’ or ‘low-points’ (developed by Tarjan (1972) [13]), the latter is used a lot. How-

ever, ‘low-points’ do not give the most natural and simple solution. Gabow (2000) [14]

presents an easier algorithm using path-generating rules instead of low-points. We call

this style of algorithms path-based. Schmidt (2012) [12] presents in his lecture notes

for the course Advanced Graph Algorithms, given at the Max Planck Institute for Infor-

matics in Saarbrücken, an even simpler linear-time algorithm that finds all bridges of a

graph. We implement Schmidt’s method because of its simplicity and time complexity.

Schmidt’s approach is path-based too and uses no low-points. It is however related to

‘ear decompositions’, which we do not treat here.

5.1.1 The algorithm by Schmidt

Before we present the entire algorithm by Schmidt (2012) [12], we discuss its approach

and treat some necessary terminology.

Let G be a given connected undirected graph in which we want to determine the bridges.

G could have parallel edges and we assume n ≥ 3. Furthermore, loops do not matter in

the algorithm. We will decompose G in sets of paths and cycles, both paths and cycles

will be called a chain.

The approach

The first step in the algorithm will be a depth-first search on G, as described in section

2.2. A more detailed explanation of a depth-first search can be found in Bondy and

Murty (2008) [1], section 6.1. We can choose a root r at random in advance. Then the

depth-first search on G leads to a DFS-tree T rooted at r, as G is connected. Besides,
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we let the depth-first search assign a depth-first index (DFI) to every vertex. This

index expresses when a vertex is added to the tree T in the formation of T : if vertex v is

the i-th visited vertex, the DFI of v is i. The DFI is a preorder, as defined in subsection

3.4.3.

The second step in the algorithm is to orient all edges in T towards r in the graph

G. We refer to these edges as forward edges. Thirdly, we orient the other edges in

G away from r and we call these remaining edges back edges. Thus, we have made

the undirected graph G directed by defining an orientation for each edge based on the

DFS-tree. Each back edge e lies in precisely one directed cycle C(e) containing only e

as back edge. We will prove this important property in the next subsection.

The next step will decompose G into chains, by applying the procedure explained

below, also depicted in lines 5-8 of the pseudo algorithm on the next page. Initially, we

mark each vertex and each edge as unvisited (in line 4), but this changes during the

execution of the procedure.

We explain the method in a nutshell. We create chains beginning in back edges e

that start in turn in certain vertices v. Here we consider the vertices (the starting points

of the back edges) in the DFI order. The chains are the beginning of directed cycles

C(e). By the announced lemma in the next subsection, these cycles C(e) exist and are

unique. In the creation of the chains, we pass through the C(e) until we visit a vertex

that we visited before. Meanwhile, we mark the traversed vertices and edges as visited.

This completes the computation of the chains. The edges that we did not visit in the

computation are precisely all bridges. We will prove this in the next subsection.

Thus, a chain, a partial traversal of an C(e), stops at the latest at v and forms

either a directed path or a directed cycle. We represent a chain by the array of edges in

the order they were visited. We call the i-th chain found in this procedure Ci. Note that

each back edge is traversed at least once and hereby included in a chain, as we always

start traversing a back edge, even if v was visited before. Only after traversing e we

explore whether we should further traverse C(e) or not. By the definition of lines 5 and

6, we ensure that each back edge is only traversed once. We traverse the forward edges

at most once, as after covering such an edge the starting point of the edge is marked

visited.

There are m − n + 1 chains, as each back edge (each edge not in T ) creates ex-

actly one chain. We refer to the set C = {C1, . . . , Cm−n+1} as a chain decomposition.

The algorithm

We now present an overview of the algorithm by Schmidt (2012) [12]. First, we compute a

DFS-tree and orient the edges of G. This enables the computation a chain decomposition

in lines 5-8. After this computation, we know which edges are bridges, namely those

that were not visited in the computation of the chains.
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BRIDGES: function to find all bridges of a connected undirected graph G

Input arguments: G (given by its edges), root r

1. compute a DFS-tree T rooted at r of G, save the DFI of the vertices

2. orient all edges in T towards r in G, these are the forward edges

3. orient all other edges in G away from r, these are the back edges

4. mark all vertices and edges as unvisited

5. for each vertex v in the order of the DFI

6. for each back edge e starting in v

7. start in e, traverse C(e) until we visit a vertex that is marked visited

8. meanwhile, we mark every vertex and edge that we visit as visited

9. output(all edges that are marked unvisited)

Example 5.1. Below we show the execution of BRIDGES on the graph drawn on page

53, where we take vertex 1 as root. The bold arrows form the DFS-tree, computed in

line 1 of the pseudo algorithm. Lines 2 and 3 make the graph directed. The edges in

the DFS-tree are the forward edges, the remaining edges are the back edges.
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The order in which the nodes are added to the DFS-tree is: 1, 2, 6, 3, 4, 5, 7. This

determines the depth-first index too. For example, vertex 6 is added as third vertex to

the tree, so the DFI of vertex 6 equals 3. We need the DFI in line 5 in the pseudo code.

The vertices in the DFI order in turn decide the order in which we consider the back

edges (in line 6). If there are multiple back edges starting in some vertex v, we consider

them in the natural order.

After executing lines 5-8, we see the chain decomposition of the example graph is C =
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{C1, C2, C3}, where:

C1 = {7, 2, 1}

C2 = {9, 8}

C3 = {6, 5, 4}
Note that the back edges are the starting edges of the chains. We now know the set of

bridges of the graph is {3}, as 3 is the only edge not contained in any chain in the chain

decomposition.

Before we proof the correctness of BRIDGES in the next subsection, we first note the

difference between this algorithm by Schmidt and the bridge test in the algorithm by

Gabow and Myers (subsection 3.4.1). In the algorithm by Gabow and Myers, we need

to know whether a specific edge in a (present) graph is a bridge. Therefore, we define

the bridge test, which uses a property of descendants in a graph. It would be inefficient

to use this bridge test to find all bridges in a given graph, as we need to perform this

test on all edges. The bridge test uses O(n) time, so the time complexity of this way

to find all bridges is not linear but O(n ·m). (If we save some intermediate results, we

could only speed it up to O(n2) time. In the worst case, we need to compare values

P (v), P (w) and H(v) for all combinations of different vertices v and w, which takes

O(n2) time.)

On the other hand, we could not use this algorithm by Schmidt to check whether

an edge is a bridge in the algorithm by Gabow and Myers, as BRIDGES is designed to

find all bridges. This is not efficient in the algorithm by Gabow and Myers, as we only

need to know whether a particular edge is a bridge. Then the bridge test uses O(n+m)

time instead of just O(n).

To conclude, the difference between the bridge test in the algorithm by Gabow and

Myers and the algorithm to find all bridges here is too big to combine these algorithms

efficiently. It is clear that we do need some of the same properties of a graph in both

algorithms (like bridges, descendants and preorders).

5.1.2 Proofs: Correctness of the algorithm

This subsection shows the correctness of the algorithm presented. First, we prove the

following lemma concerning directed cycles C(e), as promised in the previous subsection.

In the proof, we represent a path by its edges.

Lemma 5.2. Let e be a back edge in the connected graph G, the graph made directed

using a DFS-tree T as described in “The approach” on page 72. Then e lies in precisely

one directed cycle C(e) containing only e as back edge.

Proof. Let e = (u, v) be a back edge. We first show there is at most one cycle C(e).

Suppose there are two different directed cycles C1 and C2 containing only e as back

edge. Then C1 \ {e} and C2 \ {e} form two different directed paths from v to u in T ,

as these paths contain no back edges. However, as the spanning tree T contains exactly
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one (undirected) path from v to u, this leads to a contradiction. To conclude, there is

at most one cycle C(e).

Now we just need to prove that there is at least one such cycle C(e). We claim

that there is a directed path P from v to u in T . We will proof this claim in a minute.

Note that e forms a directed path from u to v on its own and e does not lie in T , so if P

exists, C = P ∪ {e} is a directed cycle containing only e as back edge. Thus, the claim

shows there is at least one directed cycle C(e) containing only e as back edge.

There is an undirected path from v to u in the spanning tree T . However, it is

not obvious that this path, henceforth called P , is a directed path if u 6= r. (If u = r, P

is directed by the direction of the edges in T .) Step by step, we will nonetheless show

that P is directed.

As the spanning tree T is oriented towards r, there is a unique directed path U

from u to r and a unique directed path V from v to r. One of the following two cases is

true: (1) u lies on the path V , or (2) there is a vertex w 6= u on both U and V such that

the unique path W from w to r equals U ∩ V . (Note that we cannot divide U ∩ V in

two unconnected parts, as we could identify a cycle in T in that case. Further, note that

w = r might be the case.) If (1), then V \ U is a directed path from v to u and we are

done. If (2), then V \W is a directed path from v to w, U \W is a directed path from

u to w and these paths do not intersect. The unique path P must be the combination

of these two paths, but then P is not directed properly. We prove that case (2) leads to

a contradiction.

First note that the DFI of w is lower than the DFI of both u and v. Without

loss of generality, the DFI of v is lower than the DFI of u (the other case is analogue).

At the points in the formation of T where v is under view but u is not yet added, we

did not append e to T . u is eventually added via a path starting in w, this path does

not intersect with the path from v to w (that would form a cycle). As we prefer to add

the most depth-first edge and the first edge in the path from w to u is less depth-first

than e, then we could not add e when v was under view for the last time (or earlier),

otherwise we definitely did. Therefore, e forms a cycle in T at that time already (when

v is under view but u is not yet added). Then there must be a path from v to u in T

at that time. However, u is not yet added so this cannot be the case: a contradiction.

Thus, case (2) leads to a contradiction and (1) is always true. Thus, P is a properly

directed path from v to u.

We just need one more lemma before we are able to prove the correctness of the algo-

rithm. This lemma is probably well-known (see section 1.4 in the book Graph Theory

by Diestel (2010) [15], for example):

Lemma 5.3. Let G be a connected undirected graph. An edge is a bridge in G iff it is

not contained in any cycle.

Proof. Let e be an edge of a connected graph G.

Suppose e = (u, v) is a bridge. Then there is no path from u to v in G \ {e}, as e could
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be removed without disconnecting G otherwise. If e were in any cycle C, then C \ {e}
would be a path from u to v. Concluding, e is not contained in any cycle.

Suppose now e = (u, v) is not contained in any cycle. Then there is no path from u to

v without e, for e would lie in a cycle otherwise. The only path from u to v is then

the edge e on its own. Hence in G \ {e} there is no path from u to v, so G \ {e} is

unconnected by proposition 2.6. Thus, e is a bridge.

We may assume the algorithm forms a chain decomposition in the right manner. Then

the following theorem expresses the correctness of the algorithm by Schmidt.

We will use the following notation in the proof of the theorem: if T is a tree rooted

at r and vertex x ∈ T , then we denote by T (x) the subtree of T containing x and all

descendants of x (independent of the edge orientations of T ).

Theorem 5.4. Let C be a chain decomposition of a connected graph G. Then an edge

e in G is a bridge iff e is not contained in any chain in C.

Proof. Suppose e is a bridge. Note that we form the chains from directed cycles of type

C(a) where a is the only back edge in the cycle, as stated in the pseudo algorithm and

lemma 5.2. As a consequence, if e were contained in a chain in C, then e is part of a

particular cycle C(b) where b is the back edge starting the chain. This cannot be the

case according to lemma 5.3, so e is not contained in any chain in C.

Now suppose e is an edge that is not contained in any chain in C. Note that e

cannot be a back edge as by the definition of the chain decomposition, each back edge

is contained in a chain. Thus, e is a forward edge and it is contained in the DFS-tree T

used for computing C. Let T be rooted at r and let e = (u, v). As e is directed towards

r, T (u) does not contain e and we have T (u) 6= T . Furthermore, we will show there is

no back edge with exactly one end in T (u):

Suppose there is at least one back edge with exactly one end in T (u). As back

edges are directed away from r, its end point should be in T (u). Suppose b1, . . . , bp are

such back edges. We first show that these back edges are traversed before the back edges

that lie entirely in T (u) in the formation of the chain decomposition:

Suppose for the contrary that back edge c = (cl, cr) lies entirely in T (u), back edge

b = (bl, br) only has its end point in T (u) and c is traversed before b in the creation of

the chain decomposition. Then cl has a lower DFI than bl, because clearly cl 6= bl. In

addition, all vertices in T (u) have a lower DFI than bl by the property of a preorder,

given in lemma 3.25. However, then we could add b to T (u) in the formation of T at

a moment that we consider edges starting in T (u) (as composed so far), unless b would

form a cycle in T created so far. As bl is not yet used in T , b does not form a cycle in

the tree so far. Thus, we should add b to T while considering vertices in T (u), but we

did not do this. This contradicts the assumption that T is a DFS-tree. Therefore, b is

traversed before c. In this way, we can prove that all back edges b1, . . . , bp are traversed

before all back edges entirely in T (u).
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Without loss of generality, assume now that b1 is the first edge of all b1, . . . , bp that

is traversed in the making of the chain decomposition. We conclude that e ∈ C(b1), for

C(b1) exists and b1 could never form a directed cycle without e. As none of the vertices

in T (u) have been traversed before (as none of the back edges towards T (u) have been

yet, just as none of the back edges inside T (u)), we can traverse C(b1) at least up to

v, as none of the vertices inside T (u) have been visited. Thus, assuming there are back

edges b1, . . . , bp, then e is in a chain, which contradicts the assumption.

We go back to the proof of the lemma itself. We now have that e = (u, v) is a

forward edge and there is no back edge with exactly one end in T (u). Removal of e from

G then results in a disconnected graph, as there is no edge that connects a vertex in

T (u) with a vertex in T \ T (u) (6= ∅). Since there is only one such forward edge (by the

definition of a tree and its descendants) but that one is removed (e is removed) and we

proved there is no such back edge. Hence, e is a bridge.

5.1.3 Proofs: Complexity of the algorithm

Lastly, we prove the complexity of the algorithm by Schmidt:

Theorem 5.5. Let G be an undirected connected graph having n vertices and m edges.

All bridges of G can be found by BRIDGES in time O(n+m).

Proof. We will show that all elements of the pseudo algorithm need at most O(n + m)

time. First note that lines 1-3, 4-8 and 9 are executed completely sequentially, so the

time complexity of BRIDGES is the sum of the time complexities of those individual

parts.

We begin with the time complexity of lines 1-3. To compute a DFS-tree T , we

need to traverse all vertices precisely once and we need to keep track of ∂(T ) in the

creation of T . This means we need to add and remove edges to ∂(T ) each time we add

a new vertex and edge to T . Fortunately, this is bounded in the following sense: if an

edge e is removed from ∂(T ), it will never be added again to ∂(T ). We remove e in two

cases: if e is added to T or if some other edge is added to T whereby both ends of e lie in

T . In both cases, both ends of e lie in T for the rest of the computation of T . Therefore,

e will never be in ∂(T ) again, as ∂(T ) consists of the edges having precisely one end in

T . Thus, each edge will be added to ∂(T ) at most once and will be removed from ∂(T )

at most once. Furthermore, we add precisely n − 1 edges to T and never remove one

from T . Thus, the total time to compute T is O(n + m), as expanding T takes O(n)

and keeping track of ∂(T ) takes O(m). Besides, we save the DFI of the vertices. The

creation of the DFI takes O(n) time, as we could see the DFI as an array of vertices in

the order in which they were added to T . To orient the edges in G clearly takes O(m)

time. Thus, lines 1-3 take O(n+m) time.

Now consider lines 4-8. Line 4 takes clearly at most O(n + m). Lines 5 and 6

consist of a nested for loop, usually taking a lot of time, but this is not the case here.

As there are m − n + 1 back edges and each back edge (in line 6) will be examined
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only once (when its starting point is considered in line 5), the time purely needed in

lines 5 and 6 is O(n + m). We need to check each vertex once and further need to do

something for every back edge (but not for each combination of a vertex and a back

edge, fortunately). The time spent in lines 7-8 in total (after the whole execution of

lines 5-8) is also O(n+m), as each edge is considered in at most one chain and the same

holds for each vertex. We conclude that the total time spent in lines 5-8 is O(n + m)

too.

The time needed in line 9 is clearly O(m), as we only need to check which edges

were visited, but this has already been computed. Last, note that the space required

for BRIDGES is also no more than O(n+m), as G, T , ∂(T ), the DFI and the arrays of

forward edges, back edges, visited nodes, visited edges and bridges are all bounded by

space up to the size of n+m. Thus, the total time needed for the execution of BRIDGES

is O(n+m).

The time complexity of the algorithm does not have to be optimal, for theoretically

there could be an algorithm enumerating all bridges in O(m). Note that the output of

the bridges takes O(m) time, so this is a lower bound. However, in connected graphs:

n ≤ m+1, so in practice, the time complexity of the algorithm by Schmidt approximates

O(m).

5.2 Merging multiple HV/MV transformers

Hitherto we limited ourselves to parts of the MV network having only one HV/MV

transformer as supply point and in addition containing all nodes and edges connected

to the HV/MV transformer (via a path). Then we can guarantee that this part of the

network, called a substation area, is connected. The configuration of that part of the

network is connected too, making it a spanning tree. In this way, we have that the

substation area has the right properties to use the observations as presented in chapter

3 and in the previous subsection. However, it adds some extra information if we observe

multiple substation areas at once. We first explain how and give the solution to this

wanted generalization afterwards.

The relevance of considering multiple substation areas at once

Although the given approach for one substation area is an appropriate starting point,

we would like to consider multiple substation areas at once, as this gives us additional

information and so generates better solutions. This is because there are additional

(open) cables between two different substation areas (section 1.2 described the layout of

the MV network in general). Whilst substation areas cannot be connected to each other

to avoid dangerous voltage situations, we could connect a substation area to a part of

another substation area, if we decouple this part from the rest of that substation area.

For this purpose, we can use the optional cables between the substation areas.
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The existence of these optional cables and the possibility to change the ‘classifi-

cation’ of the substation areas truly increases the reliability of the network, as we have

more options to solve a problem than purely within the area where the problem arises.

For example, if an edge e breaks down in substation area A and there is no appropriate

switchover within area A (maybe there is no switchover at all or only a switchover giv-

ing unsuitable voltages or currents), there may be an appropriate solution using another

substation area B (maybe there is sufficient remaining capacity in area B to feed some

nodes in area A). Thus, the potential use of these optional cables between substation ar-

eas could really increase the reliability. If we consider these cables in our final algorithm,

we ultimately give better insights in the reliability, as our results are more informative.

The solution: merging HV/MV transformers

Fortunately, finding the solution to combine multiple substation areas is not that hard.

As Andrei and Chicco (2008) [6] describe, we can simply merge all supply nodes into a

single node in the reduced network. In other words, we define all HV/MV transformers

to be one and the same HV/MV transformer. Then the entire MV network is just

one connected substation area and we can use all results as given before on the entire

network at once.

Only the load flow computation still needs to use the original network, as different

HV/MV transformers could have different voltage levels that cannot be combined into

one value of the artificial ‘super’ HV/MV transformer. To ensure the correct computa-

tion of the load flow, we transform a solution of the new network to a solution of the

original network. As we do not delete edges in the new network (only merge the HV/MV

transformer node to just one node), we can use the same edge numbers in both networks

to identify the edges back and forth in both networks. In this way, we can use the graph

algorithms that use spanning trees on the new network, but calculate the load flow over

the unique corresponding original network.

Below we give an example to make the merger comprehensible. Afterwards, we

clarify the process in mathematical terms. Finally, we prove the correctness of this

aggregation.

Example 5.6. We display a small MV network having three HV/MV transformers with

node numbers 1, 2, 3. The MV network consequently falls apart in substation area (1)

with nodes 1, 4, 5, substation area (2) with nodes 2, 6, 7, 8 and substation area (3) with

nodes 3, 9, 10, 11. There are connections between the different substation areas, namely

the optional edges 10, 11 and 12 (indicated with a dotted line). Edge 6 is an open edge

too, but lies entirely in substation area (2).

The bold edges together form the actual configuration of the network. Notice that in

each substation area the corresponding part of the configuration is a spanning tree.

Further note that each load bus (a node not being an HV/MV tranforms, middenspan-

ningsruimte) is connected via a path to precisely one HV/MV transformer.

Lastly, we perceive that the entire MV network (including the open edges) is connected.
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This is not always true in general, for example the network without edges 10 and 11 is

another possible MV network, in which we have two unconnected components.
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We see that the existence of the open edges between different substation areas really

increases the reliability of the network. For example, if edge 2 breaks down, we can feed

node 5 if we turn on edge 11. Another example: if edge 7 breaks down, we could either

switch edge 11 or edge 12 to provide each node with current. Of course, we should first

check the results of the load flow calculation to see whether these switches are indeed

acceptable.

In the following graph, we display the aggregation of the three HV/MV transformers.

The node ‘S’ is the merger of the HV/MV transformers 1, 2 and 3 in the previous graph.
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First note that no edge is removed or added with respect to the previous graph, so we do

not need to rename the edges. Only edges ending in an HV/MV transformer now have

a common end ‘S’, the artificial ‘super’ HV/MV transformer. If we save the original

and new ends of the edges, we can easily switch between the two representations in a
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bijective manner.

The bold edges still represent the actual configuration of the network (although the new

graph is partially artificial). Note that the configuration is a spanning tree in this new

graph.

Check yourself that the given switchovers using the original graph still suffice in this

new graph.

Mathematical remarks

We first observe the new graph from a mathematical viewpoint. We prove the correctness

of the merger afterwards.

By the merger, there cannot arise loops, as the original graph has no loops and

there may not exist edges connecting two different HV/MV transformers (such an edge

would form a loop in the new graph). The merging could create additional parallel

edges, although it cannot create new parallel edges that are both in use. As the latter

means there exist a vertex v directly connected to two different HV/MV transformers.

As there may not exist a path between two HV/MV transformers, at least one edge

connecting v and an HV/MV transformer should be open. Hereby the configuration in

the new graph cannot have parallel edges, if we assume the configuration in the original

graph has none.

Suppose a given MV network has h HV/MV transformers. Then the network

consists of h substation areas. The actual configuration consists of the h spanning

trees coming from the substation areas. Suppose the entire network has n nodes and

substation area i has ni nodes. Then the number of edges in the actual configuration

equals
∑h

i=1(ni − 1) =
∑h

i=1 ni − h = n− h. The number of edges in the configuration

in the new graph is still n − h, although the number of nodes in the new graph equals

only n− h+ 1, as h HV/MV transformers are replaced by one substation S.

Note that the graph-theoretical name for the actual configuration in the original

graph is a spanning forest, meaning a graph whose components are trees. (The classical

definition of a forest as in Bondy and Murty (2008) [1], section 4.1, is just an acyclic

graph.) A forest in the MV network has the additional property that each component

contains precisely one HV/MV transformer. Now we can express the correctness of the

merger of the HV/MV transformers in the following lemma:

Lemma 5.7. Let G be an undirected graph representing an MV network having h

HV/MV transformers. Let the actual configuration of G be the spanning subgraph C.

Let G′ be the graph created from G by merging all HV/MV transformers into one node

called S. In addition, let T be the graph of the edges of C in G′. Then C is a spanning

forest such that each component contains precisely one HV/MV transformer iff T is a

spanning tree of G′.

Proof. Suppose C is a spanning forest such that each component contains precisely one

HV/MV transformer. Then C contains n − h edges as argued before and T contains

n−h edges too. G′ contains n−h+1 vertices in total. As each component of C contains
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precisely one HV/MV transformer and in G′ all HV/MV transformers are merged into

S, all nodes in T are connected (via a path) to S. Thus, T is connected. By proposition

2.13 (a) and (b), T is a spanning tree of G′.

Now assume T is a spanning tree of G′. Then T contains n − h edges as G′ has

n−h+1 vertices. Hence C contains n−h edges too. When S is split into the h HV/MV

transformers (from T to C), we could destroy cycles in G′. However, this process cannot

create new cycles in G that did not exist in G′, because we only break connections

between points and add no new ones. Therefore, as T does not contain a cycle, C does

not either. By definition, C is a spanning forest and further C consists of h components

as it has n − h edges (exercise 4.1.4 in Bondy and Murty (2008) [1]). T connects each

node to the substation node S, so in C each node is connected to at least one HV/MV

transformer. As there are h HV/MV transformers in C and h components in C too,

each component should contain precisely one HV/MV transformer to connect each node

to an HV/MV transformer.

The final conclusion: if we find all spanning trees of the new graph, we know precisely

all permissible configurations of the MV network (by transforming the spanning trees

back to special forests in the original graph).

5.3 Adjusting the initial configuration to make it a span-

ning tree

This last section anticipates a problem that we will encounter in the next chapter,

chapter 6, Implementation in R & Practice. The problem is as follows: although the

initial configuration of the MV network should be a spanning tree after the merger of

the HV/MV transformers, as described in the previous section, it is not a spanning

tree in practice. The same holds for some part of the MV network consisting of a

number of substation areas. Unfortunately, in several cases, the initial configuration is

(1) not connected, (2) contains cycles, or both. To be able to use the algorithms and

mathematical ideas as described in chapter 2, chapter 3 and this chapter, we need the

initial configuration to be a spanning tree. In theory, it should be too and therefore we

only search for spanning trees as reconfigurations of the network.

In this section, we describe how we could solve issues (1) and (2). We treat the

mathematical side of the issues here, but treat the more practical side in the beginning

of the next chapter. Note that from now on we mean by ‘initial configuration’ the con-

figuration of the network in the new graph originating from the merger of the HV/MV

transformers.

Solving problem (1): Find the separate components

If (1) is the case, the initial configuration contains unconnected parts, called components.

In practice, the configuration consists of a few small components and a much larger com-

ponent. Of course, it is very troubling if large parts of the network are disconnected
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from any HV/MV transformer and receive no electricity as a result. Therefore, this is

generally not the case. Consequently, as all but one component is small, it is accept-

able to remove these small parts from the graph to ensure the initial configuration is

connected.

To be more specific, we completely remove all nodes and edges in these small

components from the graph representing the MV network. Then these parts are deleted

from the initial configuration too. The program R has a built-in function called clus-

ters that returns all components of a graph given by their vertices. This function is

in the package igraph. We do not discuss the implementation details of this function,

but now we know problem (1) is relatively easy to solve using some built-in function of R.

Solving problem (2): Make the connected graph acyclic

If problem (2) holds, we need to delete some edges from cycles to make the initial config-

uration acyclic. However, we may not disconnect the initial configuration upon deletion

of these edges, something what could occur. This requires some care, for which we need

to use a special set of cycles of the initial configuration, for example fundamental cycles.

Then we need to choose a suitable edge in each cycle to delete from the configuration.

Such a method would work, if we have an efficient procedure to find a so-called cycle

basis, for example of fundamental cycles, and delete edges from a semi-ear decomposition

computed from the cycle basis. Of course, this is not immediately clear without giving

the necessary definitions, but we could prove that this method works, using the theorems

and proofs in the master thesis by Michiel van der Meulen (2015) [20]. In particular,

we initially implemented this method in R and it gave indeed correct results. However,

it turned out to have a slow performance. We explain why we could not conveniently

speed up this implementation using a cycle basis.

If we want to make use of a built-in function in R to find a cycle basis, the only

suitable function is fundCycles in the package ggm (an extension of the package igraph).

This function has a slow performance: it takes almost 40 minutes to run on the entire

MV network of about 60.000 cables. The only other option to use cycle bases is to

implement a function to find a cycle basis ourselves. It should be efficient as it has to

function on the entire network. We could do this, but it could be quite time consuming

to make the function fast. Moreover, it is not the topic of this thesis. It is only necessary

because the assumption of the initial configuration is not entirely correct and we want

to know the results of our final algorithm on the MV network. Luckily, there is another

method to turn the graph in an acyclic connected graph, i.e. to make sure that the

initial configuration is a spanning tree. This method employs a breadth-first search on

the graph.

We could perform a breadth-first search, as the graph is already made connected

after solving problem (1). We begin this breadth-first search in the artificial substation

node S (as defined in the previous section). First of all, such a tree search will always

end in a spanning tree as the graph is connected, as we mentioned in section 2.2. This
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breadth-first search is sufficient for our purposes, as we need the initial configuration to

be a spanning tree, but we do not really need to know the cycle basis. Finding the cycle

basis was a means, not an end. Furthermore, a tree search is very efficient, as we need

to visit every node only once. As proved in section 5.1, the time complexity of such a

search is linear, i.e. it takes O(n+m) time.

The reason why we perform a breadth-first search instead of a depth-first search is

that the initial configuration of an MV network resembles a BFS-tree in all likelihood.

The electricity distribution network seems to be more reliable if the current is distributed

into multiple branches from the source (an HV/MV transformer). If the current had

to go through a long piece of consecutive cables before it is further distributed, the

network would be more susceptible to major outage if a cable near the source breaks

down. It seems preferable to better distribute the cables and hence the current. This

idea corresponds to a breadth-first distribution.

All in all, if we conduct a breadth-first search on the connected graph, we make

the connected graph acyclic and it complies with the assumption. Furthermore, this

procedure is fast and it seems to match the shape of an electricity distribution network.





Chapter 6

Implementation & Overview

This chapter treats with the implementation of a solution to the m− 1 problem in the

program R. It also presents the link between the previous chapters, in particular how

the given algorithms and reductions are interrelated in the eventual algorithm.

First, we present the preparation of the MV network and the initial configuration,

which is required before running the actual algorithm to check the m − 1 principle,

hereinafter referred to as ‘m − 1 algorithm’. Second, we reflect on the combination of

the reductions (k and Andrei-Chicco) and algorithms (Gabow and Myers, Schmidt).

Thereafter we present an overview of the final algorithm and explain the steps therein.

The last section addresses some other practical matters regarding the implementation

We try to explain the design of the code without explicitly presenting the code.

In case you are interested in the actual code, please contact the author. This chapter

provides the overall idea of the implementation, but avoids focus on the implementation

details. On the other hand, we present some facts about the implementation in R in the

last section.

Two notational remarks: instead of HV/MV transformer, we often write in the code

‘OS’, the abbreviation of the Dutch name ‘onderstation’. Both HV/MV transformer

and OS refer to a slack bus of a part of the MV network, or equivalently, a connection

of the MV network with the high voltage network.

Similarly, by ‘MSR’, the abbreviation of the Dutch name ‘middenspanningsruimte’,

we refer to a load bus in the MV network. For convenience, we call every node that

is not an OS an MSR (also the so-called sockets, in Dutch ‘moffen’, that are strictly

speaking not an MSR). Mostly, an MSR is a connection between the MV network and

the low voltage network. In fact, an MSR is a slack bus of the low voltage network.

However, this last note is not within the scope of this project.

6.1 Preparing the MV network and initial configuration

As noted before, although the initial configuration of the network should be a spanning

tree (after the merger of the HV/MV transformers as described in section 5.2), this is
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generally not the case. After the merger of the HV/MV transformers, the initial config-

uration might (1) not be connected, (2) contain cycles, or both. Section 5.3 described

how to solve these problems mathematically. This section presents all preparation steps

in the implementation in R. The R script ‘Select MS, prepare data’ performs this prepa-

ration. First, we note the required conditions to the input data. Second, we display an

overview of the preparation of an MV network and we clarify each step afterwards.

6.1.1 Required conditions to the input data

We need the following information anyhow to be able to extract the relevant information

in the m− 1 algorithm: a list of unique edges (the cables) in the MV network of which

we know the ends, i.e. the nodes. The edges and nodes should have unique names to

be able to distinguish them and avoid computation of ambiguous results. For the data

of Alliander, we take the so-called ‘rail keys’ of the nodes as unique node names. The

enclosure number (‘behuizingsnummer’) of the nodes, which is used for the link with

other information tables, does not guarantee this uniqueness property. We identify the

edges by giving them a unique number.

Furthermore, we need to know which cables are in use (closed) or not (open).

Then we can derive the configuration of the network. Graph-theoretically, the above

provides sufficient information already.

On the other hand, we need to check the physical conditions of a reconfiguration,

through the computation of the load flow. Hence we need many different physical

values. For the cables, we need to know the impedance and (absolute maximum) current

capacity. For the OS’s (a part of the nodes), we need the voltage value. For the MSRs

(the remaining nodes), we need to know the values of the power consumption, the

minimum voltage capacity and the maximum voltage capacity.

To cut the MV network into smaller, appropriate areas, we need to know the

names of the substation areas (in Dutch ‘OS-gebieden’). In particular, we need to know

to which substation area each edge belongs. Then we can select all edges from certain

substation areas if we want to. In practice, we either select Alliander’s MV network

completely or we select the MV cables of any number (and combination) of substation

areas. Considering smaller parts than substation areas is not that interesting for this

research (in that case the MV network is too small). For Alliander’s MV network,

the ‘route name’ of each edge provides the substation area name the edge belongs to.

Some rows of an example table comprising the required information to prepare the data:

Edge From rail key To rail key Grid opening Route name

1 6 002 809 10-1RA1 6 005 364 10-1RA1 closed AMO 10-1V2.14

2 6 018 134 10-1RA1 6 005 364 10-1RA1 open AMO 10-1V2.14

3 6 003 030 10-2RA2 6 005 234 10-1RA1 closed AMO 10-1V2.02

4 6 008 656 10-2RA2 9 006 972 10-1RA1 closed KUN 10-1V11

Note that this table does not present the physical conditions of the initial network.
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Lastly, we need to know the type of node each rail key corresponds to: OS or MSR.

This information is also not yet present in this example table. In the case of Alliander,

we use the data table of all MV edges as present by IntellEvent.

6.1.2 Overview of the preparation functions

We present an overview of the main preparation function. Afterwards, we elaborate on

some steps in the function. The main function uses an auxiliary function, which we

illustrate thereafter.

Main preparation function: SelectMS

Input: names of substation areas (optional)

1. Create data table of all MV edges: edges

2. Create data table of all MV nodes: nodes

3. Extend edges with type of nodes from nodes: OS or MSR

4. Extend edges and nodes with (fictional) physical values

Names of substation areas given?

5a. Limit edges to substation areas

5b. Split edges in north, west, east

6. Call auxiliary preparation function with input edges and nodes

Output: results of auxiliary preparation function

yes
no

Explanatory notes to the overview of the main preparation function:

• The data table edges is similar to the example table given above. It consists of at

least the columns in the example table. The data table nodes consists of the node

names (in Alliander’s case: the enclosure numbers, although the rail keys would be

better) and the function of the nodes: OS or MSR. As already mentioned, edges

results from the project IntellEvent. Furthermore, nodes comes from ‘BAR GIS’.

• We could consider edges and nodes as input data instead of data that is formed

in the main preparation function (in steps 1 and 2). We could change the function
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to that shape. The reason that we create the data tables only in the function

is that the data tables can be automatically loaded from a database and then

consist of the most recent state of the MV network. The only input variable of the

function is therefore a string of substation area names (sometimes simply called

OS names). This variable is optional, so we could omit it too.

• Step 3 extends edges with the type of nodes from nodes in the sense that we add

the type of node to each end of each edge. More specifically, we append edges

with two columns ‘From group’ and ‘To group’ to display the type of the first and

second end of each edge, respectively.

• Unfortunately, the values of most for the physical quantities are not yet present in

the data table by IntellEvent. Thus, we must come up with the values ourselves.

Of course, we try to do this realistically, but this should be improved if we want

to use the algorithms in practice (although this does not effect the correctness of

the algorithms).

• Step 5a easily selects all edges lying in specific substation areas using the given OS

names and the route names in edges. Step 5b splits edges in three parts based

on three strings of OS names, each representing all substation areas in each of the

three regions of Alliander’s MV network. north, west and east are mutually

disjoint and together cover the whole MV network.

We need to split the whole network in smaller parts because the network (consisting

of about 60.000 edges) is too large to work with in R. For example, we need to

use an n × n adjacency matrix as input in a breadth-first search to prepare the

spanning tree in the auxiliary preparation function (step 7 below), but matrices

having dimensions larger than about 25.000 × 25.000 cause problems in R. Note

that n < m but they differ only several thousand.

We split the network in these three parts (north, west and east) because these

three parts are mutually unconnected. The parts are also quite evenly distributed

in terms of size and they are clearly distinguishable geographically. As the three

parts are mutually unconnected, the results of the parts together are equal to the

results of the MV network in its totality. Finally, note that we separately perform

step 6 for all three parts with associated edges.

The number of nodes n, the number of edges m and the number of optional edges r in

the three geographical parts of the whole MV network are:

Region n m r

north 9300 10200 900

west 22500 25300 2800

east 21400 24000 2600

Total 53200 59500 6300
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Note that the precise numbers change over time: by work on the MV network some

pieces of the network may be disconnected and temporarily removed from the network.

However, this is hardly ever the case for larger parts of the MV network.

On the next page we display the auxiliary preparation function, which is used in the main

preparation function. Below, we present the (first) explanatory notes to the overview of

the auxiliary preparation function:

• Step 1 removes edges from the high voltage network that are incorrectly present

in the MV network.

• Step 2 merges all OS’s into one OS called ‘OS’, as described in section 5.2.

• Step 3 removes open edges having an end of degree one from the network, as these

edges disconnect the configuration of the network. In most cases, such edges exist

because we limit the MV network to some part consisting of a number of substation

areas. If a neighbouring substation area is not selected in this network, then some

of the open cables in the network are connected to this substation area. However,

as we did not select the substation area, these open cables are connected to a single

node and disconnect the graph. We call such edges open edges at the ends of the

network.

• Similar to the opening of an edge of each cycle in what will become the spanning

tree, we open parallel edges (in step 4) to ensure the configuration of the network

does not contain parallel edges, which are a special kind of cycles. Of course, we

keep one of the parallel edges closed if there was at least one parallel edge in use.

• Step 5 derives three data tables and an array from edges. The m − 1 algorithm

needs these inputs, except for edges red. We briefly explain the usefulness of

each part. For the graph-theoretical part of the m− 1 algorithm where we search

for spanning trees and bridges, among others, we need an abstraction of the MV

network in which we represent the edges and nodes as consecutive numbers. For

this purpose we defined transedges, the abbreviation of ‘translated edges’. We

save edges red because it directly corresponds to transedges, only having the

original node names. Where edges red has one merged OS, edges org still has

all original node names. edges org is not only useful to know the original nodes,

but also includes the physical values of the edges needed in the load flow computa-

tion. tree is just an array consisting of all edges in the initial configuration (that

will be a spanning tree after step 7). Although edges red and edges org actu-

ally also contain the column ‘Grid opening’, tree is an easy way to represent the

configuration (spanning tree) of the network. It can easily be adapted to another

spanning tree (in the m− 1 algorithm) too.

• We already explained the need for steps 6 and 7 in section 5.3. We presented the

mathematical solutions to the problems there too.
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Auxiliary preparation function: PrepareEdgesTreeEtc

Input: edges, nodes

1. Remove edges that connect two OSs from edges

2. Merge all OSs into one OS in edges

3. Remove open edges at the ends of the network from edges

4. Open parallel edges in edges

5. Derive four useful parts from edges (first four in table below)

6. Delete the small unconnected components in tree from all parts

7. Open an edge from each cycle in tree

8. Make a table of the network’s MSRs, including physical values: msrlist

9. Make a table of the network’s OSs, including physical values: oslist

10. Make a table of the network’s MV links between substation areas: osgraph

Output: list of seven parts:

Part’s name Features

edges red table of edges with their merged ends (MSRs given by their

so-called railkeys, OSs all given by same name ‘OS’)

edges org table of edges with their original ends (given by railkeys),

including values of physical quantities ‘Impedance’ and

‘Current Capacity’, and including the route names

transedges table of edges having simplified node names: numbers 1, . . . , n,

transedges corresponds to edges red

tree array of edge numbers of edges in initial spanning tree

msrlist table of the network’s MSRs (given by railkeys), including

values of physical quantities ‘Power Consumption’, ‘Minimum

Voltage Capacity’ and ‘Maximum Voltage Capacity’

oslist table of the network’s OSs (given by railkeys), including

physical ‘Voltage Value’

osgraph table of the network’s MV links between substation areas
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• In the linear load flow computation, part of the m− 1 algorithm, we need lists of

MSRs and OSs including associated physical values. That is why we execute steps

8 and 9.

• As mentioned in subsection 3.3.1, we want to determine only the useful k reductions

to limit the number of k reductions in the m − 1 algorithm. These useful k

reductions arise from the combinations of
⌈
k
2

⌉
optional edges within substation

areas and the combinations within neighbouring substation areas. To be able to

compute these useful combinations, we need a table of links between substation

areas. This is osgraph, which we make in advance in this preparation function.

In particular, osgraph consists of three columns: two columns to identify the

substation names (OS names) and a column consisting of the edge number of the

MV edge that connects the areas.

A last important note concerning the different parts (results of the preparation functions)

is the uniformity of the edge numbers: the edge numbers in edges red, edges org and

transedges all concern the same edges. Only the depiction of the nodes is different.

Likewise, the edge numbers in tree and osgraph correspond to the same edges. In

this way, we can easily swap between different representations of the MV network (the

original network or the mathematical network where we merged the OSs). In particular,

the edges are always identified by the unique edge numbers 1, . . . ,m.

The remainder of this chapter focuses on the actual implementation of the m− 1

algorithm, i.e. it assumes that we know the required data and it treats the actual

computations to check the m − 1 principle. Keep in mind that the input data of the

m− 1 algorithm is the output data of the main preparation function given above.

6.2 Combination of reductions and algorithms

Before we present the overview of the m − 1 algorithm in the next section, we reflect

on the combination of the reductions and mathematical algorithms that are part of

the total algorithm. Although it is probably clear that we need the reductions (k and

Andrei-Chicco) and the algorithms (to find all spanning trees, to find all bridges), it is

not immediately clear how we combine these parts. This section argues why we came

to order these mathematical tools in the final algorithm in the specific way we did.

First, we reason about the order of the spanning tree listing, k reductions and

bridges. After an intermezzo about the Andrei-Chicco reduction applied to Alliander’s

MV network, we continue the reasoning on the order of the mathematical tools by adding

the Andrei-Chicco reduction. Last, we mention some consequences of the given order

and explain how to deal with those.
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6.2.1 Combination of spanning tree listing, k reductions and bridges

As we proved in section 3.2, the number of spanning trees grows very rapidly with the

number of edges for a fixed number of nodes. As the table of Alliander’s MV regions

in the previous subsection (subsection 6.1.2) depicts, the number of nodes and edges

in Alliander’s MV networks is not suitable for the use of a spanning tree enumeration

algorithm (in our case Gabow and Myers’ algorithm) at once. If we try to compute

the number of spanning trees of the northern region of Alliander’s MV network for

example, using our implementation in R of Kirchhoff’s theorem (theorem 3.8), then the

implemented function returns ‘Inf’. This means that the number of spanning trees is

too large a number for R. Thus, before we can apply Gabow and Myers’ algorithm, the

network must be reduced significantly.

We begin with zooming in on the use of the k reduction procedure. As explained

in subsection 3.3.1, the k reductions ensure that we enumerate only suitable spanning

trees of the MV network, instead of all spanning trees. As the number of spanning trees

grows root exponentially with 2m − 2n, the k reduction method is very appropriate

if it reduces the difference m − n significantly. This is the case for a small k and

a large initial m − n, because the number of edges reduces to n − 1 +
⌈
k
2

⌉
in a k

reduction (and n does not change). k ≤ 6 in Alliander’s case and the initial m − n is

in the range of thousands, as can be seen in the table in the previous subsection. As a

consequence, the k reduction procedure is very appropriate for Alliander’s MV network.

The disadvantage of the k reduction method is that it requires many iterations in which⌈
k
2

⌉
optional edges are added to the initial spanning tree. We need all these iterations

to be sure we have examined all useful spanning trees and hence all possible switchover

combinations. Fortunately, we can manage this number of k reductions by using the

osgraph, so examining only the informative combinations of optional edges. These are

the combinations within neighbouring substation areas.

Let us take a look at Schmidt’s bridge enumeration algorithm. The use of this

algorithm is to determine the graph-theoretically unswitchable edges beforehand. This

has two advantages. First of all, we can distinguish graph-theoretically unswitchable

edges from edges that are unswitchable because of the load flow (the exceeding of a

voltage or current capacity). Second, if there are no edges that do not have a switchover

because of the load flow, then the m − 1 algorithm terminates before the execution

of all k reductions and we save computation time. We do not need to search for non-

existing switchovers in the k reductions, for we computed the bridges (graph-theoretically

unswitchable edges) beforehand. As follows from the above, we should perform Schmidt’s

bridge enumeration algorithm before the k reduction procedure (and thus before the

spanning tree listing), for then it could save computation time in the k reductions.

The combination of the k reduction procedure and two algorithms is a good start

to solve the m − 1 problem, but it is still insufficient to solve the problem for large

areas of Alliander’s MV network. The computations in each k reduction still take too

much time. We cannot obtain more information or save computation time by deploying
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the spanning tree listing, k reduction procedure or bridge enumeration more than once

(except that we do use the spanning tree enumeration algorithm in each k reduction, but

we took this into account already). Another reduction is indispensable and we will use

the Andrei-Chicco reduction. Adding this reduction is more complicated, for it could

be deployed at different places in the m − 1 algorithm and could be used more than

once. We first assess the Andrei-Chicco reduction applied to the MV networks in more

detail. Hereafter we discuss at which stages to add the Andrei-Chicco reduction in the

final algorithm.

6.2.2 Considering the Andrei-Chicco reduction for Alliander’s MV

network

As mentioned before, the number of edges and nodes are still too large if we only use

the k reduction. Using the Andrei-Chicco reduction, we could significantly reduce these

numbers. We present the results of the Andrei-Chicco reduction applied to the three

large regions of Alliander’s MV network below. Note that we abbreviate the Andrei-

Chicco reduction by ‘ACR’. We present the reduction factors of n and m too, abbreviated

by rf(n) and rf(m), respectively.

Region n m nacr macr rf(n) rf(m) comp. time

north 9300 10200 800 1500 11,6 6,8 3 sec

west 22500 25300 3000 5600 7,5 4,5 13 sec

east 21400 24000 3400 5900 6,3 4,1 11 sec

Total 53200 59500 7200 13000 7,4 4,6 27 sec

There are two reasons why the Andrei-Chicco reduction works well for Alliander’s MV

network. First, there are a lot of edges in branches (in Dutch ‘uitlopers’) in the MV

network. We cannot switch these edges, so we can immediately save this outcome after

the first step of the ACR. More importantly, we can delete these edges in branches from

the graph as they do not influence switchovers for other edges. The edges in branches

are in every spanning tree and due to there place in the ends of the graph, they do not

disconnect the graph upon removal.

Second, there are a lot of nodes having degree two in Alliander’s MV network.

Those nodes are located in paths (as described in section 3.3.2) that we will contract to

single edges or loops in the Andrei-Chicco reduction. As as result, we remove the inner

nodes and edges of these paths and the ACR graph is much smaller than the original

graph.

As mentioned in section 3.3.2, in general the Andrei-Chicco reduction does not

reduce each graph a lot. The large reduction is dependent on the number of edges in

branches and the number of nodes of degree two. For electricity distribution networks,

these two numbers are generally high. As shown in the table above, although the

reduction factors differ considerably between the MV regions, it is substantial in general.
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The differences between the reduction factors of n and m (in the table) are striking.

rf(n) is considerably larger than rf(m). This is because the number of residual edges

r = m − n + 1 does not change that much in the ACR. Henceforth the ratio m
n =

n+(m−n)
n = 1 + m−n

n grows after the ACR, because m−n remains more or less constant,

while n decreases. Therefore, n becomes relatively smaller than m. Consequently, the

ACR reduced n more than m.

We will explain the two causes of the little change of the number of optional

edges. First of all, there exist no optional edges in branches, as these disconnect the

initial configuration of the graph. Besides that, there is at most one optional edge in a

path of edges that reduces to one edge in the ACR, for the middle part of the path would

be disconnected otherwise. However, by reducing this path to one edge, only the optional

edge remains to maintain a comparable graph structure. The only optional edges that

we will remove in the Andrei-Chicco reduction are the optional edges in formed loops,

as we remove all these loops completely. However, there are relatively few loops among

the reduced paths.

Now that we have looked at the Andrei-Chicco reduction in our case studies, we

consider the stages where we could add it in the m− 1 algorithm.

6.2.3 Adding the Andrei-Chicco reduction

We display an overview of the final combination of the reductions and algorithms in the

m − 1 algorithm. Afterwards, we argue why we added the Andrei-Chicco reduction at

the indicated stages.

Combination of reductions and algorithms in m− 1 algorithm

Andrei-Chicco reduction of original graph

Schmidt’s bridge enumeration algorithm

k reduction

Andrei-Chicco reduction of k reduced graph

Gabow and Myers’ spanning tree enumeration algorithm

We could Andrei-Chicco reduce the graph either before we perform a k reduction or

after the k reduction. We present the benefits of both. An advantage of an Andrei-

Chicco reduction before the k reductions is that we only have to reduce the graph once

instead of in each iteration. Although the computation time of the ACR is not that

much (a few seconds as can be seen in the table on page 95), repeating the reduction in

each k reduction will eventually cost a lot of time. Therefore, we need to perform the

Andrei-Chicco reduction at least once before the k reduction procedure.
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In practice, the computation time of Schmidt’s bridge algorithm is much shorter

if we compute the bridges of the Andrei-Chicco reduced graph. However, we need to

transform the bridges of the reduced graph to bridges of the original graph. Fortunately,

there is an easy rule for that: if an edge e is a bridge in the ACR graph, then all edges

in the path that was reduced to e are bridges of the original graph. Furthermore, if an

edge e is a bridge in the original graph, then all edges in the path where e belongs to are

bridges and the path edge in the ACR graph is a bridge too. Hence, the translation of

bridges in the ACR graph to bridges in the original graph does not last long. Another

benefit of performing the Andrei-Chicco reduction before Schmidt’s algorithm is that we

have determined and deleted all edges in branches beforehand. Doing so, we distinguish

the edges in branches from other kinds of bridges, which may be interesting. Schmidt’s

algorithm would detect the edges in branches too (if we would perform it before the

ACR), as an edge in a branch is a special kind of bridge. However, it would not determine

the difference between the kinds of bridges.

An advantage of an Andrei-Chicco reduction after the k reduction is that a lot of

edges will disappear because they are in branches in the k reduced graph (important

note: they are not necessarily in branches in the original graph). Hence we do not

have to compute these edges in the spanning trees again and again, whilst they do not

produce switchover information. The reason that there are so many edges in branches is

that there are at most
⌈
k
2

⌉
≤ 3 optional edges in the k reduced graph. As a consequence,

there are few cycles in the graph and thus a lot of bridges by lemma 5.3, of which, in

practice, most of the bridges are edges in branches.

For the sake of clarity, once more note that we can only use an Andrei-Chicco

reduction after each k reduction if we Andrei-Chicco reduce the graph before the k

reduction too. For the computation time of the Andrei-Chicco reductions in the k

reduction part of the algorithm must be short enough. It turns out that if we Andrei-

Chicco reduce the graph before the k reduction too, then the computation time of an

ACR in a k reduction takes less than a second.

Based on practical considerations, namely the computation time, we embedded an

Andrei-Chicco reduction both before and after the k reductions. Last, we explain why

we did not embed more Andrei-Chicco reductions in the m− 1 algorithm.

Another Andrei-Chicco reduction before the k reductions is quite useless because

it barely reduces the MV network further. This reduction is only effective if there were

a lot of loops formed in the first ACR, but this is not the case in practice. Thus, it is a

waste of time to do this additional Andrei-Chicco reduction.

Furthermore, another Andrei-Chicco reduction after each k reduction has little

use, because the present (k reduced and single Andrei-Chicco reduced) graph is already

very small. In the extreme cases where we have three optional edges in the reduced

graph and we did not form loops in the Andrei-Chicco reduction (we would delete those

beforehand), the k reduced and single Andrei-Chicco reduced graph has one of the

following shapes:
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As no loops were formed in the ACR, the cycles in the graph have to be interconnected,

i.e. each cycle should intersect another cycle with at least one edge. As each cycle in the

graph should contain an optional edge (because the graph without the optional edges

is the initial spanning tree), a so-called cycle basis of the graph consists of only three

cycles. In particular, the cycles in the cycle basis intersect with at least one other cycle

in the basis. Working out the different ways in which such three cycles could relate

to each other, we find the four possible graphs as k reduced and single Andrei-Chicco

reduced graphs as a result. Note that we have removed all edges in branches even as all

nodes of degree two in the first two steps of the ACR.

Using Kirchhoff’s theorem (theorem 3.8) we find the number of spanning trees of

the four graphs to equal 16, 12, 8 and 4, respectively. We see that another Andrei-Chicco

reduction of such a k reduced and single Andrei-Chicco reduced graph is not necessary.

In particular, we cannot even reduce the graphs further in these extreme cases, as there

are only vertices of degree ≥ 3.

Last, note that some other graph shapes are possible. However, in those cases,

less than three optional edges remain in the reduced graph. There could be a few edges

in branches in these graphs that we actually could remove using an additional Andrei-

Chicco reduction. However, the graph will never be larger than all four shapes given

above. Consequently, they will also not contain more spanning trees.

All in all, we conclude that the combination of the reductions and algorithms

given on page 96 is the most suitable for Alliander’s MV network. The next section

(section 6.3) treats the structure of the m− 1 algorithm in more detail. It explains the

intermediate steps needed to correctly build those parts together and we explain some

other logical rules we use. Before the next section, we give some important consequences

of the chosen combination of reductions and algorithms.



6.2. Combination of reductions and algorithms 99

6.2.4 Consequences of the combination of reductions and algorithms

We mention three important mutual effects of the algorithms and reductions on each

other. Two require some further explanation and will be dealt with in separate sections

below. First of all, observe that the edge names get different meanings by Andrei-Chicco

reducing the network. Therefore, we have to take care of the edge numbering. Further-

more, both the Andrei-Chicco reduction and Gabow and Myers’ algorithm assume edge

numbers 1, . . . ,m and node numbers 1, . . . , n. As the k reduction and Andrei-Chicco

reduction could destroy this feature (initially this feature holds by the definition of

transedges), we have to rename the edges and nodes multiple times. We remember

the original edge and node names, so we could switch between the different names.

Considerations on the combinations of switchovers from ACR structures

Besides the numbering, we have to interpret the results on an Andrei-Chicco reduced

graph correctly as results on the original graph. We described how to do this in sub-

section 3.3.2. In particular, we have to combine the switchover information from the

Andrei-Chicco reduction itself and from new spanning trees correctly, as described at

the end of that subsection. This calls for a balance between computing all possible

switchover combinations at least once, but not computing such switchover combinations

again and again, whereby we increase the computation time a lot. We assure this by

adjusting the first Andrei-Chicco reduction a bit: we prevent the formation of loops and

consequently do not remove loops.

Due to the fact that we need to combine switchovers within loops with switchovers

within paths or switchovers from spanning trees, we need to store all switchovers arising

from loops and combine them with all other switchovers (as long as k is not exceeded)

thereafter. Therefore, we artificially prevent the formation of loops by reducing a path

starting and ending in the same node to two parallel edges (instead of a loop).

As a result, we only have to consider switches within paths (and not within loops)

at the first Andrei-Chicco reduction. In addition, as the ACR does not remove paths,

even though they are contracted to one edge, the paths are still saved via the categories

if we perform another Andrei-Chicco reduction. Although we have to combine the

categories of two reductions, we can still derive all switchover information within paths

using the second Andrei-Chicco reduction (in combination with both categories). This

saves a lot of work, for we only have to combine the structures of the second Andrei-

Chicco reduction instead of those of the first reduction too. Thus, in the eventual

algorithm we first perform a limited Andrei-Chicco reduction without loops and the

original reduction including loops during the k reductions afterwards.

Note that one could still think that the computation of the switchover combina-

tions occurring from loops, paths and spanning trees would take too much computation

time. It seems like this recombination of the contracted structures from the reduction

(loops and paths) is undoing the Andrei-Chicco reduction in a way. We acknowledge that

this is a point of attention. The important observation is that we save all switchovers
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found from loops, paths and spanning trees after the second Andrei-Chicco reduction,

but we try the combinations only for edges that do not have a switchover yet (or we

determined that they have no switchover at all). For trying switchovers for already

determined edges is a waste of time.

In particular, we store the switchovers in two lists: one list saves switchovers for

edges that do not have a switchover yet (so these switchovers must be unacceptable with

respect to the load flow), the other list saves switchovers for edges that already have a

switchover. We only try the combinations of switchovers for undetermined edges, but

possibly using switchovers of determined edges.

Besides, note that we only combine the switchovers found in one iteration of the

k reduction procedure. As described in subsection 3.3.1, we make sure we only compute

useful k reductions. We only use combinations of optional edges in the k reduction

that lie in the neighbourhood of each other and hence really have an effect on each

other. As the graph after the second Andrei-Chicco reduction is very small, as explained

in the previous subsection (subsection 6.2.3), the computation time of the switchover

combinations within one k reduction is not that much.

Concluding, the computation of combinations of switchovers (including the load

flow checks) takes some time. However, to guarantee the completeness of the m− 1 al-

gorithm we have to do this. The method presented above is probably the best way with

respect to the computation time. (At the very least, it is the best performing solution

in our implementation of the algorithm.)

Case distinctions and the splitting into different values of k

By the previous observation, we have to combine all kinds of combinations of switchovers

from loops, paths and spanning trees. As the number of combinations is bounded by k,

the required combinations differ for different values of k.

For example, if k = 3, then we only need to combine two switchovers both using

one switch. Suppose we can theoretically (not by the load flow) switch edge a by b and

suppose we can switch c using d. Then we could possibly switch a using b, c and d. In

that case, we use precisely three switches, which is the maximum number. However, if

k = 5, then we could combine two or three such switchovers. Furthermore, we could

also combine a switchover using three switches and a switchover using one switch. (Note

that the only earlier found switchovers using three switches come from the spanning tree

strategy. Switching within a loop or a path always uses one switch.)

Consequently, the case distinctions for combining switchovers differ per k. In

particular, the number of case distinctions increases rapidly if k grows. Therefore, we

split the eventual m− 1 algorithm for different values of k.

If k = 1, we do not need any combination of switchovers. Besides that, the cases

k = 2p + 1 and k = 2p + 2 for p ∈ N are equal, as noted before in section 2.3, as we

cannot switch half an edge and we need one more edge to close than to open. The next

section presents the different variations of the m− 1 algorithm for different values of k.
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As Alliander takes k ≤ 6, we distinguish the cases k = 1, k = 3 and k = 5.

6.3 Overview of the final algorithm

We will present the different versions of the m − 1 algorithm, depending on k. We are

only interested in k ∈ {1, 3, 5}. Although the algorithm is simpler in the case k = 1

than in the other cases, we first present the cases k = 3 and k = 5, as those algorithms

closely resemble the general approach described in the previous section. The case k = 1

simplifies insofar that we do not even need new spanning trees. We also present the case

where we do not compute the load flow, which is useful if we do not know the physical

values or if we want a quick check which edges are theoretically switchable (including

which edges to switch). The case without the load flow is similar to the case k = 1.

Before we display the overviews, we make an important remark. The goal of the

m − 1 algorithm is to find out which edges are switchable. In particular, we want to

know which edges we need to switch for the switchable edges and, for edges that are

not switchable, we want to understand why it is not. Therefore, it is sufficient to stop

searching for a switchover for a particular edge if we already have a suitable switchover

for that edge. The m − 1 algorithm is not intended for optimising which switchover is

the best one if there is at least one. (We first need to define the criteria of what is the

‘best’, of course.) One could adapt the m − 1 problem and algorithm to make it an

optimisation problem. However, this would (drastically) increase the computation time,

as we need to evaluate every possible switchover, instead of stopping if we have found

a suitable one (for each edge). Concluding, optimising the switchovers is not the topic

of this project. Notwithstanding, we optimise the switchovers in a sense: if we found a

switchover using more than one switch, we keep on searching for other switchovers using

less switches. Therefore, if we executed all k reductions (this is not always the case),

then we know there is no switchover using less switches than the finally saved switch (for

a particular edge). In this way we avoid unnecessarily cumbersome solutions. During

the execution of the algorithm, we save the switchovers in the list output, which is

updated with shorter switchovers during the algorithm too.

The two subsequent subsections present an overview of the m − 1 algorithm for

the given values of k. Afterwards, we clarify some of the steps.

6.3.1 The cases k = 3 and k = 5

We present an overview of the m − 1 algorithms for the cases k = 3 and k = 5. The

actual implementation for the two cases differs slightly, mainly in the case distinctions

for the switchover combinations (from different ACR structures as described in 3.3.2

and 6.2.4). However, the general structure of both variations of the algorithm is very

similar. We depict the overview on the next page.

First note that we neither display the computation of the load flow, nor the check

whether a voltage or current capacity is exceeded. We perform this computation every
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time we found a possible graph-theoretical switchover. If the voltage and current capac-

ities are not exceeded, we save the switchover in the list output.

Main function to check m− 1 principle: maink3 / maink5

Input: transedges, edges org, oslist, msrlist, tree, n, m, osgraph

1. Determine which edges are optional edges

2. Andrei-Chicco reduction (without loops) of transedges

3. Determine which edges are in branches using ACR

4. For original edges in reduced path in ACR: try optional edge as switchover

5. Determine which edges are bridges using Schmidt’s algorithm

6. Make initial spanning tree and list of optional edges w.r.t. ACR

7. Compute all useful combinations of
⌈
k
2

⌉
optional edges using osgraph

8. Take k reduced graph

9. Andrei-Chicco reduction (including loops) of k reduced graph

10. For original edges in reduced loop in ACR: try optional edge as switchover

11. Enumerate all spanning trees using Gabow and Myers’ algorithm

12. Take spanning tree found

13. For original edges in reduced path in ACR: try optional edge as switchover

14. Deduce switchovers using spanning tree

15. Match switchover combinations from loops and spanning tree

All spanning trees tried?

All edges decided or all k reductions executed?

16. Determine which edges are unswitchable because of voltage or current capacities

17. Determine which edges need a switchover using precisely three or five switches

Output: list of seven results:

yes

yes

no

no
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Result Features

output list comprising of (for every edge in the initial

spanning tree) the possible switchover edges

(at most k) or the statement ‘no switch

possible’, including the reason why

optional edges array of edge numbers of optional edges

(these edges do not need to be switchable)

branches array of edge numbers of edges in branches

(these edges are unswitchable)

bridges array of edge numbers of bridges

(these edges are unswitchable)

unswitchables capacities array of edge numbers of edges that are

unswitchable because of voltage or current

capacities (the load flow)

switchables 3switches array of edge numbers of edges that need

precisely three switches in a switchover

(there is a switchover using three switches and

every other switchover contains at least three

switches)

switchables 5switches array of edge numbers of edges that need five

switches in a switchover

We elaborate on the steps of the overview:

• Step 1 is easy: all edges not present in the spanning tree tree are optional edges.

The optional edges do not need a switchover.

• Note that we do not accept loops in the first Andrei-Chicco reduction (in step 2) to

avoid the computation of two many switchover combinations later on, as described

in the previous subsection (subsection 6.2.4).

• Step 3 easily determines all edges in branches by taking all edges that have category

zero after the ACR.

• Step 4 computes all switchovers using the reduced paths in the ACR. Note that

there is not always an optional edge in a path that is reduced to a path edge in the

ACR. Therefore, we only try to switch edges within a path using the optional edge

if there actually is an optional edge. More specifically, for all reduced paths that

contain an optional edge, for all original edges in the path, we try the optional
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edge as switchover. Whether or not the switchover is accepted depends purely on

the load flow computation, because the switchover is graph-theoretically correct.

• Note that we perform Schmidt’s algorithm to find the bridges on the Andrei-Chicco

reduced graph (in step 5). We translate the results back to edges in the original

graph afterwards.

• Step 6 determines the ACR spanning tree GAacr and the optional edges in Gacr,

as described in subsection 3.3.2.

• Step 7 selects all useful combinations of
⌈
k
2

⌉
optional edges in preparation of the

k reduction procedure. Subsection 3.3.1 described this principle to compute these

useful combinations. Subsection 6.1.2 defined osgraph, which is required for the

selection of these useful combinations of optional edges.

• Step 10 computes all switchovers using the loops formed in the second ACR. In the

path in the original graph corresponding to the loop there is precisely one optional

edge. Thus, for each non-optional edge in the path we can try the optional edge

in the path as switchover. More precisely, for all loops, for all original edges in the

loop, we try the optional edge as switchover. Again, whether or not the switchover

is accepted depends purely on the load flow computation, because the switchover

is graph-theoretically correct.

• As may be clear, we compute the spanning trees of the graph after the second

Andrei-Chicco reduction (in step 11).

• Step 13 computes all switchovers using the reduced paths in the second ACR. This

is similar to step 4.

• To extract switchovers from new spanning trees found (in step 14), we use the

symmetric difference of the initial spanning tree and the new spanning tree. We

explained the initial strategy in section 2.3 and this method applied to an Andrei-

Chicco reduction in subsection 3.3.2.

• Step 15 combines switchovers found in the actual k reduction by using loops, paths

and/or new spanning trees. We explained this idea and its necessity at the end of

subsection 3.3.2.

• We iterate the k reduction procedure until we have decided all edges or have

computed all k reductions. We have an optional additional parameter in the m−1

algorithm, called ‘accepted undecided’ that could change the acceptable ratio of

undecided edges. For example, if we accept that we do not know for 1% of the

edges whether they are switchable, we could define accepted undecided = 0,01.

Then we probably save computation time as we need less k reductions.
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• In step 16, all edges that do not belong to the graph-theoretically unswitchable

edges (the edges in branches and the bridges) and do not have a switchover are

precisely the edges that are unswitchable because of the physical conditions. In

other words, for all theoretical switchovers of these edges, at least one voltage

or current capacity is exceeded. If we decided the output of all edges before the

termination of all k reductions, then there are no unswitchable edges because of

the load flow.

• Step 17 determines which edges are switchable but need more than one switch.

We had already kept track of this during the execution of the algorithm so far.

• In a k reduction, it could happen that the second Andrei-Chicco reduction reduces

to the empty graph. In such case all optional edges are in loops formed during

the reduction process. In that case, we do not compute new spanning trees, for

no new ones exist. In this particular case, we immediately go to step 15. Then

we try to find new switchovers by combining switchovers from the different loops

formed (there are no switchovers by using paths or spanning trees).

• The main output of the m−1 algorithm is output, the list of edges together with

a switchover or the reason why the edge does not have a switchover. The auxiliary

function ‘ShowOutput’ displays the results of output in a clear way.

• The output switchables 5switches is omitted as output of the m−1 algorithm

for the case k = 3.

6.3.2 The cases without load flow computation and k = 1

We present an overview of the m − 1 algorithms for the cases without load flow com-

putation and k = 1. First note that in the case without load flow computation we can

switch each edge using precisely one other edge or we cannot switch the edge at all. This

follows from lemma 2.21 in section 2.3. Thus, although we do not assume that k = 1 in

the case without the load flow, we can anyhow switch every edge with only one switch,

or we cannot switch the edge at all.

The actual implementation of the two cases differs slightly, mainly regarding

whether we perform a load flow computation before we determine a final possible

switchover. Besides, step 11 below is omitted in the case without load flow computation.

Further, we do not have edges org, oslist and msrlist as input of the algorithm in

that case and the result unswitchables capacities is not an output of the algorithm.

However, the general structure of both variations of the algorithm is very similar.

On the next page, we display the overview of the m − 1 algorithms for the cases

without load flow computation and k = 1. After that, we clarify some differences

between this overview and the overview of the other cases in the previous subsection.
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Main function to check m− 1 principle: mainNoLoadFlow / maink1

Input: transedges, edges org, oslist, msrlist, tree, n, m

1. Determine which edges are optional edges

2. Andrei-Chicco reduction (including loops) of transedges

3. Determine which edges are in branches using ACR

4. For original edges in reduced loop in ACR: try optional edge as switchover

5. For original edges in reduced path in ACR: try optional edge as switchover

6. Determine which edges are bridges using Schmidt’s algorithm

7. Make initial spanning tree and list of optional edges w.r.t. ACR

8. Take k reduced graph

9. Andrei-Chicco reduction (including loops) of k reduced graph

10. For original edges in reduced loop in ACR: try optional edge as switchover

All edges decided or all k reductions executed?

11. Determine which edges are unswitchable because of voltage or current capacities

Output: list of five results:

yes

no

Result Features

output list comprising of (for every edge in initial tree)

the possible switchover edge or the statement

‘no switch possible’, including the reason why

optional edges array of edge numbers of optional edges

(these edges do not need to be switchable)

branches array of edge numbers of edges in branches

(these edges are unswitchable)

bridges array of edge numbers of bridges

(these edges are unswitchable)

unswitchables capacities array of edge numbers of edges that are

unswitchable because of the load flow



6.4. Practical comments 107

As all steps in this overview are present in the overview of cases k = 3 and k = 5, one

can look at the explanatory notes in the previous subsection if needed. Note that this

algorithm is a lot simpler than the previous.

In the cases k = 3 and k = 5, we first execute an Andrei-Chicco reduction without

loops to avoid the computation of too many switchover combinations later on. However,

we do not need to combine switchovers for the cases without load flow and k = 1, so

we perform a complete Andrei-Chicco reduction in these cases (step 2 in the overview).

Consequently, we can extract switchover information from the loops formed (in step 4).

Another difference is that we do not have osgraph as input argument in the cases

without load flow and k = 1. This is because we do not need to combine optional edges

in the k reduction, for k = 1. In these cases, the k reduction procedure consists of

adding the optional edges one at a time. Thus, there is no complication of searching for

the required combinations, as we need all optional edges precisely once.

We now explain why we do not need spanning trees in the second overview,

whereby steps 11 to 15 from the first overview all disappear. As a k reduction con-

tains just one optional edge, the reduced graph contains just one cycle (for adding an

edge to a spanning tree results in a graph having one cycle). If we execute the second

Andrei-Chicco reduction on the k reduced graph, then the resulting graph is empty.

Therefore, there are no real spanning trees of the graph and we skip all steps 11 to 15

from the first overview. As the cycle reduced to one loop during the second ACR, we can

extract switchover information using this loop (step 10 in the second overview). This is

the only step in each k reduction that brings about switchover information.

Last, note that in the case without load flow computation all edges really have an output

at the end of the last k reduction. Strictly speaking, we thus never have to finish all k

reductions completely in that case. However, it could happen that we have to terminate

almost all k reductions, which is often the case in practice. For some of the edges may

need a specific optional edge as switch and this optional edge could happen to be only

in the last k reduction.

6.4 Practical comments

This section makes some remarks with respect to some technicalities of our code and

the program R, so it is really about the implementation and not about any mathematics

or logical reasoning. First of all, we should note that we have hitherto not given all

implemented functions in our R code. We only presented the functions to prepare the

data and all versions of the main function. However, we also implemented functions

to compute the number of spanning trees using Kirchhoff’s theorem (section 3.1, par-

ticularly theorem 3.8), to compute the Andrei-Chicco reduction (subsection 3.3.2), to

compute all spanning trees using Gabow and Myers’ algorithm (section 3.4), to com-

pute the load flow (chapter 4, particularly section 4.3) and to compute all bridges using
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Schmidt’s algorithm (section 5.1). We assume one could understand those functions in

R by reading the corresponding mathematical sections about the theory. We tried to

stay as close as possible to the theory in the implementation in R. Moreover, we also

implemented some other smaller auxiliary functions.

Second, we note that we only used the graph-theoretical package igraph (with

extension ggm) in the data preparation functions. We explained this already in section

5.3. Consequently, in all other scripts and functions, we defined our own structures to

represent graphs. Generally, we represented a graph as a set of edges (edge numbers)

with given ends (nodes). More specific, a graph is represented as an m×3 matrix having

as first column the edge number and as other two columns the ends of the edge.

We did so to stay as close as possible to the theory from the mathematical arti-

cles. This gave us a certain flexibility too, as we could implement every graph-theoretical

auxiliary function ourselves, whilst igraph has only a limited number of functionalities.

In practice, our own graph-theoretical approach turned out to be fast, whilst we expe-

rienced that some functions of the package ggm consumed a lot of time.

Furthermore, it is striking how slow R computes for loops. We save a lot of time

by transforming for loops into vector (or matrix) definitions. We tried to do this if we

could. Of course, there may be room for improvement in the code. However, for the

time being it is already doing very well.

We finally note that R may not be the best computer program to compute graph-

theoretically problems. There are definitely other computer programs that have more

graph functionalities and have a better performance on these subjects. However, we

programmed our algorithm in R because the majority of Alliander’s models are imple-

mented in R. As a result, one can add the m− 1 algorithm to these models.
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Results & Conclusion

This chapter presents the results of experiments with our implementation in R on differ-

ent networks, including Allianders’s entire MV network. We use the different versions

of the m− 1 algorithms (depending on k) as described in the previous chapter, in par-

ticular section 6.3. We display results for experiments both in a current as well as a

future scenario. After displaying and explicating the results, we briefly conclude on the

functioning of the algorithms.

7.1 Results

This section deals with the direct results of the m − 1 algorithms in R on different

MV networks. First, we test the algorithms on Alliander’s entire MV network. We

simulate the physical state of this network as it is today. Besides, we take some smaller

MV networks and provide them with more marginal physical values. In this way, we

simulate a future scenario of the network.

First, we consider the different networks used and we present the physical values

chosen for each of the two scenarios. Second, we depict the results of the present sce-

nario on the entire MV network. Last, we show the results of the future scenario on the

different smaller MV networks. In this part we also go into further detail on the results’

consistency for different algorithms.

As the networks that we will use are quite large, we will not present the specific output

of one of the m− 1 algorithms on such a network. However, to give insight in the shape

of the output, we display a piece of ShowOutput(output) (as in section 6.3) of some

MV network. output is the first return argument of each m− 1 algorithm.
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7.1.1 MV networks and two scenarios

This subsection presents the MV networks on which we test our m − 1 algorithms.

In particular, it considers the entire MV network split into three parts and it defines

some smaller test networks. Moreover, we provide the physical values chosen for both

categories of networks. Hereby we distinguish two scenarios on the MV networks: a

present scenario on the entire MV network and a future scenario on the smaller MV

networks.

For both kinds of networks, we first present the factual information of the networks

and hereafter the physical state (belonging to the scenario).

Alliander’s entire MV network

Below, we display Alliander’s MV network split into three parts, which are mutually

disjoint, but together cover the entire MV network. These three parts are north, west

and east. The previous chapter (particularly subsection 6.1.2) already explained why

we cut the MV network in these three parts.

The computation time of the data preparation (as in section 6.1) takes about five

minutes for the entire network. In principle, one has to do this preparation only once.

For one can still adjust the physical values afterwards. However, this relatively short

preparation time also enables to always take the actual state of the network.

Network # Substation areas n m # links

north 116 9300 10200 282

west 108 22500 25300 774

east 151 21400 24000 701

Total 375 53200 59500 1757

The new information in this table (with respect to the table presented in subsection

6.1.2) is firstly the number of substation areas in each of the parts, primarily provided for

information purposes. These numbers follow from the substation names as on the GDSS

website. Note that we consider both a control station (‘regelstation’) and switching

station (‘schakelstation’) to be a substation (OS). As a result, the total number of

substation areas may be above the expected number of substations, which equals about

350 substations.

The other additional information in this table is the number of MV links in each

region. This number represents the number of edges that connect two substation areas

at the MV level, i.e. the number of edges that lie in two substation areas. Due to the

presence of these MV links we need to consider multiple substation areas at once to check

the m− 1 principle, instead of considering the areas one by one. Such a MV link could

provide a switchover solution for a possible broken edge by using two substation areas

(explained in more detail in section 5.2). The number of MV links therefore indicates

the degree of interconnectedness. The more the network is intertwined, the greater

the likelihood of a switchover, but also the greater the computation time of the m − 1

algorithms. The latter is because the number of k reductions grows rapidly in that case.
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Lastly we note that the number of nodes n equals the number of nodes after the

merger of the HV/MV transformers (section 5.2). Hereby n is smaller than the number

of nodes of the original network. As we merged all HV/MV transformers into one sub-

station in each of the regions, the original number of nodes of the entire MV network

equals ntotal + 372.

Physical values for Alliander’s MV network

For the given parts of the MV network we also need values of the physical quantities.

As mentioned in section 6.1, these values are, unfortunately, not presented in our data.

Therefore, we choose particular random values of these quantities to be able to test the

m−1 algorithms on our data. Before we depict the chosen values, we would like to note

that these values might not be entirely realistic. An electricity distribution grid expert

would probably suggest other values. However, these values suffice to test the m − 1

algorithms for our purposes. To that end, we need that not all switchovers are accepted

by the load flow computation, but most of them are. In other words, we need that the

load flow computation (more specific, the exceeding of a voltage or current capacity)

limits the possible solutions, but it does not limit the solutions so far that there are no

solutions at all for a lot of the edges.

As previously stated, we would like to simulate two scenarios: a state of the

network comparable to how it is nowadays and a more unstable state in which a couple

of the edges have no switchover that is accepted by the load flow. The latter state could

represent a future state of the network.

Note that we do not test our algorithms on a state of the network where almost

no edge has a changeover due to the physical conditions. We do not consider this

situation to be very realistic. However, if one would like to test the algorithms on such

a situation, the resulting computation time might be disappointing. This is because of

the large number of switchover combinations the algorithms need to check. In the case

k = 1, the additional computation time is most probably limited and in the case k = 3,

the additional computation time is manageable. However, if k ≥ 5, then the m − 1

algorithms take probably too long. In this case one could only use this algorithm on

small networks, i.e. on networks having at most 1000 edges.

Returning to the first scenario, we will provide the three parts of the entire MV

network with physical values such that each edge will have at least one switchover

(although by no means every switchover is accepted by the load flow). Thus, one could

view north, west and east including there physical values as Alliander’s present

networks. Each node and edge in the networks obtains the required physical value from

an array of predetermined values, as can be seen in the table below. We allocate the

values completely random.
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Physical quantity concerns obtains random values from array

Power consumption MSRs (9000, 9500, 10000, 10000, 10500, 11000)

Minimum voltage capacity MSRs (9000, 9250, 9500, 9750, 10000)

Maximum voltage capacity MSRs (10750, 10800, 10850, 10900)

Voltage OS’s (10250, 10500, 10750, 10750, 10750)

Current capacity cables (300, 350, 400)

Moreover, we define the impedance of a cable as 10−4 times its system length (the length

of the cable). This system length (given in meters) is available in our data.

In anticipation of the second scenario, the smaller MV networks that we define

below will represent a future state of the network. Their physical values will bring about

a few dozen edges that no longer have a switchover.

Some smaller MV networks

The smaller test MV networks consist of all nodes and edges of some neighbouring

substation areas, which we indicate below. Each succeeding network is an extension of

the previous one. In this way, we tried to render the networks comparable. The number

of edges ranges from several hundreds to several thousands.

Network Substation areas n m # links

small1 AMO 128 136 0

small2 AMO, DUK, KUN 373 410 3

small3 AMO, DUK, KUN, TSD2, WYCH 651 728 22

small4 AMO, DUK, KUN, TSD2, WYCH, WWGB, WWGC,

VKG

1011 1135 42

small5 AMO, DUK, KUN, TSD2, WYCH, WWGB, WWGC,

VKG, TSD1, LEUT, WWGD

1503 1684 49

small6 AMO, DUK, KUN, TSD2, WYCH, WWGB, WWGC,

VKG, TSD1, LEUT, WWGD, ARN, SCA, DRT, WML

2101 2371 74

small7 AMO, DUK, KUN, TSD2, WYCH, WWGB, WWGC,

VKG, TSD1, LEUT, WWGD, ARN, SCA, DRT, WML,

GB, BML1, BML2, DOD

2797 3158 84

small8 AMO, DUK, KUN, TSD2, WYCH, WWGB, WWGC,

VKG, TSD1, LEUT, WWGD, ARN, SCA, DRT, WML,

GB, BML1, BML2, DOD, WLS, ELT1, ELT2, ELTSS,

ZPRD, VST, TLML, TL2, CL2

3674 4137 127

small9 AMO, DUK, KUN, TSD2, WYCH, WWGB, WWGC,

VKG, TSD1, LEUT, WWGD, ARN, SCA, DRT, WML,

GB, BML1, BML2, DOD, WLS, ELT1, ELT2, ELTSS,

ZPRD, VST, TLML, TL2, CL2, CL1, BSD, BUU, TL3,

TL1, LEUV, NRN

4651 5248 179
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Note that the specific number of nodes, edges and links can differ over time. We take

the actual state of the networks as given by IntellEvent, which includes the temporary

shutdown of edges as a result of work or a breakdown. This generally concerns only a

few cables, but it does yield small differences in the results.

Physical values for the smaller MV networks

We provide the cables in these networks with alternative values of the current capacity

to let them be more susceptible to the exceeding of a capacity. Herewith, we force

these networks in a more unstable state. We will see that a few dozen edges in these

networks do not have a switchover because of the load flow condition. Note that the

other physical quantities obtain values from the same arrays as the three parts of the

entire MV network.

Networks array of current capacity values

small1, small2, small3, small4, small5 (30, 60, 80, 100, 120)

small6, small7 (45, 60, 80, 100, 120)

small8, small9 (50, 60, 80, 100, 120)

The reason that we do not provide each network with current capacity values from the

same array is that we want the networks to have a comparable number of edges that

do not have a switchover because of the load flow. The larger networks would have an

enormous amount of such unswitchable edges otherwise, which is not the (realistic) case

we want to consider. Conversely, the smaller networks do not have any such unswitchable

edge if they obtain values from the array of the larger test networks.

Furthermore, note that we may assign different physical values to the same quan-

tity to edges and nodes that are in several of the networks, because we randomly assign

the physical values in each of the networks.

Before we present the results of the m − 1 algorithms on the networks given above,

we make one more remark. The results of the algorithms on the networks are very

dependent on the choices of networks (graph-theoretical properties) and physical values.

Therefore, one could not generalize the results to every other part of Alliander’s network.

For example, one could not simply assume that the computation time is similar for two

different networks with the same number of edges. The results on the given networks

are, however, a good example of the behaviour of the algorithms.

7.1.2 Present scenario on Alliander’s entire MV network

This subsection displays the results of the four versions of the m − 1 algorithm on

the entire MV network, given physical values that represent a present state of the MV

network. We first present and clarify the results regarding the computation time. After-

wards, we display and explain the relevant information sought, i.e. the number of edges

in branches, bridges and physically unswitchable edges, among others.
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Computation time of the m− 1 algorithms

Below, we display the computation time and relevant parameters, such as m and the

number of load flow computations. Another relevant parameter is the number of k re-

ductions. We indicate the number of k reductions used and the maximum number of k

reductions for the given network, as well as the percentage of actually used k reductions.

without load flow

Network n m # k reductions comp. time

north 9300 10200 728/732 (99,45 %) 1,5 min

west 22500 25300 2565/2640 (97,16 %) 14 min

east 21400 24000 2517/2535 (99,29 %) 13,5 min

Total 53200 59500 5810/5907 (98,36 %) 29 min

k = 1

Network n m # k reductions # load flows comp. time

north 9300 10200 730/732 (99,73 %) 7966 9 min

west 22500 25300 2640/2640 (100,0 %) 19284 54 min

east 21400 24000 2517/2535 (99,29 %) 17675 51 min

Total 53200 59500 5887/5907 (99,66 %) 44925 114 min

k = 3

Network n m # k reductions # load flows comp. time

north 9300 10200 7432/7796 (95,33 %) 7966 0,3 hours

west 22500 25300 50586/73865 (68,48 %) 19717 4,7 hours

east 21400 24000 36149/51131 (70,70 %) 17675 3,5 hours

Total 53200 59500 94167/132792 (70,91 %) 45358 8,5 hours

k = 5

Network n m # k reductions # load flows comp. time

north 9300 10200 44661/75432 (59,21 %) 8019 85 min

For west, after 12 hours we have computed 149850/2164671 k reductions (6,923 %).

At this stage we only need to decide 7 edges (0,0276 %).

For east, after 37 hours we have computed 467840/1033798 k reductions (45,25 %). At

this stage we only need to decide 3 edges (0,0125 %).

Observations regarding the algorithms’ computation time

Clearly, the computation time grows rapidly if we add the load flow computation in

the m − 1 algorithm, as well as if we subsequently increase k. In the case k = 5, the

computation time increases so fast that we did not finish the computation for west
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and east. Most probably, the m − 1 algorithm terminates in those cases only after a

couple of days. However, we could accept that a few edges are not yet decided, i.e. we

do not know whether they have an acceptable switchover by the load flow or not. If we

do so, then the algorithm terminates within half a day for west and east in the case

k = 5. For example, if we accept that 0,05 % of the edges is undecided, then we know

to what extend the m − 1 principles holds for 99,95 % of the edges within 12 hours of

computation.

Comparing the cases without load flow computation and k = 1, it is remarkable

that the addition of the load flow slows down the algorithm with a factor four. These two

m− 1 algorithms do not differ except for the presence of the load flow computation at

all places in the algorithm where we found a switchover solution. Note that the number

of k reductions is similar for both cases. Thus, the load flow computation takes up a

large part of the computation time. In general, the classical load flow is known to cost

a lot of computing time. Apparently, the linear load flow model that we use still takes

a lot of time, although it is much better than the classical model.

Comparing the cases k = 1 and k = 3, we see that the number of load flow

computations does not differ that much. Therefore, it is likely that the number of k

reductions causes the significant growth of the computation time. This is conceivable,

because there are some important steps in each k reduction. In particular, in each k

reduction we perform an Andrei-Chicco reduction, search for spanning trees and search

for switchovers in different manners. Thus, the computation of these steps takes a lot

of time eventually, if we have to perform many k reductions. The same holds when

comparing the cases k = 3 and k = 5. The growth factor from the case k = 1 to k = 3

equals about four. This is the same growth as from the case without load flow to k = 1,

but this is a coincidence.

Note that we limited the k reductions to only useful combinations of optional edges

in neighbouring substation areas. Therefore, we decreased the number of k reductions a

lot, by almost a factor of 1000. Unfortunately, the number of k reductions is still quite

high. Up to and including the case k = 3 the computation time for all k reductions is

manageable for the entire network.

Last, we look at the number of k reductions that is really used. In the cases

without load flow and k = 1, we need almost all k reductions. This is because we add

each optional edge in only one k reduction, but some edges may need a specific optional

edge as switchover. Thus, it is likely that we have to finish almost all k reductions to

come across these ‘necessary’ optional edges. In the cases k = 3 and k = 5, we do not

need all k reductions if there are no physically unswitchable edges (edges that have no

switchover because of the load flow), for the majority of the optional edges is in multiple

of the k reductions. This fortunately saves a large part of the (maximum) computation

time.
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Outcomes of the m− 1 algorithms

We present some interesting numbers that result from the m− 1 algorithms on the en-

tire MV network. As there are a lot of edges, we do not depict the specific switchovers

for the edges that have one or the specific edge numbers of edges that do not have a

switchover for a particular reason. Note that each successive m− 1 algorithm provides

more information than the previous one. Therefore, we only present the information the

first time. For example, each m− 1 algorithm determines which edges are bridges, but

we only note the numbers of bridges in the table of the case without load flow compu-

tation.

without load flow

Network # edges in branches # other bridges Total # unswitchables

north 1348 (13,25 %) 20 (0,1966 %) 1368 (13,45 %)

west 3204 (12,63 %) 57 (0,2247 %) 3261 (12,86 %)

east 3667 (15,27 %) 31 (0,1291 %) 3698 (15,40 %)

Total 8219 (13,80 %) 108 (0,1814 %) 8327 (13,98 %)

The unswitchable edges are the mathematically unswitchable edges in this case, because

we did not add the physical values and load flow computation yet. Note that we could

call these edges also graph-theoretical unswitchable edges and that these edges are pre-

cisely all bridges of the network.

k = 1

Network # math. unswitchables # phys. unswitchables Total

north 1368 (13,45 %) 0 (0 %) 1368 (13,45 %)

west 3261 (12,86 %) 1 (0,003943 %) 3262 (12,86 %)

east 3698 (15,40 %) 0 (0 %) 3698 (15,40 %)

Total 8327 (13,98 %) 1 (0,001679 %) 8328 (13,98 %)

The physically unswitchable edges are the edges that have no switchover because of the

load flow computation, i.e. because of exceeding a voltage or current capacity for each

graph-theoretically possible switchover.

k = 3

Network # 3 switches # phys. unswitchables Total # unswitchables

north 0 (0 %) 0 (0 %) 1368 (13,45 %)

west 1 (0,003943 %) 0 (0 %) 3261 (12,86 %)

east 0 (0 %) 0 (0 %) 3698 (15,40 %)

Total 1 (0,003943 %) 0 (0 %) 8327 (13,98 %)

‘3 switches’ represents the edges that are switchable, but need at least three switches in

a switchover.
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Clearly, all graph-theoretically switchable edges have a switchover. All but one even have

a switchover using only one switch. This does not mean that each switchover is accepted

by the load flow, but there is at least one that is accepted for each graph-theoretically

switchable edge.

Furthermore, note that the outcomes of the case k = 5 equal the outcomes for the

case k = 3, because there are no physically unswitchable edges in the case k = 3 already.

Therefore, we did not display outcomes of the case k = 5 explicitly.

Consequently, we did not even need to compute the m− 1 algorithm for the case

k = 5 after we computed the case k = 3. However, we only know this fact after the

computation of the case k = 3.

Last, we note once more that these results depend on the specific physical values

chosen. A comparable network that we gave just a little different distribution of the

physical values could have different results. Thus, one should not generalize these results

without looking at the chosen physical values. Of course, the results of the m − 1

algorithm without load flow computation are not dependent on the physical values.

They are, however, dependent on the specific graph-theoretical shape they have, which

could change a bit if the state of the network changes (given by IntellEvent).

7.1.3 Future scenario on example MV networks

This subsection presents the results of the m − 1 algorithms for different values of k

on the given smaller MV networks (in section 7.1.1). We assume the physical values as

given in that section. These values represent a future state of the MV network. First,

we show the results on these smaller networks regarding the computation time. Second,

we plot the coherence of the relevant parameters and the computation time. Last, we

display some of the information that results from the m− 1 algorithms, for example the

number of mathematically or physically unswitchable edges.

We do not present the results of the m− 1 algorithm without the load flow com-

putation, because this algorithm functions already very well on the entire MV network.

Therefore, we predict that this function will work even faster on smaller networks.

Computation time of the m− 1 algorithms

We display the computation time and relevant parameters for all example networks and

m− 1 algorithms indicated below. Note that we just show one number of k reductions.

As we chose the current capacity values in such a way that there is at least one edge

physically unswitchable, we need to execute all k reductions. Thus, the number of k

reductions used equals the maximum number of k reductions.
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k = 1

Network n m # k reductions # load flows comp. time

small1 128 136 5 74 1 sec

small2 373 410 31 299 5 sec

small3 651 728 70 605 11 sec

small4 1011 1135 118 973 18 sec

small5 1503 1684 171 1410 29 sec

small6 2101 2371 260 1912 51 sec

small7 2797 3158 349 2517 85 sec

small8 3674 4137 448 3173 111 sec

small9 4651 5248 576 4061 153 sec

k = 3

Network n m # k reductions # load flows comp. time

small1 128 136 36 117 0,03 min

small2 373 410 292 2438 0,68 min

small3 651 728 1095 8476 2,45 min

small4 1011 1135 2072 9276 2,85 min

small5 1503 1684 2859 10132 4,20 min

small6 2101 2371 4615 16374 7,35 min

small7 2797 3158 6146 14944 8,27 min

small8 3674 4137 7762 10927 9,88 min

small9 4651 5248 10483 12539 15,38 min

k = 5

Network n m # k reductions # load flows comp. time

small1 128 136 84 492 0,002 hours

small2 373 410 1903 61967 0,24 hours

small3 651 728 12562 921031 3,76 hours

small4 1011 1135 30951 197526 1,14 hours

small5 1503 1684 41093 285919 1,77 hours

small6 2101 2371 75957 1535102 8,98 hours

small7 2797 3158 94346 595263 4,89 hours

small8 3674 4137 124629 539043 5,44 hours

small9 4651 5248 181355 644348 9,22 hours
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Observations regarding the computation time of the algorithms

In this future scenario, the computation time grows rapidly if we increase k, just as

we saw in the results of the present scenario on the entire MV network in the previous

subsection. A difference in the results between this scenario and the previous one is that

here both the number of k reductions and the number of load flow computations grows

rapidly if we increase k. In the previous subsection, mainly the number of k reductions

grew. The additional growth of the number of load flow computations probably explains

the growth of the computation time by a factor of about 5,5 to 9 instead of a factor 4

from the case k = 1 to the case k = 3.

Below, we show some plots of the results regarding the computation time. We

explain some noteworthy facts after each chart.
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We see that the computation time expressed as depend variable of the number of edges

m grows about linearly in both the cases k = 1 and k = 3. However, the computation

time in the case k = 3 is about 6 times higher than in the case k = 1. If we compare

the computation time in the case k = 5 too (in the table on the previous page), then

we see that the computation time in that case fluctuates a lot. Thus, in the case k = 5

there is not a clear correlation between m and the computation time. We can probably

explain this by the major fluctuation of the number of load flow computations. If we

sort the number of load flow computations for this case and depict the corresponding

computation time, then we have the following figure:
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k = 5

In the case k = 5, the computation time seems particularly dependent of the number of

load flow computations. The plot is partly linear, but there are some deviating points.

Probably, for these points, m or the number of k reductions has some effect on the

computation time. In particular, the deviating peak in the middle of the chart belongs

to the results of small9, which is the network that has the most edges and the most

k reductions. Probably, these numbers have some influence too. On the other hand,

it is also true that each load flow computation itself takes a bit more time for a larger

network, which can ultimately explain the discrepancy.

The reason why the number of load flow computations is quite fluctuating is not

immediately clear. This number is probably very dependent on the graph-theoretical

structure and the possible switchovers that occur but are unfortunately unsuitable due

to the load flow. If there are a lot of such edges, the number of load flow computations

increases rapidly. We will elaborate on this at the end of this subsection.
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The above two figures show the number of k reductions in the cases k = 1, k = 3 and

k = 5 as function of m. Clearly, the relationships are fairly linear. In the case k = 1, we

can clarify this. In that case, the number of k reductions equals the number of optional

edges of the first Andrei-Chicco reduced graph. In electricity distribution grids, the

number of optional edges always represents approximately the same proportion of the

total number of edges, so the number of k reductions grows linearly with the number of

edges m.

In the case k = 3 and k = 5, this linear growth was not expected. Initially, we took

all combinations of two or three optional edges as k reductions, making the number of k

reductions grow quadratically and cubically with m. However, we lowered the number of

k reductions by taking only all necessary combinations in neighbouring substation areas.
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Consequently, it is no longer easy to see how the number of k reductions increases when

m grows. However, the chart shows that they grow almost linearly. The small deviations

are similar for k = 3 and k = 5. We can probably explain this by the specific shapes of

the networks (graph-theoretically).
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These last plots show the number of load computations dependent on m for the all

cases of k. The relationship is clearly linear in the case k = 1, but it is erratic in

the other cases. We do witness some correlation between the cases k = 3 and k = 5,

which probably results from the specific structure and physical values that each selected

network has.

We can explain the linear behaviour in the case k = 1 by the lack of the com-

putation of switchover combinations. Those are present in the cases k = 3 and k = 5,

but the number is unpredictable because it depends on the number of undecided edges
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at that point in the m − 1 algorithm. In the case k = 1, a lot of the edges have just

one possible switchover, following from a loop or a path, that cannot be combined with

other switchovers. Therefore, the number of load flow computation is even less than m,

for the graph-theoretically unswitchable edges cause no load flow computation and most

of the other edges get just one load flow computation.

Outcomes of the m− 1 algorithms

We display some numbers that result from the m − 1 algorithm on the smaller MV

networks. Note again that each successive m − 1 algorithm provides more information

than the previous one. Therefore, we display the information the first time only.

k = 1

Network # math. unswitchables # phys. unswitchables Total

small1 55 (40,44 %) 1 (0,7353 %) 56 (41,18 %)

small2 89 (21,71 %) 26 (6,341 %) 115 (28,05 %)

small3 123 (16,90 %) 41 (5,632 %) 164 (22,53 %)

small4 135 (11,89 %) 22 (1,938 %) 157 (13,83 %)

small5 231 (13,72 %) 42 (2,494 %) 273 (16,21 %)

small6 305 (12,86 %) 13 (0,5483 %) 318 (13,41 %)

small7 444 (14,06 %) 19 (0,6016 %) 463 (14,66 %)

small8 591 (14,29 %) 16 (0,3868 %) 607 (14,67 %)

small9 724 (13,80 %) 24 (0,4573 %) 748 (14,25 %)

The mathematically unswitchable edges are the graph-theoretically unswitchable edges,

these are precisely all bridges of the network.

An important note in the cases of smaller networks is that some edges may seem

mathematically unswitchable here, although there are not in practice. This is because we

cut the network in the desired part containing only particular substation areas. However,

some edges may be connected to other nodes in other substation areas. These edges may

therefore be wrongly regarded as unswitchable.

If we take a look at the percentages of mathematically unswitchable edges, then

we notice that this percentage drops for the larger test networks. In practice, the

networks generally have a comparable number of mathematically unswitchable edges, at

least within each geographical region. These deviating percentages arise from unjustly

declared mathematically unswitchable edges.

Furthermore, we note that the chosen physical values caused a few dozen physi-

cally unswitchable edges in almost all example MV networks.
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k = 3

Network # 3 switches # phys. unswitchables Total # unswitchables

small1 0 (0 %) 1 (0,7353 %) 56 (41,18 %)

small2 9 (2,195 %) 17 (4,146 %) 106 (25,85 %)

small3 16 (2,198 %) 25 (3,434 %) 148 (20,33 %)

small4 14 (1,233 %) 8 (0,7048 %) 143 (12,60 %)

small5 27 (1,603 %) 15 (0,8907 %) 246 (14,61 %)

small6 11 (0,4639 %) 2 (0,08435 %) 307 (12,95 %)

small7 17 (0,5383 %) 2 (0,06333 %) 446 (14,12 %)

small8 8 (0,1934 %) 8 (0,1934 %) 599 (14,48 %)

small9 12 (0,2287 %) 12 (0,2287 %) 736 (14,02 %)

Comparing the results for k = 1 and k = 3, we see that some of the physically unswitch-

able edges in the case k = 1 have a switchover using three switches in the case k = 3.

The number of physically unswitchable edges will decrease if we increase k.

Moreover, for most example networks the number of physically unswitchable edges

at least halves from the case k = 1 to the case k = 3. Thus, we see that in this future

scenario, where a couple of the edges were not physically switchable in the case k = 1, a

lot of them do have a switchover in the case k = 3. Note that this does not need to be

the case if there were a lot of physically unswitchable edges, for the capacity values may

then be that marginal that these edges also do not have a switchover in the case k = 3.

k = 5

Network # 5 switches # phys. unswitchables Total # unswitchables

small1 0 (0 %) 1 (0,7353 %) 56 (41,18 %)

small2 0 (0 %) 17 (4,146 %) 106 (25,85 %)

small3 0 (0 %) 25 (3,434 %) 148 (20,33 %)

small4 3 (0,2643 %) 5 (0,4405 %) 140 (12,33 %)

small5 1 (0,05938 %) 14 (0,8314 %) 245 (14,55 %)

small6 0 (0 %) 2 (0,08435 %) 307 (12,95 %)

small7 0 (0 %) 2 (0,06333 %) 446 (14,12 %)

small8 0 (0 %) 8 (0,1934 %) 599 (14,48 %)

small9 0 (0 %) 12 (0,2287 %) 736 (14,02 %)

Now comparing the results for k = 3 and k = 5, we observe that some of the physically

unswitchable edges in the case k = 3 have a switchover using five switches in the case

k = 5, but there are not so many.
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7.2 Conclusion

Based on the results of the previous section, we conclude the following:

Using our m − 1 algorithms we can efficiently check the m − 1 principle

on Alliander’s MV networks. In particular, in the cases without load flow

computation, k = 1 and k = 3, the m − 1 algorithm is sufficiently fast to

check the m−1 algorithm for Alliander’s entire MV network of about 60.000

cables. It takes up to half an hour, two hours and 8,5 hours, respectively. In

the case k = 5, we could check the m−1 principle for an MV network having

several thousand cables within a couple of hours.

First of all, this main result is a great improvement of the computation time that the m−
1 computation takes using the tool Vision. Vision can only do the computation in a few

substation areas at once, having only several hundreds (instead of thousands) of cables.

Section 1.3 described the m−1 computation in Vision on an example network consisting

of 136 cables, which equals MV network small1 in our implementation (subsection

7.1.1). It took Vision 33 minutes to complete this computation, whilst our m − 1

algorithm needed only 7 seconds (both in the case k = 5).

Second, note that the results of the m−1 algorithms are dependent on the physical

values of the edges and nodes. It is important that these values are added to the data,

yielding the m-1 algorithms ready to use and allowing final analyses to be done.

In particular, our m − 1 algorithms are useful for physical values corresponding

to both a present state of the MV networks and a future state of the networks, as we

showed in the two different scenarios in the previous section. However, note that the

computation time is shorter on a present scenario, because there are less switchover

solutions rejected by the load flow computation.

Furthermore, we note that we have better results than presented above if we accept

a small percentage of edges to have no result, i.e. we do not know whether they have

a switchover or not. This is especially useful in the case k = 5. If we accept that 0,05

% of the edges is ‘undecided’, then we can check the m− 1 principle on larger networks

having up to 15.000 cables within a couple of hours. The small number of undecided

edges can then be determined ‘manually’, for example by using Alliander’s control plan

(‘bedieningsplan’), which generates switchover solutions for a particular edge.

On the other hand, there may be a few ways to improve the computation time of

the m−1 algorithms, particularly in the case k = 5. We will suggest some improvements

in the next chapter.





Chapter 8

Discussion & Future Work

This chapter discusses the usefulness and some possible improvements of the m− 1 al-

gorithms. On top, it suggests extensions of the m-1 algorithms to related problems as

well as generalisations to related research areas. Both may present fruitful avenues for

future research.

First, we would like to repeat that the m−1 algorithms as presented in section 6.3, which

solve the m−1 problem, are a great improvement of the existing m−1 computation in the

program Vision. Not only are the algorithms developed in this thesis much faster than

the implementation in Vision, they are also more general than the method in Vision.

Indeed, it allows us to check the m− 1 principle on any combination of substation areas

and in particular on Alliander’s entire MV network. Vision could only perform this

computation on a few areas instead of hundred at once. Note that the m− 1 algorithm

for the case k = 5, which is the slowest performing algorithm, is still much faster than

the implementation in Vision.

By contrast, there are always improvements possible. We present some suggestions

to improve the m − 1 algorithms below. Afterwards, we mention some generalisations

of the algorithms and theory presented in this thesis. Using these, one can apply some

of the findings of this project to other problems too.

8.1 Improvements of the m− 1 algorithms

Despite the positive results of this project, as mentioned above and in section 7.2, we

would like to make a few comments on the algorithms as they are now.

First of all, the computation time of the m − 1 algorithm for the case k = 5 on

Alliander’s entire MV network is yet too long to repeat the computation weekly, for

example. Therefore, there is a need for further reducing the computation time in this

case. Of course, one could improve the implementation in R itself by using the most

efficient declarations in R, as was partly presented in section 6.4. We will, however,

suggest improvements based on the general implementation at a higher level, which we

will present at the bottom of the next page.
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Besides improving the computation time, we note two points of attention concern-

ing the physical state of the MV networks. First, one has to add the true physical values

of each node (MSR and OS) and cable. Doing so would allow the m − 1 algorithms to

return realistic results and render the algorithms ready to use. Second, the implemented

algorithms use static physical values for each call of such an algorithm. However, the

physical values for the edges and nodes may differ over a day or over years, for consumers

of course do not use the same amount of electricity constantly. It would probably be

better if we take into account such a physical profile into the m−1 algorithms. An elec-

tricity distribution expert could possibly define how to implement this in the algorithms.

Nevertheless, using the current algorithms, one could repeatedly use an m−1 algorithm

on different physical values and extract relevant information about the variation already.

At the boundary of the computation time and the physical values, we notice

another issue. The computation time increases if the number of physical unswitchable

edges increases. This lessens the capability of the m− 1 algorithm for the case k = 5 on

future scenarios on large networks (≥ 1000 cables) having a poor physical state. As this

could also be an area of application of the algorithms, this requires further improvement

regarding the computation time.

Furthermore, recall that the initial configuration of the network is not a spanning

tree in most cases, but we assume a configuration to be one. This caused the adaptation

of the initial configuration as explained in section 5.3. This spanning tree may, however,

not be the most realistic state of the network. Therefore, it would be better if an expert

would take a look at the initial configuration and would turn it into the most realistic

spanning tree (potentially adjusting some physical values on the way).

We list different enhancements regarding the m− 1 algorithms’ computation time:

• Subsection 3.3.1 explained the limitation to only useful combinations of optional

edges to form the k reductions, which improved the total number of k reductions

a lot. However, we still test k reductions that are not useful, depending on the

specific structure within a substation area. Subsequently, it would be useful if

we select all useful combinations of optional edges beforehand. As this requires

to observe the specific local graph structure within a substation area (or within

two neighbouring substation areas), it probably takes quite a while. However,

we only have to perform this preparation once (as long as the network does not

change). Subsequently, we can use this list of suitable combinations of optional

edges (depending on k) as input to the corresponding m − 1 algorithm. This

definitely decreases the computation time in the cases k = 3 and k = 5, for we saw

in subsection 7.1.3 that the growth of the number of k reductions has a negative

impact on the computation time.

• As the number of load flow computations has a substantial impact on the com-

putation time too (as we saw in 7.1.3), it would be beneficial if we decrease the

computation time of the load flow computation. As the linear load flow is already
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fast, it is probably hard to speed up the computation itself. However, we compute

the load flow over the entire new spanning tree, whilst only some edges (at most

k + 1) differ from the initial spanning tree. Therefore, it is sufficient to compute

the load flow only in the substation areas where a change has occured. This likely

saves computation time.

• We could implement the method of parallel computing, i.e. computing different

parts of the algorithm simultaneously on different processors. In our case, we

could try to run different k reductions concurrently. We have to take care of the

assignment of new switchovers in output, but except for this the k reductions are

independent. We possibly compute more switchovers overall if we parallelise the

k reductions, because of the possibility to compute switchovers for the same edge

in different k reductions. However, by the simultaneous computations we save a

lot of computation time in the end.

8.2 Generalisations and extensions of the m−1 algorithms

Now that we have found well-functioning m − 1 algorithms, we could use some (con-

cepts used in the) algorithms on related problems too. Therefore, we present some

generalisations to other research areas and some extensions of the m− 1 algorithms:

• Note that the results of the m−1 algorithms could also be useful in a malfunction

situation, for the results display a switchover for the failure edge if it exists. How-

ever, in a malfunction situation we only need a switchover for a specific edge, whilst

the m − 1 algorithms search for switchovers for every graph-theoretically switch-

able edge. In such case, it is probably faster to use an algorithm that searches

for a specific switchover locally. Nonetheless, some of the mathematical theory of

this thesis may be of interest to such an algorithm. For example, the enumeration

of all spanning trees in section 3.4 or the listing of all bridges in section 5.1 may

prove relevant for other algorithms. The reduction methods can also be useful.

• This thesis only took Alliander’s MV networks into consideration. However, with

some modifications we could also use the m − 1 algorithms on other types of

networks where a configuration of the network is radial (a spanning tree) and the

question whether an edge is switchable is relevant.

In the first place, the low voltage networks are examples of such networks. If

we consider each MSR in a low voltage network as slack bus (an OS in the MV

network) and the other nodes as load buses, the properties of the low voltage

network are similar to those of an MV network. We have adapted our m − 1

algorithm for the case without load flow computation to the low voltage case too.

In this way, one can check the m−1 principle for Alliander’s low voltage networks.

Besides electricity distribution networks, the m − 1 algorithm without load flow

computation could be useful for other kinds of networks. Potentially, the algorithm
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is of interest for networks of pipelines, for example water or gas pipeline networks.

The same holds for underground fiber optic or telephone cable networks.

Note that if the size of another network differs a lot from Alliander’s MV networks,

it could be of use to revise the order of the reductions and algorithms. The

considerations presented in section 6.2 could help to make such a decision or one

can take the relevant theory from chapters 3 and 5.

• Although we only considered the cases k ≤ 6, the theory presented is also appli-

cable to larger values of k. However, this may slow down the m− 1 algorithm and

it may not be feasible to apply such an m− 1 algorithm on very large networks.

• The theory required to define the m− 1 algorithms can also be used to find m− 2

algorithms. An MV network satisfies the m − 2 principle if the network has a

possible reconfiguration for any pair of broken cables, i.e. the m − 2 problem

consists of finding switchovers for combinations of two ‘broken’ cables. We can

realise an m − 2 algorithm in the following manner: if Tj is a new spanning tree

found, we can take two edges in GA\Tj . The symmetric difference GA4Tj without

the two edges forms a switchover for the combination of the two ‘broken’ edges.

Using this idea, it is not hard to transform anm−1 algorithm to anm−2 algorithm.

However, as there are many more combinations of two edges than single edges, the

output of the algorithm is larger than in the m− 1 case and the computation time

increases too. An interesting fact is that the high voltage networks should fulfill

this m−2 principle. Henceforth, an m−2 algorithm is relevant for the high voltage

networks.

More generally, one could be interested in the fulfillment of the m − c principle,

where c ≤ m is a positive integer. We could adapt an m− 1 algorithm to an m− c
algorithm too, but such an algorithm may turn out impracticable due to the large

number of combinations of ‘broken’ edges.

• Instead of looking at one or more broken edges, one could also be interested in

broken nodes (MSRs or OS’s). We call this problem of determining a switchover

for each possible ‘broken’ node the n−1 problem. If a node breaks down, then one

needs to switch all edges connected to that node. Therefore, the n − 1 problem

relates to the m− c problems. With some more adjustments, an m− 1 algorithm

could also be converted into an n− 1 algorithm.

• We come back to the remark at the beginning of section 6.3 concerning optimising

the switchovers or not. In the present m − 1 algorithms, we only optimise the

switchovers in the way that they consist of as few switches as possible. However,

we could adapt the algorithms to make them search for the best switchover (if

it exists) for each edge, using some predefined evaluation criteria. Note that this

would increase the computation time.
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To balance between optimisation and the computation time, we could also save

and return multiple switchovers per edge, thereby providing the user some choice

between switchovers.

• Some of the mathematical theory in this thesis, in particular the theory in chap-

ters 3 and 5, is also useful for other electricity distribution grid problems. The

configuration of such networks is always a spanning tree. Hence, if one searches for

all allowed configurations, the spanning tree listing in section 3.4 is applicable. To

avoid to many spanning trees (as shown in section 3.2), a reduction method as in

section 3.3 may be necessary. Similarly, Schmidt’s bridge algorithm may provide

useful (section 5.1) as well as the merger of the HV/MV transformers (section 5.2).

Examples of electricity distribution network issues include finding the best config-

uration with respect to the power loss through the cables (as in Van der Meulen

(2015) [20]) or with respect to the outage consumer minutes (defined in section

1.3).

• Last, note that the preparation function as presented in subsection 6.1.2 can also

be used for other purposes. For example, it could find the components and cycles

of a network, which may be of interest for other network problems. In the case

of the low voltage network, we adapted the preparation functions such that they

returned these graph structures, because they were not yet known.

Some of the above considerations may provide fruitful avenues for future research.
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