
Non-isomorphic spanning trees of graphs

Janneke van den Boomen

July 2009

Non-isomorphic spanning trees of graphs

Janneke van den Boomen

Master Thesis
Student number: 0314064

Supervisor: Dr. W. Bosma
Second Reader: Dr. R.H. Jeurissen

Faculty of Science
Radboud University Nijmegen

Contents

1 Introduction 4

2 Isomorphisms 6

2.1 Trees . 6

2.1.1 Prüfer sequence . 6

2.1.2 Determinant of the reduced incidence matrix 10

2.1.3 Label of the center . 12

2.2 Graphs . 14

2.2.1 Tree sequence . 14

2.2.2 Ordered incidence matrix 16

3 Determine all non-isomorphic spanning trees 19

3.1 Determine all spanning trees 19

3.2 Partition into isomorphism classes 28

4 Bipartite graphs 31

4.1 Earlier results . 31

4.2 K4,t . 33

5 Extreme cases 43

5.1 All non-isomorphic spanning trees 43

5.2 All spanning trees isomorphic 45

5.2.1 Conditions on k . 45

3

5.2.2 Number of graphs . 48

6 References 51

4

Chapter 1

Introduction

In a connected graph G, it is (usually) easy to find a tree that contains all
the vertices and some edges of G; such a subgraph is called a spanning tree.
With the Matrix tree theorem [10], we can determine how many spanning
trees a graph contains. Looking at the proof of that theorem, it even seems
not very difficult1 to find all those spanning trees (which also can be done
in other ways). But what can we say about the isomorphism classes of the
spanning trees? How many and which non-isomorphic spanning trees does
the graph contain? In this thesis, we will look at those questions.

In chapter 2, we will look at trees and graphs from different points of view,
trying to discover properties which can tell us something about two graphs
being isomorphic or not. This since we want to partition the set of spanning
trees into isomorphism classes.

Chapter 3 is about the algorithm that determines all the non-isomorphic
spanning trees of a given graph.

Now, we can determine all the non-isomorphic spanning trees of a graph.
But maybe there exists a formula which tells us how many there are. For an
arbitrary graph, it is hard to determine such a formula. However, for bipar-
tite graphs it seems doable. In chapter 4, we take a look at earlier results and
use them to determine a formula for the number of non-isomorphic spanning
trees of K4,t.

1Theoretically... For big graphs it still takes a while.

5

Finally, in chapter 5, we take a look at two extreme cases. First, we look at
graphs that contain all possible non-isomorphic spanning trees. What is the
minimum size of such graphs? We will discuss a way for finding them and
take a look at some results.
Second, there is the set of graphs of which all spanning trees are isomorphic.
What do they look like? How many edges do they contain? In section 5.2,
we will see which graphs have just one non-isomorphic spanning tree and
how many of those graphs there are.

In the entire thesis, we only talk about simple, finite and connected graphs.
(A graph is simple if it contains just single edges and no loops.)

6

Chapter 2

Isomorphisms

To see which non-isomorphic spanning trees a graph contains, we need to
know when two trees are isomorphic. Therefore, we will look at trees and
graphs from different points of view, trying to discover properties that can
tell us something about two graphs being isomorphic or not.

2.1 Trees

2.1.1 Prüfer sequence

A Prüfer sequence of a tree with n labeled vertices is a sequence of length
n−2 on the labels 1 to n. A Prüfer sequence is generated as follows. At step
i, remove the leaf (vertex with degree 1) with the smallest label and set the
ith element of the sequence to be the label of this leaf’s neighbour.

Example 2.1 (a) We take the tree below.

1 2 3

4

5

The leaf with the smallest label is 1. Its neighbour is 4, so this is the first
element of the Prüfer sequence. Then we delete this leaf from the tree.

7

2 3

4

5

(4,

We repeat these steps until there are just 2 vertices left:

2

4

5

(4,2,

5

4
(4,2,4)

So our tree can be associated with the sequence (4, 2, 4).

With this Prüfer sequence, we can construct a tree. Let V be the remaining
set of vertices (initially: {1, 2, . . . , n}) and PS the remaining Prüfer sequence
(initially a sequence of length n − 2 on the labels 1 to n). At every step, we
take the first number of PS and connect this vertex with the smalles number
in V that does not appear in PS. Then we delete those two numbers from
PS and V respectively.
If PS is empty, we will have two vertices left in V . Connecting them is the
last step of the algorithm.

Example 2.1 (b)We start with the Prüfer sequence (4, 2, 4).
Since the sequence is of length 3, we have 5 vertices. So we start with vertexset
V = {1, 2, . . . , 5}. The first number in the Prüfer sequence is 4 and the
smallest number in V that does not appear in the Prüfer sequence is 1. So
we get:

{1,2,3,4,5} 1 2 3 4 5 (4,2,4)

We repeat this step until our sequence is empty.

{2,3,4,5} 1 2 3 4 5 2,4)

8

{2,4,5} 1 2 3 4 5 4)

Finally, we connect the numbers left in V :

1 2 3 4 5

We see that in example 2.1(b), we get the same tree as the tree we started
with in example 2.1(a). So to every labeled tree T belongs a unique Prüfer
sequence PST . With this we can see that there is a bijection between se-
quences of length n−2 on the labels 1 to n, and labeled trees on n vertices [11].

Can we say something about two trees being isomorphic or not, using these
Prüfer sequences?
Since the numbers that occur in a Prüfer sequence depend on how we label
the tree, we can’t look at which numbers occur. But maybe we can look at
how many times a number occurs.

Definition 2.2 Let PST1
and PST2

be two Prüfer sequences of length n− 2.
We say PST1

≈ PST2
if for every j with 0 ≤ j ≤ n− 2, the number of labels

that occur j times is the same for both sequences.

Example 2.3 Let n = 6, PST1
= (1, 2, 5, 2) and PST2

= (3, 6, 1, 1). Then
PST1

≈ PST2
since:

3 numbers occur 0 times (in the first sequence, 3, 4 and 6 are missing; in the
second sequence 2, 4 and 5 are missing),
2 numbers occur 1 time (in the first sequence 1 and 5; in the second sequence
3 and 6),
1 number occur 2 times (in the first sequence 2; in the second sequence 1),
0 numbers occur 3 times,
0 numbers occur 4 times.

Hypothesis 2.4 Let T1 and T2 be two labeled trees on n vertices and PST1

and PST2
their corresponding Prüfer sequences. Then

T1
∼= T2 ⇐⇒ PST1

≈ PST2
.

9

⇒ is true. This we can see with the next theorem.

Theorem 2.5 Let T be a tree. Then for every vertex v of T holds

degT (v) = k ⇐⇒ v appears k − 1 times in PST

Proof:
We will prove this with induction on n, the number of vertices of T .

• n = 2: then T is just an edge, so PST = ().
For vertex 1 we have: degT (1) = 1 and 1 appears zero times in PST .
For vertex 2 the same holds.
So for n = 2, the theorem holds.

• Suppose the theorem holds for n vertices.
Let T be a tree with n + 1 vertices.
Let v1 be the leaf with the smallest label, v2 its neighbour and vi some
random other vertex.
Let T ′ be the tree that results from deleting v1 from T .

The Prüfer sequence of T starts with v2, and then follows the Prüfer
sequence of T ′.

– degT (v1) = 1 and v1 appears zero times in PST ′ (because v1 is not
a vertex of T ′), so it appears zero times in PST .

– degT (v2) = degT ′(v2) + 1 and (because of induction) v2 appears
degT ′(v2)−1 times in PST ′, so it appears degT ′(v2) = degT (v2)−1
times in PST .

– Because of induction, vi appears degT ′(vi) − 1 times in PST ′, so
also degT ′(vi) − 1 times in PST . And degT ′(vi) = degT (vi).

So for a tree with n + 1 vertices, the theorem holds.

So, by induction, the theorem holds for every tree. �

Since the degree sequences of two isomorphic trees T1 and T2 are the same,
it is trivial that then PST1

≈ PST2
.

10

Unfortunataly, ⇐= in 2.4 is not true. Take the two trees below.

T1

1 3

4

6 52

T2

1 6

3

4 25

For these trees, we have

PST1
= (6, 5, 5, 2) ≈ (4, 5, 5, 2) = PST2

,

but the trees are not isomorphic.
This is the smallest counterexample for 2.4 (with respect to the number of
vertices).

2.1.2 Determinant of the reduced incidence matrix

For every graph G, we can define its incidence matrix.

Definition 2.6 Let G be a graph with n vertices and m edges (numbered
arbitrarily). We orient each edge randomly. The incidence matrix of G is
the n × m matrix AG = [aij] with

aij =





+1 if the jth edge is oriented to the ith vertex
−1 if the jth edge is oriented away from the ith vertex
0 otherwise

If you number the vertices or edges in an other way, the rows or columns of
the matrix AG will be permuted. If you orient an edge otherwise, the +1 and
−1 will be swapped. So the matrix AG will not really be different.

From this matrix, we can make a reduced incidence matrix ÃG of G. This
matrix we make by deleting the nth row from the matrix AG.

11

Example 2.7 Take the graph G below (in which we have numbered the ver-
tices already, and oriented and numbered the edges).

1 2

3 4

1
2 3

4

5

The matrices of this graph are:

AG =




−1 1 0 0 0
0 0 1 1 0
1 0 −1 0 −1
0 −1 0 −1 1


 and ÃG =




−1 1 0 0 0
0 0 1 1 0
1 0 −1 0 −1




The reduced incidence matrix of a tree is an (n − 1) × (n − 1)-matrix.

Hypothesis 2.8 Let T1 and T2 be two trees, both with n vertices.

T1
∼= T2 ⇐⇒ det(ÃT1

) = det(ÃT2
)

Since the labeling of the vertices and edges is arbitrary, the hypothesis does
certainly not hold. Take, for example, a tree T and his incidence matrix AT .
Let T ′ be the same tree as T , but with the labels of the first two vertices
swapped. Then we get AT ′ from AT by interchanging the first and second row.
So, it is obvious that T and T ′ are isomorphic, but det(ÃT) = − det(ÃT ′).
So we change our statement into the next one.

Hypothesis 2.9 Let T1 and T2 be two trees, both with n vertices.

T1
∼= T2 ⇐⇒ | det(ÃT1

)| = | det(ÃT2
)|

Now, ⇒ is true. However, ⇐ is not true. We can see this with the two trees
below.

T1

1 52 43

T2

1

3

2 54

12

The reduced incendence matrices are

ÃT1
=




1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1


 and ÃT2

=




1 0 0 0
−1 1 1 0
0 −1 0 0
0 0 −1 1




So | det(ÃT1
)| = |1| = 1 = |1| = | det(ÃT2

)|, but the trees are not isomorphic.

From the Matrix Tree Theorem [10], we can deduce that for every tree T

holds | det(ÃG)| = 1.

Theorem 2.10 (Matrix Tree Theorem) If ÃG is a reduced incidence ma-
trix of the connected graph G, then the number of spanning trees of G equals

the determinant of ÃG · ÃG

T
.

Since a tree only has one spanning tree, we have

1 = det(ÃG · ÃG

T
)

= det(ÃG) · det(ÃG

T
)

= det(ÃG)2

So | det(ÃT1
)| = | det(ÃT2

)| holds for every pair of trees.

2.1.3 Label of the center

The center of a graph is the set of vertices that minimize the maximal dis-
tance from all other vertices. For a tree, the center is quite simple [5]:

Theorem 2.11 In a tree, the center is a vertex or two adjecent vertices (i.e.
an edge).

Proof:
We will prove this with induction on n, the number of vertices of the tree.

• n ≤ 2: if the tree has at most two vertices, the center is the entire tree.

13

• Suppose the theorem holds for all trees with less than n vertices. Let
T be a tree with n vertices. We get T ′ from T by deleting all leaves.
Every vertex at maximum distance in T from a vertex u is a leaf. Let
εT (u) be this maximum distance in T . Since all the leaves have been
removed and no path between two other vertices uses a leaf, εT ′(u) =
εT (u)− 1 for every vertex u of T ′. Also, εT (u) > εT (v) if u is a leaf and
v its neighbour. Hence, the vertices minimizing εT (u) are the same as
the vertices minimizing εT ′(u). So T and T ′ have the same center. And
since T ′ has fewer vertices than T , the center of T ′ is a vertex or an
edge. Hence, the center of T is a vertex or an edge.

So, by induction, the theorem holds for every tree. �

This proof also gives us an easy algorithm to find the center of a tree T :
Repeat, until we have one or two vertices:

Remove all leaves from T

Since the size of the center of a tree is 1 or 2, there is not much variation.
Hence, it’s hard to say something about two trees being isomorphic based on
the size of their centers. The only thing we can say is that if two trees are
isomorphic, then their centers have to be of the same size.

But instead of just determining the center, we also can label the center, and
compare those labels. How we label the trees is based on an algorithm to
determine isomorphism between two trees [8]. The labeling algorithm goes
as follows:

Algorithm LabelCenter

1. Label all the leaves with 1.

2. Determine the set S of unlabeled vertices that have at most one un-
labeled neighbour. Tentatively, label the vertices in S with the list
[l1, . . . , lk] of labels of its labeled neighbours, sorted in non-decreasing
order.

3. Substitute the tentative labels (which are lists of numbers) by new labels
which are just numbers: order the tentative labels in non-decreasing
order. The vertices with the smallest label get the label m, where m
is the smallest number that has not been used as a label before. The

14

vertices with then the smallest label get the label m+1. In this way, all
vertices with the same tentative labels get the same new label and all
new labels have not been used before.

4. If not all vertices have got labels, go back to step 2.

In this way, every vertex gets a label, so also the vertices in the center (these
vertices are the last labeled). The label of the center of the tree T , LCT , is
the ordered sequence of the labels of the vertices in the center.

Hypothesis 2.12 Let T1 and T2 be two trees.

T1
∼= T2 ⇐⇒ LCT1

= LCT2

It is easy to see that ⇒ is true. But ⇐ is not true: take the trees below.

T1

1 2 3 4 3 2 1

T2

1 2 4 3 1

1 1

The numbers at the vertices are the labels the vertices get in the algorithm
discribed above. So despite T1 and T2 are obviously not isomorphic,

LCT1
= [4] = LCT2

.

This is the smallest counterexample for the hypothesis.

Remark: the algorithm from [8] (algorithm TreeIsomorphism in section
3.2) on which the label of the center is based of course tells us whether two
trees are isomorphic or not. But if we want to divide a given set of trees into
isomorphism classes, just determine LCT of every tree and compare them is
much faster than run the algorithm for every pair of trees.

2.2 Graphs

2.2.1 Tree sequence

In this section, we will explain everything with the same example: the graph
G below.

15

1

2

3

4

5

Every graph contains some spanning trees. How many can be determined
with the Matrix Tree Theorem (Theorem 2.10). In our example occur the
next spanning trees:

T1

1

2

3

4

5

T2

1

2

3

4

5

T3

1

2

3

4

5

Some of the spanning trees are isomorphic, so we can put them in isomor-
phismclasses. For our graph G, we have two isomorphismclasses: {T1, T3}
and {T2}.

The next thing we have to do is determine all the non-isomorphic trees on n
vertices. For n = 5, we have the trees

ST1 ST2 ST3

Then we fix their order (for n = 5, the order is as above).

Now we can define the tree sequence of a graph.

Definition 2.13 Let H be a graph with n vertices. Let A be the sequence
of all non-isomorphic spanning trees on n vertices, of which we have fixed
the order. The tree sequence of this graph, TSH , is a sequence of length #A
with

TSH [i] := number of spanning trees in H, isomorphic to A[i]

In our example, we have 0 times the tree ST1, 2 times ST2 and 1 time ST3,
so

TSG = [0, 2, 1].

16

Hypothesis 2.14 Let G1 and G2 be two graphs. Then

G1
∼= G2 ⇐⇒ TSG1

= TSG2

If two graphs are isomorphic, it is obvious that they contain the same span-
ning trees and with the same frequency. So ⇒ holds.

⇐ does not hold. A smallest counterexample (smallest order ánd smallest
size) is

G1 G2

The corresponding tree sequences are:

TSG1 = [0, 2, 0, 0, 4, 2] = TSG2.

Remark: To compare the sizes of the isomorphism classes of the spanning
trees of two graphs, it is not necessary to determine all the non-isomorphic
trees on n vertices. You also can detemine the isomorphism classes of the
spanning trees of the first graph and the sizes of those classes, and then look
whether the second graph contains the same non-ismorphic spanning trees
with the same multiplicity.

2.2.2 Ordered incidence matrix

As we have seen in section 2.1.2, to every graph G belongs an incidence
matrix AG. Actually, to every graph belong many incidence matrices: just
label the edges or vertices in a different way or orient the edges different and
you get an other matrix.
Can we order the rows and columns, such that we get a unique matrix?
We define the next order:

Let AG be an incidence matrix of G.

1. Order the rows by degree (the degree is the number of non-zero entries
in a row).

17

2. Order the columns lexicographic (where a non-zero entry is bigger than
a zero entry, so [1,−1, 0, 0] > [1, 0,−1, 0] > [0, 1,−1, 0]).

3. Order every set of rows of the same degree lexicographic (the same way
as defined in step 2).

Now we get the ordered incidence matrix Ao
G.

To give a better idea of how this ordering works, we will give an example.

Example 2.15 Take the incidence matrix

AG =




1 1 0 0
0 0 1 0
−1 0 0 1
0 0 −1 −1
0 −1 0 0




Ordering this matrix step by step, we get:

AG =




1 1 0 0
0 0 1 0
−1 0 0 1
0 0 −1 −1
0 −1 0 0




(1)
−−−−−→




1 1 0 0
−1 0 0 1
0 0 −1 −1
0 0 1 0
0 −1 0 0




(2)
−−−−−→




1 1 0 0
−1 0 1 0
0 0 −1 −1
0 0 0 1
0 −1 0 0




(3)
−−−−−→




1 1 0 0
−1 0 1 0
0 0 −1 −1
0 −1 0 0
0 0 0 1




= Ao
G.

We wonder if the ordered incidence matrix is unique, i.e. if the next hypoth-
esis holds.

Hypothesis 2.16 Let G1 and G2 be two graphs. Then

G1
∼= G2 ⇐⇒ Ao

G1
= Ao

G2

Since the matrix tells us exactly which vertices are adjacent, ⇐ is trivial.
But ⇒ does not hold. The smallest counterexample is shown below.

18

G1

2 4 3 1 5

G2

1 4 2 3 5

Another counterexample is

G1

1

2

3
4

5

G2

5

2

3
4

1

The ordered incendence matrices are

Ao
G1 =




1 1 1 1 0 0 0 0
−1 0 0 0 1 1 0 0
0 −1 0 0 -1 0 1 0
0 0 −1 0 0 0 −1 1
0 0 0 −1 0 −1 0 −1




and

Ao
G2 =




1 1 1 1 0 0 0 0
−1 0 0 0 1 1 0 0
0 −1 0 0 0 0 1 1
0 0 −1 0 -1 0 −1 0
0 0 0 −1 0 −1 0 −1




It is clear that G1 and G2 are isomorphic. But Ao
G1 6= Ao

G2 (they differ in
the entries which are in bold).

19

Chapter 3

Determine all non-isomorphic
spanning trees

To determine all non-isomorphic spanning trees of a graph, we will use the
algorithm NIST. This algorithm works about the same as how we made the
tree sequences in section 2.2.1.

Algorithm NIST

Input: labeled graph G
1. Determine all spanning trees of G
2. Partition all spanning trees into isomorphism classes

Output: all not-isomophic spanning trees of G

Both steps in the algorithm will be explained in the next sections. The
Magma-code of all the algorithms can be found in [13].

3.1 Determine all spanning trees

D.E. Knuth [7] describes an algorithm, called Algorithm S, to determine all
spanning trees of a graph.
Knuth uses a special notation of a graph: he replaces all edges by two con-
trary directed edges. Then he translates the picture-notation into a notation
with sequences of succesors, predecessor, etc. In this section, we will get an
idea of how the algorithm works. To do that, we will not use Knuths nota-
tion, but the original notation (the picture of the undirected graph).

20

The main thing used in the algorithm is Lemma 3.2. Before we describe the
theorem, we need a definition.

Definition 3.1 Let G be a graph and e = uv an edge of G. G/e is the graph
we get by shrinking e to one vertex, i.e. we delete the edge(s) between u and
v and identify u and v.
Graphs we get from shrinking an edge are allowed to have multiple edges.

If e is part of a particular spanning tree, then the other n− 2 edges span the
graph G/e. So we have the next theorem.

Lemma 3.2 Let G be a graph and e an edge of G.
The spanning trees of G that contain e are the same as the spanning trees of
G/e to which we add e.

We start the algorithm with a (random) spanning tree, say a1, . . . , an−1.
All spanning trees can be classified in the next n − 1 classes:

1. Trees with a2, . . . , an−1.
2. Trees with a2, . . . , an−2 and without an−1.
3. Trees with a2, . . . , an−3 and without an−2.
...

n − 2. Trees with a2 and without a3.
n − 1. Trees without a2.

We will start with looking for all the spanning trees in the first class. There-
fore, we shrink the edges a2, . . . , an−1. What is left is a graph with two
vertices and between them k edges b1, . . . , bk, like below.

1 2

b1

b2

bk

The remaining edges all are a spanning tree of the new graph, so (by Lemma
3.2) together with the edges a2, . . . , an−1 they are a spanning tree of G. So
we found the spanning trees a2 · · ·an−1b1, a2 · · ·an−1b2, ..., a2 · · ·an−1bk.

21

Now we will look at the second class: trees with a2, . . . , an−2 and without
an−1.
Because we want spanning trees without an−1, we first delete this edge. In the
first class, we started with a near-tree, but this time we only have fixed n−3
edges. Therefore, we first look for all trees with a2, . . . , an−2, bk (bk because
that edge was extra in the last spanning tree we found). This goes similar
as in the first class, and we find the trees a2 · · ·an−2bkc1, a2 · · ·an−2bkc2, ...,
a2 · · ·an−2bkcm.
But we were looking for all spanning trees with a2, . . . , an−2, not with a2, . . . ,
an−2, bk. So the next step is to find all spanning trees with a2, . . . , an−2 and
without bk and an−1. So we delete also edge bk and start looking for all trees
with a2, . . . , an−2, cm (again, cm because this is the extra edge in the last
spanning tree we found).
At some point, there are no trees without an−1 and all the extra edges we
used (for example bk and cm). Then we have all trees in the second class.
To test whether or not there are trees without some set of edges, every time
we delete an edge we check whether this edge is a bridge or not.

Definition 3.3 Let G be a graph and e an edge of G. Then e is a bridge if
G gets disconnected when we delete e.

Finding the spanning trees in the third and fourth class goes the same.

In the algorithm, Knuth also uses ledge’s and slevel’s. We replace those num-
bers by sequences L and S.

In the sequence L, the places are represented by the edges (such that
L[edge] = ledge). So if the order of the edges in L is e1, e2, . . . , ek, then
L[e2] is on the second place in L.
With this sequence, we record which edges also have to be shrunk of
we shrink a specific edge.
For example, we have to shrink edge a in the graph below.

1 2

a
b

c

Then we also have to shrink b and c, which we have to record because
we have to know this when we unshrink a. We record this as follows:
L[a] := b, L[b] := c, L[c] := 0. So, when we have to unshrink a, we do
that and then look at L[a]. If this is zero, we are done. If this is not

22

zero, put L[a] also back in the graph. Then we check whether L[L[a]]
is zero or not, etc.

The sequence S is such that S[level] = slevel. With this sequence, we
record the last deleted edge in the level we are in. The edges deleted
before are recorded in L, in the same way as the forced shrinked edges
are recorded.

To explain the algorithm a bit more, we will give an example.

Example 3.4 In this example, we will use the graph below.
1

2

3

45
b

a

q

t

r

s

The order of the edges in L is q, a, r, s, t, b.

We start the algorithm with a (random) spanning tree: qart.
1. All trees with art
First, we shrink the near tree (a set of n − 2 edges and no cycle).

1

2

3

4

b

q

t

r

s

shrink a
S = [0]
L = [, 0, , , ,]

1 3

4

b

q

t s
shrink r
S = [0, 0]
L = [, 0, 0, , ,]

1 3

b

q shrink t
S = [0, 0, 0]
L = [, 0, 0, 0, s,]

The remaining edges are spanning trees of the remaining graphs, so with art
they are a spanning tree of the whole graph.
Trees are artq and artb.

23

Unshrink t (and because L(t) = s, also unshrink s (L(s) = 0)).

1 3

4

b

q

s
t is not a bridge, so delete t.
S = [0, 0, t]
L = [, 0, 0, 0, 0,]

2. All trees with ar and without t
Start with all trees with arb (we take b as extra edge, because that was in the
last tree we found) and not t.

3 4

q

s shrink b
S = [0, 0, t]
L = [, 0, 0, 0, 0, 0]

Trees are arbq and arbs.

Now unshrink b (L(b) = 0).

1 3

4

q

s
b is not a bridge, so delete b.
S = [0, 0, b]
L = [, 0, 0, 0, 0, t]

All trees with ars and not t or b.

1 3
q

shrink s
S = [0, 0, b]
L = [, 0, 0, 0, 0, t]

Trees are arsq.

Unshrink s (L(s) = 0).

1 3

4

b

q

t s

s is a bridge, so undelete S[3] = b
(because we are in level 3 now) and
L(b) = t (L(t) = 0).
S = [0, 0, b]
L = [, 0, 0, 0, 0, t]

(Enter level 2)
Unshrink r (L(r) = 0)

24

1

2

3

4

b

q

t

s

r is not a bridge, so delete r.
S = [0, r, b]
L = [, 0, 0, 0, 0, t]

3. All trees with a and without r
Start with all trees with asq and not r.

1 3

4

b

q

t
Shrink s
S = [0, r, b]
L = [, 0, 0, 0, 0, t]

3 4

b

t Shrink q.
S = [0, r, 0]
L = [0, 0, 0, 0, 0, t]

All trees are asqb and asqt.

Unshrink q (L(q) = 0).

1 3

4

b

t
q is not a bridge, so delete q.
S = [0, r, q]
L = [0, 0, 0, 0, 0, t]

Now determine all trees with ast and not r and q.

1 4
b

Shrink t.
S = [0, r, q]
L = [0, 0, 0, 0, 0, t]

All trees are astb.

Unshrink t (L(t) = 0).

1 3

4

b

q

t

t is a bridge, so undelete S(3) = q
(L(q) = 0).
S = [0, r, q]
L = [0, 0, 0, 0, 0, t]

Unshrink s (L(s) = 0).

25

1

2

3

4

b

q

t

r

s

s is a bridge, so undelete S(e) = r
(L(r) = 0).
S = [0, r, q]
L = [0, 0, 0, 0, 0, t]

(Enter level 1)
Unshrink a.

1

2

3

45
b

q

t

r

s

a is not a bridge, so delete a.
S = [a, r, q]
L = [0, 0, 0, 0, 0, t]

4. All trees without a
Start with all trees with stb and not a.

1 3

45
b

q

t r
Shrink s.
S = [a, r, q]
L = [0, 0, 0, 0, 0, t]

1

45
b

q Shrink t.
S = [a, 0, q]
L = [0, 0, 0, 0, r, t]

1 4
q

Shrink b.
S = [a, 0, 0]
L = [0, 0, 0, 0, r, 0]

Unshrink b (L(b) = 0).

1

45
b

q
b is a bridge, so undelete (there are
no edges to undelete).
S = [a, 0, 0]
L = [0, 0, 0, 0, r, 0]

Unshrink t (L(t) = r so also unshrink r (L(r) = 0)).

1 3

45
b

q

r
t is not a bridge, so delete t.
S = [a, t, 0]
L = [0, 0, 0, 0, 0, 0]

26

All trees with sbq and not a and t.

1 3

4

q

r
Shrink b.
S = [a, t, 0]
L = [0, 0, 0, 0, 0, 0]

3 4
r

Shrink q.
S = [a, t, 0]
L = [0, 0, 0, 0, 0, 0]

All trees are sbqr.

Unshrink q (L(q) = 0).

1 3

4

q

r

q is a bridge, so undelete (there are
no edges to undelete).
S = [a, t, 0]
L = [0, 0, 0, 0, 0, 0]

Unshrink b (L(b) = 0).

1 3

45
b

q

t r
b is a bridge, so undelete t (L(t) = 0).
S = [a, t, 0]
L = [0, 0, 0, 0, 0, 0]

Unshrink s (L(s) = 0).

1

2

3

45
b

q

t

r s is not a bridge, so delete s.
S = [s, t, 0]
L = [0, 0, 0, a, 0, 0]

All trees with bqr and not a and s.

1

2

3

4

q

t

r Shrink b.
S = [s, t, 0]
L = [0, 0, 0, a, 0, 0]

27

2

3

4

t

r Shrink q.
S = [s, 0, 0]
L = [0, 0, 0, a, 0, 0]

3 4
t

Shrink r.
S = [s, 0, 0]
L = [0, 0, 0, a, 0, 0]

All trees are bqrt.

Unshrink r (L(r) = 0).

2

3

4

t

r r is a bridge, so undelete (there are
no edges to undelete).
S = [s, 0, 0]
L = [0, 0, 0, a, 0, 0]

Unshrink q (L(q) = 0).

1

2

3

4

q

t

r q is a bridge, so undelete (there are
no edges to undelete).
S = [s, 0, 0]
L = [0, 0, 0, a, 0, 0]

Unshrink b (L(b) = 0).

1

2

3

45
b

a

q

t

r

s

b is a bridge, so undelete s (L(s) = a
so also undelete a (L(a) = 0)).
S = [s, 0, 0]
L = [0, 0, 0, a, 0, 0]

So all trees are:

artq asqb

artb asqt

astb

arbq

arbs stbq

arsq sbqr

bqrt

28

3.2 Partition into isomorphism classes

Now, with Algorithm S, we can construct the set of all spanning trees of our
graph G. The next step is to divide them into ismorphism classes, and pick
one tree from every class. This we will do with the algorithm TreeClasses.

Algorithm TreeClasses

Input: AllT rees, the sequence of all spanning trees of graph G
Classes := [AllTrees[1]];

for i := 2 to #AllTrees do

Classes := NewClasses(AllTrees[i], Classes);

end for;

Output: Classes, the sequence of all non-isomorphic spanning trees of G.

While running the algorithm, Classes contains one tree of every isomorphism
class of the first i−1 trees of AllT rees. The algorithm NewClasses checks
whether the ith tree is isomorphic to one of the trees in Classes or not. In
the first case, the new sequence Classes is the same as the old set. In the
second case, we found a tree non-isomorphic to the earlier trees, so we have
a new isomorphism class. So then the new sequence Classes is the old one
with AllT rees[i] included.

To check whether two trees T1 and T2 are isomorphic or not, we use the next
algorithm from [8].

Algorithm TreeIsomorphism

1. In each graph, label all the leaves with 1. If the numbers of leaves in T1

and T2 do not coincide, stop with “non-isomorphic”.

2. In each graph, determine the sets of unlabeled vertices S1 and S2 such
that every neighbour of v in Si, except at most one, has a label. Tenta-
tively, label v with the list [l1, . . . , lk] of labels of its labeled neighbours,
sort in non-decreasing order. Compare the respective tentative labels for
the vertices in S1 and S2. If these labels do not agree (as multisets),
stop with “non-isomorphic”.

3. In each graph, substitute the tentative labels (which are lists of numbers)
by new labels which are just numbers: order the tentative labels of both
graphs in non-decreasing order. The vertices with the smallest label get
the new label m, where m is the smallest number that has not been used

29

as a label before. The vertices with then the smallest label get the new
label m + 1. In this way, all vertices with the same tentative labels get
the same new label and all new labels have not been used before.

4. If not all vertices have got labels, go back to step 2.

5. Stop with “isomorphic”.

To see how the algorithm works, we will look at some examples. In the first
two examples, we will see that the given trees are not isomorphic.

Example 3.5

T1 T2

Since the numbers of leaves of the trees above are different, the algorithms
will return “non-isomorphic” in the first step.

Example 3.6

T1 T2

After step 2 (the first time), the labels will be like below.

T1

1

1

1[1]

[1,1]

T2

1

1

1[1]

[1]

[1]

The tentative labels of T1 are {[1], [1, 1]} and the tentative labels of T2 are
{[1], [1], [1]}. Since these labels are not the same, the algorithm will return
“non-isomorphic” in step 2.

30

The last example shows how the algorithm works on two isomorphic trees.

Example 3.7

T1 T2

↓ Step 1

T1

1

1

1

T2

1

1

1

↓ Step 2

T1

1

1

1[1]

[1,1]

T2

1

1

1

[1,1]

[1]

↓ Step 3

T1

1

1

12

3

T2

1

1

1

3

2

Since not all vertices are labeled, we return to step 2.

T1

1

1

12

3

[2,3]

T2

1

1

1

3

2[2,3]

↓ Step 3

T1

1

1

12

3

4

T2

1

1

1

3

24

And since all the labels are the same in every step, the trees are isomorphic.

31

Chapter 4

Bipartite graphs

For some classes of graphs, such as trees and cycles, it is obvious what the
number of non-isomorphic spanning trees is. For an arbitrary graph, it is
hard to determine a formula for the number of non-isomorphic spanning
trees. However, for complete bipartite graphs it turned out te be doable.

Definition 4.1 Let G be a graph. Then I(G) is the number of non-isomorphic
spanning trees of G.

In [9], Mohr proved the formulas for I(K2,t) and I(K3,t) he found.
In the first section of this chapter, we will introduce all the definitions and
theorems we need to prove those formulas. We also will show what the
formulas are. In the second section, we will prove the formula for I(K4,t).

4.1 Earlier results

Selecting the possible spanning trees, we often have to split the set of t
vertices (make a partition). To count the number of possibilities to do that,
we will use placing unlabeled balls (vertices) into (un)labeled boxes. We will
use the following definition and propositions (from [9] and [2]).

Definition 4.2 pk(n) is the number of partitions of n into at most k parts.

This is the same the number of ways to divide n unlabeled balls into k
unlabeled boxes.

32

Proposition 4.3 The number of ways to arrange n balls into k boxes is
showed in the table below.

number of number
balls boxes empty boxes of ways

unlabeled unlabeled ≥ 0 pk(n)
unlabeled unlabeled 0 pk(n) − pk−1(n)

unlabeled labeled ≥ 0
(

n+k−1
n

)

unlabeled labeled 0
(

n−1
k−1

)

unlabeled unlabeled ≤ k − 2 pk(n) − 1

unlabeled labeled ≤ k − 2
(

n+k−1
n

)
− k

(The last two cases are the situations where at least two boxes are nonempty.)

The generating function of pk(n) is 1
(1−x)(1−x2)···(1−xk)

.

Proposition 4.4 With the generating function, we can determine

p2(n) = bn
2
c + 1

and

p3(n) = 1
72

(6n2 + 36n + 47 + 9(−1)n + 8c)

where c =

{
2 if n ≡ 0 mod 3
−1 if n ≡ 1, 2 mod 3

Furthermore, we will use the next proposition (also from [9]).

Proposition 4.5

n∑

k=2

⌊k

2

⌋
=





n2

4
if n even

n2−1
4

if n odd

As we have seen in Theorem 2.11, the center of every tree is one vertex or
two adjecent vertices (i.e. an edge). So in Ks,t, the center is a vertex in the
s-set, a vertex in the t-set or an edge between the s-set and t-set.
Mohr also proved a really useful proposition about these centers:

Proposition 4.6 Let T be a tree and Pr(v) be the length of the unique rv-
path in T . The vertex r is the unique center of T if and only if there exist at
least two vertices vi such that:

33

1. Pr(vi) is maximal among all the vertices of T

2. the rvi-paths are disjoint except for the common vertex r.

With these propositions it is possible to prove the next results (we will not
do the proof, but the proof of the theorem in the next section will go in the
same way as the proof of these formulas).

Theorem 4.7 Let T ≥ 1. Then

(i) I(K1,t) = 1;

(ii) I(K2,t) = d t
2
e;

(iii) I(K3,t) = 1
9
(3t2 + 3t + 1 + c) where

c =

{
2 if t ≡ 1 (mod 3)
−1 if t ≡ 0, 2 (mod 3).

4.2 K4,t

For K4,t we found a closed formula for the number of the isomorphism classes.
The proof is similar to the proof of I(K2,t) and I(K3,t) in [9].

As we have seen before, the generating function of pk(n) is 1
(1−x)(1−x2)···(1−xk)

.

In [1] we can find

Proposition 4.8 We can rewrite the function 1
(1−x)(1−x2)···(1−xk)

into

∑ 1

1p12p2 · · ·kpk · p1!p2! · pk!
·

1

(1 − x)p1(1 − x2)p2 · (1 − xk)pk

where the summation runs over all partitions 1 · p1 + 2 · p2 + · · ·+ k · pk of k.

With this formula we can determine p4(n).

Theorem 4.9

p4(n) =
1

288

(
2n3 + 30n2 + 135n + 175 + (45 + 9n)(−1)n + 36z1 + 32z2

)

where z1 =

{
(−1)

n

2 if n is even
0 if n is odd.

and z2 =





1 if n ≡ 0 mod 3
0 if n ≡ 1 mod 3
−1 if n ≡ 2 mod 3

34

Proof:
With the formula of proposition 4.8 and partial fraction decomposition, we
get

p4(n) = [xn]
1

(1 − x)(1 − x2)(1 − x3)(1 − x4)

= [xn]
(1

24

(1 − x)4
+

1
4

(1 − x)2(1 − x2)
+

1
8

(1 − x2)2
+

1
3

(1 − x)(1 − x3)
+

1
4

(1 − x4)

)

= [xn]
(1

24
·

1

(1 − x)4
+

1

8
·

1

(1 − x)3
+

59

288
·

1

(1 − x)2
+

17

72
·

1

(1 − x)

+
1

8
·

1

(1 + x)
+

1

32
·

1

(1 + x)2
+

1

8
·

1

1 + x2
+

1

9
·

1 + x

1 + x + x2

)

Now, we have to determine the coefficient of the nth term of each fraction.
The cases 1

(1−x)i are easy: 1
(1−x)i = (1

1−x
)i = (1 + x + x2 + x3 + · · ·)i. So

the nth coefficient is the number of ways we we can make n out of i numbers
(≥ 0), which is

(
n+i−1

n

)
=

(
n+i−1

i−1

)
.

We can rewrite the fraction 1
1+x

into 1
1−(−x)

= 1 − x + x2 − x3 + · · · , so the

nth coefficient is (−1)n.
With this formula, we can see that the nth coefficient of 1

(1+x)2
= (1

1+x
)2 is

(n + 1)(−1)n.

And, in the same way, the nth coefficient of 1
1+x2 is z1 =

{
(−1)

n

2 if n is even
0 if n is odd.

The last fraction is equal to 1+x
1+x+x2 = (1+x)(1−x)

1−x3 = (1−x2)
1−x3 = (1− x2)(1 + x3 +

x6 + · · ·) = 1 − x2 + x3 − x5 + · · · . So the nth coefficient is

z2 =





1 if n ≡ 0 mod 3
0 if n ≡ 1 mod 3
−1 if n ≡ 2 mod 3

So

p4(n) =
1

24

(
n + 3

3

)
+

1

8

(
n + 2

2

)
+

59

288

(
n + 1

1

)
+

17

72
+

1

8
(−1)n

+
1

32
(n + 1)(−1)n +

1

8
z1 +

1

9
z2

=
1

288

(
2n3 + 30n2 + 135n + 175 + (45 + 9n)(−1)n + 36z1 + 32z2

)

where z1 =

{
(−1)

n

2 if n is even
0 if n is odd.

and z2 =





1 if n ≡ 0 mod 3
0 if n ≡ 1 mod 3
−1 if n ≡ 2 mod 3

35

�

Theorem 4.10 For t ≥ 5,

I(K4,t) =
29

144
t3 +

13 + 5 · (−1)t−1

32
· t + f + g

where

f =





0 if t ≡ 0 mod 3
1
9

if t ≡ 1 mod 3

−1
9

if t ≡ 2 mod 3

and

g =

{
0 if t is even
1
8
(−1)

t−1

2 if t is odd.

Proof:
We will denote the 4-set by {1, 2, 3, 4} and t-set by {v1, v2, . . . , vt} (in fact,
the vertices are not labeled, but this makes it easier to illustrate the proof).

Case: unique center in 4-set Let the vertex 1 be the center. The possible
spanning trees are showed below.

1

vertices of t-set

2 3 4

In this case, there is only one tree.

1

vertices of t-set

2 3 4

Also in this case, there is just one tree.

The case in which the vertices 2, 3 and 4 are adjecent to the same vertex of
the t-set we will see later (case: center is an edge).

36

1

vertices of t-set

2 3 4

Now, we can put n − k vertices in
the upper subset of the t-set and (to-
gether) k vertices in the 3 subsets be-
low. Then we have to divide those k
vertices into 3 unlabeled boxes with at
least 2 nonempty: p3(k) − 1 possibili-
ties.
Since at least two boxes have to be
nonempty, k must be bigger or equal

to 2. And since the upper box has to have at least 3 vertices, we have
k ≤ t − 3. So in this case we have

t−3∑

k=2

(p3(k) − 1) =
t−3∑

k=2

p3(k) − t + 4

possible trees.

1

vertices of t-set

2 3 4

Here, we put n−k vertices in the upper
subset, l in de two subsets under 2 and
3 and k − l in the subset under vertex
4. The only thing we have to do then,
is divide the l vertices into two boxes.
Since the upper subset and the subset
under 4 have to be nonempty, we get

t−2∑

k=2

k−1∑

l=1

p2(l)

trees.

Case: unique center in t-set Now we take v1 to be the center.

v1

1 2 3 4

The number of spanning trees is of
course p4(t − 1) − 1 (the −1 at the
end is because we must have at least 2
nonempty boxes).

37

v1

1 2

3 4

Here we have to arrange t − 1 vertices
into 2 boxes, at least two (so both)
nonempty. This gives us p2(t−1)−1 =
b t−1

2
c trees.

v1

1 2

3 4

Put k vertices into the upper 2 unla-
beled boxes and t−1−k in the lowest
2 (also unlabeled). Because all boxes
have to be nonempty, 2 ≤ k ≤ t − 3.
If we divide the k vertices into the sets
A1 and A2 and the t−1−k into the sets
B1 and B2, two things can happen.
First, if |A1| = |A2| or |B1| = |B2|,
we get the tree 1 − A1 − 3 − B1 with
2−A2 −4−B2. This can only happen

if k respectively t− 1− k is even. Second, if |A1| 6= |A2| and |B1| 6= |B2|, we
get two different trees: 1−A1−3−B1 with 2−A2−4−B2 and 1−A1−3−B2

with 2 − A2 − 4 − B1. So then we have to multiply the result by 2.
We call a(k) the number of possibilities to split k in two sets of equal size, and
b(k) the number of possibilities to split k in two non-empty sets of different
size. If k is odd, a(k) = 0 and b(k) = p2(k) − 1. If k is even, a(k) = 1 and
b(k) = p2(k) − 1 − a(k) = p2(k) − 2.
So we have four cases:

1. k even, t − 1 − k odd
The number of possible trees is 2 ·b(k) ·b(t−1−k)+a(k) ·b(t−1−k) =
2(p2(k) − 2)(p2(t − 1 − k) − 1) + 1 · (p2(t − 1 − k) − 1) = 2(bk

2
c −

1)b t−1−k
2

c + b t−1−k
2

c = 2bk
2
cb t−1−k

2
c − b t−1−k

2
c = (k−1)(t−k−2)

2
.

2. k odd, t − 1 − k even
Similar to “k even, t − 1 − k odd”, we get 2b k

2
cb t−1−k

2
c − bk

2
c =

(k−1)(t−k−2)
2

.

3. k odd, t − 1 − k odd
In this case, it cannot occur that we divide k or t− 1− k into two sets
of the same size, so now we simply have 2(p2(k)−1)(p2(t−1−k)−1) =

2bk
2
cb t−1−k

2
c == (k−1)(t−k−2)

2
possibilities.

38

4. k even, t − 1 − k even
The number of possible trees is 2 ·b(k) ·b(t−1−k)+a(k) ·b(t−1−k)+
b(k) ·a(t− 1−k)+a(k) ·a(t− 1−k) = 2(p2(k)− 2)(p2(t− 1−k)− 2)+
(p2(k)−2)+(p2(t−1−k)−2)+1 = 2bk

2
cb t−1−k

2
c−bk

2
c−b t−1−k

2
c+1 ==

(k−1)(t−k−2)
2

− 1
2
.

If t is even, only case 1 and 2 occur. So the number of possible trees is

t−3∑

k=2

(k − 1)(t − k − 2)

2
=

1

2

t−3∑

k=2

(
tk − k2 − k − t + 2

)

=
1

12

(
t3 − 9t2 + 26t − 24

)

If t is odd, only case 3 and 4 occur. So the number of possible trees is

t−3∑

k=2

(k − 1)(t − k − 2)

2
+

∑

2≤k≤t−3
k even

1

2
=

1

12

(
t3 − 9t2 + 26t − 24

)
+

1

2

t − 3

2

So, in general, the number of possible trees is

1

12

(
t3 − 9t2 + 26t − 24

)
+ h

where h =

{
0 if t even
t−3
4

if t odd

Case: center is an edge

1 v1

2 3 4

In this case, there is of course just one
spanning tree.

v11

3 4

2

We can put k vertices in the two unla-
beled boxes on the right and t− 1− k
in the left box. Since the left box have
to be nonempty, and of the two right
boxes at least one has to be nonempty,
1 ≤ k ≤ t− 2. So the number of span-
ning trees is

∑t−2
k=1 p2(k).

39

v11

4

2 3

We have to divide the t−1 vertices into
two labeled boxes, both nonempty:(
(t−1)−1

2−1

)
= t − 2. Then there is just

one case that cannot happen: when
the left subset contains just one ver-
tex. So there are t − 3 possible trees.
The vertices 2 and 3 can also be ad-
jecent to the same vertex. Then but
subsets have to be nonempty. So now
the number of spanning trees is t − 2.

v11

4

2

3

Here we arrange the t− 1 vertices into
three labeled boxes, all nonempty. So
there are

(
(t−1)−1

3−1

)
=

(
t−2
2

)
= 1

2
(t −

2)(t − 3) spanning trees.

So, summing up the results above, we get

I(K4,t) = 1 + 1 +
t−3∑

k=2

p3(k) − t + 4 +
t−2∑

k=2

k−1∑

l=1

p2(l)

+ p4(t − 1) − 1 +
⌊t − 1

2

⌋
+

1

12

(
t3 − 9t2 + 26t − 24

)
+ h

+ 1 +
t−2∑

k=1

p2(k) + 2t − 5 +
1

2
(t − 1)(t − 2)

= t2 − 2t + 3 + p4(t − 1) +
t−3∑

k=2

p3(k) +
1

12

(
t3 − 9t2 + 26t − 24

)
+ h

+ (t − 1)
t−3∑

k=1

⌊k

2

⌋
−

t−3∑

k=1

k
⌊k

2

⌋

where h =

{
0 if t even
t−3
4

if t odd

40

Since

(1)

t−3∑

k=2

p3(k) =
1

72

(
6

t−3∑

k=2

k2 + 36

t−3∑

k=2

k +

t−3∑

k=2

47 + 9

t−3∑

k=2

(−1)k + 8

t−3∑

k=2

c
)

=
1

72

(
6(

1

6
(t − 3)(t − 2)(2t − 5) − 1)

+ 36 ·
1

2
(t − 3 − 2 + 1)(t − 3 + 2) + 47(t − 4)

+ 9
t−3∑

k=2

(−1)k + 8
t−3∑

k=2

c
)

=
1

72

(
2t3 + 3t2 − 6t − 152 + a + b

)

where a =

{
0 if t is even
9 if t is odd.

and b =





8 if t ≡ 0 mod 3
0 if t ≡ 1 mod 3
−8 if t ≡ 2 mod 3

(2) For odd t (and so t − 3 is even), we have

t−3∑

k=1

⌊k

2

⌋
= 2

b t−3

2
c∑

i=1

i −
⌊t − 3

2

⌋

=
⌊t − 3

2

⌋(⌊t − 3

2

⌋
+ 1

)
−

⌊t − 3

2

⌋

=
t − 3

2

t − 3

2

=
1

4
(t2 − 6t + 9)

For even t (and so t − 3 is odd), we have

t−3∑

k=1

⌊k

2

⌋
= 2

b t−3

2
c∑

i=1

i

=
⌊t − 3

2

⌋(⌊t − 3

2

⌋
+ 1

)

=
t − 4

2

t − 2

2

=
1

4
(t2 − 6t + 8)

41

So in general
t−3∑

k=1

⌊k

2

⌋
=

1

4
(t2 − 6t + 9) + d

where d =

{
−1

4
if t even

0 if t odd

(3) If we want to rewrite
∑t−3

k=1 k
⌊

k
2

⌋
, we again have to look at t mod 2.

If t is even (so t − 3 is odd), we get:

t−3∑

k=1

k
⌊k

2

⌋
=

b t−3

2
c∑

i=1

i(2i + 2i + 1)

=

b t−3

2
c∑

i=1

(4i2 + i)

=
1

24
(4t3 − 33t2 + 86t − 72)

If t is odd (so t − 3 is even), we get:

t−3∑

k=1

k
⌊k

2

⌋
=

b t−3

2
c−1∑

i=1

i(2i + 2i + 1) + (t − 3)
⌊t − 3

2

⌋

=

b t−3

2
c−1∑

i=1

(4i2 + i) + (t − 3)
⌊t − 3

2

⌋

=
1

24
(4t3 − 33t2 + 92t − 87)

So we can rewrite the formula as below.

t−3∑

k=1

k
⌊k

2

⌋
=

1

24
(4t3 − 33t2 + 86t − 72) + h

where h =

{
0 if t even
1
4
t − 5

8
if t odd

42

So we have

I(K4,t) = t2 − 2t + 3 + p4(t − 1) +
t−3∑

k=2

p3(k) +
1

12

(
t3 − 9t2 + 26t − 24

)
+ h

+ (t − 1)
t−3∑

k=1

⌊k

2

⌋
−

t−3∑

k=1

k
⌊k

2

⌋

=
29

144
t3 +

13 + 5 · (−1)t−1

32
· t + f + g

where

f =





0 if t ≡ 0 mod 3
1
9

if t ≡ 1 mod 3

−1
9

if t ≡ 2 mod 3

and

g =

{
0 if t is even
1
8
(−1)

t−1

2 if t is odd.

�

Some results are

t 5 6 7 8 9
number of spanning

trees in K4,t 32,000 221,184 1,404,928 8,388,608 47,775,744
I(K4,t) 28 45 73 105 152

43

Chapter 5

Extreme cases

Looking at the number of non-isomorphic spanning trees, there are two ex-
treme cases. First is the class of graphs that contain all non-isomorphic
spanning trees. Of course, the complete graph does. But more interestingly:
what is the smallest graph that contains them all?
The second extreme case is the graphs that contain just one non-ismorphic
spannig tree. Also in this case, there are trivial graphs, like trees itself. But
can we find bigger graphs?

5.1 All non-isomorphic spanning trees

In this section, we look for graphs that contain all possible non-isomorphic
spanning trees. In general this is not really interesting, since the complete
graph always contains all possible non-isomorphic spanning trees. But, with
n fixed, what is the smallest graph with that property?

The first important thing is to determine all non-isomorphic (spanning) trees
with n vertices. Of course, this can be done by applying algorithm NIST

on Kn, but it can be done much faster. D.E. Knuth gives in [7] a way to
determine all these trees.
With Algorithm O, he determines all rooted forests. This with use of se-
quences [p1, p2, . . . , pn] (pi ∈ {0, . . . , n}) where pi is the parent of vertex i. If
pi = 0, vertex i has no parent, so it is a root.
With exercise 90 of [7], we can expand this algorithm to determine all trees.
First, we add the vertex 0 and connect all the roots with it. Then we get a

44

tree with n + 1 vertices. Then we split the algorithms in two part: one will
look for trees with one vertex as a center (which will be the vertex 0), and
the other one for trees for which the center is an edge.

But if we know all non-isomorphic trees on n vertices, how do we get a
smallest graph that contains them all? In general, two of the trees are always
K1,n−1 and Pn−1. So we start with combine those two in the “smallest way”.

This is the smallest way, because K1,n−1 contains only paths with two edges,
so we have to add at least n− 2 edges to get a path and in this case, we add
n − 2 edges.
For n is 3 to 6, this graph contains all non-isomorphic spanning trees. So for
these n, we found the smallest graph.
Unfortunately, for n = 7 we miss some spanning trees. But when we add one
edge as below, we get a graph that contains all the non-isomorphic spanning
trees. So also in this case we found a smallest graph.

For n is 8 and 9, we also found the smallest graph.

For n is 10 and 11, I found quite small graphs that contain all possible non-
isomorphic spanning trees. But the algorithm was not fast enough to check
whether the graphs are the smallest or not.

45

5.2 All spanning trees isomorphic

As said before, of course trees contain just one non-isomorphic spanning tree.
But can we find bigger graphs with this property? And how many bigger
graphs are there?

R. Fischer [3], L. Friess [4] and B. Zelinka [12] classified the graphs with
exactly one isomorphism class of spanning trees. Before we can formulate
that theorem, we have to define a special class of graphs.

Definition 5.1 Let A1, A2, . . . , Ak be rooted trees. Then C(A1, A2, . . . , Ak)
is the graph where the root of Ai is connected to the root of Ai+1 by an edge.
The indices of the trees are always mod k. So the root of Ak is connected to
the root of A1.

So (if k > 2) in this graph we have one cycle, of length k, and every vertex
of this cycle is the root of a tree.

Theorem 5.2 Every graph with exactly one isomorphism class of spanning
trees is either a tree or a graph of the form C(A1, A2, . . . , Ak), where Ai is a
rooted tree and Ai

∼= Ai+2 for i = 1, 2, . . . , k.

The first class (trees), we will call T . The second class we will call Ck and
Ck[n] are all graphs of Ck with exactly n vertices.

The most interesting class is of course Ck (or Ck[n]). For which pairs (n, k)
holds: Ck[n] 6= ∅?

5.2.1 Conditions on k

We fix n. Since the k vertices have to be a cycle, we must have k ≥ 3. Since
n is the total number of vertices in the graph, also k ≤ n must hold.

5.2.1.1 Case: k odd

We have a graph C(A1, A2, . . . , Ak) with n vertices. As we have seen in the-
orem 5.2, we should have Ai

∼= Ai+2 for i = 1, 2, . . . , k.

46

Because k is odd, we can rewrite this condition into

Ai
∼= Ai+1 for i = 1, 2, . . . , k.

So all the Ai’s have to be isomorphic.

The cycle contains k vertices, and since all Ai’s has to be isomorphic, they
all contain the same number of vertices: n

k
. Since the number of vertices is

in N, n
k

has to be in N. Hence, k has to be a divisor of n.

Theorem 5.3 Let n, k ∈ N with k odd. Then

k - n =⇒ Ck[n] = ∅

k|n =⇒ Ck[n] = {C(A, A, . . . , A︸ ︷︷ ︸
k times

) | A a rooted tree with n
k

vertices}

Proof:
We showed above that k has to be a divisor of n, which proves k - n ⇒
Ck[n] = ∅.
If k|n, we have n

k
∈ N. Let A be a rooted tree with n

k
vertices. Then

C(A, A, . . . , A︸ ︷︷ ︸
k times

) satisfies “Ai
∼= Ai+1 for i = 1, 2, . . . , k”, so the graph is in

Ck[n]. �

So “k is a divisor of n” is a sufficient condition for Ck[n] to be nonempty.

5.2.1.2 Case: k even

In this case we can rewrite the condition of theorem 5.2 into

A1
∼= A3

∼= A5
∼= · · · ∼= Ak−1

and
A2

∼= A4
∼= A6

∼= · · · ∼= Ak

Let m be the number of vertices of Ai with i even and l the number of vertices
of Ai with i odd. Then

n = m
k

2
+ l

k

2
.

47

So
2n

k
= m + l

Because m + l ∈ N, k has to be a divisor of 2n.

Theorem 5.4 Let n, k ∈ N with k even. Then

k - 2n =⇒ Ck[n] = ∅

k|2n =⇒ Ck[n] = {C(A, B, A, B, . . . , A, B︸ ︷︷ ︸
k trees

)

where A, B are rooted trees with together 2n
k

vertices}

Proof:
We showed above that k has to be a divisor of 2n, which proves k - 2n ⇒
Ck[n] = ∅.
If k|2n, we have 2n

k
∈ N. Let A and B be rooted trees with together 2n

k
ver-

tices. Then C(A, B, A, B, . . . , A, B︸ ︷︷ ︸
k trees

) satisfies “Ai
∼= Ai+2 for i = 1, 2, . . . , k”,

so the graph is in Ck[n]. �

5.2.1.3 Graphs on n vertices

We define

C[n] =
n⋃

k=3

Ck[n]

i.e. all graphs on n vertices that are not trees and with one isomorphism
class of spanning trees. Then, with the results of section 5.2.1.1 and 5.2.1.2,
we can conclude:

Theorem 5.5 C[n] consists of all graphs

1. C(A, A, . . . , A︸ ︷︷ ︸
k times A

) where k is odd and a divisor of n, and A is a rooted

tree with n
k

vertices.

2. C(A, B, A, B, . . . , A, B︸ ︷︷ ︸
k trees

) where k is even and a divisor of 2n, and A and

B are rooted trees with together 2n
k

vertices.

48

5.2.2 Number of graphs

If we fix n, we now know for which k there is a graph with one cycle (of
length k) and one isomorphism class of spanning trees. But how many (not
isomorphic) graphs on n vertices with one isomorphism class are there? Be-
fore we can determine that, we first determine how many graphs there are in
Ck[n]. Again, we have the two cases k odd and k even.

5.2.2.1 Case: k odd

As we have seen in section 5.2.1.1, the graphs we have to look at are:
C(A, A, . . . , A︸ ︷︷ ︸

k times A

) where k is a divisor of n, and A is a rooted tree with n
k

vertices.

The number of graphs in this case is therefore the number of (non-isomorphic)
rooted trees on n

k
vertices. This number is determined by D.E. Knuth in

[6]: let am be the number of non-isomorphic rooted trees with m vertices.
Obviously, a1 = 1. If m > 1, the tree has a root and various subtrees.
Suppose there are j1 subtrees with 1 vertex, j2 subtrees with 2 vertices, etc.
Then we may choose jk of the ak possible k-vertex trees in

(
ak+jk−1

jk

)
ways.

So

am =
∑

j1+2j2+···=m−1

(
a1 + j1 − 1

j1

)
· · ·

(
am−1 + jm−1 − 1

jm−1

)

if m > 1. This number grows quite fast:

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
am 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973

5.2.2.2 Case: k even

As we have seen in section 5.2.1.2, the graphs we have to look at are:
C(A, B, A, B, . . . , A, B︸ ︷︷ ︸

k trees

) where k is a divisor of 2n, and A and B are rooted

trees with together 2n
k

vertices.

49

As in section 5.2.1.2, m is the number of vertices of A and l the number of
vertices of B. Then, the number of graphs in this case is

a 2n

k

+ a1a 2n

k
−1 + a2a 2n

k
−2 + · · ·+ ab 2n

k
/2cad 2n

k
/2e =

b 2n

2k
c∑

m=0

am · a 2n

k
−m

(with a0 = 1) since l = 2n
k
− m and (for example) m = 1, l = 0 gives the

same graph as m = 0, l = 1.

Example 5.6 Take n = 8 and k = 4. Since 4|16 = 2 · 8, Ck[n] is nonempty.
The number of graphs in Ck[n] is:

b 2n

2k
c∑

m=0

am · a 2n

k
−m =

2∑

m=0

am · a4−m

= a0 · a4 + a1 · a3 + a2 · a2

= 1 · 4 + 1 · 2 + 1 · 1

= 7

5.2.2.3 Graphs on n vertices

Now we can combine the results of the sections 5.2.2.1 and 5.2.2.2.

Theorem 5.7

|C[n]| =
∑

k|n
k odd

3≤k≤n

an

k
+

∑

k|2n
k even
3≤k≤n

b 2n

2k
c∑

m=0

am · a 2n

k
−m

We get

n 3 4 5 6 7 8 9 10 11 12 13 14 15
|C[n]| 1 2 1 3 1 9 3 3 1 50 1 3 12

50

Example 5.8 Take n = 60. The divisors of 60 are 1, 2, 3, 4, 5, 6, 10, 12, 15,
20, 30, 60. Since k ≥ 3, we can forget the divisors 1 and 2.
Then

|C[n]| =
∑

k|n
k odd

3≤k≤n

an

k
+

∑

k|2n
k even
3≤k≤n

b 2n

2k
c∑

m=0

am · a 2n

k
−m

= a20 + a12 + a4 +
15∑

m=0

am · a30−m +
10∑

m=0

am · a20−m +
6∑

m=0

am · a12−m

+

5∑

m=0

am · a10−m +

3∑

m=0

am · a6−m +

2∑

m=0

am · a4−m +

1∑

m=0

am · a2−m

= 12.826.228 + 4.766 + 4 + 697.878.253.158 + 25.088.231 + 9.191

+ 1.377 + 37 + 7 + 2

= 697.916.183.001

5.2.2.4 Special case: n is prime

For n is an odd prime, we see something special happens.
If k is odd, we know k|n has to hold. But then k = n (since k ≥ 3). So the
only graph in this case is the cycle with n vertices.
If k is even, then k|2n has to hold. So, k = 2, k = n or k = 2n. Since
3 ≤ k ≤ n, k = 2 and k = 2n can not hold and since k is even and n is odd
(n is prime), also k = n can not hold. So there is no graph for this case.

So

Theorem 5.9 If n is an odd prime, C[n] = {cycle with n vertices}

51

Chapter 6

References

1. G.E. Andrews, The theory of partitions, 1976
page 81

2. D.I.A. Cohen, Basic techniquens of combinatorial theory, John Wiley
& Sons, 1978
page 116

3. R. Fischer, Über Graphen mit isomorphen Gerüsten, Monatshefte für
Mathematik 77 (1973)
pages 24-30

4. L. Friess, Graphen, worin je zwei Gerüste isomorph sind, Math. Ann.
204 (1973)
pages 65-71

5. C. Jordan, Sur les assemblages de lignes, J. reine und angew. Math.
70 (1869)
pages 185-190

6. D.E. Knuth, The art of computer programming, volume 1, 3rd edition,
Addison-Wesley (1997)
pages 386-399

7. D.E.Knuth, The art of computer programming, volume 4 fascicle 4,
section 7.2.1.6

8. J. Köbler, U. Schöning and J. Torán, The graph isomorphism problem:
its structural complexity, 1993
pages 5-6

52

9. A. Mohr, Partitioning the labeled spanning trees of an arbitrary graph
into isomorphism classes, Master thesis, 2008

10. J.W. Moon, Counting labelled trees, 1970
Chapter 5: The matrix tree theorem (pages 39-51).

11. H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Arch. Math.
Phys. 27
pages 742-744

12. B. Zelinka, The graphs, all of whose spanning trees are isomorphic to
each other, Casopis Pest. Mat. 96, (1971)
pages 33-40

13. http://www.math.ru.nl/∼bosma/Students/JannekevandenBoomen/

53

