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Voorwoord
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uitdaging! Bedankt dus voor alle steun!

Omdat deze scriptie ook een afsluiting is van mijn studententijd wil
ik graag mijn ouders bedanken voor hun steun in de gehele studieperiode.
In de tweede helft van mijn studententijd kwam daar ook die van mijn
vriendin Rianne bij. Nooit heb je mij veroordeeld, en altijd bleef je in me
geloven, ook als daar weinig reden voor was.

Ook een woord van dank aan Wim Veldman. Er was altijd de interesse
in de persoon, en op het juiste moment waren er wijze woorden. Deze
wezen niet welke weg ik moest nemen, maar wel hoe de keus te maken.

Als laatste een woord van dank aan mijn peetoom Jan. De laatste
loodjes zijn het zwaarst, maar die heb jij met een fantastisch vooruitzicht
heel wat lichter gemaakt!
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0 Introduction

Continued fractions have been in use for ages now. Some even say thousands
of years. Christiaan Huygens used continued fractions for his planetarium.
He tried to approximate the ratios of the different orbital periods by rational
numbers with smallest denominators possible, because he needed to use as little
cogs on the gears as possible. For this he used continued fractions.

The odd thing about continued fractions is that although they give good approx-
imations for real numbers, they are very hard to do arithmetic with. Adding,
subtracting and multiplying continued fractions is not an easy task. Even
adding a constant to a continued fraction is not always trivial. In the mid and
late 20th century algorithms were devised to apply Möbius transformations on
continued fractions. There even came an algorithm to add and multiply them
with each other! However, these algorithms are not as easy as the ones for
adding two decimal numbers. Also they only seem to work for real continued
fractions. The goal of this thesis is to construct an algorithm for the complex
numbers.

At first I tried what would happen in a specific case: the multiplication by
2. In the real case there already was a specific solution. This is described
in chapter two. Although it was intended for the regular continued fraction
I try to apply it on the nearest integer continued fraction. Allowing negative
numbers as partial quotients causes the uniqueness of a continued fraction to
disappear. No longer is there a bijection between the real numbers and the
continued fractions. Problems that might occur and possible solutions to those
are described in this chapter. The next chapter does essentially the same thing
for the complex case.

In chapter five I begin to describe a different viewpoint. Continued fractions
can also be represented by matrices, and so can Möbius transformations. Raney
[9] makes use of this fact to produce an algorithm which does for the regular
case exactly what I want to achieve for the complex case. This algorithm is
described, as well as a brief description of Hall’s algorithm [3], which has the
same outcome as Raney’s algorithm, but works a bit differently.

The algorithm by Raney was a new starting point for research on the complex
case. The matrix-representation can be extended to include complex contin-
ued fractions. With these tools I try to extend Raney’s algorithm. I partially
succeed. An algorithm is described that generates a continued fraction that
converges to the right complex number, but unfortunately the complex contin-
ued fraction is not in the right form. This gives rise to the problems described
in chapter four.

Eventually I derive an algorithm which, given Hurwitz continued fraction x
and Möbius transformation M , returns the Hurwitz continued fraction of M(x).
This solves or circumvents all problems described in the previous chapters. The
first proper chapter gives an introduction into the different continued fractions
used in this thesis.
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1 Continued Fraction Algorithms

A general continued fraction representation of a complex number is an expan-
sion of the following form:

a0 +
e0

a1 +
e1

a2 +
e2

. . .

where ai and ei are ∈ Z[i] for all i ∈ N. In this thesis all ei will be 1. When
all ai are positive integers, we say it is the regular continued fraction. RCF(x)
is the regular continued fraction of x. When all ai are integers, we say it is a
real continued fraction. We can calculate the regular continued fraction in the
following way. Let x ∈ R. Then:

a0 = bxc
x0 = x (1.1)

xn+1 = xn − an for n ≥ 0 (1.2)

an+1 = bxn+1c for n ≥ 0

A shorter way to write down a continued fraction is the following:

a0 +
1

a1 +
1

a2 +
1

. . .

= [a0, a1, a2, . . .]

Given an infinite (or finite) continued fraction x = [a0, a1, . . . ...] we can define
pn and qn such that:

pn

qn
= [a0, a1, . . . , an]

pn/qn will be called the n-th convergent. The sequence pn/qn will converge to
x.

1.1 Nearest Integer Continued Fraction

The nearest integer continued fraction (NICF) is a real continued fraction which
allows negative integers as partial quotients. Instead of rounding down, the
algorithm to calculate the NICF-expansion of a real number x rounds to the
nearest integer. In the case of a tie, it rounds to the smallest integer. Thus
b2.5e = 2 and b−2.5e = −3. So, the algorithm to find the nearest integer
continued fraction of x includes (1.1) and (1.2), and uses a0 = bxe and an+1 =
bxn+1e.
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In this thesis the nearest integer continued fraction might be denoted a little
different from what the reader is used to. In here the nearest integer continued
fraction is denoted:

[a0,−a1, a2,−a3] = a0 +
1

−a1 +
1

a2 +
1

−a3

The following notation is more common, and for example used in Smeets [11]
and Iofescu and Kraaikamp [7]:

[a0,−1/a1,−1/a2,−1/a3] = a0 +
− 1

a1 +
− 1

a2 +
− 1

a3

= a0 +
1

−a1 +
1

a2 +
1

−a3

The following theorem says something about what partial quotients can occur
in an NICF-expansion.

Theorem 1.3. A continued fraction expansion of x is an NCIF-expansion if
and only if for all partial quotients ai with i > 0, |ai| ≥ 2, if ai = 2 then
ai+1 > 1 and if ai = −2, then ai+1 < −1.

1.2 The Complex Continued Fraction

Complex continued fractions can be defined in various ways. One of the ways
known is due to Asmus Schmidt [10]. It gives the best approximations by ratios
of Gaussian integers [4, p.67], but the link with the real continued fractions
is not immediately clear. An algorithm which still gives good approximations,
and is a direct extension of the nearest integer continued fraction is the Hurwitz
Continued Fraction [5]. This complex continued fraction is studied in this thesis.
To get the Hurwitz continued fraction(HCF(x)) of a complex number x, again
rules (1.1) and (1.2) apply. Again we take the nearest integer, only now, it is
a Gaussian integer. In case of a tie the same rules as for the NICF-expansion
are extended to the complex plane. b−2.5e = −3, b2.5 − 3.5ie = 2 − 4i. The
complex plane can then be divided in squares (Figure (1)) that show which
complex numbers to round to a specific Gaussian integer.
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Figure 1: Squares dividing the complex plane

1.3 Some General Theorems

The following theorems hold for the general, nearest integer and Hurwitz con-
tinued fraction. Replace x ∈ Q by x ∈ Q[i] for the Hurwitz continued fraction.

Theorem 1.4. For every x ∈ Q there is an n ∈ N and a regular continued
fraction [a0, . . . , an] such that x = [a0, . . . , an].

In the real case, if all integers are positive, there are exactly two: x = [a0, . . . , an]
and x = [a0, . . . , an − 1, 1]. If an = 1 they would be x = [a0, . . . , an−1 + 1] and
x = [a0, . . . , an].

For a continued fraction [a0, a1, . . .], its convergents can be calculated in the
following way:

p−2 = q−1 = 0

p−1 = q−2 = 1

pn+1 = an+1pn + pn−1 (1.5)

qn+1 = an+1qn + qn−1.

A few more theorems concerning the convergents:

Theorem 1.6. |qn| > |qn−1|.

Theorem 1.7.

∣∣∣∣ x− pn

qn

∣∣∣∣ < ∣∣∣∣ 1

q2
n

∣∣∣∣.
We say x = [a0, a1, a2, . . .] if the convergents stemming from ai converge to x.
We can also say [a0, a1, a2, . . .] converges to x. For each x there may be more
than one continued fraction that converges to it, but there is only one regular,
nearest integer or Hurwitz continued fraction that converges to that x.
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If [a0, a1, a2, . . .] is the continued fraction of x, we define the n-th complete quo-
tient of x as xn = [an, an+1, an+2, . . .]. It is clear that x = [a0, a1, . . . , an−1, xn]
for every n. The following relation holds:

x =
pnxn+1 + pn−1

qnxn+1 + qn−1

A Möbius transformation of a complex number z is a function of the form
y = az+b

cz+d with a, b, c, d complex integers, and ad− bc 6= 0. A few simple Möbius
transformations of some expansion can easily be deduced by hand, for example
multiplication by -1 or i:

−1 · x = −a0 +
− 1

x1
= −a0 +

1

−x1

i · x = ia0 +
i

a1 +
1

x2

= ia0 +
1

−ia1 +
− i
x2

= ia0 +
1

−ia1 +
1

ix2

Obviously, multiplication by −1 is different for the regular continued fraction,
because only the first partial quotient can be negative. If RCF(x) = [a0, a1, x2]
then RCF(−x) = [−a0 − 1, 1, a1 − 1, x2]. If x = [0, a1, a2, a3, . . .] then 1/x =
[a1, a2, a3, . . .]. If x = [a1, a2, a3, . . .] then 1/x = [0, a1, a2, a3, . . .]. Another
simple one is addition by an integer. If k is an integer, then [a0, a0, a2, . . .]+k =
[a0 + k, a1, a2, . . .].

Although these rules might look simple, some complications can be expected.
The Hurwitz continued fraction of i · [a0, a1, x2] might be something different
then [ia0,−ia1, ix2]. If for example x = i

2 + α with 0 < α ∈ R/Q, then
x = [i + bαe, . . .]. Now ix = iα − 1

2 = [bαei − 0, . . .] instead of [bαei − 1, . . .].
both continued fractions can converge to ix, but only the first one can be the
Hurwitz continued fraction of ix. More on this in chapter (3).
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2 The Nearest Integer Continued Fraction

In order to understand the Hurwitz continued fraction, it might be a good idea
to start with the nearest integer continued fraction. The complex one is a direct
generalisation. As an example of an easy Möbius transformation I describe in
this chapter how to multiply a continued fraction by 2, and what problems
might arise when diverging from the NICF-expansion.

2.1 Multiplication by 2

More then a hundred years ago, Hurwitz [6] provided us with a way to multiply
a regular continued fraction by 2. He came up with the following two rules:
Let a and b be any positive integer, and let γ be any real number. Then:

2[0, 2a, b, γ] = [0, a, 2b,
γ

2
]

2[0, 2a+ 1, γ] = [0, a, 1, 1,
γ − 1

2
]

If you write that in ’fraction-form’ it looks like this:

2

2a+
1

b+
1

γ

=
1

a+
1

2b+
2

γ

(2.1)

2

2a+ 1 +
1

γ

=
1

a+
1

1 +
1

1 +
2

γ − 1

(2.2)

If we now have x = [a0, a1, a2, . . .], and we want to know what the continued
fraction of 2x is, we can repeatedly apply one of these two rules to get it. We
do have to pose some restrictions on γ. If [0, 2a, b, γ] or [0, 2a+ 1, γ] is a proper
continued fraction, then γ is larger then 1, and thus the expansion of 1/γ starts
with 0. However, if 1 < γ ≤ 2, then γ − 1 < 1, and thus 1

γ−1 > 1, and the

expansion of 1
γ−1 won’t start with 0. Suppose 1 < γ ≤ 2. Then γ = [1, d, γ1]

7



for some d ∈ N and γ ∈ R.

[1,
γ − 1

2
] =

= 1 +
2

γ − 1

= 1 +
2

0 +
1

d+
1

γ1

= 1 +

2(d+
1

γ1
)

1

= 1 + 2d+
2

γ1

= [1 + 2d,
γ1

2
]

This also gives us a way to remove any zero from an expansion with only ones
as numerators;

[a, b, 0, c, γ] = [a, b+ c, γ]

Now let’s try and calculate an example. The Nearest integer continued fraction
of π starts with [3, 7, 16,−294, 3,−4, 5, . . .]. We know that 2π = [6, 4,−2,−7,−2,−146,−3,−7, 2, 2, . . .].
Let’s try and get that result by applying the rules we just learned on the con-
tinued fraction of π. Let xi be the i-th complete quotient of π for every i ∈ N.

2 · [3, 7, 16,−294, 3,−4, 5, x6]

=6 + 2 · [0, 7, 16,−294, 3,−4, 5, x6]

=6 + 2 · [0, 7, x2]

=6 + [0, 3, 1, 1,
x2 − 1

2
]

x2 − 1 =[15, x3] = [15,−294, 3,−4, 5, x6]

2

x2 − 1
=2 · [0, 15,−294, 3,−4, 5, x6]

=[0, 7, 1, 1,
x3 − 1

2
]
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We now applied 2.2 twice. Notice that I continue with 2
x2−1 , and not with x2−1

2 .
This is more clear when you write it down in fractionform:

[0, 3, 1, 1,
x2 − 1

2
] =

1

3 +
1

1 +
1

1 +
1

x2 − 1

2

=
1

3 +
1

1 +
1

1 +
2

x2 − 1

A few more calculations yield:

2

x3 − 1
=2 · [0,−295, 3,−4, 5, x6]

=[0,−148, 1, 1,
x4 − 1

2
]

2

x4 − 1
=2 · [0, 2,−4, 5, x6]

=[0, 1,−8,
x5

2
]

2

x5
=2 · [0, 5, x6]

=[0, 2, 1, 1,
x6 − 1

2
]

Now we have to construct the continued fraction of 2π out the small bits of
information we have gathered.

2 · [3, 7, 16,−294, 3,−4, 5, x6]

= 6 + [0, 3, 1, 1,
x2 − 1

2
]

= [6, 3, 1, 1, 7, 1, 1,
x3 − 1

2
]

= [6, 3, 1, 1, 7, 1, 1,−148, 1, 1,
x4 − 1

2
]

= [6, 3, 1, 1, 7, 1, 1,−148, 1, 1, 1,−8,
x5

2
]

= [6, 3, 1, 1, 7, 1, 1,−148, 1, 1, 1,−8, 2, 1, 1,
x6 − 1

2
]

This is different from what we expected it to be! It isn’t completely wrong
though, this continued fraction still converges to 2π. It is just not an NICF-
expansion.

2.2 Repairing an NICF-expansion

The result of the example of the last paragraph isn’t very satisfactory. If we
apply the rules for multiplication by 2 on a nearest integer continued fraction,
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we might get some odd results. We might get a negative number after a 2 in
the expansion, which is not allowed, and we can even get a 1 or a −1. This can
be really bad, because for example theorems (1.6) and (1.7) might not be true
anymore. More bad things can happen as this paragraph will show.

The following rules can be applied to remove unwanted combinations in the
coefficients. The first one is also called singularization. For all a ∈ Z,γ ∈ R.
The following holds:

[0, a, 1, γ] =
1

a+
1

1 +
1

γ

=
1

a+ 1 +
1

−γ − 1

= [0, a+ 1,−γ − 1]

[0, a,−1, γ] =
1

a+
1

−1 +
1

γ

=
1

a− 1 +
1

1− γ

= [0, a− 1, 1− γ]

There is also an equation connecting 2 and −2

[0, a,−2, γ] =
1

a+
1

−2 +
1

γ

=
1

a− 1 +
1

2 +
1

γ − 1

= [0, a− 1, 2, γ − 1]

Summarising what we know of transforming continued fractions:

[a, 0, b, γ] = [a+ b, γ]

[a, 1, γ] = [a+ 1,−γ − 1]

[a,−1, γ] = [a− 1, 1− γ] (2.3)

[a,−2, γ] = [a− 1, 2, γ − 1]

[a, 2, γ] = [a+ 1,−2, γ + 1]

With these tools, we can hope to repair any irregularities, and we can, in a
finite case.

Theorem 2.4. Let x = [a0, a1, . . . , an] be a general continued fraction with
integer partial quotients. we can construct NICF(x) = [b0, b1, . . . , bm] without
calculating x.

Theorem (1.3) states that a continued fraction expansion is an NICF-expansion
if we remove any 1 or −1, and have no (−)2 followed by a (positive)negative
number. The equations (2.3) have a solution for each of the properties in (1.3).
If you look closely, you see that upon applying one of the rules in (2.3) both
the partial quotient to the left and to the right change. And if one of those
numbers is changed, a new 1,−1 or unwanted 2 or −2 might be created. If it
is on the left side of the current number, you can hop back and replace that
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number as well. In the finite case this won’t give any problems, as I will prove.
In the infinite case it might.

Assume we are in the following situation:

x = [b1, . . . , bk, 2,−l, aj , . . . , an]

with l ∈ N∗, and [b1, . . . , bk, 2] a valid NICF-expansion. Now we apply the
fourth rule, and get:

x = [b1, . . . , bk, 2,−l, aj , . . . , an] = [b1, . . . , bk + 1,−2, 1− l, aj , . . . , an]

Now a problem can arise if bk + 1 equals −1, 0, 1 or 2. Since we are working
from left to right we don’t mind problems arising with 1 − l. If bk + 1 equals
one of 0, 1, 2, then bk must have been one of −1, 0, 1. All three are in violation
with the fact that [b1, . . . , bk, 2] is an NICF-expansion. That leaves us with
bk + 1 = −1. Then bk = −2. This is also not possible, because we would
have had −2 followed by a positive number (namely 2). We now know that
transforming 2 into −2 at index k doesn’t create a new problem at index k− 1.
Going from −2 to 2 will yield the same result in a similar proof.

Applying one of the first three rules of (2.3) however, might cause some prob-
lems. The good thing is, in this case one partial quotient is eliminated. In the
finite case it means that those rules can only be applied finitely many times.
Thus the algorithm works in the finite case.

The following example illustrates that it can also work in the infinite case. Let
φ be the golden ratio. It’s regular continued fraction is [1, 1, 1, 1, . . .]. Now let’s
try and convert it to an NICF-expansion:

φ = [1, 1, 1, 1, 1, 1, . . .]

= [2,−2,−1,−1,−1,−1, . . .]

= [2,−3, 2, 1, 1, 1, 1, . . .]

= [2,−3, 3,−2,−1,−1,−1,−1, . . .]

...

= [2,−3, 3,−3, 3,−3, 3, . . .]

Also, the continued fraction of 2π of the last paragraph can be converted:

[6, 3, 1, 1, 7, 1, 1,−148, 1, 1, 1,−8, 2, 1, 1] =

[6, 4,−2,−7,−1,−1, 148,−1,−1,−1, 8,−2,−1,−1] =

[6, 4,−2,−8, 2,−148, 1, 1,−8, 2, 1, 1] =

[6, 4,−2,−7,−2,−147, 1, 1, 1,−8, 2, 1, 1] =

[6, 4,−2,−7,−2,−146,−2,−1, 8,−2,−1,−1] =

[6, 4,−2,−7,−2,−146,−3,−7, 2, 1, 1] =

[6, 4,−2,−7,−2,−146,−3,−7, 3,−2]

The last two partial quotients are still wrong, but that is because I took only
the first few partial quotients in my calculations, while π and 2π have infinitely
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many. It does not always work in the infinite case, as the following example
illustrates. Let x be [2,−2]. Then x = 2 − 1

x . Thus x2 − 2x + 1 = 0, which
means x = 1. It is clear that there is a much shorter way to write down x . If
we try and repair x, step by step, the following happens:

x = [2,−2, 2,−2, 2 . . .]

= [1, 2, 1,−2, 2, . . .]

= [1, 3, 1,−2, 2, . . .]

= [1, 4, 1,−2, 2, . . .]

...

= [1,∞, . . .]

Of course, the last continued fraction isn’t well defined. The sequence of con-
tinued fractions show that it converges to 1, but it never really get’s there.

An even more intruiging example is the following. Let [a0, a1, . . . , an] be a
valid continued fraction. Now let’s try and extend it with [2,−1, 2,−an −
1,−an−1, . . . ,−a0], and see what happens:

x = [a0, a1, . . . , an, 2,−1, 2,−an − 1,−an−1, . . . ,−a0]

= [a0, a1, . . . , an + 1,−2, 0, 2,−an − 1,−an−1, . . . ,−a0]

= [a0, a1, . . . , an + 1, 0,−an − 1,−an−1, . . . ,−a0]

= [a0, a1, . . . , an−1, 0,−an−1, . . . ,−a0]

... (2.5)

= [a0, 0,−a0]

= [0]

This shows that the convergents pn/qn of x eventually end up at 0, while they
were not during the process. If we copy and paste this continued fraction
infinitely many times, we see that the convergents go up and down, but never
converge to anything. Thus, a random continued fraction does not need to
converge. Another reason to try and stick to the nearest integer, or any other
well-defined expansion.
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3 The Complex Continued Fraction

Just as with the nearest integer continued fraction, a complex number is rep-
resented by a unique Hurwitz continued fraction, but several general complex
continued fractions. Actually, there are infinitely many. To recognise what is
and what isn’t a Hurwitz continued fraction is more difficult however.

3.1 Multiplication by 2

We go on with investigating the multiplication by 2. If we look closely to
equalities (2.1) and (2.2) we see that a, b and γ don’t have to be positive
integers, or even real numbers. The same rules apply when a, b and γ are
negative, or complex numbers. That gives us a foothold in trying to find a
complex variant of multiplying with 2. But, since the Gauss integers can’t be
divided in odd and even numbers, we would need an extra set of rules. We
need to know what happens when the first partial quotient is equal to 2a+ i or
2a+ i+ 1 for some a ∈ Z[i]. And indeed, the equalities (2.1) and (2.2) can be
extended with two new ones.

Suppose that x = [0, 2a+ i, γ], with a, b ∈ Z[i] and γ ∈ C. Then:

[0, a, 1− i,−bi− 1, i+ 1, (i− 1− γ)/2] =

1

a+
1

1− i+
1

−bi− 1 +
1

i+ 1 +
2

i− 1− γ

=
1

a+
1

1− i+
1

−bi− 1 +
i− 1− γ
−γi− γ

=

1

a+
1

1− i+
− γi− γ

i− 1− γ − bγ + γi+ bγi+ c

=
1

a+
i− 1− γ − bγ + γi+ bγi+ γ

2i+ 2bγi

=

2i+ 2bγi

2ai+ 2abγi+ i− 1− bγ + γi+ bγi
=

2 + 2bγ

2a+ 2abγ + bγi+ i+ bγ + 1 + γ
=

2

2a+ i+ 1 +
γ

bγ + 1

=
2

2a+ i+ 1 +
1

b+
1

γ

=

= 2[0, 2a+ i+ 1, b, γ]

13



Similarly, we have:

2x = 2[0, 2a+ i, γ] =
2

2a+ i+
1

γ

=
2γ

2aγ + γi+ 1
=

− 2γi

−2aγi+ γ − i

=
1

a+
γ − i
−2γi

=
1

a+
1

− 2γi

γ − i

=
1

a+
1

−2i+
2

γ − i

= [0, a,−2i,
γ − i

2
]

So, the four rules to convert the complex continued fraction of z into the con-
tinued fraction of 2z are:

2[0, 2a, b, γ] = [0, a, 2b,
γ

2
]

2[0, 2a+ 1, γ] = [0, a, 1, 1,
γ − 1

2
]

2[0, 2a+ i, γ] = [0, a,−2i,
γ − i

2
]

2[0, 2a+ i+ 1, b, γ] = [0, a, 1− i,−bi− 1, i+ 1, (i− 1− γ)/2]

The way these rules have to be applied is as in paragraph (2.1). In the complex
case the same things can go wrong as the examples show there. Therefore
studying what partial quotients can and what partial quotients can’t occur in
the Hurwitz continued fraction is subject of the next paragraph.

3.2 Secure Partial Quotients

Just like in the real case, you can try to convert an arbitrary complex contin-
ued fraction into a Hurwitz continued fraction. The following rules aid in that
process. For any a and b ∈ C:

i[a, i, b] = [ia, 1, ib] = [ai+ 1,−ib− 1] = i[a− i, b− i]
−[a,−i, b] = [−a, i,−b] = [−a− i,−b− i] = −[a+ i, b+ i]

And, like in the real case, 2i can not be succeeded by −ki, k ∈ N. The conver-
sion here can be deduced from the real case. Let k ∈ N, a ∈ Z[i], z ∈ C.

i[a, 2i, ki, z] = [ai, 2,−k,−zi] = [ai+ 1,−2,−k + 1,−zi] = i[a− i,−2i, ki− i, z]

The few rules that we have are thus:

[a, i, b] = [a− i, b− i]
[a,−i, b] = [a+ i, b+ i]

[a, 2i,−ki] = [a− i,−2i,−ki− i]
[a,−2i, ki] = = [a+ i, 2i, ki+ i]

14



However, a theorem like (1.3) is not easily obtained, and the algorithm that
proves theorem (2.4) can’t be extended with just these rules. Much more is
needed! As you divide 1 by a real number in [−1

2 ,
1
2), the outcome will be in

(−∞,−2] ∪ (2,∞), explaining theorem (1.3). If you divide 1 by a complex
number with real and complex values in [−1

2 ,
1
2) (region F in Figure (2)), the

outcome (region 1/F ) is a more difficult region. The borders consist of four
semi-circles with radius 1 around the points 1,−1, i,−i. The right and lower
semicircles are part of 1/F , the other two are not. If you calculate the Hurwitz
continued fraction of x, in any step xi will end up in F , and 1/xi will end up
in 1/F . This means that except for the first partial quotient, you will never
end up in the region between F and 1/F . That tells us something about what
partial quotients can occur, and what not.

1

i

F

1/Fgfed

`abc
g̀af becd

}|

}| .

..

1+i 2+i

2+2i1+2i

Figure 2: The regions F and 1/F , and a small zoom in on 1 + i

Definition 3.1. Let [a0, . . . , aj−1] be a Hurwitz continued fraction. We call the
partial quotient aj secure if for every complete quotient xj+1 ∈ 1/F the first j+1
partial quotients of the Hurwitz continued fraction of Zxj+1 = [a0, . . . , aj , xj+1]
are [a0, . . . , aj ].

If for every xj+1 the j-th partial quotient of Zxj+1 is not aj we say aj is not
admissable. If it can go either way, we say it is insecure.

1

i

1/Fgfed

`abc
g̀af becd

Figure 3: Squares around 1,−1, i,−i and 0 not in 1/F

Theorem 3.2. If aj ∈ {1,−1, i,−i, 0}, and j > 0, then aj is not secure.
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Figure 4: Showing 1+ i+1/z for z on the lines of Figure (1). The numbers show where
the square around z goes for some z

Proof. If j > 0, then xj lies in the area 1/F . The number xj can only be
rounded to aj if xj lies inside one of the 5 squares around 1,−1, i,−i or 0. All
those squares lie outside the region 1/F .

It gets a little more complicated with the values 2i, 1 + i, 2 + i, 1 + 2i and their
rotations by a power of i. For example, it is clear that a 2 can’t be succeeded
by a negative real partial quotient (just as in the real case). As 1

a+bi = a−bi
a2+b2

,
1 + i can be succeeded by any complex number z with Re(z) ≥ 1 and Im(z)
≤ 1. It can’t be succeeded by any complex number z with Re(z) ≤ −1 and
Im(z) ≥ −1. 2 + i can’t be succeeded by −1 + i, while −2 + 2i is uncertain.

Figure (4) gives some more insight. It is zoomed in on 1 + i, and shows where
1 + i+ 1/z will end up. All the circles stem from either 1 + i+ 1/(zi+ 1/2 + k)
or 1 + i+ 1/(z + i/2 + ki) for some k ∈ Z and z ∈ R. Now all the areas are the
images of the square around some Gaussian number. The thick lines are the
edges of the clover as shown in Figure (2).

One interesting thing noticed right away is that the thick lines coincide with
the rest of the figure. This is easily proven. The image of the right thick line

has two preimages: f(a) = 1 + i+
1

a+ i
2

for a ∈ [0,∞), and g(a) =
1

1
2 + ai

for
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a ∈ [−1
2 ,

1
2). Now

1

1 + i+
1

a+
i

2

=
1

i+ 1 +
2

2a+ i

=
2a+ i

2a+ 1 + 2ai+ i
=

4a2 + 4a+ 1− (4a2 − 2a+ 3)i

8a2 + 8a+ 2
=

1

2
+ yi

with y =
− (4a2 + 2a− 3)

8a2 + 8a+ 2
. If a → ∞ , y goes to −1

2 . If a = 0, then y = 3
2 .

The interval [−1
2 ,

3
2 ] overlaps [−1

2 ,
1
2 ], and y is a continuous function of a, thus

the image of f(a) and g(a) overlap. For the upper thick line a similar thing can
be proven. Except for the borders we now know exactly which partial quotients
are secure and which quotients are not admissable after 1 + i. For k, l ∈ N∗:

Not secure 0, 1, i,−1,−i,−k + li, k + li,−k − li,−k, li
Insecure 2,−2i, 1− i, 2− i, 1− 2i

Not admissable k − li, k + 1,−(l + 1)i

We are not so lucky if we look at the square around 2 + i (Figure (5)). We

Figure 5: Showing 2 + i+ 1/z for z on the lines in Figure (1)

see here that we are not sure whether −2 + 2i,−2 + i and −i + 2i are secure
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as partial quotient, because the thick line intersects the distorted squares. The
areas coinciding with the numbers −2,−2 − i,−1 − i,−1 − 2i,−2i, 1 − 2i, 1 −
i, 2− i, 2, 2 + i, 1 + i, 1 + 2i and 2i are intersected by the edge of the square, and
that is why these are also not decidable without knowing the following partial
quotients. 1− i is not admissable as partial quotient after 2 + i.

Note that for most Gaussian numbers, the only numbers where you have doubt
about whether they can be the next partial quotient are 2i, 2i − 1, i − 1, i −
2,−2,−2 − i,−1 − i,−1 − 2i,−2i, 1 − 2i, 1 − i, 2 − i, 2, 2 + i, 1 + i and 1 + 2i.
These are in accordance with the areas overlapping the edge of the square, just
as in Figure (5) clockwise, starting from the bottom center one. In these edges
it can be very hard to find out exactly what combinations can occur or not.
Figure (6) shows that [1 + i, 1− i, 2 + 2i] is a good Hurwitz continued fraction,
while we don’t know whether [1 + i, 1− i, 1 + i] is. That depends on what the
next partial quotients are. It also means that the 1 − i is still insecure. This
can go on for quite a while, as the next theorem suggests.

Figure 6: 1 + i+ 1/(1− i+ 1/z) for z the lines in Figure (1)

Theorem 3.3. For all N ∈ N there is an n > N ∈ N, xn+1, yn+1 ∈ 1/F and
b0, a0, . . . , an ∈ Z[i] such that if x = [a0, . . . , an, xn+1] and y = [a0, . . . , an, yn+1]
then HCF(x) = [a0, . . . , an, xn+1] and HCF(y) = [b0, . . .] with b0 6= a0.

This theorem says that for an insecure partial quotient it can take arbitrarily
long before one can say that it is correct as part of a Hurwitz-expansion.This

18



is proved by example:

Vn = [0,−2i+ 1,−2i− 2,−2i+ 2, . . . ,−2i− 2,−2i+ 2︸ ︷︷ ︸
n times −2i− 2,−2i+ 2

]

Wn = [0,−2i+ 1,−2i− 2,−2i+ 2, . . . ,−2i− 2,−2i+ 2︸ ︷︷ ︸
n times −2i− 2,−2i+ 2

,−2i− 1]

Zn = [0,−2i+ 1,−2i− 2,−2i+ 2, . . . ,−2i− 2,−2i+ 2︸ ︷︷ ︸
n times −2i− 2,−2i+ 2

,−2i− 1,−3i− 3]

Then the imaginary part of Vn is smaller then 1
2 for every n ∈ N. While the

imaginary part of Zn is bigger then 1
2 for every n ∈ N. The reason is that

the imaginary part of Wn is equal to n for every n ∈ N. We see that if we
add −2i − 1 and −3i − 3 as partial quotients to Vn, that the imaginary part
suddenly becomes greater then 1

2 . Thus the first partial quotient of Zn is wrong,
and must be i instead of 0. We see that it if you retrieve the partial quotients
one by one, it might take arbitrarily long to find out whether even the first
partial quotient is correct! The partial quotient −2i+ 1 is not admissable after
0 (or any Gaussian number) if it is followed by the chain of partial quotients
in this example. Because it can be arbitrarily long, describing in general which
partial quotients are secure requires some effort. Especially behaviour at the
edges of the different regions in for example Figure 4 can be difficult to grasp.
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4 Continued Fractions and Matrices

The idea of trying to apply Möbius-transforms to continued fractions is not new.
Hall [3] devised an algorithm to do so, and so did Raney [9] and Liardet and
Stambul [8]. Raney and Liardet and Stambul have one thing in common, they
transform continued fractions into series of matrices in SL2(R). The matrices
then represent the convergents.

4.1 Matrix-Form

We can write the rules from (1.5) in matrix-form:(
pn−1 pn−2

qn−1 qn−2

)(
1 an
0 1

)
=

(
pn−1 pn−1an + pn−2

qn−1 qn−1an + qn−2

)
=

(
pn−1 pn
qn−1 qn

)
(4.1)(

pn−1 pn
qn−1 qn

)(
1 0

an+1 1

)
=

(
pnan+1 + pn−1 pn
qnan+1 + qn−1 qn

)
=

(
pn+1 pn
qn+1 qn

)
(4.2)

If we note that(
p−1 p−2

q−1 q−2

)
=

(
1 0
0 1

)
we see that pn and qn appear in these matrices because of multiplication by
matrices of two different forms. In fact, they are multiples of two matrices.
Define L and R, and multiply them with themselves to get the following result.
For any n ∈ Z:

L =

(
1 0
1 1

)
, R =

(
1 1
0 1

)
, Ln =

(
1 0
n 1

)
, Rn =

(
1 n
0 1

)
.

This means we can represent our continued fraction a in a different way. If
we calculate the matrix Ra0La1 . . . Ra2n we can read out pn and qn in the right
column. If we end with La2n+1 we read them out in the left column. We now
say the product of matrices Ra0La1 . . . Ra2n represents the continued fraction
[a0, a1, . . . , a2n]. In other words we could say that the ’word’ Ra0La1 . . . Ra2n

represents the continued fraction. In this way an infinite word can also respre-
sent an infinite continued fraction.

A geometrically more explanatory matrix representation is found in Finch [2].

he leaves out the matrix L, and introduces a new matrixB =

(
0 1
1 0

)
. Liardet

and Stambul use a matrix Can =

(
an 1
1 0

)
. A few computations show that:

BRnB = BCn = Ln
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We can now see that Ra0La1Ra2 = Ca0Ca1Ca2 = Ra0BRa1BRa2 , and so we
have three different matrix forms representing the same fraction. If you look at

z = p/q as a vector

(
p
q

)
then Bz =

(
q
p

)
= 1/z, and R−nz =

(
p− nq
q

)
=

(p−nq)/q. Basically, if F = [0, 1) or F = [−1
2 ,

1
2) is the fundamental area, some

power of R shifts any number back to F , and B inverses it out to 1/F again.

4.2 Complex Matrices

It seems easy to extend Finch’ representation to the complex plane. Just shift
the number to the fundamental area, like in the real case. The matrix R shifts
everything on the real axis, so a new matrix is needed which shifts everything
on the complex axis. The matrix B still does its trick. A new matrix is defined:

Ri =

(
1 i
0 1

)
Observe that in this case the following also holds:

Rni =

(
1 ni
0 1

)
RRi = RiR =

(
1 1 + i
0 1

)
Now a complex continued fraction also follows the rules as in equation (1.5),
and thus an and an+1 in equations (4.1) and (4.2) might as well be complex.
A complex continued fraction can now also be represented using matrices. At
the same time, if we define Li similar to Ri, we can also extend Raneys repre-
sentation. Let an, bn ∈ Z for all n ∈ N.

pn/qn = [a0 + b0i, a1 + b1i, . . . , an + bni](
pn−1 pn
qn−1 qn

)
= Ra0Rb0i BR

a1Rb1i B . . . R
anRbni

Now if using the LR notation, depending on the parity of n:(
pn−1 pn
qn−1 qn

)
= Ra0Rb0i L

a1Lb1i . . . R
anRbni for n even(

pn pn−1

qn qn−1

)
= Ra0Rb0i L

a1Lb1i . . . R
an−1R

bn−1

i LanLbni for n odd

4.3 Möbius Transformations

A different way of looking at Möbius-transformations is through matrices:(
a b
c d

)(
z1

z2

)
=

(
az1 + bz2

cz1 + dz2

)
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If now z = z1/z2 then:

az1 + bz2

cz1 + dz2
=
a(z1/z2) + b

c(z1/z2) + d
=
az + b

cz + d

We see that applying a Möbius transformation M to a number z = z1/z2, is
essentially the same as multiplying the vector (z1, z2)> by the corresponding
matrix M . We also note that the composition of two Möbius transformations
yields a new one.

a
ex+ f

gx+ h
+ b

c
ex+ f

gx+ h
+ d

=
a(ex+ f) + b(gx+ h)

c(ex+ f) + d(gx+ h)
=

(ae+ bg)x+ (af + bh)

(ce+ dg)x+ (cf + dh)

This coincides with the product of matrices:(
a b
c d

)(
e f
g h

)(
x1

x2

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)(
x1

x2

)
We can now apply a Möbius transformation to a continued fraction using matri-
ces. Note that R,Ri, L, Li and B can also be seen as Möbius transformations.
R for example coincides with x 7→ x+ 1.(

a b
c d

)(
pn pn+1

qn qn+1

)
=

(
apn + bqn apn+1 + bqn+1

cpn + dqn cpn+1 + dqn+1

)
Now suppose z = pn+1/qn+1, then

apn+1 + bqn+1

cpn+1 + dqn+1
=
apn+1/qn+1 + b

cpn+1/qn+1 + d
=
az + b

cz + d

If z is irrational, then z is the limit of a series of rational convergents pn/qn
for n → ∞, and if M is a Möbius transformation it follows that the limit of
M(pn/qn) goes to M(z) for n→∞. Again, you could see the matrix with the
convergents in it as a Möbius transformation itself. We see that it might be a
good idea to take a look at matrices in finding out the continued fraction for
(az+b)/(cz+d). This is exactly what Raney has done for real-valued continued
fractions and Möbius transformations.

4.4 Hall

The following paragraph is just a quick overview of the algorithm by Hall. A
better understanding is obtained by reading Aldenhoven [1]. When applying
Möbius transformations to continued fractions, a good result is obtained in a
specific real case. The following theorem holds:

Theorem 4.3. Let x, y ∈ R\Q and RCF(x) = [a0, a1, a2, . . .].
There is a Möbius transformation M with determinant 1 such that x = M(y)⇔
There exist j and k ∈ N, b0 ∈ Z and b1, . . . , bk ∈ N such that
RCF(y) = [b0, b1, . . . , bk, aj , aj+1, aj+2, . . .]
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Not only is this theorem a nice result in itself, but Hall also uses it in an
algorithm to calculate any real Möbius transformation of a real continued frac-
tion. He derives a method of calculating b0, . . . , bk and j. Let M be a Möbius
transformation with determinant N , x ∈ R\Q, y = M(x). Now, he finds a
transformations M ′ and M ′′ such that

M ′ =

(
e f
g h

)
M ′′ =

(
t u
v w

)
eh− fg = ±1 tw − uv = ±1

x′ = M ′(x) y′ = M ′′(y)

y′ = Nx′

So he uses Theorem (4.3) to reduce the problem to multiplying by an integer. He
then defines a finite set C of Möbius transformations for which he can calculate
certain rules. For example, if N = 2 the following matrices are part of C: (cf.
[1])

y′ = Ax′, y′ = A−1x′, A =

(
2 0
0 1

)
, A−1 =

(
1 0
0 2

)
,

y′ = Bx′, y′ = B−1x′, B =

(
1 0
−1 2

)
, B−1 =

(
2 0
1 1

)
,

y′ = Cx′, y′ = C−1x′, C =

(
1 1
1 −1

)
, C−1 = C,

y′ = Dx′, y′ = D−1x′, D =

(
2 1
0 1

)
, D−1 =

(
1 −1
0 2

)
,

y′ = Ex′, y′ = E−1x′, E =

(
3 1
1 1

)
, E−1 =

(
−1 1
1 −3

)
,

y′ = Fx′, y′ = F−1x′, F =

(
1 0
2 −2

)
, F−1 =

(
2 0
2 −1

)
,

y′ = Gx′, y′ = G−1x′, G =

(
2 −1
1 0

)
, G−1 =

(
0 −1
1 −2

)
.

Mind that an inverse here doesn’t mean the inverse as matrix, but the inverse

as Möbius transformation. For example

(
4 0
0 4

)
is as a Möbius transforma-

tion equal to

(
1 0
0 1

)
. The inverse of

(
2 0
0 1

)
as Möbius transformation is
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(
1 0
0 2

)
. He now defines the following rules:

A 7→ A−1, x′ = [a, x′1], x′1 > 2 → y′ = [2a, y′1]

A 7→ C, x′ = [a, 1, x′2] → y′ = [2a+ 1, y′1]

A−1 7→ A, x′ = [2a, x′1] → y′ = [a, y′1]

A−1 7→ C, x′ = [2a+ 1, x′1] → y′ = [a, 1, y′2]

C 7→ D, x′ = [1, x′1] → y′ = [y′]

C 7→ C, x′ = [2, x′1] → y′ = [2, y′1]

C 7→ D−1, x′ = [x′], x′ > 2 → y′ = [1, y′1]

D 7→ G−1, x′ = [a, 1, x′2] → y′ = [2a+ 2, y′1]

D 7→ A−1, x′ = [a, x′1], x′1 > 2 → y′ = [2a+ 1, y′1]

D−1 7→ A, x′ = [2a+ 1, x′1] → y′ = [a, y′1]

D−1 7→ G, x′ = [2a+ 2, x′1] → y′ = [a, 1, y′2]

G 7→ C, x′ = [a, 1, x′2] → y′ = [2a, y′1]

G 7→ A−1, x′ = [a, x′1], x′1 > 2 → y′ = [2a− 1, y′1]

G−1 7→ A, x′ = [2a− 1, x′1] → y′ = [a, y′1]

G−1 7→ C, x′ = [2a, x′1] → y′ = [a, 1, y′2]

The way these rules have to be applied is almost the same as how the rules in
(2.1) and (2.2) have to be applied. Suppose the x = [3, 6, 7, 1, . . .], then:

2x = y′0 y′0 = A[3, 6, 7, 1, . . .]

= [6, y′1] y′1 = A−1[6, 7, 1, . . .]

= [6, 3, y′2] y′2 = A[7, 1, . . .]

= [6, 3, 15, y′3] y′3 = C[. . .]

So 2x = [6, 3, 15, . . .].

4.5 Raney

A more stylized way is developed by Raney. For his algorithm, Raney uses
only doubly-balanced matrices as Möbius transformations, and later proves that
the other cases can be converted into one with a doubly-balanced matrix. He

calls a matrix M =

(
a b
c d

)
row-balanced when a, b, c and d are nonnegative

integers, the determinant n is positive, and a > c and d > b. A matrix is column-
balanced when a > b and d > c. It is doubly-balanced when it is both column-
balanced and row-balanced. Let RBn, CBn and DBn th denote the row-
balanced, column-balanced and doubly-balanced matrices with determinant n,
and Dn all matrices with determinant n. Now the following theorem is very
important in Raney’s algorithm.
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Theorem 4.4. Let Q ∈ CBn. There is a unique P ∈ Dn such that PQ ∈ RBn

The proof involves subtracting matrix-rows from each other. Define M = PQ.
When M /∈ RBn, it means that both entries of one row are bigger then the
corresponding entries of the other. Then subtract the row as many times as
needed until either the other row is bigger, or M is row-balanced. When the
other row is now bigger, continue on the same foot until the matrix is row-
balanced. It is easy to prove that the column-balancedness isn’t lost in this
proces. Now P is the product of the L and R matrices corresponding with the
row-subtractions, and thus is of determinant 1.

Now suppose M1 ∈ DBn. Then there is an initial part P1 of the matrix-
representation of x such that M1P1 ∈ L · CBn or M1P1 ∈ R · CBn. Together
with the previous theorem, we can now make an M2 ∈ DBn and a finite product
of LR-matrices v1 such that M1P1 = v1M2. For any k ∈ N there exist v1 . . . vk,
P1 . . . Pk and Mk ∈ DBn, such that each vi and Pi is a finite product of LR-
matrices and

M(x) = MP1P2P3 . . . = v1v2 . . . vkMkPΠ(k)PΠ(k)+1 . . .

for some permutation Π. He then makes a transducer which works for any
Möbius transformation with determinant n, in which the transitions describe
a small step in the form of M1v1 = v2M2. Using this transducer you can
transform one sequence of matrices representing x into another representing
y = M(x). Essentially Raneys algorithm only has a number n as input, and
then creates an algorithm which works for any transformation with determinant
n. The upside of this is that for given n, it becomes very clear how the Möbius
transformation affects continued fractions. The downside is, for large n, the
transducer becomes big, and you might end up calculating loads of transitions
you don’t need.

x�y~z}
6

L2 : L hoinjm?R : R2 hoinjmklM1

-
LR : RL

�

RL : LR

hoinjmklM2
y~z}{|

6
R2 : Rinjmkl?L : L2

Figure 7: Transducer for the real row-balanced Möbius transformations with determi-
nant 2

Let N be 2. Define matrices M1 =

(
2 0
0 1

)
and M2 =

(
1 0
0 2

)
. We now

have the only 2 row-balanced matrices with determinant 2. The transducer
belonging to those two matrices is shown in Figure (7). When we take x =
[3, 6, 7, 1, . . .], and we want to know what 2x is, we have to use the matrix-
form of our continued fraction. Now using the transducer in Figure (7) we can
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calculate the following:

x = [3, 6, 7, 1, 5, . . .]

M1(x) = M1 ·R3L6R7LR5 . . .

= R6 ·M1 · L6R7LR5 . . .

= R6L3 ·M1 ·R7LR5 . . .

= R6L3R14 ·M1 · LR5 . . .

= R6L3R15L ·M2 ·R4 . . .

= R6L3R15LR2 ·M2 · . . .
M(x) = [6, 3, 15, 2, 2, . . .]
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5 A Complex Algorithm

The algorithm by Raney covers only the regular continued fraction, and thus it
does not work for the Hurwitz expansion. That is, not in the same form. In this
chapter I will describe two algorithms that do. They do not build transducers,
and only calculate what they need at a given time. They produce continued
fractions that converge to the right complex number, but the result is not a
Hurwitz continued fraction. In the next chapter a different algorithm does
produce Hurwitz continued fractions.

5.1 First Algorithm

In the first algorithm I circumvent the need for generalising row-balanced matri-
ces to the complex numbers. Because I don’t use them, I can’t prove a theorem
like theorem (4.4). Instead I will prove a similar theorem. For all n ∈ Z[i] we
now define Dn as the set of matrices in GL2(Z[i]) with determinant n.

Theorem 5.1. Let M =

(
a b
c d

)
be a matrix in Dn.There exist a matrix P

in D1, and a matrix M ′ in Dn such that P1M
′ = M and the first column in

M ′ equals either

(
a′

0

)
or

(
0
a′

)
for some a′ ∈ Z[i].

Proof. We start to apply the Gcd-algorithm to a and c. Let’s say we now want
to subtract c y0 times from a. We then have to subtract the second row of M y0

times from the first. Which equals to multiplying M on the left by R−y01R−y02i .

M =

(
a b
c d

)
=

(
1 y0

0 1

)(
a− y0c b− y0d

c d

)
In the next step we subtract a − y0c from c, which translates to multiplying
with L and Li. After a finite number, of steps, let’s say m+ 1 we end up in the
following situation:

M =

(
a b
c d

)
=

(
1 y0

0 1

)(
1 0
y1 1

)
. . .

(
1 ym
0 1

)(
gcd(a, c) b′

gcd(a, c) d′

)
for some b′ and d′ in Z[i]. rm/sm and rm−1/sm−1 are the convergents of a/c.
The last matrix could also have ym in the lower left corner instead of the upper
right, depending on the parity of n. In this case, it is a multiple of L and Li,
instead of R and Ri. Also, rn and sn are then in the left column. Notice that
R,Ri, L and Li all have determinant 1. If we replace ym by ym + 1 to create an
entry with 0 instead of gcd(a, c), we’re done.

Note that we can do exactly the same with the second column, and extend
theorem (5.1) accordingly.
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Now let x = [a0 + b0i, a1 + b1i, a2 + b2i, . . .], and M a Möbius transformation.
Let’s take the first n + 1 coefficients of x, with n odd. We can now apply the
previous theorem to MRa0Rb0i . . . L

anLbni . We then get

Ry0Ru0i . . . LymLumi

(
gcd(a, c) c′

0 d′′

)
= MRa0Rb0i . . . L

anLbni(
rm rm−1

sm sm−1

)(
gcd(a, c) c′

0 d′′

)
=

(
a b
c d

)(
pn pn−1

qn qn−1

)
(
gcd(a, c)rm rmc

′ + rm−1d
′

gcd(a, c)sm smc
′ + sm−1d

′

)
=

(
apn + bqn apn−1 + bqn−1

cpn + dqn cpn−1 + dqn−1

)
Again the parity of m decides whether 0 is in the first or the secon row. We
now see that rm

sm
= apn+bqn

cpn+dqn
. Since rm

sm
is a convergent calculated with yi and ui,

the continued fraction [y0 + u0i, y1 + u1i, . . . , ym + umi] is a continued fraction
representing M(pnqn ). So if we let n go to infinity, we would get the continued
fraction of M(x). Since we can’t really calculate that, we have to take steps.
We can do this all again for the next n + 1 coefficients of x. the result is the
same:

Ru0Rv0i . . . LumLvmi M ′ =MRa0Rb0i . . . L
anLbni

M ′ = R−umR−vmi . . . L−u0L−v0i MRa0Rb0i . . . L
anLbni

Rum+1R
vm+1

i . . . Lum+lL
vm+l

i M ′′ =M ′Ran+1R
bn+1

i . . . La2n+1L
b2n+1

i

Ru0Rv0i . . . Lum+lL
vm+l

i M ′′ =MRa0Rb0i . . . L
a2n+1L

b2n+1

i(
rm+l rm+l−1

sm+l sm+l−1

)(
gcd(a′, c′) c′′

0 d′′

)
=

(
a b
c d

)(
p2n+1 p2n

q2n+1 q2n

)

And now we see that
rm+l

sm+l
= ap2n+1+bq2n+1

cp2n+1+dq2n+1
. And thus we have found a continued

fraction for M(p2n+1/q2n+1). If we repeat this, it will converge to a continued
fraction for M(x). However, the resulting continued fraction doesn’t need to
be the Hurwitz expansion of M(x).

5.2 Greatest Common Divisor

I mentioned the greatest common divisor algorithm in the last paragraph, but
the word ’the’ might be a bit out of place. There are some choices to be made.
If we for example want to know what the gcd of 14 and 3 is we normally do the
following:

14 = 4 ∗ 3 + 2

3 = 1 ∗ 2 + 1

2 = 2 ∗ 1 + 0

And we see that the gcd is 1. But now choose to go in a different direction:

14 = 5 ∗ 3− 1

3 = −3 ∗ −1 + 0
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This illustrates two different ways of calculating the continued fraction of 14/3.
It can be both [4, 1, 2] and [5,−3]. The regular continued fraction and the
nearest integer continued fraction. The ambiguity lies within the choice of the
fundamental area. In all cases, if you start subtracting a number a from b, you
want to find a k such that b − ka is ’smaller’ then a. If you include negative
or complex numbers, you will have to translate ’smaller’ to some sort of norm,
because you want −5 to be bigger then 3. The Euclidian norm seems fit for
the job. If we now subtract 3 from 14, we see that both 2 and −1 are smaller
then 3. Which one to choose? We look at where the quotient of the two lies.
In the regular continued fraction, the quotient must lie in the interval [0, 1). In
the nearest integer case, the quotient must lie in the interval [−1/2, 1/2). In
the complex case, the quotient must lie in the region F of Figure 2.

5.3 Example

Let’s calculate an example. Let x =
√

3 +
√

2i. Then x = [i+ 2,−2i− 1,−3i−
1, 20i− 40, 4i− 1,−i+ 2,−3i− 2,−i+ 2, . . .]. Define:

P1 = RiR
2L−2

i L−1R−3
i R−1L20

i L
−40

P2 = R4
iR
−1L−1

i L2R−3
i R−2L−1

i L2

Then x = P1P2 . . .. Now let’s take multiplication by 3 as our Möbius-transformation.
Now the following happens:

M(x) =

(
3 0
0 1

)
P1P2 . . .

=

(
−1215i+ 1503 9i− 42
−282i+ 59 5i− 4

)
S2 . . .

= R4
iR

5L−2
i L2R2

iL
−6
i L13R2

iR
2L1

iL
−1

(
i −2i+ 2
0 −3i

)
P2 . . .

= R4
iR

5 . . . L1
iL
−1

(
42i+ 23 24i+ 3
42i− 9 18i− 12

)
. . .

= R4
iR

5 . . . L1
iL
−1R−1

i R1L−3
i L−2R−ii R

2L2
iL
−6

(
i 0
0 −3i

)
. . .

Which gives us: M(x) = [4i+ 5,−2i+ 2, 2i,−6i+ 13, 2i+ 2, i− 1,−i+ 1,−3i−
2,−i+2, 2i−6, . . .]. If rn and sn are the resulting convergents, and we compare
r9/s9 to what 3x is in decimal form we see that they are indeed very close.

r9/s9 ≈ 5.196152417 + 4.2426406896i

3x ≈ 5.196152422 + 4.2426406871i

However, if we compare our continued fraction with the actual Hurwitz expan-
sion of 3x, we notice some differences:

M(x) = [4i+ 5,−2i+ 2, 2i,−6i+ 13, 2i+ 2, i− 1,−i+ 1,−3i− 2, . . .]

HCF(3x) = [4i+ 5,−2i+ 2, 2i,−6i+ 13, i+ 2,−2i− 1, 2i+ 2, i− 2, . . .]

29



And it might even get worse! If we define P1 to come from the first 2 partial
quotients of x, instead of the first 4, and define P2, P3 and P4 accordingly, we
get the following result:

M(x) = [4i+ 5,−i+ 2, i, 3i,−6i+ 13, 2i+ 2, i− 1, i+ 1, i− 1, . . .]

HCF(3x) = [4i+ 5,−2i+ 2, 2i,−6i+ 13, i+ 2,−2i− 1, 2i+ 2, i− 2, . . .]

This is exactly as expected. The more information we put into our Matrix
before working on the rows, the more we can be sure that the first partial
quotients will be correct! The problem is that there has to be a bound on how
many partial quotients to take into account at one given time. And if you do
pose bounds, how to know how many of the given partial quotients will be
correct?

5.4 Second Algorithm

The algorithm described in the last paragraph sort of resembles the algorithm by
Raney, but it is not a direct generalisation. A better generalisation is described

here. First, I need a different definition for RBn. Let M =

(
a b
c d

)
, with

a, b, c, d ∈ Z[i] and ad−bc = n. Then M is row-balanced, or M ∈ RBn if (|a| >
|c| and |d| > |b|) or (|c| > |a| and |b| > |d|). DBn,DCn and Dn are extended
in the same way. Unfortunately the proof of theorem (4.4) doesn’t work in
the complex case. That is, when making something row-balanced, the column-
balancedness isn’t necessarily preserved. Therefore only row-balancedness is
obtained. Theorem (5.1) is now adapted into the following theorem. Let M ∈
Dn. Then

Theorem 5.2. Llet M =

(
a b
c d

)
. There is a matrix P ∈ D1 and a matrix

M ′ ∈ RBn such that M = PM ′

Proof. Without loss of generality let |a| ≥ |c| and |b| ≥ |d|. Now M is not
row-balanced. There are w1 and/or w2 ∈ Z[i] such that |a− w1c| < |c| and/or
|b − w2d| < |d|. Let a′ =

d
a − w1c. Without loss of generality assume that

|a′| < |c|. Now b′ =
d
a− w1d. Remark that if w1 = w11 + w12i then

(
a− w1c b− w1d

c d

)
=

(
1 −w1

0 1

)(
a b
c d

)
=

(
1 1
0 1

)−w11
(

1 i
0 1

)−w12
(
a b
c d

)
= Rw11Rw12

i M

If now |b′| > |d|, we are done. Now suppose |b′| ≤ |d|. Then|a′| < |c|, |b′| ≤ |d|,
thus |a′|+ |b′| < |c|+ |d|. We can now start over, but now we subtract the first
row from the second. In each step the sum of absolute vales of the entries of
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one row is reduced. Because the entries in the matrix are Gauss-integers, they
can only be reduced finitely many times. This concludes that eventually the
matrix must be row-balanced. And there is a product P of L and R matrices,
and a row-balanced matrix M ′ such that M = PM ′.

This proof is based on reducing the sum of the entries in one row, but there
are more ways to achieve a row-balanced matrix. For example, we could reduce
the maximum entry of one row, which can also be done only finitely many
times. We can also create a zero, like we did in the previous paragarph, and
then subtract the row with the zero in it from the other one untill row-balance
is achieved. In every case, the algorithm is the same; Multiply the Möbius
transformation with a number of LR-matrices on the right, apply row-balanced
algorithm, repeat. Although computational results suggested that the resulting
continued fractions converge to M(x), I couldn’t find a proof. The algorithm
which reduces the sum of the rows does achieve a good result on the example in
the previous paragraph. When multiplying M with one partial quotient before
balancing it, the algorithm gets the first 40 or so coefficients correct!
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6 An Exact Algorithm

As the algorithm in section (5) showed, it is possible to create an algorithm that,
given Möbius transformation M , and continued fraction x, returns a continued
fraction which converges to M(x). The problem is that we want to be sure that
the resulting continued fraction is of the Hurwitz-form, so that the unicity and
other nice properties remain. There is a method that works.

6.1 Möbius transformations on squares

For the final algorithm, we need to know a bit more about Möbius transforma-
tions.

Definition 6.1. Given a Gauss-integer g, we define the square Sg as the square
bounded by the vertices g + 1+i

2 , g + −1+i
2 , g + 1−i

2 , g + −1−i
2 , including the line

segments lg1 = (g + 1−i
2 , g + 1+i

2 ] and lg2 = (g + −1+i
2 , g + 1+i

2 ], and excluding
the rest of the boundary.

5 + i

4.5 + 0.5i

5.5 + 0.5i

4.5 + 1.5i

Figure 8: The square S5+i in Figure (1)

Note that g + 1+i
2 belongs to Sg, and that g + 1−i

2 and g + −1+i
2 do not. Given

a transformation M = ax+b
cx+d , we now want to know whether M applied to the

square Sg lies within the square Sk for some Gaussian integer k.

A

?>=<
89:;8?9> :=;<

B

?>=<
89:;8?9> :=;<

C

gfed

`abc
g̀af becd

D

������������ ����

Figure 9: Different possibilities for M(Sg) related to Sk. Although a Möbius tranforma-
tion of a square has a clover-like appearance, most of the time it will not be as regular
as it is here.

If g = 0 then the Image of M applied to the area Sg will be unbounded, so
it will most definitely not lie in Sk for any k. Thus we can assume g 6= 0.
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We now calculate whether the borders of M(Sg) and Sk intersect(B). If they
dont intersect, and at least one point from the border of M(Sg) lies within
Sk, then Sg lies within(D) Sk. If they do intersect, but the intersections are
just tangents(A), and those tangents are between the lines M(lg1),M(lg2) and
lk1, lk2, then the same result as the previous sentence holds. If they intersect
and the intersections are not tangents, it means that part of M(Sg) lies within
Sk and part of M(Sg) lies outside Sk. When there are no intersections and at
least one point of the border of M(Sg) lies outside Sk we know that M(Sg) does
not lie inside Sk.

The different possibilities for M(Sg) and Sk are shown in Figure (9).

Now the details. For any complex number c we define c = c1 + c2i, with
c1, c2 ∈ R.

ax+ b

cx+ d
=

(a1 + a2i)(x1 + x2i) + b1 + b2i

(c1 + c2i)(x1 + x2i) + d1 + d2i
=

(x1a2 + b2 + x2a1)i+ x1a1 + b1 − x2a2

(x1c2 + d2 + x2c1)i+ x1c1 + d1 − x2c2
=

((x1a2 + b2 + x2a1)i+ (x1a1 + b1 − x2a2))

((x1c2 + d2 + x2c1)i+ (x1c1 + d1 − x2c2))
·

((x1c2 + d2 + x2c1)i− (x1c1 + d1 − x2c2))

((x1c2 + d2 + x2c1)i− (x1c1 + d1 − x2c2))
= (6.2)

(x1a1 + b1 − x2a2)(x1c1 + d1 − x2c2)

(x1c2 + d2 + x2c1)2 + (x1c1 + d1 − x2c2)2

+
(x1a2 + b2 + x2a1)(x1c2 + d2 + x2c1)

(x1c2 + d2 + x2c1)2 + (x1c1 + d1 − x2c2)2

+


(x1a2 + b2 + x2a1)(x1c1 + d1 − x2c2)

(x1c2 + d2 + x2c1)2 + (x1c1 + d1 − x2c2)2

− (x1a1 + b1 − y2a2)(x1c2 + d2 + x2c1)

(x1c2 + d2 + x2c1)2 + (x1c1 + d1 − x2c2)2

 · i
We have now splitM in a real and an imaginary part. Let’s call themReM(x1, x2)
and ImM(x1, x2). Both are functions of two real variables, x1 and x2. When
applying M to the border of Sg, the search for intersections comes down to
16 quadratic polynomials in one variable. Because we are looking at the bor-
der of a square, we can fix either the imaginary or the real part of x , leav-
ing one variable. We then equate it to one of the four edges of the square
around k. If we take the top edge, we equate ImM to k2 + 1

2 , if we take
the left edge, we equate ImM to k1 − 1

2 . If we for example want to know
whether lg1 intersects lk2, we can take ImM(g1 + 1

2 , x2) = k2 + 1
2 . If now

for example ReM(x1, g2 + 1
2) = k1 − 1

2 , then we only have to check whether
g1 − 1

2 ≤ x1 < g1 + 1
2 , and k2 − 1

2 ≤ ImM(x1, g2 + 1
2) < k2 + 1

2 . We now found
an intersection point. If the mulitplicity of the resulting root is 1, then it is not
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a tangent. If we try to apply M to the square Sg, and define k as M(g) we get
the following 16 equations to solve:

ReM(g1 +
1

2
, x2) = k1 +

1

2
ImM(g1 +

1

2
, x2) = k2 +

1

2

ReM(g1 +
1

2
, x2) = k1 −

1

2
ImM(g1 +

1

2
, x2) = k2 −

1

2

ReM(x1, g2 +
1

2
) = k1 +

1

2
ImM(x1, g2 +

1

2
) = k2 +

1

2

ReM(x1, g2 +
1

2
) = k1 −

1

2
ImM(x1, g2 +

1

2
) = k2 −

1

2
(6.3)

ReM(g1 −
1

2
, x2) = k1 +

1

2
ImM(g1 −

1

2
, x2) = k2 +

1

2

ReM(g1 −
1

2
, x2) = k1 −

1

2
ImM(g1 −

1

2
, x2) = k2 −

1

2

ReM(x1, g2 −
1

2
) = k1 +

1

2
ImM(x1, g2 −

1

2
) = k2 +

1

2

ReM(x1, g2 −
1

2
) = k1 −

1

2
ImM(x1, g2 −

1

2
) = k2 −

1

2

for g1 − 1
2 ≤ x1 < g1 + 1

2 and g2 − 1
2 ≤ x2 < g2 + 1

2 .

6.2 The Algorithm

Let [a0, a1, a2, . . .] be the continued fraction of x, M(x) = y = [b0, b1, b2, . . .].
Let’s guess that the coefficients up to an will be enough to determine what
b0 is. The best value for b0 we can think of with this information would be

k = b
a pn
qn

+b

c pn
qn

+d
e.

Now according to (stelling in hfdstk1) pn = anpn−1 + pn−2, and qn = anqn−1 +
qn−2. Let Xn be a variable in San . Because pn/qn is a convergent of x, there
must be a z in San such that x = zpn−1+pn−2

zqn−1+qn−2
. Now there are a′, b′, c′, d′ ∈ Z[i],

z ∈ San such that

M(x) =
a zpn−1+pn−2

zqn−1+qn−2
+ b

c zpn−1+pn−2

zqn−1+qn−2
+ d

=
a(zpn−1 + pn−2) + b(zqn−1 + qn−2)

c(zpn−1 + pn−2) + d(zqn−1 + qn−2)

=
(apn−1 + bqn−1)z + (apn−2 + bqn−2)

(cpn−1 + dqn−1)z + (cpn−2 + dqn−2)

=
a′z + b′

c′z + d′

because pn/qn is close to x, k will probably be close to y0, but it may not be
the same. However, we do know that z ∈ Sxn . Thus if a′Xn+b′

c′Xn+d′ ∈ Sk for every
Xn ∈ San , then b0 = k. The previous paragraph describes a method to do just
that. This gives rise to an algorithm to find b0. If a certain an doesn’t work,
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try an+1. by iteration we can also calculate the rest of the continued fraction
of y, by changing the transformation M as follows. Let y = [b0, b1, b2, . . .], and
let b0 be known, and bi be unknown for all i ≥ 1. Now

y = M(x) =
ax+ b

cx+ d
= [b0, b1, b2, b3, . . .]

ax+ b

cx+ d
− b0 = [0, b1, b2, b3, . . .]

(a− b0c)x+ (b− b0d)

cx+ d
= [0, b1, b2, b3, . . .]

cx+ d

(a− b0c)x+ (b− b0d)
= [b1, b2, b3, . . .]

And now we have a new Möbius transformation to calculate b1 with. To relate
this with earlier work, we can also write it down in matrix form:

M(x) = MRa01Ra02i La11La12i Ra21Ra22i ...

= Rb01Rb02i R−b01R−b02i MRa01Ra02i La11La12i Ra21Ra22i ...

= Rb01Rb02i BBR−b01R−b02i MRa01Ra02i La11La12i Ra21Ra22i ...

= Rb01Rb02i BM ′Ra01Ra02i La11La12i Ra21Ra22i ...

When applying this algorithm, n and the elements of M can become quite
large. there is a way to counter that. In the algorithm, M is altered by an bi
you involve, but you can do the same thing with an extra ai. Now:

ax+ b

cx+ d
=
a(a0 + 1

x1
) + b

c(a0 + 1
x1

) + d
=

a
x1

+ aa0 + b
c
x1

+ ca0 + d
=

(aa0 + b)x1 + a

(ca0 + d)x1 + c

Which is quite easy to see in matrix-form:

M(x) = MRa01Ra02i La11La12i Ra21Ra22i La31La32i

= MRa01Ra02i BRa11Ra12i BRa21Ra22i BRa31Ra32i B

= (MRa01Ra02i B)Ra11Ra12i BRa21Ra22i BRa31Ra32i B

= (M ′)Ra11Ra12i La21La22i Ra31Ra32i B

6.3 Example

To illustrate the mechanism of this algorithm I will apply it to the same example
as used in the previous chapter. Let x =

√
3 +
√

2i = [i + 2,−2i − 1,−3i −
1, 20i − 40, 4i − 1,−i + 2,−3i − 2,−i + 2, . . .], and let M be multiplication by
3. Now according to equation (6.2), ReM = 3z1. and ImM = 3z2. g = i + 2,
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and k becomes 3 · i + 2 = 3i + 6. We have to check whether the equations in
(6.3) have solutions:

2.5 = 6.5 z2 = 3.5

2.5 = 5.5 z2 = 2.5

z1 = 6.5 1.5 = 3.5

z1 = 5.5 1.5 = 2.5

1.5 = 6.5 z2 = 3.5

1.5 = 5.5 z2 = 2.5

z1 = 6.5 0.5 = 3.5

z1 = 6.5 0.5 = 2.5

for 1.5 ≤ z1 < 2.5 and 0.5 ≤ z2 < 1.5. We see that there are no intersections
possible in the right area. Yes there is a solution for z1 = 6.5, but if z1 = 6.5 it
is not in the right interval([1.5, 2.5]). We now have to check whether the border
of the image of M(Sg) is completely in Sk or completely outside Sk. We take
one vertex from the border, namely 1.5 + 0.5i and apply M = 3z. The result
is 4.5 + 1.5i /∈ Sk. Thus we can conclude nothing yet about the first partial
quotient of 3x.

Incorporating the next partial quotient will yield 5 + 4i as first partial quotient
of 3x, but it will prove not be enough to be completely certain. I skip checking
whether 2 partial quotients of x is enough, and go on to incorporating the
third partial quotient of x. This will prove sufficient. Now p0 = p2−2 = i + 2,
p1 = p2−1 = −5i + 1, q0 = q2−2 = 1, q1 = q2−1 = −2i − 1, thus now for some
z = z1 + z2i ∈ S−3i−1

M(
√

3 +
√

2i) = 3
zp1 + p0

zq1 + q0

=
(−15i+ 3)z + 3i+ 6

−(2i+ 1)z + 1

=
(3z1 + 15z2 + 6)(−z1 + 2z2) + (−15z1 + 3z2 + 3)(−2z1 − z2)

(−2z1 − z2)2 + (−z1 + 2z2 + 1)2

+
(−z1 + 2z2 + 1)(−15z1 + 3z2 + 3)− (3z1 + 15z2 + 6)(−2z1 − z2)

(−2z1 − z2)2 + (−z1 + 2z2 + 1)2
i

=
27z2

1 − 9z1 + 27z2
2 + 24z2 + 6

5z2
1 − 2z1 + 5z2

2 + 4z2 + 1

+
21z2

1 − 6z1 + 21z2
2 + 15z2 + 3

5z2
1 − 2z1 + 5z2

2 + 4z2 + 1
i

=ReM(z1, z2) + ImM(z1, z2)i
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With g = −3i− 1 and k = 4i+ 5 we solve the 16 equations in 6.3;

108z2
2 + 96z2 + 69

20z2
2 + 16z2 + 13

=
11

2

84z2
2 + 60z2 + 45

202
2 + 16z2 + 13

=
9

2

108z2
2 + 96z2 + 69

20z2
2 + 16z2 + 13

=
9

2

84z2
2 + 60z2 + 45

202
2 + 16z2 + 13

=
7

2

108z2
1 − 36z1 + 459

20z2
1 − 8z1 + 89

=
11

2

84z2
1 − 24z1 + 387

20z12− 8z1 + 89
=

9

2

108z2
1 − 36z1 + 459

20z2
1 − 8z1 + 89

=
9

2

84z2
1 − 24z1 + 387

20z12− 8z1 + 89
=

7

2
(6.4)

108z2
2 + 96z2 + 321

20z2
2 + 16z2 + 61

=
11

2

84z2
2 + 60z2 + 237

202
2 + 16z2 + 61

=
9

2

108z2
2 + 96z2 + 321

20z2
2 + 16z2 + 61

=
9

2

84z2
2 + 60z2 + 237

202
2 + 16z2 + 61

=
7

2

108z2
1 − 36z1 + 1011

20z2
1 − 8z1 + 193

=
11

2

84z2
1 − 24z1 + 831

20z12− 8z1 + 193
=

9

2

108z2
1 − 36z1 + 1011

20z2
1 − 8z1 + 193

=
9

2

84z2
1 − 24z1 + 831

20z12− 8z1 + 193
=

7

2

The roots of these equations are, in the same order as (6.4), with a - indicating
there are no real roots:
z2 = 0.341. . . ∨ 3.658. . . z2 = -. . . ∨ -. . .
z2 = - ∨ - z2 = -0.379 ∨ -0.094
z1 = - ∨ - z1 = - ∨ -
z1 = - ∨ - z1 = - ∨ -
z2 = - ∨ - z2 = - ∨ -
z2 = - ∨ - z2 = - ∨ -
z1 = - ∨ - z1 = - ∨ -
z1 = - ∨ - z1 = - ∨ -

Now there are no roots with −1.5 ≤ z1 < −0.5 or −3.5 ≤ z2 < −2.5. Also
ReM(−1/2,−7/2) + ImM(−1/2,−7/2) · i = 5.227 . . . + 4.277 . . . i, and thus
inside S5+4i. Thus we can now conclude that the first partial quotient of 3x is
5 + 4i. For the second partial quotient of 3x we now use the matrix R−5R−4

i M
and apply it to the continued fraction of x. However, we can also take the
matrix R−5R−4

i MR2Ri and apply it to the continued fraction of 1
x−(i+2) . The

result is the following:

R−5R−4
i M =

(
3 −4i− 5
0 1

)
R−5R−4

i MR2Ri =

(
3 −i+ 1
0 1

)

We see that the entries in second matrix are smaller then the entries in the
first. When calculating more partial quotients of 3x the difference can get even
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bigger:

3x = [4i+ 5,−2i+ 2, 2i, . . .]

x = [2 + i,−1− 2i, . . .]

R2
iL

2L2
iR
−5R−4

i M =

(
−24i− 57 122i+ 71
−24i+ 18 20i− 65

)
R2
iL

2L2
iR
−5R−4

i MR2RiL
−1L−2

i =

(
−3i− 4 17i− 19
−4i+ 3 −10i− 5

)
We see that it is a good idea to incorporate a part of the continued fraction
of x in the new matrix M everytime. How big that part should be to get the
smallest possible numbers is not clear. It is also not clear how many partial
quotients of x are needed to find out one partial quotient of y. Maybe it is
possible to create a function C(M) that returns the amount of partial quotients
needed. In that case the algorithm would become much easier. The current
algorithm only provides a check to see whether a partial quotient is correct, If
you would know that N = C(M) partial quotients are enough you already know
that bM(pN/qN )e is the correct first partial quotient of M(x). The following
example suggests that it is not possible in every case.

When taking x =
13+2i

√
(5)

6 , and M = 3x, the continued fraction of M(x) starts

with −2i− 7. But b3p200
q200
e = −2i− 6. In this case the algorithm wouldn’t have

found even the first partial quotient of M(x) while it has an input of 201 partial
quotients of x. It is not very likely to find the right partial quotient at all! I
suspect this kind of behaviour only happens when M(x) is on the edge of a
square Sg for some g ∈ Z[i]. Nevertheless, if this example would work for any
number, and not only 200, this would have serious consequences. There would
be no algorithm that could find the right partial quotient for every Möbius
transformation of every complex number x, given only finitely many partial
quotients of x!
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