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1 Introduction

A decision method for elementary geometry statements was outlined by
Tarski in 1948. This method, however, is impractical for proving non-trivial
theorems [3]. In the 1970s W.-T. Wu developed a powerful algebraic method
which can prove a large number of non-trivial theorems [2, p. 298]. His
method is based on a technique called “pseudo-division”. It was subse-
quently demonstrated by Chou and others that Gröbner bases, invented by
Buchberger in the 1960s, can be applied to prove the same class of geometric
theorems [2, pp. 298–299]. In this text we shall demonstrate the Gröbner
basis method and explain the necessary theory behind it. We have used the
Magma algebra system [1] to do our computations.

2 Gröbner Bases

In this section we shall explain the rudimentary machinery used by the
methods presented in Section 3. We follow [4] in our notations and refer to
[2] for an elaborate treatment of Gröbner bases.

2.1 Definitions

Throughout this text, let K be an arbitrary field. In polynomial rings in one
variable, one defines the leading term of a polynomial f = anxn + . . .+a0 ∈
K[x], where an 6= 0, as LT(f) = anxn. Because we will be working with rings
in more than one variable, we can not give this a useful analogue without
first defining an ordering on the monomials. We assign to each monomial

x
α(1)
1 x

α(2)
2 · · · xα(n)

n in K[x1, . . . , xn] an n-tuple α.

Definition 2.1. A monomial ordering on K[x1, . . . , xn] is a relation ≺
on Nn such that

• ≺ is a total ordering;

• ≺ is a well-ordering;

• If p ≺ q, then p + β ≺ q + β (for all β ∈ Nn).

We can now give a sensible definition of the leading term of a polynomial in
K[x1, . . . , xn].

Definition 2.2. Let ≺ be a monomial order and f a nonzero polynomial
in K[x1, . . . , xn]. The leading term of f is the term aαxα (this is a multi-
exponent notation) for which aα 6= 0 and α is the maximum among the
n-tuples. The leading coefficient is then aα.
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As an example, let f = 8x2y3z6 + 5x7y4z5 + 3xy2. Then with respect to
the lexicographic monomial ordering, which says that β ≺ α iff α − β has a
positive leftmost nonzero entry, LT(f) = 5x7y4z5.

From now on, fix an order on the variables. Being able to test whether
a polynomial is a member of an ideal plays a key role in proving geometric
theorems. In the case of a polynomial ring in one variable this problem is
readily solved by the highschool long division method, the resulting remain-
der is reduced modulo the set of input polynomials. A natural generalization
would be the following algorithm.

Algorithm GeneralizedDivision
Input (f1, . . . , fn), f
Output r and optionally (q1, . . . , qn)

q := (0, 0, . . . , 0︸ ︷︷ ︸
n

)

r := 0
p := f
repeat

i := 1
dividing := false
while i ≤ n and not dividing do

if LT(fi) divides LT(p) then

u := LT(p)/LT(fi)
qi := qi + u
p := p − fiu
dividing := true

else

i := i + 1
end if

end while

if not dividing then

r := r + LT(p)
p := p − LT(p)

end if

until p = 0

An implementation of this algorithm in Magma can be found in Appendix
A.1. The correctness proofs can be found in [4, pp. 63-64]. Unfortunately,
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the resulting remainder depends on the order of the fi. We have encountered
this problem with the polynomials when working out Example 3.2. This
problem does not arise when the fi form a Gröbner basis, as we shall see in
Proposition 2.1.

Definition 2.3. Fix a monomial order ≺. A Gröbner basis for an ideal

I w.r.t. ≺ is a finite subset G = {g1, . . . , gn} of I such that

〈LT(g1), . . . ,LT(gn)〉 = 〈LT(I)〉.

In Section 2.3 we explain Buchberger’s algorithm to compute a Gröbner
basis of I.

2.2 Some properties of Gröbner bases

Proposition 2.1. Let G = {g1, . . . , gn} be a Gröbner basis for the ideal
I ⊂ K[x1, . . . xm] and let f ∈ K[x1, . . . , xm]. Then there exists a unique
r ∈ K[x1, . . . , xm] satisfying the following properties:

• No term of r is divisible by any of LT(g1), . . . ,LT(gn);

• There exists g ∈ I such that f = g + r.

Proof. We let r be the remainder of GeneralizedDivision(G, f), of which the
output is of the form f = c1g1 + c2g2 + . . . + cngn + r.

Now suppose r is not unique. Then there exists g ′, r′ such that f =
g + r = g′ + r′. Then r − r′ = g − g′ ∈ I, so that r 6= r′ implies that
LT(r′−r) ∈ 〈LT(g1), . . . ,LT(gn)〉. We can expand LT(r′−r) as

∑
i fiLT(gi),

where fi ∈ K[x1, . . . , xm]. It is then clear that since LT(r′−r) is a monomial,
there must be some LT(gi) that divides it. This contradicts the first property
of r. Hence, r′ − r = 0, and uniqueness is proved. For the second property,
set g = c1g1 + c2g2 + . . . + cngn ∈ I.

The above proposition gives rise to a method to determine whether a given
f ∈ K[x1, . . . , xn] is a member of the ideal I. One first computes a Gröbner
basis G of I and subsequently computes the remainder r of f divided by G.
Then r = 0 iff f ∈ I.

Definition 2.4. A reduced Gröbner basis G is a Gröbner basis satisfying
the following properties:

• Every f ∈ G has leading coefficient 1;

• For every f ∈ G, no monomial of f lies in 〈LT(G − {f})〉.
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A reduced Gröbner basis G = {h1, . . . , hm} has the particular property that
any proper subset of G is not a Gröbner basis (w.r.t. the chosen monomial
ordering). In Section 2.3 we shall demonstrate how to find the ci if it is
known that f ∈ I.

Proposition 2.2. Given an ideal I, there exists a unique reduced Gröbner
basis.

Proof. See [4, pp. 91–92].

Proposition 2.2 exhibits yet another useful application of Gröbner bases. It
is possible to determine whether two ideals are equal.

2.3 Computing a Gröbner basis

Definition 2.5. Let f, g ∈ K[x1, . . . , xn] be two nonzero polynomials. The
S-polynomial of f and g is

S(f, g) =
LT(g)f − LT(f)g

GCD(LT(f),LT(g))
.

We now state without proof the main theorem of Gröbner bases:

Theorem 2.1. Let I = 〈g1, . . . , gn〉 and fix a monomial ordering ≺. The
set G = {g1, . . . , gn} is a Gröbner basis for I w.r.t. ≺ if and only if

GeneralizedDivision(G,S(f, g)) = 0

for all f, g ∈ G.

Proof. See [2, pp. 19-21] or [4, pp. 84-86].

We can devise an algorithm based on this theorem to compute a Gröbner
basis. The algorithm takes F as input, a basis of an ideal I (i.e. a finite set
of polynomials that generate I).

Algorithm Buchberger
Input F := (f1, . . . , fn)
Output G := (g1, . . . , gm)

G := F
P := {(a, b) | a, b ∈ F}
while |P | > 0 do
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Choose a pair (a, b) ∈ P
P := P − {(a, b)}
(r, q) := GeneralizedDivision(G,S(a, b))
if r 6= 0 then

P := P ∪ {(h, r) | h ∈ G}
G := G ∪ {r}

end if

end while

Because the algorithm only enlarges G, the output is a basis of I. It
is also clear that in any stage G ⊂ I, because S(f, g) ∈ I and the re-
mainder on division by G is also in I. The algorithm terminates when
GeneralizedDivision(G,S(f, g)) = (0, q) for every f, g ∈ G. Theorem 2.1
then guarantees that the resulting G is a Gröbner basis.

It remains to show that the algorithm actually halts. Suppose that r 6= 0.
Because r is the remainder on division by G, LT(r) is not divisible by the
leading terms of the elements of G, hence LT(r) /∈ 〈LT(G)〉. So adding r to
the new set G strictly increases the ideal generated by its leading terms. By
the ascending chain condition (see [4, pp. 77-78]), this process must halt,
because every strictly increasing chain of ideals of K[x1, . . . , xp] is finite.

Example 2.1. We compute a Gröbner basis w.r.t. the lexicographic order
for 〈x + y2, xy + 1〉 ⊂ Q[x, y]. The S-polynomial of x + y2 and xy + 1 is

S(x + y2, xy + 1) = y(x + y2) − 1(xy + 1) = y3 − 1.

This polynomial can not be reduced modulo x+ y2, xy +1, so it is added to
G. In the next phase, we have two new S-polynomials:

S(x + y2, y3 − 1) = y3(x + y2) − x(y3 − 1) = y5 + x,

S(xy + 1, y3 − 1) = y2(xy + 1) − x(y3 − 1) = x + y2.

Both polynomials can be reduced modulo x + y2, xy + 1, y3 − 1, so {x +
y2, xy + 1, y3 − 1} is a Gröbner basis.

By Proposition 2.1 we can find a complete decomposition of a polynomial
f =

∑
i cigi in terms of a Gröbner basis G = {g1, . . . , gn} using the Gen-

eralizedDivision algorithm. In Section 3.2, we will need a decomposition
of f in terms of the original basis {h1, . . . , hm}. This can be achieved by
computing the matrix N such that Ni,j = (GD(G, hi))j , where GD(G, hi)
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is the row with qj’s of GeneralizedDivision(G, hi). Then N · (g1 · · · gn)T =
(h1 · · · hm)T. A left-inverse M of N (if it exists) has the property that

R · M · (h1 · · · hm)T = R · (g1 · · · gn)T,

where R is the “coefficient” row GD(G, hi). We call a matrix M with this
property a transformation matrix.

We can also arrive at a transformation matrix by using the information
that is readily available in Buchberger’s algorithm. This amounts to keeping
track of a “coefficient” row V attached to each polynomial in G such that
gi =

∑
j Vjfj. These Vj’s have to be updated accordingly during execution

of the algorithm. Because this involves a lot of bookkeeping, we do not
give the pseudocode here, but a Magma implementation can be found in
Appendix A.1.

3 Geometric Theorem Proving

3.1 Translating geometry into algebra

A thesis consists of a bunch of hypotheses and one or more conclusions.
When doing elementary geometry, one may think of the hypotheses as a
configuration of points, lines and circles. By introducing cartesian coordi-
nates in the Euclidean plane, it is possible to define a corresponding set of
polynomials h1, . . . , hn in unknowns x1, . . . , xm, such that h1(x1, . . . , xm) =
. . . = hn(x1, . . . , xm) = 0 precisely if the conditions of the thesis in question
are met.

Example 3.1. Let O = (0, 0), A = (a1, a2), B = (b1, b2). The statement
“the point B lies on OA” corresponds to the equation a2b1 − b2a1 = 0.

It will always be so that some coordinates in a geometric configuration are
arbitrary, whereas the other coordinates are fixed. As a convention, we will
denote the arbitrary unknowns by ui and the other coordinates by xj.

Definition 3.1. We say that the conclusion g follows from the hypotheses
h1, . . . , hn if ∀(u1, . . . , up, x1, . . . , xm) ∈ Rp+m it holds that

h1(u1, . . . , up, x1, . . . , xm) = 0
...

hn(u1, . . . , up, x1, . . . , xm) = 0





⇒ g(u1, . . . , up, x1, . . . , xm) = 0.
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Suppose that the assumption in the above definition holds. Then
∑

i fihi =
0, where fi ∈ R[u1, . . . , up, x1, . . . , xm], for every choice of the xi. Thus, if
there exists a decomposition of the conclusion g =

∑
i fihi, we may conclude

that the thesis holds. The Gröbner basis techniques from Section 2 give us
an algorithmic way to determine whether g ∈ I = 〈h1, . . . , hn〉, in other
words, we are able to algorithmically verify some theses. Unfortunately, the
converse does not hold, i.e. there exist theses which can not be proven this
way. See [4, pp. 286,291] for more details.

Example 3.2. This theorem is taken from [5, 3.4]. Without loss of gen-
erality, fix C = (0, 0), B = (b1, 0), A = (a1, a2). Let K = (k1, k2), L =
(l1, l2), G = (g1, 0) be the feet of the altitudes BK,CL,AG respectively of
ABC. Then BK,CL and AG intersect in the point H. The hypothesis
polynomials are:

H1 = a2k2 − a1b1 + a1k1 AC⊥BK
H2 = a1k2 − a2k1 K is on AC
H3 = l2a2 − l1b1 + l1a1 AB⊥CL
H4 = −a2l1 + a2(b1 − a1) + a2a1 − l2(b1 − a1) L is on AB
H5 = l2h1 − l1h2 H is on CL
H6 = h1 − g1 = h1 − a1 H is on AG

Note that for perpendicularity, we have used that two lines are perpendicular
if and only if for their slopes s1, s2 it holds that s1s2 = −1. The thesis is
that CL,AG,BK intersect in H, i.e. g = −k2h1 + k2b1 − h2(b1 − k1). The
configuration is as in Figure 1 on page 12.

If we use Magma to check whether

g ∈ I = 〈H1, . . . ,H6〉 ⊆ Q[a1, a2, b1, k1, k2, l1, l2, h1],

it will unfortunately answer false.1 This is due to so-called degenerate
cases. For example, if A coincides with C, the coordinates of K are unde-
fined. We can try asking Magma whether for example ga1a2b1 ∈ I. This
means that if g 6= 0, then a1 = 0 or a2 = 0 or b1 = 0, thereby ignoring prob-
lematic configurations. This time Magma answers true. The Magma com-
mands can be found in Appendix A.2. In Section 3.2 we will use Gröbner
bases to automatically derive degenerate cases. In fact, we shall see that
there exists a weaker assumption that leads to the conclusion, in Example
3.3.

1We use the rationals here, because it is impossible in Magma to compute a Gröbner
basis in a polynomial ring with base field R.
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We have to remark that some intuition was involved in defining the poly-
nomials representing the hypotheses of the above example. We used the
knowledge that G is on BC, and therefore, that if the three altitudes coin-
cide in one point, this point must have a1 as its x-coordinate.

3.2 Degenerate cases

Sometimes geometric statements are not very precise. They make implicit
assumptions about the figures involved. We have already encountered this
problem in Example 3.2, where problems occur when certain coordinates
are zero. The conclusions of these theorems are said to be generically true.
In the present section we shall make this notion of genericity formal and
demonstrate a remarkable application of Gröbner bases to discover these
degenerate hypotheses.

A conclusion g is to hold for any choice of the unknowns ui. Therefore,
we want to exclude the degenerate cases in which the ui actually depend on
each other.

Definition 3.2. Let V be an irreducible variety2 in the affine space Rp+m

with coordinates u1, . . . , up, x1, . . . , xm. We say that the u1, . . . , up are al-

gebraically independent on V if no nonzero polynomial in the ui alone
vanishes on V .

Definition 3.3. The conclusion g follows generically from the hypotheses
h1, . . . , hm if g ∈ I(V ′) ⊂ R[u1, . . . , up, x1, . . . , xm], where V ′ is the union of
the irreducible components of the variety V(h1, . . . , hn) on which the ui are
algebraically independent.

Proposition 3.1. The conclusion g follows generically from h1, . . . , hm if
there exists a nonzero polynomial d ∈ R[u1, . . . , up] such that d ·g ∈

√
H (see

footnote 3), where H = 〈h1, . . . , hm〉 and hi ∈ R[u1, . . . , up, x1, . . . , xn].

Proof. Let Vi be one of the irreducible components of V ′. Since d · g ∈
√

H,
(d · g)k ∈ H for some k ≥ 1 and therefore (d · g)k vanishes on V and hence
d · g vanishes on V . Since Vi is a component of V , d · g also vanishes on Vi.
Therefore, d · g ∈ I(Vi). But since Vi is irreducible, I(Vi) is by Proposition 3
on p. 197 of [4] a prime ideal and thus d ∈ I(Vi) or g ∈ I(Vi). Since the ui

are algebraically independent on Vi, d does not vanish on Vi and is therefore

2We use irreducible varieties in a non-essential way in this text. The reader is referred
to [4, p. 196] for background. We denote the ideal corresponding to variety V as I(V ).

3The radical
√

I of an ideal I is the set {f | fn ∈ I for some n ≥ 1}.
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not a member of I(Vi). Thus g ∈ I(Vi). Since this holds for every irreducible
component Vi of V ′, it follows that g ∈ I(V ′).

The polynomial d encodes information about the degenerate cases. The
following proposition gives rise to a straightforward method to actually find
d.

Proposition 3.2. The polynomial d of Proposition 3.1 exists if and only if

g ∈
√

H̃, where H̃ is the ideal generated by hi ∈ R(u1, . . . , up)[x1, . . . , xn].

Proof. (⇒) Suppose d as in Proposition 3.1 exists. Then d · g ∈
√

H, which
means that (d · g)k =

∑
i cihi for some k ≥ 1. Dividing both sides by dk

yields gk =
∑

i
ci

dk hi, which shows that g is in the radical
√

H̃.

(⇐) Suppose g ∈
√

H̃. Then gk =
∑

i Aihi, where Ai = pi

qi
such that

pi ∈ R[u1, . . . , up, x1, . . . , xn] and qi ∈ R(u1, . . . , up) − {0}. Set d =
∏

i qi.
Then (d · g)k =

∑
i A

′

ihi, where A′

i ∈ R[u1, . . . , up, x1, . . . , xn]. Hence, d · g ∈√
H.

We can now present a method to obtain d, given that g is generically
true. Given an ideal I = 〈h1, . . . , hn〉, compute the reduced Gröbner ba-
sis G = {g1, . . . , gl} and corresponding transformation matrix M using the
ExtendedBuchberger algorithm. Recall that M ·(h1 · · · hn)T = (g1 · · · gl)

T.
Repeatedly run GeneralizedDivision(G, gk) and increment k (starting from
k = 1) until the remainder is zero. This results in the row R = (A1 · · · Am)
such that R · (g1 · · · gl)

T = gk. Next, compute RM in order to obtain the
row with “coefficients” in the original basis {h1, . . . , hn} of I. Note that the
(RM)i are members of the ring R(u1, . . . , up)[x1, . . . , xn]. Therefore, rewrite
the (RM)i as pi

qi
and finally compute d =

∏
i qi as in the proof.

If the conclusion does not hold generically, this procedure does obviously
not halt. The following proposition gives a sufficient criterion to decide
whether g is generically true:

Proposition 3.3. {1} is the reduced Gröbner basis of the ideal

〈h1, . . . , hm, 1 − yg〉 ⊂ R(u1, . . . , up)[x1, . . . , xn, y]

if and only if g follows generically from {h1, . . . , hm}.

Proof. See [4, p. 177].
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Example 3.3. We derive the degenerate cases of Example 3.2. A compu-
tation of RM in the ring Q(a1, a2, b1)[k1 , k2, l1, l2, h1] yields




a1h2 − a1a2 + a2b1

a2

1
+ a2

2

−a2h2 − a2

1
+ a1b1

a2

1
+ a2

2

a1 − b1

a2

1
+ a2

2

h2 −
a1a2

a2

1
+ a2

2

−a2h2 − a2

1
+ a1b1

a2

1
+ a2

2

a2

1
− 2a1b1 + a2

2
+ b2

1

a3

1
+ a1a2

2

h1

k2 +
−a2

1
+ 2a1b1 − a2

2
− b2

1

a3

1
+ a1a2

2

l1h2 +
a2

1
− 2a1b1 + a2

2
+ b2

1

a3

1
+ a1a2

2

l2h1 +
a2

1
− 2a1b1 + a2

2
+ b2

1

a2

1
+ a2

2

l2




T

A simple calculation reveals that d = a2
1(a

2
1 + a2

2)
6 is admissible, i.e. it is

a product of the qi. Indeed, Magma tells us that d · g is in I in the ring
Q[a1, a2, b1, k1 , k2, l1, l2, h1]. Note that if g 6= 0, then a2

1 + a2
2 = 0 which

means that a1 = 0 and a2 = 0. It turns out that setting d = a2
1 + a2

2 is
sufficient. The degenerate case is therefore only the one in which A coincides
with C. The Magma commands required to arrive at these results can be
found in Appendix A.2.

Example 3.4. We consider the “Nine Point Circle” theorem of Brianchon
and Poncelet (1820). A geometric proof can be found in [5, 3.6]. The
construction is as follows (see Figure 1). The points A,B,C,G,K,L are
constructed as in Example 3.2. The points D,E, F, P,Q,R are the midpoints
of the segments BC,AB,AC,AH,CH,BH respectively. The theorem says
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Figure 1: The nine point circle

that the points D,E, F,G,K,L, P,Q,R lie on one circle.

H1 = 2d1 − b1 D midpoint of BC
H2 = b1 + a1 − 2e1 E midpoint of AB
H3 = 2e2 − a2

H4 = 2f1 − a1 F midpoint of AC
H5 = 2f2 − a2

H6 = g1 − a1 AG⊥BC
H7 = a2k2 − a1(b1 − k1) BK⊥AC
H8 = a2k1 − a1k2 K is on AC
H9 = l2a2 − l1(b1 − a1) CL⊥AB
H10 = −a2l1 + a2b1 − l2(b1 − a1) L is on AB
H11 = h1 − a1 H is on AG
H12 = l2h1 − h2l1 H is on CL
H13 = p1 − a1 P midpoint of AH
H14 = h2 + a2 − 2p2
H15 = 2q1 − h1 Q midpoint of CH
H16 = 2q2 − h2

H17 = b1 + h1 − 2r1 R midpoint of BH
H18 = 2r2 − h2

H19 = (m1 − d1)
2 + m2

2 − (m1 − e1)
2 − (m2 − e2)

2 MD = ME
H20 = (m1 − d1)

2 + m2
2 − (m1 − f1)

2 − (m2 − f2)
2 MD = MF

The conclusion polynomials G1, . . . , G6 are of the form of H20, but the coor-
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dinates of F replaced with the coordinates of G,K,L, P,Q,R respectively.
Using the techniques demonstrated in Example 3.3, we obtain the nondegen-
eracy condition a2

2b1 6= 0. It is well-known that a2 6= 0 iff a2
2 6= 0. However,

Magma returns false when we ask whether G4a2b1 ∈ I. We have to admit
that we do not precisely know why this is so, but we expect that this hap-
pens because the hypothesis polynomials are irredicuble and of quadratic
degree.

4 Conclusions

We have applied Gröbner bases to prove a theorem of elementary geom-
etry in Example 3.2. It turns out that theorems stated textbooks often
implicitly assume nondegeneracy conditions about the figures involved. For
example, when talking about a triangle ABC, one often assumes that no
pair of A,B,C coincides. It is possible to automatically find these degen-
erate cases using Gröbner bases. We have illustrated this in Example 3.3.
In fact, the condition derived by means of Gröbner bases was weaker than
our own temporary condition, in Example 3.2. We end our discussion with
a treatment of the Nine Point Circle theorem in Exampe 3.4.
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A Appendix

A.1 Magma Code

GeneralizedDivision := function(ring, F, f)

if #F lt 1 then

return f;

end if;

q := [ ring!0 : i in [1..#F] ];

r := 0;

p := f;

repeat

i := 1;

dividing := false;

while i le #q and not dividing do

Q := quo<Parent(f)|LeadingTerm(F[i])>;

if Q!LeadingTerm(p) eq 0 then

u := ring!(LeadingTerm(p) / LeadingTerm(F[i])); // division possible, so u is in the ring

q[i] := q[i] + u;

p := p - u*F[i];

dividing := true;

else

i := i + 1;

end if;

end while;

if not dividing then

r := r + LeadingTerm(p);

p := p - LeadingTerm(p);

end if;

until p eq 0;

return r, q;

end function;

//-------------------------------------

ExtendedReduce := function(ring, F, G)

D_ := []; N_ := G;

k := #N_;

while N_ ne [] do

g_ := N_[k];

g := g_[1][1];

Prune(~N_);

polys := [ (D_ cat N_)[i][1][1] : i in [1..#(D_ cat N_)] ];

g,coeff_row := GeneralizedDivision(ring, polys, g);
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// mimic

g_[1][1] := g;

for i in [1..#F] do

for j in [1..#(D_ cat N_)] do

g_[2][i] := g_[2][i] - coeff_row[j]*(D_ cat N_)[j][2][i];

end for;

end for;

if g ne 0 then

LC := LeadingCoefficient(g);

g_[1][1] := ring!g_[1][1]/LC;

// mimic

for i in [1..#F] do

g_[2][i] := ring!g_[2][i]/LC;

end for;

D_ := D_ cat [g_];

end if;

k := k - 1;

end while;

D := [ D_[i][1][1] : i in [1..#D_] ];

return D,D_;

end function;

//-------------------------------------

ExtendedBuchberger := function(F)

if #F lt 1 then

return [];

end if;

ring := Parent(F[1]);

G := [ [ [F[i]], [ 0 : j in [1..#F] ] ] : i in [1..#F] ];

for i in [1..#F] do

G[i][2][i] := 1;

end for;

Pairs := [ [f, g] : f in G, g in G | f ne g ];

while #Pairs gt 0 do

pair := Pairs[#Pairs];

Prune(~Pairs);

f := pair[1]; g := pair[2];
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f_poly := f[1][1]; g_poly := g[1][1];

f_row := f[2]; g_row := g[2];

d := GCD(LeadingTerm(f_poly), LeadingTerm(g_poly));

SPoly_poly := ring!((LeadingTerm(g_poly)*f_poly - LeadingTerm(f_poly)*g_poly)/d);

SPoly_row := [ ring!((LeadingTerm(g_poly)*f_row[i] - LeadingTerm(f_poly)*g_row[i])/d) : i in [1..#F] ];

SPoly := [[SPoly_poly], SPoly_row];

r_poly,coeff_row := GeneralizedDivision(ring, [ g[1][1] : g in G ], SPoly_poly); // rest

for i in [1..#F] do

for j in [1..#G] do

SPoly_row[i] := SPoly_row[i] - coeff_row[j]*G[j][2][i];

end for;

end for;

r := [ [r_poly], SPoly_row ];

if r_poly ne 0 then

Pairs := Pairs cat [ [h,r] : h in G ];

_,G := ExtendedReduce(ring, F, G cat [r]); // simplify the multiplication matrix

end if;

end while;

GB_list := [ G[i][1][1] : i in [1..#G] ];

GB_list,G := ExtendedReduce(ring, F, G);

GB := Matrix(ring, #GB_list, 1, GB_list);

M := Matrix(ring, #G, #F, [ [ g : g in G[i][2] ] : i in [1..#G] ] );

return GB,GB_list,M;

end function;

A.2 Magma Commands

// configuration

// points (w.l.o.g.) C=(0,0), B=(b1,0), A=(a1,a2)

B<a1,a2,b1,k1,k2,l1,l2,h1,h2> := PolynomialRing(RationalField(), 9);

hypotheses := [

a2*k2-a1*b1+a1*k1,

a1*k2-a2*k1,

l2*a2-l1*b1+l1*a1,

-a2*l1+a2*(b1-a1)+a2*a1-l2*(b1-a1),

l2*h1 - l1*h2,
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a1-h1

];

I := ideal< B | hypotheses >;

concl := -k2*h1+k2*(b1-k1)+k2*k1-h2*(b1-k1);

// try it; maybe there are no degenerate cases?

concl in I;

// apparently there are degenerate cases.

// a first guess is that A,B,C must not coincide, hence try a_1,a_2,b_1 \neq 0

concl*a1*a2*b1 in I;

// this worked, but can we also derive the degenerate cases automatically?

// we now work in the base field of rational functions in the unknowns a_1,a_2,b_1

A<a1,a2,b1> := FieldOfFractions(PolynomialRing(RationalField(), 3));

B<k1,k2,l1,l2,h1,h2> := PolynomialRing(A, 6);

hypotheses := [

a2*k2-a1*b1+a1*k1,

a1*k2-a2*k1,

l2*a2-l1*b1+l1*a1,

-a2*l1+a2*(b1-a1)+a2*a1-l2*(b1-a1),

l2*h1 - l1*h2,

a1-h1

];

I := ideal< B | hypotheses >;

concl := -k2*h1+k2*(b1-k1)+k2*k1-h2*(b1-k1);

// compute Groebner basis and transformation matrix using ExtendedBuchberger

GB,GB_list,M := ExtendedBuchberger(hypotheses);

OB := Matrix(B, #hypotheses, 1, hypotheses);

// verify that M*OB=GB;

M*OB eq GB;

// compute row of coefficients in terms of the GB

_,q := GeneralizedDivision(B, GB_list, concl);

R := Matrix(B, 1, #GB_list, q);

// verify

(R*M*OB)[1][1] eq concl;

// R*M is a row with of rational functions. The divisors of these functions form d

R*M;

// a_1^2+a_2^2 \neq 0 seems to be a sufficient condition, try it

B<a1,a2,b1,k1,k2,l1,l2,h1,h2> := PolynomialRing(RationalField(), 9);

hypotheses := [

a2*k2-a1*b1+a1*k1,
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a1*k2-a2*k1,

l2*a2-l1*b1+l1*a1,

-a2*l1+a2*(b1-a1)+a2*a1-l2*(b1-a1),

l2*h1 - l1*h2,

a1-h1

];

I := ideal< B | hypotheses >;

concl := -k2*h1+k2*(b1-k1)+k2*k1-h2*(b1-k1);

concl*(a1^2+a2^2) in I;
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