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Abstract

This thesis consists of two sections. The first section is devoted to the mathematics of pairings. Ellip-
tic and hyperelliptic curves over finite fields are described, as well as rational functions and divisors
on such curves. The Weil pairing on elliptic curves, and the Tate pairing on elliptic and hyperelliptic
curves are explained with a computational approach in mind.

The second section introduces bilinear pairings in a cryptographic setting. First their relation to the
discrete logarithm problem in finite fields is investigated. Then we illustrate how bilinear pairings
give rise to new mathematical problems which can be used as a base for secure cryptosystems. We
conclude with a description of several cryptosystems based on bilinear pairings.
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Chapter 1

Introduction

Bilinear pairings were originally brought to the cryptographic community by Menezes, Okamoto and
Vanstone with their MOV attack [38]. As it turns out pairings can be used to transport the discrete
logarithm problem on a certain class of elliptic curves over a finite field to the discrete logarithm
problem on a smaller finite field, where a sub-exponential index calculus attack can be used to attack
the problem. However, it was the publication of an identity based encryption scheme (by Boneh and
Franklin [10]) based on bilinear pairings that triggered a real upsurge in the popularity of pairings
among cryptographers. Following Boneh and Franklin, a lot of cryptosystems based on pairings have
been proposed which would be hard to construct using more conventional cryptographic primitives.
At this moment, pairing-based cryptography is a highly active field of research, with several hundreds
of publications.

The goal of this thesis is to provide an overview of the most active topics of research in pairings. The
material is presented in two parts. In the first part we will look at the mathematical foundations of
bilinear pairings. In the second part we will describe how pairings can be applied in cryptographic
settings. The reader is assumed to have knowledge of basic abstract algebra, but the theory of elliptic
and hyperelliptic curves necessary to understand pairings is covered in this thesis.

1.1 Thesis outline

The outline of the thesis is as follows.

• Chapter 2. In this chapter we provide a short introduction to elliptic and hyperelliptic curves,
as well as some concepts from algebraic geometry such as divisors and rational functions.

• Chapter 3. Here we introduce bilinear pairings mathematically. The Weil pairing is defined for
elliptic curves and the Tate pairing is defined in both the elliptic and the hyperelliptic curve
setting.

• Chapter 4. This chapter describes the discrete logarithm problem for (hyper)elliptic curve and
how bilinear pairings are related to this.

• Chapter 5. Here the mathematical problems that arise from bilinear pairings are outlined.
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• Chapter 6. In this chapter we give an overview of several cryptographic protocols that use
bilinear pairings.

• Chapter 7. This chapter concludes the thesis with some final remarks.
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Chapter 2

Elliptic and Hyperelliptic Curves

In this chapter we first define elliptic curves, describe the group structure on the set of points on
an elliptic curve and look at some important theorems. Then we generalize to hyperelliptic curves
and see how to define a similar group structure on the Jacobian. We also describe rational functions
on curves and divisor theory. Most of the results in this chapter come from [5], [4], [48], [37] and [39].

2.1 Projective Space

Let K be a field. Consider the equivalence relation ∼ defined on K3 \ {(0, 0, 0)} given by

(X,Y, Z) ∼ (λX, λY, λZ)

for every λ ∈ K∗. This means two points are considered equal if one is a scalar multiple of the other.
We denote the equivalence class of (X,Y, Z) by [X : Y : Z].

Definition 2.1. The set of all equivalence classes is called the projective plane over K

P2
K := { [X : Y : Z] | X,Y, Z ∈ K but not X = Y = Z = 0 }.

The set of equivalence classes where Z 6= 0 is a copy of K2 because [X : Y : Z] is equivalent to
[XZ : YZ : 1]. If Z = 0, then either X 6= 0 or Y 6= 0. If X 6= 0 then [X : Y : 0] is equivalent to [1 : YX : 0].
Now suppose X = 0. Then Y 6= 0 and [0 : Y : 0] is equivalent to [0 : 1 : 0]. In other words, the set
of equivalence classes where Z = 0 is the union of a copy of K with a single point. If you think of
the projective plane as the set of lines passing through the origin in K3, the latter set of equivalence
classes is usually referred to as the line at infinity.

2.2 Algebraic Curves

Definition 2.2. Let K be a field. An affine algebraic curve (or simply affine curve) over K is an
equation f(x, y) = 0, where f is a polynomial in x and y with coefficients in K. Solutions of this
equation are points on the curve. A K-rational point is a point (x, y) on the curve where x and y are
elements of K.
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We will make extensive use of the following notation. If C : f(x, y) = 0 is an affine curve, then C refers
to the equation f(x, y) = 0. We write C/K to indicate that C is defined over the field K. We denote
the set of K-rational points with C(K).

Definition 2.3. A singular point or smooth point on the curve is a point (x, y) on the curve where
both partial derivatives of f vanish. In other words, a point (x, y) where f(x, y) = ∂f

∂x = ∂f
∂y = 0. If a

curve has no singular points, then we say the curve is non-singular.

Definition 2.4. A polynomial is homogeneous of degree d if every term has degree d in the variables.
For example, xy2 − 2x2z + 8z3 is homogeneous of degree 3 in the variables x, y, z. We can make any
polynomial in two variables x, y homogeneous in three variables x, y, z by multiplying each term with
powers of z. This is known as homogenization. For example, homogenizing xy + 4x − y3 + 1 yields
xyz + 4xz2 + y3 + z3.

Let K be a field and C : f(x, y) = 0 an affine curve defined over K and let F (x, y, z) be the homog-
enization of f . Suppose F is homogeneous of degree d. The polynomial F cannot be evaluated in a
projective point [x0 : y0 : z0] ∈ P2

K since [x0 : y0 : z0] = [λx0 : λy0 : λz0] but F (x0, y0, z0) does not
necessarily equal F (λx0, λy0, λz0). In fact

F (λx0, λy0, λz0) = λdF (x0, y0, z0).

However, this equality also shows it does make sense to verify if F is zero when evaluated in (x0, y0, z0).
Thus, the set of projective points on the curve defined by the equation F (x, y, z) = 0:

{[x : y : z] ∈ P2
K

∣∣F (x, y, z) = 0}

is well defined. This way, given an affine curve we can obtain a projective curve by homogenizing the
corresponding polynomial. The projective curves we are going to use always have one single point at
infinity, so for convenience we will be working with affine coordinates from now on and simply add
the point at infinity to the set of points on the curve. We go back to the projective model when we
need to investigate the exact behaviour of certain functions in the point at infinity.

2.3 Rational Functions

Let C be a curve defined over a finite field K = Fq by the following equation

fC(x, y) = 0.

When we are interested in the way polynomial functions behave on the points of C, it makes sense to
consider functions g1 and g2 “equivalent” if and only if g1(x, y) = g2(x, y) for every (x, y) ∈ C(K).

Definition 2.5. Following this line of thought, we define the coordinate ring

K[C] := K[x, y]/〈fC〉

where 〈fC〉 is the ideal generated by the polynomial fC(x, y). If fC is irreducible over K (which will be
the case for the curves we are interested in) then 〈fC〉 is a prime ideal and hence K[C] is an integral
domain. Consequently, there is a corresponding field of fractions, which is called the field of rational
functions on C, notated K(C).
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Zeroes and Poles

In this section we introduce zeroes and poles of rational functions and their multiplicity. Several facts
are stated without proof or even some of the intuition behind it, but a rigorous treatment of these
concepts can be found in [31] and [43].

Definition 2.6. A rational function f ∈ K(C) is regular at a point P ∈ C(K) if it can be represented
as a quotient g/h, where g, h ∈ K[C] and h(P ) 6= 0. A rational function f has a pole at the point P if
it is not regular at P . It has a zero at the point P if it is regular at P and if g(P ) = 0, so f(P ) = 0.

The set of functions that are regular in a point P ∈ C(K) is a subring of K(C) and is known as the
local ring of C at P . It is usually denoted OC,P . The local ring OC,P is also obtained by localizing
the ring K[C] at M̄P , where M̄P = {f ∈ K[C] | f(P ) = 0}, which is a maximal ideal. Since OC,P is a
local ring, it has a unique maximal ideal, given by mP = {f ∈ OC,P | f(P ) = 0}. A generator for this
ideal, traditionally denoted π, is said to be a uniformizing parameter for P .

Definition 2.7. For a point P ∈ C(K), every regular function f ∈ OC,P can be written as f = πnu,
where π is a uniformizing parameter for P , n is an integer and u is a unit and u(P ) 6= 0,∞. This
value n is the multiplicity or order of f at P , and it does not depend on the choice of π. It is also
given by n = max{k ∈ Z | f(P ) ∈ mk

p}. The multiplicity of f at P is denoted ordP (f). If ordP (f) > 0
then f has a zero of order n at P . If ordP (f) < 0 then f has a pole of order n at P . We can extend
this concept to all rational functions. If f ∈ K(C) and f 6= 0 then f = g

h for some g, h ∈ OC,P . The
multiplicity of f in a point P is then defined to be ordP (f) = ordP (g) − ordP (h). If f = 0 then
ordP (f) =∞.

Example 2.1. Let C : y2−x3+x = 0 be an affine curve over R and P = (0, 0) ∈ C(R). A uniformizing
parameter for P is y. Let f(x, y) = x ∈ R(C). Then f has a zero at P and ordP (f) = 2, because
x = (x3 + x) x

x3+x = y2 1
x2+1 .

These definitions do not provide any real insight in how to actually calculate multiplicities or uni-
formizing parameters, but in a later section we will give explicit formulae for both of these in the case
of (hyper)elliptic curves.

2.4 Divisors

This section describes divisors on curves [48]. Divisors will be used in the construction of a group
law on hyperelliptic curves, which is covered in the next section. Moreover, they are essential in the
definition of bilinear pairings in the next chapter.

A divisor A is a formal sum of points on C

A :=
∑
P∈C

nP (P )

where nP ∈ Z and nP 6= 0 for only a finite number of points. The set of divisors of an affine curve
forms a free abelian group generated by the points on C, known as the divisor group of C which is
notated Div(C).
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Degree of a divisor

The degree of a divisor A is given by
degA :=

∑
P∈C)

nP .

The set of divisors of degree zero is a subgroup of Div(C) and is defined as follows:

Div0(C) := {A ∈ Div(C) | degA = 0 }.

Divisor of a function

We can associate a divisor with a rational function of a curve by counting the multiplicities of the
zeros and poles of the points in the function. Let f ∈ K(C)∗. The divisor of the function f is defined
by

(f) :=
∑
P∈C

ordP (f)(P )

It follows that (fg) = (f) + (g) and (f/g) = (f)− (g) for every f, g ∈ K(C)∗

Theorem 2.1. Let f ∈ K(C)∗. Then deg(f) = 0.

A proof of this theorem can be found in [31].

Evaluating rational functions in a divisor

Let f ∈ K(C) and A =
∑
P∈C(K) nP (P ) ∈ Div(C). We define the evaluation of f in A as follows

f(A) :=
∏

P∈C(K)

f(P )nP

Principal divisors

A divisor A ∈ Div(C) is called a principal divisor if there is a non-zero rational function f ∈ K(C)∗

such that A = (f). It is easy to show that the set of principal divisors forms a subgroup of Div(C).
Construct a mapping

K(C)∗ −→ Div(C)
f 7−→ (f)

This is clearly a group homomorphism, as (fg) = (f) + (g) and ( 1
f ) = −(f). It follows that the

image of this mapping, which is the set of principal divisors, is a subgroup of Div(C)0. We denote this
subgroup Prin(C).

Equivalence of divisors

We can define an equivalence relation on divisors by considering divisors A and B linearly equivalent
if their difference is a principal divisor:

A ∼ B ⇐⇒ A− B = (f) for some f ∈ K(C)∗.

It follows that A is a principal divisor if and only if A ∼ (0).

13



The Picard group or divisor class group is defined as follows:

Pic(C) := Div(C)/Prin(C).

Thus, two divisors are in the same divisor class if they are equivalent up to addition with a principal
divisor.

Support of a divisor

Let A =
∑
P∈C nP (P ) be a divisor. The support of A is the set of points on the curve appearing in

the sum. Formally:
supp(A) := {P ∈ C |nP 6= 0 }.

Effective divisors

A divisor A =
∑
P∈C nP (P ) is said to be effective if nP ≥ 0 for all P ∈ C.

2.5 Elliptic Curves

In this section we will define elliptic curves. These results come from [?].

2.5.1 Definition

Let K be an algebraically closed field, and consider the following equation defined over P2
K , known as

the projective Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

with coefficients a1, a2, a3, a4, a6 ∈ K.
In order to find the solutions of this equation in P2

K we first take a look at the points where Z = 0
(the line at infinity). Substituting Z = 0 in the equation yields X3 = 0, which means the curve only
intersects the line at infinity in the point [0 : 1 : 0]. We will refer to this point as the point at infinity,
denoted ∞. Now suppose Z 6= 0. Any solution is of the form [XZ : YZ : 1], which means we might as
well use only two variables to describe such a point. First we divide the Weierstrass equation by Z3

Y 2

Z2
+ a1

XY

Z2
+ a3

Y

Z
=
X3

Z3
+ a2

X2

Z2
+ a4

X

Z
+ a6.

Then we substitute x = X
Z and y = Y

Z to obtain the affine Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

This process is known as dehomogenization. Using the affine form we can refer to points satisfying
this equation without having to use projective coordinates. A point satisfying the equation is now
either the point at infinity ∞ or a point of the form (x, y) with x, y ∈ K.

14



If the curve given by an affine Weierstrass equation

E : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0

is non-singular, then E is an elliptic curve.

The notation described in the previous section on algebraic curves also applies here. If E is an elliptic
curve we use the notation E/K to indicate that it is defined over the field K. When we write E(K)
we refer to the set of solutions (x, y) with x, y ∈ K together with the point of infinity ∞.

If char(K) 6= 2, 3 the Weierstrass equation can be simplified through a change of variables into an
equation of the form:

y2 = x3 + ax+ b

When char(K) = 2 not all terms can be eliminated resulting in an equation in one of the following
forms:

y2 + xy = x3 + ax2 + b or y2 + xy = x3 + ax+ b

Finally, if char(K) = 3, the simplified equation is in the following form:

y2 = x3 + ax2 + b or y2 = x3 + ax+ b

The resulting form in the cases where char(K) = 2 or 3 depends on a quantity known as the j-invariant
which we will not define here. For a complete overview of how to do these substitutions we refer to
[48].

2.5.2 Computing the group law

Through a process known as chord-and-tangent composition, points on an elliptic curve can be added,
giving again another point on the curve. This method is best illustrated geometrically over R.

Adding two distinct points P and Q on this curve is done by “drawing” a line through them. This
line will intersect the curve in a third point −R, which can be reflected in the x-axis to get the point
R. Addition on the curve is defined by P + Q = R. If the line through P and Q is vertical (i.e. if
Q = −P ) it will intersect the curve at infinity and thus P + (−P ) =∞. Adding a point P to itself is
done in a similar fashion. Instead of drawing a line through two distinct points, we now draw the line
tangent to the point P . This line again intersects the curve in a third point −R which is reflected to
give P + P = R, or the line intersects the curve at infinity in which case P + P =∞. The process of
adding two points is visualized in figure 2.1 on an elliptic curve E defined over R.

This can also be described algebraically. Reflecting a point P = (x, y) is done by simply inverting the
y coordinate: −P = (x,−y). Addition of two distinct points works as follows. Let P = (x1, y1) and
Q = (x2, y2) be distinct points such that P 6= −Q. The slope of the line through P and Q is given by
λ = y1−y2

x1−x2
. Now we can calculate the coordinates of P + Q = R = (x3, y3) by reflecting third point

of intersection:
x3 = λ2 − x1 − x2

y3 = −y1 + λ(x1 − x3)

15



Figure 2.1: Adding two points on the elliptic curve y2 = x3 − 3x+ 1.

Adding P = (x1, y1) to itself (also known as doubling the point) is done as follows. If y1 = 0 then
2P = ∞. If y1 6= 0 then we first need to calculate the slope of the line tangent to P , which is given
by λ = 3x2

1+a
2y1

. The coordinates of 2P = R = (x3, y3), the reflected third point of intersection are in
this case given by:

x3 = λ2 − 2x1

y3 = −y1 + λ(x1 − x3)

When working with a curve defined over a field of characteristic 2 or 3 these formulas need to be
adjusted.

Point addition as defined above naturally provides the set of points on an elliptic curve with the
structure of an Abelian group with identity element ∞. For a proof we refer to [48], [34].

2.5.3 Group structure

Group order

For curves over finite fields one can wonder how many rational points it contains. Obviously for every
x ∈ Fq there are at most two values of y ∈ Fq for which (x, y) is a point on the curve, so including
the point at infinity there can never be more than 2q + 1 points on the curve. However, we can give
a tighter bound based on the fact that half of the non-zero elements in a finite field are squares. For
every x ∈ Fq we know that (x, y) is either a solution (in which case (x,−y) is also a solution, unless
y = −y) or (x, y) is not a solution. Since roughly half of the field elements are squares, both have an
equal probability of occuring. This leads us to believe that together with the point at infinity there
are q + 1 + ε points on the curve, where ε is supposed to be relatively small. This turns out to be
correct and is formulated more precisely in a famous theorem by Hasse:

Theorem 2.2 (Hasse). Let E be an elliptic curve over a finite field Fq. Then the following equation
holds:

|#E(Fq)− (q + 1)| ≤ 2
√
q.
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A proof is given in [48].

The value #E(Fq)− (q + 1) is known as the trace of Frobenius and is usually denoted t.

Torsion subgroups

Like in every additive group, the addition of points on the curve induces a scalar multiplication of
points. For n ∈ Z and P a point on an elliptic curve, we define:

nP =



P + P + . . .+ P︸ ︷︷ ︸
n times

, if n > 0

(−P ) + (−P ) + . . .+ (−P )︸ ︷︷ ︸
n times

, if n < 0

∞, if n = 0

The order of a point P is the smallest positive integer n such that nP = ∞. If the order of a point
P divides n (i.e. if nP = ∞), then P is called an n-torsion point. The set of K-rational n-torsion
points forms a subgroup, the n-torsion group, denoted E(K)[n]. The following theorem gives us some
valuable information about the structure of an n-torsion group.

Theorem 2.3. Let E/Fpm be an elliptic curve and let n ∈ Z be a prime coprime to p. Then the order
of E(Fpm)[n] is n2 and E(Fpm)[n] ∼= Z/nZ⊕ Z/nZ.

For a special class of curves the n-torsion group is trivial when n is a power of the characteristic of the
field over which the curve is defined. We will first define this class of curves. Let E/K be an elliptic
curve, where K = Fpm . If p | t, where t is the trace of Frobenius of E , then E is called supersingular.

2.5.4 Rational functions on elliptic curves

The following is explained in detail in [39]. Suppose E/K : y2 +a1xy+a3y = x3 +a2x
2 +a4x+a6 is an

elliptic curve. Observe that every polynomial f(x, y) ∈ K[E ] can be written in the form a(x) + b(x)y,
by rearranging terms and replacing any occurrence of y2 by x3 + a2x

2 + a4x+ a6 − a1xy − a3y. This
form can be used to define the degree of f , which we will be needed in determining the orders of zeroes
and poles of f as well as the behaviour of f in ∞.

Definition 2.8. Let f(x, y) = a(x) + b(x)y 6= 0 be polynomial function in K[E ]. Then the degree of
f is defined to be

deg(f) = max{2 degx(a), 3 + 2 degx(b)}

where degx denotes the usual degree of a polynomial in x, taking degx(0) =∞.

The behaviour of rational functions on E in the point at infinity is defined as follows.

Definition 2.9. Let f = g/h ∈ K(E). If deg(g) < deg(h) then we define f(∞) = 0. If deg(g) > deg(h)
we say f is not defined at ∞. If deg(g) = deg(h) then f(∞) is defined to be the ratio of the leading
coefficients of g and h.

A uniformizing parameter π for a point P ∈ E(K) can be found as follows. If P = ∞ then choose
π = x/y. If P = (xP , 0) then choose π = y. If P = (xP , yP ), yP 6= 0 then choose π = x − xP . The
order of a rational function f at P can now be determined by writing f = πnu with n ∈ Z and u a
unit, u(P ) 6= 0,∞, as described earlier.
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2.6 Hyperelliptic Curves

In this section we define hyperelliptic curves. These results come from [39].

2.6.1 Definition

A hyperelliptic curve C over a field K is a curve given by the equation:

y2 + h(x)y = f(x)

where f is a monic polynomial of degree 2g + 1 and h is a polynomial of degree ≤ g, for a certain
g ≥ 1. This number g is called the genus of the curve. We require the curve to be non-singular, which
means the partial derivatives given by

∂C
∂x

= h′(x)y − f ′(x) and
∂C
∂y

= 2y + h(x)

should not vanish simultaneously. The curves with genus 1 are exactly the elliptic curves, which
means hyperelliptic curves are a generalization of elliptic curves. As a consequence, the theorems and
definitions that follow in the next sections also hold for elliptic curves.

As with elliptic curves, we use the notation C/K to indicate that C is defined over a field K. We will
write C to refer to the set of solutions together with a point of infinity ∞ and use C(K) to denote the
set of solutions with coordinates in K (i.e. the K-rational points). If char(K) = 2, then h(x) 6= 0. If
char(K) 6= 2, then we can assume h(x) = 0 without loss of generality. If h(x) = 0 then f(x) has no
repeated roots in K. For a proof of these facts we refer to [39].

If P = (x, y) is a point on C, then ι(P ) = (x,−y − h(x)) is also a point on C, sometimes denoted P̃

and referred to as the opposite of P . The map ι is called the hyperelliptic involution, and a point for
which ι(P ) = P is called a ramification point or special point. If ι(P ) 6= P then P is said to be an
ordinary point.

In the section on elliptic curves we gave a bound on the number of points on the curve by stating
Hasse’s theorem. This theorem can be reformulated so it also applies to hyperelliptic curves.

Theorem 2.4 (Hasse-Weil). Let C be a hyperelliptic curve of genus g over a finite field Fq. Then the
following equation holds:

|#C(Fq)− (q + 1)| ≤ 2g
√
q.

Unlike in elliptic curves, the points on a genus > 1 curve do not have the structure of a group.
However, in what follows we will see there is a group law defined over another object that we can
associate with the curve.

2.6.2 Jacobian

The (degree 0 part of the) divisor class group is defined as the set of degree zero divisors modulo the
principal divisors:

Pic0(C) := Div0(C)/Prin(C).
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If A is a degree zero divisor then we denote the divisor class of A by A. The zero degree divisor class
group is isomorphic to an object known as the Jacobian variety on C, which is why the divisor class
group is sometimes simply referred to as the Jacobian and denoted Jac(C).

A divisor A is said to be semi-reduced if it is of the form

A =
∑
P∈C

nP (P )− (
∑
P∈C

nP )(∞)

and if A satisfies for all P in the sum:

1. P 6=∞

2. nP ≥ 0

3. if P = ι(P ) and nP > 0 then nP = 1

4. if P 6= ι(P ) and nP > 0 then nP̃ = 0

If in addition
∑
P∈C nP ≤ g, where g is the genus of the curve, then A is said to be reduced.

Example 2.2. Let C be a curve of genus 2 such that P1, P2, P3 ∈ C and Pi 6= P̃j for any i, j ∈ {1, 2, 3}.
Then (P1) + 2(P2) + (P3) − 4(∞) is a semi-reduced divisor and (P1) + (P2) − 2(∞) is a reduced
divisor.

It turns out that every zero degree divisor is linearly equivalent to exactly one reduced divisor, which
means every divisor class can be uniquely represented by a reduced divisor. For a given divisor class
A we define ρ(A) to be the unique reduced divisor of the class. In addition we define ε(A) to be the
effective part of this divisor (i.e. ρ(A) = ε(A)− d(∞), where d is the degree of ε(A)).

Remark 2.1. In the elliptic curve case the Jacobian is isomorphic to the group of points on the curve.
The isomorphism E → Pic0(E) is given by P 7→ (P )− (∞).

Storing reduced divisors is done by representing them as a pair of polynomials. This representation
is known as the Mumford representation. Let C/K be a hyperelliptic curve and A =

∑
P∈C nP (P )−

(
∑
P∈C nP )(∞) a reduced divisor. We use the notation xP and yP for the coordinates of a point

P ∈ C. Now we can uniquely represent A by a pair of polynomials a, b ∈ K[x]. The first polynomial
a is defined as follows:

a(x) =
∏
P∈C

(x− xP )nP .

The second polynomial b is defined as the unique polynomial satisfying the following properties:

1. deg b < deg a ≤ g,

2. for all P ∈ C such that nP > 0: b(xP ) = yP ,

3. b is a solution of the congruence b2 + hb ≡ f (mod a).

A reduced divisor represented by polynomials a and b will be denoted div(a, b).
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2.6.3 Computing the group law

The elements of the divisor class group have the structure of an Abelian group. The identity element
of this group is the divisor class represented by the reduced divisor with Mumford representation
div(1, 0). The inverse of an element div(a, b) is div(a,−b − h). We describe an algorithm to add
divisor classes, due to Cantor. Assuming Mumford representation it adds two divisors in reduced
form and returns the sum of the divisors in reduced form. It is far from efficient, but works for curves
of arbitrary genus. For fixed genus it is possible to derive much more efficient algorithms that do not
need to invoke the extended Euclidian algorithm.

Algorithm 1: Cantor’s Algorithm

Input: Reduced divisors div(a1, b1) and div(a2, b2).
Output: Reduced divisor div(a3, b3) = div(a1, b1) + div(a2, b2).

// Calculate the sum of the divisors.

d1 ← gcd(a1, a2) = e1a1 + e2a2

d← gcd(d1, b1 + b2 + h) = c1d1 + c2(b1 + b2 + h)
s1 ← c1e1

s2 ← c1e2

s3 ← c2

a3 ← a1a2/d
2

b3 ← (s1a1b2 + s2a2b1 + s3(b1b2 + f))/d (mod a3)

// Make sure the result is in reduced form.

while deg a3 > g do
a3 ← (f − hb3 − b23)/a3

b3 ← −h− b3 (mod a3)
end

Consult [37] for a proof of correctness of this algorithm.

2.6.4 Group structure

Group order

For elliptic curves the order of the group is simply the number of points on the curve. For hyperelliptic
curves the points do not have the structure of a group, so we need to determine the order of the divisor
class group instead. Obviously when a hyperelliptic curve is defined over a finite field the Jacobian
has finite order, since there is only a finite amount of polynomials usable as a representation of a
divisor class. For an elliptic curve E/K, the group of points contains a subgroup of K-rational points:
E(K) ⊆ E(K). Similarly, the divisor class group of a hyperelliptic curve C/K contains a subgroup
with K-rational divisor classes, but the concept of a rational divisor is a bit more complicated.

Formally, a divisor A =
∑
P∈C nP (xP , yP ) is K-rational if A =

∑
P∈C nP (σ(xP ), σ(yP )) for every

σ ∈ Gal(K,K). It is important to realize that this is not the same as requiring each point in the
support of A to have coordinates in K. However, a principal divisor is K-rational if and only if it is
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the divisor of a rational function with coefficients in K. Also, if a divisor class with representative
div(a, b) is K-rational, then the polynomials a, b have coefficients in K. The group of K-rational
divisor classes in the divisor class group is denoted Pic0

K(C) and is a subgroup of Pic0(C).

The following theorem gives a bound on the order of the divisor class group of a curve defined over a
finite field with q elements.

Theorem 2.5 (Weil). Let C/Fq be a hyperelliptic curve of genus g. Then

(
√
q − 1)2g ≤ #Pic0

Fq
(C) ≤ (

√
q + 1)2g.

Torsion subgroups

The following definitions are essentially the same as the definitions of the torsion subgroups of the
group of points on an elliptic curve. Using the group law on the divisor class group a reduced divisor
A can be repeatedly added to itself. For n ∈ Z we define:

nA =



A+A+ . . .+A︸ ︷︷ ︸
n times

, if n > 0

(−A) + (−A) + . . .+ (−A)︸ ︷︷ ︸
n times

, if n < 0

∞, if n = 0

The order of a reduced divisor A is the smallest positive integer n such that nA = 0, where 0 is the
divisor with empty support. The divisors with order dividing n form a subgroup denoted Pic0(C)[n].
The K-rational divisors with order dividing n form a subgroup denoted Pic0

K(C)[n].

2.6.5 Example

Let C be a hyperelliptic curve defined by the equation y2 = x5+x3+1. Then C(F3) = {∞, (0, 1), (0, 2), (1, 0) }.
Now let F32 = F3/(x2 − x − 1) and let α be a root of the polynomial x2 − x − 1 in F32 . Then
C(F32) = {∞, (0, 1), (0, 2), (1, 0), (α+ 1, 1), (α+ 1, 2), (2, α+ 1), (2, 2α+ 2), (2α+ 2, 1), (2α+ 2, 2) }.

Table 2.1: Pic0
F3

(C)
Reduced divisor Mumford representation

0 div(1, 0)
(0, 2)− (∞) div(x, 2)
2(0, 2)− 2(∞) div(x2, 2)
(α+ 1, 1) + (2α+ 1, 1)− 2(∞) div(x2 + 1, 1)
(0, 1) + (1, 0)− 2(∞) div(x2 + 2x, 2x+ 10)
(1, 0)− (∞) div(x+ 2, 0)
(0, 1) + (0, 2)− 2(∞) div(x2 + 2x, x+ 2)
(α+ 1, 2) + (2α+ 1, 2)− 2(∞) div(x2 + 1, 2)
2(0, 1)− 2(∞) div(x2, 1)
(0, 1)− (∞) div(x, 1)
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The divisor class group over F3 is shown in 2.1. It contains two reduced divisors as representatives
that have non-F3-rational points in their support. However, they are F3-rational divisors. Also notice
the polynomials in the Mumford representation all have coordinates in F3.

Let A1 = (0, 2)− (∞) = div(x, 2) and A2 = 2(0, 1)− 2(∞) = div(x2, 1). We are going to compute the
reduced divisor in the class A1 + A2 using Cantor’s algorithm. First we use the extended Euclidian
algorithm to calculate d1 = gcd(a1, a2) = gcd(x, x2) = 1 · x+ 0 · x2 = e1a1 + e2a2. Similarly, we then
calculate d = gcd(d1, b1 + b2 +h) = gcd(x, 1 + 2 + 0) = gcd(x, 0) = 1 ·x+ 0 · 0 = c1d1 + c2(b1 + b2 +h).
Now s1 = c1e1 = 1, s2 = c1e2 = 0 and s3 = c2 = 0. Then a3 = a1a2/d

2 = x3/x2 = x and
b3 = (s1a1b2 + s2a2b1 + s3(b1b2 + f))/d (mod a)3 = (x+ 0 + 0)/x = 1 (mod a)3. Since deg a3 = 1 ≤ 2
we are done and the reduced divisor in the class A1 +A2 = (0, 1)− (∞) = div(x, 1).

2.6.6 Rational functions on hyperelliptic curves

As with elliptic curves, the following can assist [39]. Suppose C/K : y2+h(x)y = f(x) is a hyperelliptic
curve of genus g. Similar to the elliptic curve case, every polynomial f(x, y) ∈ K[C] can be written in
the form a(x) + b(x)y, by rearranging terms and replacing any occurrence of y2 by f(x)− h(x)y.

Definition 2.10. Let f(x, y) = a(x) + b(x)y 6= 0 be polynomial function in K[C]. Then the degree of
f is defined to be

deg(f) = max{2 degx(a), 2g + 1 + 2 degx(b)}

where again degx denotes the usual degree of a polynomial in x, taking degx(0) =∞.

The behaviour of rational functions on C in the point at infinity is now defined exactly the same as
in the elliptic curve case.

A uniformizing parameter π for a point P ∈ C(K) can be found as follows. If P = ∞ then choose
π = xg/y. If P = P̃ then choose π = y. If P = (xP , yP ), yP 6= 0 then choose π = x− xP .
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Chapter 3

Pairings

A pairing is map e : G1 × G2 → GT where G1, G2 and GT are groups (usually cyclic of the same
prime order). In some instances the pairing is symmetric: G1 = G2. When G1 6= G2 the pairing is
said to be asymmetric. In this chapter we describe how to construct pairings on elliptic curves and
the divisor class group of hyperelliptic curves.

3.1 Weil Pairing

The Weil pairing was introduced by Andre Weil in 1940 [52] and has proven to be a useful tool in the
study of elliptic curves. There are several definitions of the Weil pairing which are all closely related
but not exactly equivalent. We will not focus on these differences here and stick to the definition that
allows for straightforward extraction of an algorithm to compute it.

3.1.1 Definition

The Weil pairing is a function that maps a pair of points in an n-torsion group of an elliptic curve to
an nth root of unity in some extension field of the field the curve was defined over. More specifically,
let E/Fq be an elliptic curve and let n be a prime divisor of #E(Fq) coprime to char(Fq). The Weil
pairing is a map

e : E(Fq)[n]× E(Fq)[n]→ F∗q .

Sometimes we will use the notation en instead of e to specify directly the order of the torsion group
on which the pairing is defined.

The Weil pairing maps points to a certain extension field Fqk , which should be large enough to make
sure E(Fqk) contains all n-torsion points (so in reality we do not need the full algebraic closure of Fq).
The embedding degree is the degree k of this field extension. When n - q − 1, then k is the smallest
integer such that n | qk − 1, or equivalently, the smallest integer such that Fqk contains all nth roots
of unity. If n | q− 1 then in some instances k = 1, but in other instances k = n. From now on we will
assume n - q − 1, since this is the case in most practical situations.
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Let P,Q ∈ E(Fqk)[n]. To define e(P,Q), we first need a divisor AP ∼ (P )− (∞) and a divisor AQ ∼
(Q)− (∞). We require that AP and AQ have disjoint support. First note that since nP = nQ =∞ it
follows that nAP ∼ n(P )− n(∞) and nAQ ∼ n(Q)− n(∞) are principal divisors. As a consequence
of this, there exist rational functions fP and fQ such that (fP ) = nAP and (fQ) = nAQ. We can now
define the Weil pairing as:

e(P,Q) :=
fP (AQ)
fQ(AP )

The result of the pairing is independent of the divisors chosen and thus the Weil pairing is well-defined.

3.1.2 Properties

The following theorems state that the Weil pairing is a bilinear, alternating and non-degenerate map-
ping. A proof of these properties is given in [48].

Theorem 3.1. The Weil pairing is linear in both arguments:

e(P +Q,R) = e(P,R)e(Q,R) for all points P,Q,R

and
e(P,R+ S) = e(P,R)e(P, S) for all points P,R, S.

Theorem 3.2. The Weil pairing is alternating:

e(P,Q) = e(Q,P )−1 for all points P,Q.

As a consequence, the self-pairing of a point P is always 1:

e(P, P ) = e(P, P )−1 = 1 for all points P.

Theorem 3.3. The Weil pairing is non-degenerate:

e(P,Q) = 1 for all points Q if and only if P =∞.

3.1.3 Computation

We describe how to compute the Weil pairing using an algorithm by Victor Miller [40]. The paper
in which the algorithm is described was never published but is cited very frequently. We will use the
method as described in [10] and employ the same notation.

The first step is to find divisors AP ∼ (P ) − (∞) and AQ ∼ (Q) − (∞). To do so, choose random
R1, R2 ∈ E(Fqk)[n] and let AP = (P + R1) − (R1) and AQ = (Q + R2) − (R2). These are suitable
choices, since the difference of AP and (P )− (∞) is indeed a principal divisor:

AP −
(
(P )− (∞)

)
=
(
(P +R1)− (R1)

)
−
(
(P )− (∞)

)
= (P +R1)− (R1)− (P ) + (∞)

and similarly, the difference of AQ and (Q)− (∞) is a principal divisor.

24



To evaluate e(P,Q) we now have to compute

fP (AQ)
fQ(AP )

=
fP
(
(Q+R2)− (R2)

)
fQ
(
(P +R1)− (R1)

) =
fP (Q+R2)
fQ(P +R1)

· fQ(R1)
fP (R2)

.

The main problem in computing the Weil Pairing is finding functions fP and fQ such that (fP ) = nAP
and (fQ) = nAQ. We show how to construct fP iteratively. The same method is used to construct
fQ. First define the function fi for i ≥ 1 such that

(fi) = i(P +R1)− i(R1)− (iP ) + (∞).

Since P is a n-torsion point, it follows that

(fn) = n(P +R1)− n(R1)− (nP ) + (∞) = n(P +R1)− n(R1) + (∞) = nA.

Lemma 3.1. Let P,R1 ∈ E(Fqk)[n] be the points as described above, and let i and j be positive integers
such that i 6= j. Suppose l is a function such that l(x, y) = 0 is the equation of the line joining the
points iP and jP and suppose v is a function such that v(x, y) = 0 is the equation of a vertical line
through the point (i+ j)P . Then

fi+j = fi · fj ·
l

v

Proof. We use the divisors of the functions to prove the equality. First note that since l intersects the
curve at the points iP , jP and −(i+ j)P the divisor of l is given by

(l) = (iP ) + (jP ) + (−(i+ j)P )− 3(∞).

The line v intersects the curve at the points (i+ j)P and −(i+ j)P , which means the divisor of v is
given by

(v) = ((i+ j)P ) + (−(i+ j)P )− 2(∞).

Writing down the divisor of fifj lv yields the equality needed to prove the lemma:

(fifj lv ) = (fi) + (fj) + (l) − (v)
=

(
i(P +R1) − i(R1) − (iP ) + (∞)

)
+(

j(P +R1) − j(R1) − (jP ) + (∞)
)

+(
(iP ) + (jP ) + (−(i+ j)P ) − 3(∞)

)
−(

((i+ j)P ) + (−(i+ j)P ) − 2(∞))
= (i+ j)(P +R1) − (i+ j)(R1) − (iP )− (jP ) + 2(∞) +

(iP ) + (jP ) + (−(i+ j)P )− 3(∞) − ((i+ j)P ) − (−(i+ j)P ) + 2(∞)
= (i+ j)(P +R1) − (i+ j)(R1) − ((i+ j)(P )) + (∞)
= (fi+j).

Constructing fP this way and then evaluating it in AQ would be unwieldy, because fn becomes very
complex for high n. Therefore when computing the Weil Pairing we do not store the actual expres-
sions of the functions, but immediately evaluate them at each step. To arrive at fn we use the binary
representation of n = [nm, nm−1, . . . , n0]2 and use the double-and-add method. We initialize fi to f1
and iterate through the bits starting at m− 1 going down to 0. At each iteration we either double i
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(if the corresponding bit is 0) or we double i and add 1 (if the corresponding bit is 1). Meanwhile we
calculate the corresponding fi by using the recursion fi+j = fifj

l
v . After the final iteration i will be

equal to n and we will have obtained fn.

For this method to work, we need to be able to directly calculate the evaluation of f1 in AQ. For-
tunately, the function f1 can be explicitly constructed. First note that the divisor of f1 is given
by

(f1) = (P +R1)− (R1)− (P ) + (∞).

Now let l(x, y) = 0 be the equation of the line going through the points P and R1. Then the divisor
of l is given by

(l) = (P ) + (R1) + (−(P +R1))− 3(∞).

Let v(x, y) = 0 be the vertical line going through the point P +R1. Then the divisor of v is given by

(v) = (P +R1) + (−(P +R1))− 2(∞).

It follows that

(v)− (l) = (P +R1) + (−(P +R1))− 2(∞)− (P )− (R1)− (−(P +R1)) + 3(∞)
= (P ) + (R1)− (P +R1) + (∞)
= (f1).

As a consequence

f1(AQ) =
v(Q+R2)
l(Q+R2)

· l(R2)
v(R2)

.

Combining these ideas leads to an efficient algorithm for computing fP (AQ), which is outlined as
follows.

Algorithm 2: Miller’s Algorithm [Weil pairing]

Input: P,Q,R1, R2,m, [nm, . . . , n1, n0]2 = n.
Output: fP (AQ).
l← line through P and R1

v ← vertical line through P +R1

f ← v(Q+R2)
l(Q+R2)

· l(R2)
v(R2)

T ← P

for i = m− 1 to 0 do
l← tangent line at T
v ← vertical line through 2T
f ← f2 · l(Q+R2)

v(Q+R2)
· v(R2)
l(R2)

T ← 2T
if ni = 1 then

l← line through T and P

v ← vertical line through T + P

f ← f · f1 · l(Q+R2)
v(Q+R2)

· v(R2)
l(R2)

T ← T + P
end

end
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Computing fQ(AP ) is done by modifying the algorithm in the obvious way. The Weil pairing is
evaluated by running Miller’s algorithm twice. The first time to compute fP (AQ) and the second
time to compute fQ(AP ). Dividing them gives the final result.

3.1.4 Modifications

In order for the Weil pairing to be useful in cryptography it needs to be slightly adapted. First
of all we want the Weil Pairing to satisfy a stronger notion of non-degeneracy. In its current form
non-degeneracy means that for every P 6= ∞ there is at least one Q such that e(P,Q) 6= 1 and vice
versa. We would like the pairing to be strongly non-degenerate, which means the self-pairing should
not be trivial (i.e. e(P, P ) 6= 1 for P 6= ∞). Unfortunately, from the alternating property we know
that e(P, P ) = 1. Then, from bilinearity it follows e(P,Q) = 1 when P and Q are linearly dependent.

We also would like the pairing to be defined on cyclic groups instead of the product of two cyclic
groups such as the n-torsion group of an elliptic curve. We can restrict the inputs to a cyclic subgroup
of the n-torsion group, but then the pairing would be trivial on all inputs as they are all linearly
dependent. The obvious solution is to take the inputs from separate cyclic subgroups of the n-torsion
group. As we shall see, this also solves the problem of strong non-degeneracy.

Let E/Fq be an elliptic curve, n a prime coprime to char(Fq) such that E(Fq) contains a point of order
n, and k the embedding degree. If Pg and Qg are linearly independent points, they generate the full
n-torsion group of E (i.e. 〈Pg, Qg〉 = E(Fq)[n]). Let G1 = 〈Pg〉 and G2 = 〈Qg〉. If we restrict the
inputs of the Weil pairing as follows

e : G1 ×G2 → F∗qk

then the pairing satisfies the strong non-degeneracy property.

A practical problem here is to actually find points in G1 and G2, but this can be solved if there exists
a distortion map on E [4]. A distortion map φ : E → E maps a point P to a point φ(P ) such that
P and φ(P ) are linearly independent. For supersingular curves these distortion maps can always be
computed. We can use this property to obtain a symmetric strongly non-degenerate pairing, known
as the the modified Weil Pairing ê(P,Q) : G1 ×G1 → F∗qk . It is defined as follows:

ê(P,Q) := e(P, φ(Q))

3.2 Tate-Lichtenbaum Pairing

The Tate pairing, or Tate-Lichtenbaum pairing was introduced to cryptography by Frey and Ruck
[44] for the purpose of transporting the discrete logarithm problem on the divisor class group of a
curve C/Fq to the multiplicative group of some extension of its field of definition. However, after the
arrival of pairing based cryptography, it was quickly proposed as an alternative to the Weil pairing,
as its computation is less costly. In this section we will define the Tate pairing for elliptic curves and
give an efficient way to compute it. In the next section we will generalize the pairing to hyperelliptic
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curves. Obviously the hyperelliptic version of the pairing can be used on elliptic curves as well, but the
simplification of the computation in the elliptic case is significant enough to justify separate treatment.

3.2.1 Definition

Like the Weil pairing, the Tate pairing can be defined in terms of evaluations of rational functions in
divisors. Let E/Fq be an elliptic curve defined over a finite field and fix a prime n coprime to char Fq
such that n | #E(Fq). Let Fqk be the smallest extension field of Fq containing the set of nth roots of
unity. Then k is the smallest integer such that n | qk − 1 (the embedding degree). We first define

nE(Fq) := {nP | P ∈ E(Fq)}.

The quotient group E(Fq)/nE(Fq) is the set of equivalence classes of points in E(Fq) where points are
considered equivalent if their difference is a point of order n. The quotient group F∗q/(F∗q)n is the set
of equivalence classes of field elements where two elements are considered equivalent if they are the
same up to multiplication with an nth power. This quotient group is isomorphic to µn (the group of
nthroots.
The Tate pairing is a map

t : E(Fqk)[n]× E(Fqk)/nE(Fqk)→ F∗qk/(F∗qk)n.

Similar to the Weil pairing, sometimes we will use the notation tn to indicate the order of the torsion
group.

Let P ∈ E(Fqk)[n] andQ ∈ E(Fqk), whereQ is a representative of an equivalence class in E(Fqk)/nE(Fqk).
To define t(P,Q) we first need a divisor AQ ∼ (Q) − (∞) and a function fP such that (fP ) =
n(P )−n(∞). We require AQ and (fP ) to have disjoint support to ensure the evaluation of fP in AQ
is not equal to zero. We can now define the Tate Pairing of P and Q as:

t(P,Q) := fP (AQ).

3.2.2 Properties

We prove that the Tate pairing is a bilinear and non-degenerate mapping. Then we show that we
need an embedding degree larger than 1 to get non-trivial self-pairings.

Theorem 3.4. The Tate pairing is bilinear:

t(P +Q,R) = t(P,R)t(Q,R) for all points P,Q ∈ E(Fqk)[n] and R ∈ E(Fqk)/nE(Fqk).

and

t(P,R+ S) = t(P,R)t(P, St) for all points P ∈ E(Fqk)[n] and R,S ∈ E(Fqk)/nE(Fqk).

Proof. We give the proof as described in [4]. Let fP and fQ be functions such that (fP ) = n(P )−n(∞)
and (fQ) = n(Q)−n(∞). Let AR ∼ (R)− (∞) be a divisor with support disjoint to {∞, P,Q, P +Q}.
Then

t(P,R) = fP (AR) and t(Q,R) = fQ(AR).
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Now let g be a function such that (g) = (P +Q)− (P )− (Q) + (∞). Note that

(fP fQgn) = (fP ) + (fQ) + n(g)
= n(P ) + n(Q)− 2n(∞) + n(P +Q)− n(P )− n(Q) + n(∞)
= n(P +Q)− n(∞).

This means the function fP fQg
n is suitable for use in computation of t(P +Q,R):

t(P +Q,Rt) = fP fQg
n(AR) = fP (AR)fQ(AR)g(AR)n = t(P,R)t(Q,R)g(AR)n.

In other words, t(P,R)t(Q,R) and t(P +Q,R) are equivalent up to a multiplication with a nth power.
This means they are equivalent in the quotient group K∗/(K∗)n, proving linearity in the first factor.

Now choose divisors AR ∼ (R) − (∞) and AS ∼ (S) − (∞). Let fP be a function such that (fP ) =
n(P )− n(∞). Then

t(P,R) = fP (AR) and t(P, S) = fP (AS).

Note that AR +AS ∼ (R+ S)− (∞), since

(R+ S)− (∞)−AR −AS = (R+ S)− (∞)− (R) + (∞)− (S) + (∞)
= (R+ S)− (R)− (S) + (∞).

which clearly is a principal divisor. This means AR + AS is suitable for use in computation of
t(P,R+ S), leading us to the equation

t(P,R+ S) = fP (AR +AS) = fP (AR)fP (AS) = t(P,R)t(P, S)

proving linearity in the second factor.

Theorem 3.5. The Tate Pairing is non-degenerate. If P ∈ E(Fqk)[n] then

t(P,Q) = 1 for all Q if and only if P =∞.

Similarly, if Q ∈ E(Fqk)/nE(Fqk) then

t(P,Q) = 1 for all P if and only if Q =∞.

For a proof, see [29].

Theorem 3.6. If k > 1 (where k is the embedding degree), then self-pairings of points in E(Fq)[n] are
trivial. As a result of bilinearity it follows that if k > 1, then the pairing of any two linearly dependent
points in E(Fq)[n] is trivial.

Proof. Let P ∈ E(Fq)[n], fP ∈ Fq(E) such that (fP ) = n(P ) − n(∞), and AP ∈ Div(E) such that
AP ∼ (P )−(∞). Then t(P, P ) = fP (AP ) ∈ F∗q . Since F∗q is a group of order q−1 and gcd(n, q−1) = 1
(because k > 1) it follows that F∗q = (F∗q)n. As a consequence, t(P, P ) is an nth power and vanishes
in the quotient group F∗q/(F∗q)n.
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3.2.3 Computation

The same approach as used in Miller’s algorithm for computing the Weil Pairing can be used for
efficiently computing the Tate Pairing. In computing the Tate Pairing the main problem is to construct
a function f such that (f) = n(P ) − n(∞). Again, we can build this function iteratively using the
double-and-add method. First we define a function fi for i ≥ 1 such that

(fi) = i(P )− (iP )− (i− 1)(∞).

Since P is a n-torsion point, it follows that

(fn) = n(P )− (nP )− (n− 1)(∞) = n(P )− n(∞) = (f).

Note that
(f1) = (P )− (P )− 0(∞) = 0

which means f1 = 1.

Lemma 3.2. Let P ∈ E(Fqk)[n], and let i and j be positive integers. Suppose l is a function such
that l(x, y) = 0 is the equation of the line between the points iP and jP and suppose v is a function
such that v(x, y) = 0 is the equation of vertical line through the point (i+ j)P . Then

fi+j = fi · fj ·
l

v

Proof. Recall from the lemma used in computing the Weil Pairing the divisors of l and v:

(l) = (iP ) + (jP ) + (−(i+ j)P )− 3(∞)
(v) = ((i+ j)P ) + (−(i+ j)P )− 2(∞)

Writing down the sum of the divisors results in the equality:

(fifj lv ) = (fi) + (fj) + (l) − (v)
=

(
i(P ) − (iP ) − (i− 1)(∞)

)
+(

j(P ) − (jP ) − (j − 1)(∞)
)

+(
(iP ) + (jP ) + (−(i+ j)P ) − 3(∞)

)
−(

((i+ j)P ) + (−(i+ j)P ) − 2(∞))
= (i+ j)(P ) − (iP ) − (jP ) − (i+ j − 2)(∞) +

(iP ) + (jP ) + (−(i+ j)P ) − 3(∞)−
((i+ j)P ) − (−(i+ j)P ) + 2(∞))

= (i+ j)(P )− ((i+ j)P )− (i+ j − 1)(∞)
= (fi+j).

Recall from the definition of the Tate Pairing that we also need a divisor AQ ∼ (Q) − (∞) with
support disjoint from (fP ). Let R ∈ E(K)[n] such that R 6=∞, P,−Q,P −Q. Then a valid choice for
AQ is (Q+R)− (R). We can now compute t(P,Q) = fP (AQ) using Miller’s algorithm. Note that it
is slightly simpler than the version for the Weil Pairing due to the fact that f1 = 1.
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Algorithm 3: Miller’s Algorithm [Tate Pairing]

Input: P,Q,R,m, [nm, . . . , n1, n0]2 = n.
Output: fP (AQ).
f ← 1
T ← P

for i = m− 1 to 0 do
l← tangent line at T
v ← vertical line through 2T
f ← f2 · l(Q+R)

v(Q+R) ·
v(R)
l(R)

T ← 2T
if ni = 1 then

l← line through T and P

v ← vertical line through T + P

f ← f · l(Q+R)
v(Q+R) ·

v(R)
l(R)

T ← T + P
end

end

3.2.4 Modifications

Throughout this section, let E/Fq be an elliptic curve, n a prime coprime to char(Fq) such that E(Fq)
contains a point of order n, and k the embedding degree.

For practical applications of the Tate pairing, it is desirable to have the output be an element of the
multiplicative group of a finite field instead of a coset in the quotient group F∗qk/(F∗qk)n. To achieve
this we can raise the result to the power (qk − 1)/n. In the literature this process is referred to as
the final exponentiation. The exponentiated pairing which maps directly into F∗qk is called the reduced
Tate pairing :

t′(P,Q) := t(P,Q)(q
k−1)/n

To obtain a symmetric bilinear map from the Tate pairing we have to make sure both inputs come
from the same group. At first this may seem like a problem since the second input of the Tate pairing
is not a n-torsion point on the curve, but a coset in the quotient group E(Fqk)/nE(Fqk). Fortunately,
if we assume that E(Fqk) contains no elements of order n2, then E(Fqk)[n] can be identified with
E(Fqk)/nE(Fqk).

Finally, assuming the existence of a distortion map φ on E , we can apply the same modification to
the Tate pairing as we did to the Weil pairing (assuming k > 1) to obtain a symmetric strongly
non-degenerate map defined on cyclic groups. Let Pg ∈ E(Fq)[n] and G1 = 〈Pg〉. Then the modified
Tate pairing is a map t̂(P,Q) : G1 ×G1 → F∗qk , defined as follows:

t̂(P,Q) := t′(P, φ(Q))
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3.3 Hyperelliptic Tate-Lichtenbaum Pairing

In this section we generalize the Tate-Lichtenbaum pairing to the divisor class group of a hyperelliptic
curve. Most of the results are derived from [28], [21] and [16].

3.3.1 Definition

Let C/Fq be a hyperelliptic curve, n a prime coprime to char(Fq) with n | #Pic0
Fq

(C), and again k the
smallest integer such that n | qk − 1 (the embedding degree).

The hyperelliptic Tate pairing is a map

t : Pic0
F

qk
(C)[n]× Pic0

F
qk

(C)/nPic0
F

qk
(C)→ F∗qk/(F∗qk)n.

Let AP and AQ be divisor classes with respective representatives AP and AQ such that supp(AP ) ∩
supp(AQ) = ∅. Let fAP

be a function such that (fAP
) = nAP . Then we define the Tate pairing of

AP and AQ as follows:
t(AP ,AQ) = fAP

(AQ)

The requirement of AP and AQ having disjoint support is to make sure the evaluation of fAP
in AQ

is not zero. Notice how this is a straightforward generalization of the Tate pairing on elliptic curves,
where we take AP = (P )− (∞) and AQ ∼ (Q)− (∞) to pair two points P and Q.

It can be shown that this pairing is also well-defined.

3.3.2 Properties

The hyperelliptic Tate pairing satisfies the same properties as the elliptic Tate pairing (i.e. bilinearity
and non-degeneracy).

3.3.3 Computation

Again, let C/Fq be a hyperelliptic curve, n a prime coprime to char(Fq) such that n | #Pic0
F

qk
(C),

where k is the embedding degree. For AP ∈ Pic0
F

qk
(C)[n] and AQ ∈ Pic0

F
qk

(C)/nPic0
F

qk
(C), we will

describe how to compute t(AP ,AQ).

The first difficulty in the pairing computation is the choice of divisors as representative of the divisor
classes. Computing the group operation of the divisor class is done with reduced divisors in Mumford
representation, but we cannot use the reduced representative for both inputs in the pairing evaluation
because two reduced divisors do not have disjoint support. Indeed, for any two divisor classes AP
and AQ we have ∞ ∈ supp(ρ(AP )) ∩ supp(ρ(AQ)) (recall ρ(A) denotes the reduced divisor in A).
Fortunately, if we impose certain constraints on the function fAP

we can evaluate fAP
in ε(AQ) (the

effective part of the reduced divisor in AQ). For details of these constraints we refer to [28] and [21].
However, if we assume that k > 1 and AP ∈ Pic0

Fq
(C)[n], then this constraint is not necessary. From

now on we will assume this is the case.
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Let A = ρ(AP ). Again, we build fA iteratively. Let fi be a function such that

(fi) = iA− ρ(iA).

It is important to realize that iA is obtained using multiplication by i in the group Div(C), and iA is
obtained using multiplication by i in the group Pic0(C)[n]. Since A is an n-torsion element of Pic0(C)
we have:

(fn) = nA− ρ(nA) = nA.

Also:
(f1) = A− ρ(A) = 0

which means f1 = 1.

Lemma 3.3. Let A = ρ(AP ), and let i and j be positive integers. Furthermore, suppose giA,jA is a
function such that (giA,jA) = ρ(iA) + ρ(jA)− ρ(iA+ jA). Then

fi+j = fi · fj · giA,jA.

Proof.
(fifjg) = (fi) + (fj) + (giA,jA)

= iA− ρ(iA) + jA− ρ(jA) + ρ(iA) + ρ(jA)− ρ(iA+ jA)
= (i+ j)A− ρ((i+ j)A).
= (fi+j).

The function g can be obtained from Cantor’s algorithm as follows. Assume we are using Cantor’s
algorithm to calculate the sum of two reduced divisors Ai and Aj represented by [a1, b1] and [a2, b2],
respectively. The result of the algorithm is a reduced divisor Ai+j = ρ(Ai +Aj). After the first part
of the algorithm we have obtained a semi-reduced divisor A′i+j represented by [a′3, b

′
3], satisfying

A′i+j = Ai +Aj − (d).

In the second part of the algorithm the divisor is reduced to a divisor Ai+j represented by [a3, b3],
satisfying

Ai+j = A′i+j − ((y − b′3)/a3). (3.1)

Substituting 3.1 in 3.2 gives us

Ai+j = Ai +Aj − (d)− ((y − b′3)/a3) = Ai +Aj − (d(y − b′3)/a3). (3.2)

This shows we can take g = d(y−b′3)
a3

.

The full algorithm is thus as follows. Note that the inputs AP and AQ are the reduced representatives
of the input divisor classes.
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Algorithm 4: Miller’s Algorithm [Hyperelliptic Tate Pairing]

Input: AP ,AQ,m, [nm, . . . , n1, n0]2 = n.
Output: fAP

(ε(AQ).
f ← 1
T ← AP
for i = m− 1 to 0 do

T ← 2T extracting gT,T (using Cantor’s algorithm)
f ← f2 · g(ε(AQ))
if ni = 1 then

T ← T +A1 extracting gT,AP
(using Cantor’s algoritm)

f ← f · g(ε(AQ))
end

end

Just as with the elliptic version, we can raise the result to the power (qk−1)/n to obtain the truncated
Tate pairing which maps to the group Fqk .

3.3.4 Elliptic versus Hyperelliptic Pairings

One of the main reasons of considering pairings for hyperelliptic curves is the fact that it is then
possible to choose from a larger variety of embedding degrees [23]. Also, when working out special
cases of addition formulae in genus 2 it is possible to outperform the group arithmetic on elliptic
curves. However, it seems the speed of a hyperelliptic pairing computation is more costly and can in
most instances be matched by the speed of an elliptic pairing computation [21]. Regarding the size of
group elements, for non-supersingular curves it seems the elements in G2 are larger in the hyperelliptic
curve case, as the size of the elements depends on the embedding degree. The conclusion is that in
practice, elliptic curves are more efficient then hyperelliptic curves for general pairing applications.
[21]
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Chapter 4

Discrete Logarithm Problem

This chapter is dedicated to the discrete logarithm problem and closely related problems like Diffie-
Hellman. These problems and the protocols arising from them, require a cyclic Abelian group. Tra-
ditionally, in these problems the group of choice is the multiplicative group of a finite field Fq, so
in the first sections we will use a multiplicative notation for the groups. When we will move these
problems to the group of an elliptic curve or hyperelliptic curve we will switch to additive notation.
It is shown how pairings can be used in certain instances to attack protocols based on the discrete
logarithm problem in (hyper)elliptic curves.

4.1 Problems

From now on, let G be an Abelian group. In G we can define the following closely related problems.

Definition 4.1. The discrete logarithm problem (DLP) is the problem of finding the least positive
integer a such that the equation h = ga holds, when the elements g, h ∈ G are given, provided this
integer exists (i.e. when h ∈ 〈g〉).

This problem is believed to be computationally hard. We use the notation DLPg to refer to the problem
of computing discrete logarithms with respect to a base g ∈ G, and we write DLPG to refer to the
problem of computing DLPg for any g ∈ G. The same convention is used for the rest of the problems
to be defined in this chapter.

Definition 4.2. Closely related to the discrete logarithm problem is the Diffie-Hellman problem
(DHP). This is the problem of finding gab when g, ga, gb ∈ G are given. This problem is sometimes also
referred to as the computational Diffie-Hellman problem (CDH).

Definition 4.3. There is also an easier decisional version, called the decision Diffie-Hellman problem
(DDH), which is the problem of deciding if h = gab when g, ga, gb, h ∈ G are given.

4.1.1 Relating the problems

Obviously if you can solve CDH then you can also solve DDH. This relation is denoted CDHG −→ DDHG.
More specifically, it means that if there is an algorithm A that solves CDHG in polynomial time, then
it is possible to construct an algorithm with access to A that solves DDHG in polynomial time. We also
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say CDHG is a stronger problem than DDHG. This notation will be used throughout the entire chapter
to describe polynomially bounded reductions of one problem to another.

Another relation that obviously holds is DLPG −→ CDHG (given g, ga, gb you can take discrete loga-
rithms to obtain a and b which allows you to compute gab). It is not known if the converse is true –
nobody really knows if it is possible to obtain gab from ga and gb without first determining either a or b.

As shown in [15], if you can efficiently compute the discrete logarithm with respect to a single element
h in a cyclic group G, then you can efficiently compute the discrete logarithm with respect to any
h ∈ G. The same holds for the computational Diffie-Hellman problem:

Proposition 4.1. Let G be a cyclic group of prime order p. For any generator g ∈ G we have:
DLPG ←→ DLPg and CDHG ←→ CDHg.

Proof. Suppose we can solve DLPg for a certain g ∈ G. Let h ∈ G. We show we can solve DLPh, which
proves we can solve DLPG. Suppose we are given x = ha ∈ G and we would like to find a. Let h = gb.
Then x = ha = (gb)a = gba. We can solve DLPg so we can obtain ba as well as b. Then a is easily
obtained by computing b−1 (mod p). This proves DLPG ←− DLPg.

Now suppose we have an algorithm A which solves CDHg for a certain g ∈ G. We use the notation
A(g, gc, gd) = gcd. Let h ∈ G. We show we can solve CDHh, which proves we can solve CDHG. Suppose
we are given h, hc and hd ∈ G. We need to compute hcd. Since g is also a generator for G we know
that h = gx for a certain x. Then hc = (gx)c = gxc and hd = (gx)d = gxd. We now compute
A(g, gxc, gxd) = gx

2dc. Also, using approximately log p calls to A we can calculate gx
p−2

= gx
−1

.
Then A(g, gx

−1
, gx

2dc) = gx
−1x2dc = gxdc = hcd. This proves CDHG ←− CDHg.

The relations DLPG −→ DLPg and CDHG −→ CDHg obviously hold.

4.2 Protocols

The Diffie-Hellman problem can be used as the basis for several cryptographic protocols. In this
section we will shortly describe two of these protocols [5].

4.2.1 Diffie-Hellman key exchange

One application of CDH is the Diffie-Hellman key exchange protocol. Suppose two people, traditionally
named Alice and Bob, want to share a secret key (which is a random element in some group). Sharing
this secret needs to be done by communicating over an insecure channel and should not require any
prior interaction between the two parties. Assuming the agreement between the two parties on a
group G of large prime order with generator g, and also the hardness of CDH in G, the sharing of a
secret key can be done in one round using the following steps:

1. Alice generates a random positive integer a, which should be less than the group order. The
information she sends to Bob is:

ga.

The integer a is kept private.
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2. Bob also generates a random positive integer b, which should be less than the group order. The
information he sends to Alice is:

gb.

The integer b is kept private.

After these two steps Alices computes (gb)a = gab and Bob computes (ga)b = gab. This shared secret
gab cannot be recovered without solving CDH in G, because any eavesdropper watching the insecure
channel only has the following information:

G, g, ga and gb

4.2.2 Digital Signature Algorithm

Another famous application of CDH is the Digital Signature Algorithm. This protocol requires a group
G of large prime order p with generator g and a bijective mapping f : G→ Z/pZ. Suppose Bob wants
to sign a message m ∈ Z/pZ with his private key x, which is a positive integer less than p, the order of
the group G. Using the following scheme, the authentication of the message can be established using
Bob’s public key h = gx:

1. Bob generates a random positive integer k, such that k ≤ p and computes a = gk. He then
computes the solution b to the congruence

m = −xf(a) + kb (mod p).

The information he sends to Alice is:
m, a and b.

2. Alice first computes

u = mb−1 (mod p) and v = f(a)b−1 (mod p)

To establish the authenticity of the message, she needs to verify that gugb = a:

guhv = gmb
−1
gvx = gmb

−1+xf(a)b−1
= g(m+xf(a))b−1

= gkbb
−1

= gk = a.

4.3 Attacks

There exist several algorithms to compute the discrete logarithm. Some of them are designed to work
only in the multiplicative group of a finite field. Others are more general and can be used in arbitrary
group settings. The fastest general attacks are the Pollard-ρ and baby-step giant-step methods. The
running time of both methods is O(

√
n) (where n is the size of the group), which is exponential in

the input length (i.e. the number of digits in n). These methods are often also referred to as square
root methods. The fastest attack specifically tailored to the multiplicative group of a finite field is the
index-calculus attack. Its running time is sub-exponential in the input length.
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Pohlig-Hellman

In addition to the aforementioned attacks, Pohlig and Hellman observed that in order to solve DLP in
a finite group G, it is only necessary to solve DLP in the subgroups of prime power order in G. This
simplification is based on the chinese remainder theorem. In other words, the security of a protocol
based on DLP in a group does not depend on the order of the group but on the largest prime factor of
the order of the group.

4.4 Elliptic Curve Discrete Logarithm Problem

The discrete logarithm can be stated in any Abelian group, including the group of points on an elliptic
curve. Its use was first suggested independently by Koblitz [35] and Miller [41].

Definition 4.4. Let E/Fq be an elliptic curve, P ∈ E(Fq) and let n be the order of the group of points
E(Fq). Note that E(Fq) is generally not a cyclic group, but we can still compute the discrete logarithm
(with respect to P ) of points in the cyclic subgroup generated by P . More specifically, given Q ∈ 〈P 〉,
the elliptic curve discrete logarithm problem (ECDLP) is the problem of finding the integer a such that

Q = aP.

The main advantage of the group of points on an elliptic curve, compared to the multiplicative group
of a finite field, is that there is no known sub-exponential algorithm (like the index-calculus method)
to solve the discrete logarithm problem. This means we can use smaller groups that offer the same
level of security. In practice, for this to be true we need to avoid certain types of elliptic curves as we
will see in the next section.

4.4.1 Attacks

Obviously, all the general square root methods can be applied to attack the elliptic curve discrete
logarithm problem as well. However, there is no known analogue of the index-calculus method for
elliptic curves. In what follows, we will see there are two types of curves where the group of points
carry additional structure which allows for a more efficient computation of the discrete logarithm.

MOV attack

The discrete logarithm problem on an elliptic curve can be reduced to the discrete logarithm problem
on the multiplicative group of some extension field of the finite field over which the curve is defined.
If the extension field is reasonably small, it could be more efficient to solve the discrete logarithm
problem there using the sub-exponential index-calculus method. The transportation of the discrete
logarithm problem is realized with the Weil pairing, and the degree of the required field extension is
the embedding degree. As a consequence, supersingular elliptic curves are especially vulnerable to this
attack (recall that supersingular curves have an embedding degree no larger than 6). This method is
due to Menezes, Okamoto and Vanstone and is usually referred to as the MOV attack [38]. It works
as follows.
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Let E/Fq be a supersingular elliptic curve and let P be a point of order n. Let ê : 〈P 〉 × 〈P 〉 → F∗qk

denote the modified Weil pairing, where k is the embedding degree. We can obtain the discrete
logarithm a of Q ∈ 〈P 〉 as follows. First compute ê(P,Q) = ê(P, aP ) = ê(P, P )a. The integer a
can then be found by calculating the discrete logarithm in F∗qk with respect to ê(P, P ). Note that
we are using the modified Weil pairing which makes use of a distortion map ensuring that ê(P, P ) 6= 1.

If E/Fq is not supersingular we have to use the unmodified Weil pairing e : E(Fqk)[n]×E(Fqk)[n]→ F∗qk .
As a consequence, e(P, P ) = 1 is not a generator of F∗qk . As an alternative, we need to find an
S ∈ E(Fqk)[n] such that e(Q,S) is a generator of F∗qk . A method to find such a point S is given in
[33], but for a random elliptic curve the embedding degree is too large for the MOV-attack to be useful.

It is also interesting to note that the existence of a bilinear map ê : G1 × G1 → GT implies that
DDH is easy in G1. Suppose we are given P, aP, bP,Q ∈ G1 where 〈P 〉 = G1. To solve DDH we need
to decide if Q = abP . In order to do so, we evaluate ê(aP, bP ) = ê(P, P )ab. If Q = abP then also
ê(P,Q) = ê(P, abP ) = ê(P,Q)ab. Thus, solving DDH is simply done by comparing the two pairing
evaluations ê(aP, bP ) and ê(P,Q). A group where CDH is hard but DDH is easy is known as a gap
Diffie-Hellman group and such a group allows for some interesting cryptographic protocols [42], one
of which we will be covered in a later chapter.

Anomalous attack

When an elliptic curve E/Fpm has a trace of Frobenius equal to 1 the number of points on the curve
equals pm. In this case the elliptic curve is said to be anomalous and there exists an efficient reduction
which enables an attacker to solve the discrete logarithm problem on E in polynomial time [49]. This
method works by transporting the discrete logarithm problem on E to the discrete logarithm problem
on the additive group of Fp, where the discrete logarithm problem can be solved in linear time. The
actual attack will not be described here, as it requires theory beyond the scope of this thesis.

GHS attack

This attack works for some elliptic curves defined over a finite field of characteristic two. It was shown
by Gaudry, Hess and Smart [25] that the elliptic curve discrete logarithm problem on an elliptic curve
E/F2n can be reduced to the discrete logarithm problem on an associated hyperelliptic curve C/F2m

where m < n (i.e. the associated hyperelliptic curve is defined over a smaller field). This is done
through a process known as the Weil descent. In some instances, where the genus of C is large enough,
there exists a sub-exponential algorithm to solve the discrete logarithm in C. This will be described
in the next section.

4.5 Hyperelliptic Curve Discrete Logarithm Problem

When elliptic curve groups were begun to be used in cryptography, a natural question that arose is
if it can be generalized to hyperelliptic curves. Koblitz proposed this in 1989 [36]. The discrete
logarithm problem on hyperelliptic curves is defined in the divisor class group of the curve.
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Definition 4.5. Let C/Fq be a hyperelliptic curve and let A1 ∈ Pic0
Fq

(C) and A2 ∈ 〈A1〉. The
hyperelliptic curve discrete logarithm problem (HCDLP) is the problem of finding the integer a such
that

A2 = aA1.

Recall that for a hyperelliptic curve C/Fq of genus g the following relation holds: |Pic0
Fq

(C)| ∼ qg. As
a consequence, the use of higher genus curves can be advantageous, because the complexity of the
generic attacks on the discrete logarithm problem is then O(

√
qg). In other words, the divisor class

group of a higher genus curve has a large group order, while arithmetic is kept in the relatively small
finite field. However, we shall see that the discrete logarithm problem on curves with genus > 4 is
vulnerable to a non-generic attack.

4.5.1 Attacks

Just as with the elliptic curve case, there are several attacks specifically tailored to operate in the
divisor class group of a hyperelliptic curve as well.

Frey-Rück attack

The Frey-Rück attack [44] is a generalization of the MOV attack on ECDLP. Instead of using the Weil
pairing we use the hyperelliptic Tate pairing to transport an instance of the discrete logarithm problem
in the divisor class group to an instance of the discrete logarithm problem in the multiplicative group
of the finite field over which the curve is defined. Again, solving the discrete logarithm problem in
the latter group is only feasible if the embedding degree of the curve is small enough.

Rück attack

The Rück attack [?] is a generalization of the anomalous attack on ECDLP. Let C/Fpn be a hyperelliptic
curve. If the divisor class group of C has a subgroup of order p, then the discrete logarithm problem
can be solved in this subgroup using at most O(log p) operations in Fpn . The actual attack will not
be described here, as it requires the theory beyond the scope of this thesis.

Index-Calculus

Contrary to elliptic curves, there is an analogue of the index-calculus attack for hyperelliptic curves
[4]. The effectiveness of this attack depends on the size of the genus compared to the size of the
finite field. A description of this attack will be omitted here, but it is important to note that it is
significantly faster than the square root methods on hyperelliptic curves of genus ≥ 4. For this reason,
only hyperelliptic curves of genus 2 and 3 should be used for cryptographic purposes.

4.6 Practical Considerations

In this section we will compare the security of elliptic and hyperelliptic curve cryptosystems with
the security of conventional cryptosystems when both are based on the discrete logarithm problem.
With conventional we mean the group of choice is the multiplicative group of a finite field, though it
also provides an indication of the security of other cryptosystems such as RSA, since the best known
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algorithms for integer factorization and the best known algorithms for computing discrete logarithms
in a finite field are of the same complexity.

From the theorem of Weil we know the divisor class group of an hyperelliptic curve C/Fq of genus
g has at most (

√
q + 1)2g elements. Using this upper bound the running time of the fastest discrete

logarithm methods is
O
(
(
√
q + 1)g

)
.

The running time of the index-calculus attack in a finite field Fp is [46]

O
(

exp(c(ln p)1/3(ln ln p)2/3)
)
.

Comparing these running times allows us to derive the size of the finite field to use in both situations
that yield the same level of security. Since the group elements are represented using finite field
elements, this also indicates the key size. For example, if we use a 1024-bit key in conventional
methods, we take p = 21024 and solve the equation for q and g = 1 to obtain a key size of 174 bits for
use in elliptic curve cryptography, and for g = 2 to obtain a key size of 80 bits for use in hyperelliptic
(genus 2) curve cryptography. A comparison of key sizes for genus 1, 2 and 3 curves needed to match
security levels for the corresponding key size used in conventional cryptography is listed in 4.1. These
numbers show that (hyper)elliptic curve based cryptography becomes relatively more advantageous
as the key size increases.

Table 4.1: Key Sizes (in bits)
Conventional Elliptic Curve Genus 2 Curve Genus 3 Curve
256 94 47 32
512 128 64 43
1024 174 87 58
2048 234 117 78
4096 313 157 105
8192 417 209 139
16384 554 277 185
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Chapter 5

Pairing-Based Cryptography

In this chapter we describe how pairings give rise to a plethora of mathematically hard problems which
can be used as the basis of a cryptographic scheme.

5.1 Abstract Pairings

It is possible to create cryptographic primitives based purely on the properties of an abstract pairing,
without thinking about the actual instantiations of the groups and the mapping. The advantage
of this is that one can focus solely on the cryptographic aspects of the systems and deal with the
mathematical implementation later. However, in doing so it is also easy to make invalid assumptions
about certain properties of pairings. Examples include: hashing onto the associated groups can be
done efficiently, elements of the groups can be represented efficiently or the group operation itself can
be implemented efficiently. This issue is discussed in [24]. In the first sections of this chapter we will
consider abstract pairings and the problems arising from them. In a later section we discuss suitable
choices of groups and pairings.

Let G1, G2, GT be cyclic groups of large prime order q. We write G1 and G2 additively and GT

multiplicatively. Recall that a pairing is a mapping

ê : G1 ×G2 → GT

satisfying the property of bilinearity, which means the following should hold:

ê(aP, bR) = ê(P,R)ab, for allP ∈ G1, Q ∈ G2 and all a, b ∈ Z

A pairing is admissible if the mapping is also non-degenerate and computable. Non-degeneracy means
the mapping cannot be the trivial map which sends every pair of elements of G1 and G2 to the identity
element of GT . Because all are groups of prime order, it follows that if P is a generator of G1 and
Q is a generator of G2, then e(P,Q) is a generator of GT . A mapping is said to be computable if an
algorithm exists which can efficiently compute ê(P,Q) for any P,Q ∈ G1. If G1 = G2 then the pairing
is said to be symmetric. Otherwise it is said to be asymmetric.
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5.2 Complexity Assumptions

From now on, let G1, G2 and GT be cyclic groups of prime order n, and ê : G1 ×G2 → GT a bilinear
pairing. We will always assume it is non-degenerate and efficiently computable.

5.2.1 Bilinear Diffie-Hellman

The bilinear version of the Diffie-Hellman problem comes in a variety of flavours [50].

Originally, the Bilinear Diffie-Hellman Problem (BDH) is defined in the setting of a symmetric pairing
of cyclic groups (i.e. G1 = G2). It is the problem of computing ê(P, P )abc when P, aP, bP, cP ∈ G1

are given. This problem is sometimes also referred to as the computational bilinear Diffie-Hellman
problem (CBDH).

Just as with the regular Diffie-Hellman Problem there is also an easier version, known as the de-
cision bilinear Diffie-Hellman problem (DBDH). This is the problem of deciding if ê(P, P )abc = r

when P, aP, bP, cP ∈ G1 and r ∈ GT are given. In a modified version the problem is to decide if
ê(P, P )ab/c = r instead.

These problems can be generalized to the setting of asymmetric pairings. Assume G1 6= G2 and let
G1 be generated by P1 and G2 be generated by P2. Given values i, j, k ∈ {1, 2}, the most general
version (BDHi,j,k) is defined as follows. Given P1, P2, aPi, bPj , cPk, compute ê(P1, P2)abc. Some articles
mention the BDH-1 and BDH-2 problems, which are equivalent to the BDH1,1,2 and the BDH1,2,2 problems,
respectively.

Some pairing based protocols require the existence of an efficiently computable group homomorphism
ϕ : G2 → G1 for the security proof to hold. The BDHϕi,j,k problem is defined the same as the BDHi,j,k
problem, except that the adversary now has access to an oracle which computes values under the
isomorphism ϕ.

Given j, k ∈ {1, 2}, the (bilinear) co-Diffie-Hellman Problem (coBDHj,k) is the problem of computing
e(P1, P2)abc when aP1, aP2, bPj and cPk are given.

The following reductions between these problems exist [50] (where A −→ B means: if there exists an
efficient algorithm to solve A, there exists an efficient algorithm to solve B):

• BDHi,j,k ←→ BDHi′,j′,k′ and BDHϕi,j,k ←→ BDHϕi′,j′,k′ if i+ j + k = i′ + j′ + k′.

• BDHϕi,j,k −→ BDHϕi′,j′,k′ if i+ j + k ≤ i′ + j′ + k′

• BDHi,j,k −→ BDHϕi,j,k

• BDHi,j,k ←− BDHϕi,j,k if ϕ exists and is efficiently computable

• BDHi,j,k −→ coBDHj,k −→ BDHϕ2,j,k

• CDH −→ BDHi,j,k for every i, j, k ∈ {1, 2}
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5.2.2 Gap Diffie-Hellman Groups

A gap Diffie-Hellman group is a group where the CDH problem is hard, but where the DDH problem
is easy [12]. Such a group can be used to construct a signature scheme (see the next chapter). It
is possible to realize a gap Diffie-Hellman group using a bilinear pairing. If ê : G1 × G1 → GT

is a bilinear pairing, then DDHG1 is easy. Indeed, let P, aP, bP, cP ∈ G1. Then due to bilinearity
ê(aP, bP ) = ê(cP, P ) ⇐⇒ ê(P, P )ab = ê(P, P )c ⇐⇒ ab = c. The CDH problem in G1 is still assumed
to be hard, making G1 a gap Diffie-Hellman group.

5.2.3 Pairing Inversion

The following can be found in [22]. It is important to investigate the hardness of the problem of
inverting a pairing, as this has consequences for the security of cryptosystems based on pairings, and
even on cryptosystems based on exponentiation in finite fields. In this section we describe some of
the consequences of being able to invert pairings.

The fixed argument pairing inversion 1 problem (FAPI-1) is the problem of finding a Q ∈ G1 such that
e(P,Q) = r when P ∈ G1 and r ∈ GT are given. Similarly, the fixed argument pairing inversion 2
problem (FAPI-2) is the problem of finding a P ∈ G1 such that e(P,Q) = r when Q ∈ G1 and r ∈ GT
are given. A pairing e is said to be strong-invertible with respect to P if we can efficiently solve FAPI-1
for any r ∈ GT , when P ∈ G1 is given. Similarly, e is said to be strong-invertible with respect to Q if
we can efficiently solve FAPI-2 for any r ∈ GT , when Q ∈ G2 is given.

The generalized pairing inversion problem (GPI) is the problem of finding P and Q ∈ G1 such that
e(P,Q) = r when r ∈ GT is given. A pairing e is said to be weak-invertible if we can efficiently solve
GPI for any r ∈ GT .

To see why it is important to investigate the difficulty of the pairing inversion problems, consider the
following reductions:

• FAPI-1 −→ GPI

• FAPI-2 −→ GPI

• FAPI-1 −→ DDHG1

• FAPI-2 −→ DDHG2

• FAPI-1 −→ BDH-1

• FAPI-2 −→ BDH-2

• FAPI-1 and FAPI-2 −→ CDHG1 and CDHG2 and CDHGT

Computing pairings is done in two stages. In the first stage a divisor is evaluated in a function
using Miller’s Algorithm. In the second stage the result is exponentiated. However, some pairings
can be computed without the exponentiation, and in this case the hardness of the pairing inversion
problem depends entirely on the hardness of inverting Miller’s algorithm. In these cases it is shown
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that inverting Miller’s algorithm is hard. On the other hand there are cases where inverting the
exponentiation is hard but where inverting Miller’s algorithm is easy (see [22]). In other words, it
seems that inverting pairings in two stages is infeasible. It is also shown in [22] that methods inverting
a pairing in a single step are infeasible. Thus, so far pairing based protocols seem to be secure.

5.3 Choosing groups and mappings

When a cryptographic protocol requires a symmetric pairing, one should choose a supersingular curve
with distortion map. In [10] an example of such a curve and distortion map is given. The curve
E : y2 = x3 + 1 with p ≡ 2 (mod 3) is a supersingular curve. To obtain a distortion map, let
1 6= ζ ∈ Fp2 be a solution of x3 − 1 = 0 ∈ Fp2 . The distortion map ϕ : E → E is the mapping
(x, y) 7→ (ζx, y). It takes a point P ∈ E(Fp) to a point ϕ(P ) ∈ E(Fp2) such that P and ϕ(P ) are
linearly independent. The modified Weil or Tate pairing as described in chapter 3 can be used as a
symmetric pairing.

On the other hand, when a cryptographic protocol requires an asymmetric pairing, then one should
choose an ordinary curve. There exist several methods of constructing ordinary curves with prescribed
embedding degree. These methods are summarized in [19].
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Chapter 6

Pairing-Based Protocols

In this chapter we describe some of the more important cryptographic protocols based on bilinear pair-
ings. In the first section we describe a protocol by Joux which allows three parties to share a secret
key in one round. In the second section we focus on identity based encryption, which is probably the
most well known application of pairings. In the last section we describe two short signature schemes
based on pairings. This is however just a tiny selection of the available pairing based cryptographic
protocols. Pairings have proven to be applicable far beyond fundamental cryptographic primitives
such as encryption and signatures.

6.1 Three-Party Key Exchange

The Diffie-Hellman Key Exchange protocol can be extended to three parties, but this would require
multiple rounds. Joux [32] described a protocol based using a bilinear pairing where only one round
is needed to establish a secret key between three parties. The protocol assumes all parties agreed
in advance on two groups G1 and GT , an element P ∈ G1 and a bilinear map e : G1 × G1 → GT .
Assuming the hardness of the Bilinear Diffie-Hellman problem in these groups, key agreement is done
using the following steps:

1. Alice generates a random positive integer a. The information she broadcasts is:

aP.

2. Now Bob also generates a random positive integer b. The information he broadcasts is:

bP

3. And finally, Carol generates a random positive integer c. The information she broadcasts is:

cP

After these steps everyone can compute e(P, P )abc, because by bilinearity we have

e(P, P )abc = e(aP, bP )c = e(bP, cP )a = e(aP, cP )b
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This shared secret e(P, P )abc cannot be recovered without solving BDH, because any eavesdropper
watching the insecure channel only has the following information, which is an instance of BDH:

G1, GT , e, P, aP, bP and cP

6.2 Identity Based Encryption

6.2.1 Introduction

Identity-based encryption (IBE) is probably the most celebrated application of pairings in cryptogra-
phy. In 1984 Shamir [47] envisioned a cryptographic scheme in which the public key is the identity of
the user (e.g. his e-mail address) instead of some random generated number. Any string can be used
as the public key, as long as it undeniably identifies the user. The obvious advantage of this is that it
eliminates the need for users to look up public keys in a directory and the use of certificates binding the
public key to an identity. Since the public key cannot be generated, it follows that the corresponding
private key needs to be derived from the public key. Because of this property there is a need for a
trusted third party that extracts private keys using another secret which nobody else knows. This
third party is known as the key generation center. Users can obtain the private key corresponding to
their identity from the key generation center over a secure channel, once the authenticity of the user
is established.

Even though the concept of IBE is now over two decades old, the first working implementation was
not realized until 2001, by Boneh and Franklin [10]. Since it is based on pairings and single-handedly
responsible for the sudden enormous rise of interest in pairings in cryptography, we will be focusing
on this system in this section.

Definition 6.1. Formally, an identity based encryption scheme IBE is specified by four randomized
algorithms (S,X , E ,D) [1]:

• S (setup). This algorithm takes a security multiplier k as input and returns params (the mathe-
matical objects used in encryption, decryption and key extraction including the message space
M and the ciphertext space C) and master-key (which will be used by the key generation center
to extract private keys). The system parameters are public as they are required for encryption,
and the master key is only known to the key generation center.

Notation: 〈params,master-key〉 ← S(1k).

• X (extract). This algorithm takes an identity ID ∈ {0, 1}∗, params and master-key as input. It
returns the corresponding private key dID.

Notation: dID ← X (params,master-key, ID).

• E (encrypt). This algorithm takes as input a message M ∈ M, an identity ID ∈ {0, 1}∗ and
params. It returns the ciphertext C ∈ C which is the encryption of M with the public key ID.

Notation: C ← E(params, ID,M).
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• D (decrypt). This algorithm takes as input a ciphertext C ∈ C, a private key dID (which belongs
to an identity ID ∈ {0, 1}∗) and params. It returns the plaintext M ∈M which is the decryption
of C with the private key dID.

Notation: M ← D(params, dID, C).

We also require the scheme to be consistent [1]:

∀M ∈M : D(params, dID, E(params, ID,M)) = M ⇐⇒ dID = X (params,master-key, ID).

Applications of identity based encryption

As noted in [10], one advantage of identity based encryption over classical public key cryptography
is that key revocation is much easier. For example, if daily key expiration is desired the system could
be setup in such a way that identities are padded with the current date (i.e. Alice sends an encrypted
message to Bob using the public key “bob@company.com — [current-date]”). The private key gener-
ator would then only allow Bob on that specific date to extract the corresponding private key. This
would also allow Alice to send a message to Bob he can only open on a future date, possibly before
he even joined the network. In a traditional public key infrastructure this would be impossible since
the public and private key are generated simultaneously.

The same mechanism can be used to easily manage user credentials in a corporate setting. If Alice
sends a message encrypted using the public key “bob@company.com — [date] — clearance=secret”,
then Bob would only be able to decrypt the message if he has the required security clearance on the
specified date. The credentials can be easily granted and revoked by the private key generator.

Another interesting application of IBE noted in [10] is delegation of decryption keys. In this appli-
cation the setting is a bit different. Suppose Bob runs his own IBE infrastructure and controls the
private key generation center. Instead of using Bob’s identity as a public key, Alice now uses the
current date as a public key when sending an encrypted message. Since Bob runs the private key
generator he can extract the private key needed to decrypt messages encrypted by any public key. If
Bob goes on a trip and takes his laptop, he can extract the private key for every day on the trip and
install these on his laptop instead of the master key. If the laptop is then stolen, only the keys usable
for the duration of the trip are compromised.

6.2.2 Security models

The security proofs of the cryptographic schemes that are covered in this chapter make use of several
different notions of security. In this section we will describe the security notions common in public
key cryptography, and show how they can be adapted to suit identity based encryption.

Notions of security in public key cryptography

In defining notions of security [2] it is useful to distinguish between security goals and attack models.
The security goal we will consider is indistinguishability of encryptions (IND), which intuitively means
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an adversary should not be able to retrieve any information about a plaintext M when he is given the
corresponding ciphertext C. The attack models we will consider are:

1. Chosen-plaintext attack (CPA). In this attack model the adversary can encrypt arbitrary plain-
texts at will.

2. Chosen-ciphertext attack (CCA1). In this attack model the adversary not only is able to encrypt
arbitrary plaintexts at will, he also gets access to a decryption oracle allowing him to obtain the
decryption of any ciphertext, but only before being given the challenge ciphertext.

3. Adaptive chosen-ciphertext attack (CCA2). In this attack model the adversary is again able
to encrypt plaintexts and is given access to a decryption oracle, but in this attack model the
adversary has access to the oracle even after being challenged on the ciphertext.

These security notions can be formally defined with a game simulating an attack against a public
key encryption scheme. We will not give the definitions here, but instead intuitively describe how to
extend these notions to the setting of identity based encryption and formally define those.

Notions of security in identity based encryption

The security goals in identity based encryption remain the same. However, to keep security as tight as
possible, in the attack models we will in addition allow the adversary access to a key extraction oracle
which returns the private key corresponding to any identity. Also, the adversary is challenged on an
identity of his choice, as opposed to some randomly generated public key. Obviously, the identity he
wishes to be challenged on may not have been used in any key extraction oracle query. Similar to
public key cryptography, IND-ID-CCA2 is the strongest and most desirable notion of security. This is
justified in [1].

Definition 6.2. We can define IND-ID-CCA2 formally using the following game between a challenger
and an adversary which is used to simulate an attack against a scheme IBE, which is a straightforward
extension of the formal definition for IND-CCA2.

• Setup. The challenger runs S(1k) for a given security multiplier k, gives the adversary params

and keeps master-key to itself.

• Phase 1. The adversary is allowed to do decryption and key extraction queries. In a key
extraction query the adversary sends the challenger a public key IDi. The challenger computes
dIDi ← X (params,master-key, IDi) and sends it to the adversary. In a decryption query the
adversary sends the challenger a public key IDi and a ciphertext Ci. The challenger first computes
dIDi ← X (params,master-key, IDi) and then Mi ← D(params, dIDi , Ci), which is sent to the
adversary. The adversary does not have to commit to the list of queries in advance; each query
can depend on the result of former queries. The adversary decides when phase 1 is over.

• Challenge. The adversary picks a public key ID and two messages M0,M1 ∈ M on which
he wants to be challenged. The public key may not have appeared in one of the key ex-
traction queries of phase 1. The challenger picks a random bit b ∈ {0, 1} and obtains C ←
E(params, ID,Mb). C is sent to the adversary.

49



• Phase 2. The same as Phase 1, but in the key extraction queries ID is not allowed and in the
decryption queries ID and C are not allowed simultaneously. The adversary decides when phase
2 is over.

• Guess. The adversary outputs his guess b′ ∈ {0, 1} and wins the game if b = b′.

If an adversary A takes pure random guesses then Pr[b = b′] = 1
2 . Thus, the advantage of A in

attacking the scheme is defined as:

AdvA(k) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
where the probability is over the random bits used by both the challenger and the adversary.

A function ε : N→ R is said to be negligible if:

∀c ≥ 0 ∃kc ∈ N ∀k ≥ kc : ε(k) ≤ k−c.

We consider IBE to be secure in the sense of IND-ID-CCA2 if AdvA is negligible as a function of k for
every polynomially bounded adversary A.

Definition 6.3. IND-ID-CPA is defined using a similar game. This time the adversary does not have
access to a decryption oracle in phase 1 and phase 2.

• Setup. The challenger runs S(1k) for a given security multiplier k, gives the adversary params

and keeps master-key to itself.

• Phase 1. The adversary is allowed to do key extraction queries. In a key extraction query the ad-
versary sends the challenger a public key IDi. The challenger computes dIDi ← X (params,master-key, IDi)
and sends it to the adversary. The adversary does not have to commit to the list of queries in
advance; each query can depend on the result of former queries. The adversary decides when
phase 1 is over.

• Challenge. The adversary picks a public key ID and two messages M0,M1 ∈ M on which
he wants to be challenged. The public key may not have appeared in one of the key ex-
traction queries of phase 1. The challenger picks a random bit b ∈ {0, 1} and obtains C ←
E(params, ID,Mb). C is sent to the adversary.

• Phase 2. The same as Phase 1, but in the key extraction queries ID is not allowed. The
adversary decides when phase 2 is over.

• Guess. The adversary outputs his guess b′ ∈ {0, 1} and wins the game if b = b′.

Again, the advantage of A in attacking the scheme is defined as:

AdvA(k) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
where the probability is over the random bits used by both the challenger and the adversary.

We consider IBE to be secure in the sense of IND-ID-CPA if AdvA is negligible as a function of k for
every polynomially bounded adversary A. This is also known as semantic security.
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Complexity assumptions

As with any cryptographic scheme, the security of identity based encryption systems depends on the
hardness of certain mathematical problems. One of the problems very often associated with pairing
based protocols is the BDH problem, which was discussed in the previous chapter. However, we still
have to define precisely what it means when we assume BDH is “hard”. We use the following definitions,
as given in [10].

Definition 6.4. An algorithm A is said to have advantage ε in solving BDH in 〈G1, GT , ê〉 if

Pr
[
A(P, aP, bP, cP ) = ê(P, P )abc

∣∣∣ a, b, c← (Z/qZ)∗, P ← G∗1

]
≥ ε.

The notation x← X means that x is randomly sampled from a probability distribution X. If X is a
finite set then x is sampled uniformly at random from X.

If no polynomially bounded algorithm has non-negligible advantage in solving BDH in 〈G1, GT , ê〉 then
we say BDH is hard in 〈G1, GT , ê〉. For the asymptotic formulation we require an algorithm that
generates the groups.

Definition 6.5. A bilinear group generator is a randomized algorithm with the following properties:

1. It takes a security parameter k ∈ Z+.

2. It runs in polynomial time in k.

3. It outputs a prime number q, the description of three groups G1, G2, GT of order q and the
description of an admissible bilinear map ê : G1 ×G2 → GT .

The description of the groups G1, G2 and GT should include generators P1, P2 and g respectively,
and a polynomial time (in k) algorithm to compute the group action. The size of the groups should
depend on the size of k (i.e. q should be a random prime of k bits). The description of the bilinear
map ê should include a polynomial time algorithm to compute ê. If G is a bilinear group generator,
then we denote the output of G by G(1k) = 〈q,G1, G2, GT , ê〉.

Definition 6.6. Assuming the existence of a bilinear group generator G, we can formalize the as-
sumption of the hardness of BDH. The advantage of an algorithm A in solving BDH for G is defined as
follows:

AdvBDH

G,A(k) = Pr

[
A(q,G1, G2, GT , ê, P, aP, bP, cP ) = ê(P, P )abc

∣∣∣∣∣ 〈q,G1, G2, GT , ê〉 ← G(1k),
P ← G∗1, a, b, c← (Z/qZ)∗

]

However, it is usually said an algorithm has advantage ε(k) in solving BDH for G if AdvBDH

G,A(k) ≥ ε(k). If
for any randomized polynomial time (in k) algorithm A we have that AdvBDH

G,A is a negligible function,
then G is said to satisfy the BDH-assumption and BDH is said to be hard in groups generated by G.

Similarly, we can define the BDHi,j,k assumption.
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Random oracles

The identity based encryption scheme we will be focusing on uses random oracles as hash functions.
A random oracle is a function which maps inputs to truly uniformly chosen outputs, but always maps
the same input to the same output every time it is invoked. Random oracles are very often used
to represent an ideal hash function H : {0, 1}∗ → {0, 1}k, where {0, 1}∗ is the space of finite binary
strings. Of course, random oracles do not really exist in practice, but they can be very useful in secu-
rity proofs of cryptographic schemes. The idea is to design a cryptosystem which uses random oracles
for hash functions, prove its security and then replace the random oracles with real hash functions.
Obviously, the proof of security does not hold formally for the system with real hash functions, but the
instantiation of the oracle by a real hash function should merely be a heuristic, trusted to be secure
based on experience with the actual hash function used, because breaking the protocol is then thought
to reveal previously unknown flaws of these well studied hash functions. When a cryptographic system
using random oracles is proven to be secure in this sense it is said to be secure in the random oracle
model. This paradigm is developed by Bellare and Rogaway [3] and has led to the design of several
protocols that are both efficient and provably secure.

Even though the random oracle methodology seems to be very useful by allowing the designer to
focus on the structure of the protocol without having to get lost in details, it seems it also allows the
designer to arrive at wrong conclusions regarding the security of the protocol. In [14] it is shown
there exist cryptographic systems that are secure in the random oracle model but fail to have any real
secure implementation at all. In fact, they show that any protocol secure in the random oracle model
can be slightly adapted to have no secure implementation at all, while retaining the level of security
in the random oracle model. They arrive at the conclusion that the random oracle methodology is
not a sound method of abstracting protocols for use in security analysis. For this reason the authors
of the first identity based encryption scheme encouraged the search for a scheme which can be proven
to be secure without random oracles.

6.2.3 The Boneh-Franklin identity based encryption scheme

The first fully functional identity-based encryption scheme was given by Boneh and Franklin [10]. In
this section we will describe this system. In the original paper the authors construct the system in
stages. They first describe a simpler version of the scheme, BasicIdent, which is secure against chosen
plaintext attacks in the random oracle model. The system is then transformed using a technique of
Fujisaki and Okamoto [20] to a system FullIdent which is shown to be secure against adaptive chosen
ciphertext attacks in the random oracle model, assuming the hardness of BDH in the groups and pairing
involved.

Definition

The BasicIdent scheme is defined by the following algorithms:

S (setup). Let k be the desired security parameter.
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- Generate two cyclic groups G1 and GT of prime order q and a pairing ê : G1 ×G1 → GT . The
size of these groups should depend on the security parameter k. In addition, pick a random
generator P ∈ G1, a random element s ∈ (Z/qZ)∗ and let Ppub = sP .

- Pick cryptographic hash functions H1 : {0, 1}∗ → G∗1 and H2 : GT → {0, 1}n for some n ∈ Z.
For the security proof to work, these hash functions need to be random oracles.

- Let params = 〈q,G1, GT , ê, n, P, Ppub, H1, H2〉 and master-key = s. The message space is M =
{0, 1}n and the ciphertext space is C = G∗1 × {0, 1}n.

- Return 〈params,master-key〉.

X (extract). Let ID ∈ {0, 1}∗ be the public key to extract the corresponding private key from and let
s be master-key.

- Compute QID = H1(ID) and dID = sQID ∈ G∗1.

- Return dID.

E (encrypt). Let ID ∈ {0, 1}∗ be the public key to use for encryption and let M ∈M be the plaintext
to encrypt.

- Compute QID = H1(ID).

- Pick a random r ∈ (Z/qZ)∗.

- Compute gID = ê(QID, Ppub) ∈ GT .

- Compute C = 〈rP,M ⊕H2(grID)〉.

- Return C.

D (decrypt). Let C = 〈U, V 〉 ∈ C be encrypted with public key ID and let dID be the corresponding
private key.

- Compute V ⊕H2(ê(dID, U))) = M .

- Return M .

The key element here is that both the sender and receiver are able to compute ê(QID, P )rs, which is
used to mask the plaintext. The sender knows sP and generates r so he can compute ê(QID, rsP ) =
ê(QID, P )rs. The receiver on the other hand knows sQID and rP so he is able to compute ê(sQID, rP ) =
ê(QID, P )rs. Since QID = tP for some t ∈ (Z/qZ)∗ it follows that anyone who is able to recover the
plaintext can compute ê(P, P )rst from P, rP, sP and tP , which is equivalent to solving an instance of
the BDH problem.

The hash function H1 is used to generate QID = tP , where t should be a secret, so it follows that it
should be possible to hash onto G1. This means it should be possible to take a random element from
G1 without having computed the discrete logarithm of this element with respect to P .

Theorem 6.1. BasicIdent is consistent.

Proof. Let ID ∈ {0, 1}∗, M ∈ M be a message, dID = X (params, s, ID) = sQID a private key and
〈U, V 〉 = E(params, ID,M) the encryption of M . Then

U = rP and V = M ⊕H2(ê(QID, Ppub)r) = M ⊕H2(ê(QID, sP )r
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Consequently,

D(params, dID, 〈U, V 〉) = V ⊕H2

(
ê(dID, U)

)
= M ⊕H2

(
ê(QID, sP )r

)
⊕H2

(
ê(sQID, rP )

)
= M.

Using a technique due to Fujisaki-Okamoto [20], BasicIdent is transformed into a system with a
stronger level of security. This system, named FullIdent, is described by the following algorithms:

S (setup). Let k be the desired security parameter.

- Generate two cyclic groups G1 and GT of prime order q and a pairing ê : G1 ×G1 → GT . The
size of these groups should depend on the security parameter k. In addition, pick a random
generator P ∈ G1, a random element s ∈ (Z/qZ)∗ and let Ppub = sP .

- Pick cryptographic hash functions H1 : {0, 1}∗ → G∗1, H2 : GT → {0, 1}n for some n ∈ Z,
H3 : {0, 1}n × {0, 1}n → (Z/qZ)∗ and H4 : {0, 1}n → {0, 1}n. For the security proof to work,
these hash functions need to be random oracles.

- Let params = 〈q,G1, GT , ê, n, P, Ppub, H1, H2, H3, H4〉 and master-key = s. The message space is
M = {0, 1}n and the ciphertext space is C = G∗1 × {0, 1}n × {0, 1}n.

- Return 〈params,master-key〉.

X (extract). Let ID ∈ {0, 1}∗ be the public key to extract the corresponding private key from and let
s be master-key.

- Compute QID = H1(ID) and dID = sQID ∈ G∗1.

- Return dID.

E (encrypt). Let ID ∈ {0, 1}∗ be the public key to use for encryption and let M ∈M be the plaintext
to encrypt.

- Compute QID = H1(ID).

- Pick a random σ ∈M and let r = H3(σ,M).

- Compute gID = ê(QID, Ppub) ∈ GT .

- Compute C = 〈rP, σ ⊕H2(grID),M ⊕H4(σ)〉.

- Return C.

D (decrypt). Let C = 〈U, V,W 〉 ∈ C be encrypted with public key ID and let dID be the corresponding
private key.

- Reject the ciphertext if P /∈ G∗1.

- Compute V ⊕H2(ê(dID, U)) = σ ⊕H2(grID)⊕H2(ê(dID, rP )) = σ.

- Compute W ⊕H4(σ) = M .

- Let r = H3(σ,M). If U 6= rP then the ciphertext is forged and should be rejected, otherwise M
is the decryption of C.
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- Return M .

The encryption is similar to the encryption in BasicIdent. Instead of using the pairing computation
grID to generate a bit string that masks the plaintext, the pairing computation is used in the same way
to mask another random bit string σ, which is in turn used to mask the plaintext. This construction
allows the system to verify if any given ciphertext is really the result of applying the encryption al-
gorithm to a bit string. Forged ciphertexts are thus rejected, preventing an adversary to learn any
information about the plaintext he could obtain by creating slightly modified versions of a ciphertext
(i.e. by flipping small amounts of bits) and examining the resulting decryptions. (In essence, this is
what makes FullIdent secure against adaptive chosen ciphertext attacks.)

Theorem 6.2. FullIdent is consistent.

Proof. Let ID ∈ {0, 1}∗, M ∈ M be a message, dID = X (params, s, ID) = sQID a private key and
〈U, V 〉 = E(params, ID,M) the encryption of M . Then

U = rP, V = σ ⊕H2

(
ê(QID, Ppub)r

)
, and W = M ⊕H4(σ)

Consequently,

D(params, dID, 〈U, V,W 〉) = W ⊕H4

(
V ⊕H2

(
ê(dID, U)

))
= M ⊕H4(σ)⊕H4

(
σ ⊕H2

(
ê(QID, Ppub)r

)
⊕H2

(
ê(dID, U)

))
= M ⊕H4(σ)⊕H4

(
σ ⊕H2

(
ê(QID, sP )r

)
⊕H2

(
ê(sQID, rP )

))
= M ⊕H4(σ)⊕H4(σ)
= M.

Security

The BasicIdent scheme is proven secure in the random oracle model against IND-ID-CPA attacks
(assuming the hardness of BDH) using the following theorem. Due to its length the proof is not
included here.

Theorem 6.3 (4.1 in [10]). Suppose the hash functions H1 and H2 are random oracles. Then
BasicIdent is a semantically secure identity based encryption scheme ( IND-ID-CPA) assuming BDH is
hard in groups G1, GT with bilinear pairing ê. Concretely, suppose there is a polynomially bounded
IND-ID-CPA adversary A that has non-negligible advantage ε(k) against the scheme BasicIdent. Then
there is an algorithm B that runs in polynomial time and solves BDH in groups G1 and GT with bilinear
pairing ê with non-negligible advantage.

Intuitively, efficiently attacking BasicIdent allows one to efficiently solve BDH which contradicts the
BDH hardness assumption. In the proof in [10] the efficiency of the security reduction is as follows.
Suppose the advantage of A against FullIdent is ε. If A makes at most qE > 0 private key extraction
queries and qH2 > 0 hash queries to H2, then the advantage of B is at least 2ε(k)

e(1+qE)·qH2
, where e is

the base of the natural logarithm. The running time of B is O(time(A)).

The FullIdent scheme is proven secure in the random oracle model against IND-ID-CCA2 attacks (as-
suming the hardness of BDH) using the following theorem. Again, the proof is omitted here.
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Theorem 6.4 (4.4 in [10]). Let the hash functions H1, H2, H3 and H4 be random oracles. Then
FullIdent is IND-ID-CCA2-secure assuming BDH is hard in groups G1, GT with bilinear pairing ê. Con-
cretely, suppose there is a polynomially bounded IND-ID-CCA2 adversary A that has non-negligible
advantage against the scheme FullIdent. Then there is an algorithm B that runs in polynomial time
and solves BDH in groups G1 and GT with bilinear pairing ê with non-negligible advantage.

Again, intuitively this means efficiently attacking FullIdent allows one to efficiently solve BDH which
contradicts the BDH hardness assumption. The efficiency of the security reduction is as follows. Suppose
the advantage of A against FullIdent is ε. If A makes at most qE > 0 private key extraction queries,
at most qD decryption queries and at most qH2 , qH3 , qH4 hash queries to H2, H3, H4 repsectively, then
the advantage of B is at least

2FOadv

(
ε(k)

e(1 + qE + qD)
, qH4 , qH3 , qD

)
/qH2

and the running time of B is at most

FOtime(t(k), qH4 , qH3),

where
FOadv(ε(k), qH4 , qH3 , qD) =

1
2qH4 + qH3)

[(ε(k) + 1)(1− 2/q)qD − 1]

and
FOtime(t(k), qH4 , qH3) = t(k) +O((qH4 + qH3) · n),

where q is the order of the groups G1 and GT and n is the length of σ.

Generalization

The FullIdent scheme can further modified to allow the more general setting of asymmetric pairings.
This allows for a greater variety of curves and we can use. We follow the construction as given in
[50]. First we have to fix four variables i, j, k, l ∈ {1, 2} that decide for certain elements if they are to
be chosen from G1 or G2. These variables redefine the following sections in the protocol:

(i) The generator P ∈ G1 is replaced with generators P1 ∈ G1 and P2 ∈ G2, and now the public
parameter is chosen to be Ppub = sPi ∈ Gi.

(j) The cryptographic hash function H1 : {0, 1}∗ → G1 becomes a function H1 : {0, 1}∗ → Gj .

(k) The first element of the ciphertext tuple rP ∈ G1 becomes rPk ∈ Gk.

(l) The private key dID ∈ G∗1 is now chosen such that dID = sQID ∈ Gl or dID = φ(sQID) ∈ Gl.

There are certain restrictions on the actual choice of i, j, k and l. For instance, since QID ∈ Gj and
Ppub ∈ Gi we generally need to have i 6= j, because the encryption requires a pairing computation
of Ppub and QID. However, if φ is efficiently computable, then the pairing of φ(Ppub) and QID or the
pairing of φ(QID) and Ppub could be used instead, also allowing the choice of i = j = 2. Similarly, the
decryption requires a pairing computation of rPk and dID, so we generally require k 6= l. If φ is effi-
ciently computable we can use the pairing of φ(rPk) and dID or the pairing of φ(dID) and rPk instead,
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in which case the choice of k = l = 2 is also allowed. Also note that if j = 1, then dID = sQID ∈ Gj
and thus l = 1. If j = 2, then generally l = 2, unless φ is efficiently computable, in which case
dID = φ(sQID) ∈ G1 (i.e. l = 1) is also allowed. Finally, in the security proof (Lemmas 4.2 and 4.6
in [10]) the random oracle H1 is simulated by computing Qt = btPj and dt = btPpub = btsPj , while
one of the equalities dt = sQt or dt = φ(sQt) should also hold. This means i = j or if φ is efficiently
computable i = 2 and j = 1.

Accounting for these restrictions, we can see that if φ is not efficiently computable, then (i, j, k, l) has
to be (2, 1, 2, 1). If φ is efficiently computable then (i, j, k, l) can be selected from

(2, 2, 2, 2), (2, 2, 2, 1), (2, 1, 2, 1), and (2, 2, 1, 2).

In the previous chapter we concluded that BDHφi,j,k is harder than BDHφi′,j′,k′ if i+ j + k ≤ i′ + j′ + k′,
so it is best to choose (2, 1, 2, 1) or (2, 2, 1, 2). This results in the following full description of the scheme:

S (setup). Let k be the desired security parameter.

- Generate three cyclic groups G1, G2 and GT of prime order q and a pairing ê : G1 ×G2 → GT .
The size of these groups should depend on the security parameter k. In addition, pick a random
generator P2 ∈ G2, a random element s ∈ (Z/qZ)∗ and let Ppub = sP2.

- Pick cryptographic hash functions H1 : {0, 1}∗ → G∗j , H2 : GT → {0, 1}n for some n ∈ Z,
H3 : {0, 1}n × {0, 1}n → (Z/qZ)∗ and H4 : {0, 1}n → {0, 1}n. For the security proof to work,
these hash functions need to be random oracles.

- Let params = 〈q,G1, G2, GT , ê, n, P2, Ppub, H1, H2, H3, H4〉 and master-key = s. The message
space is M = {0, 1}n and the ciphertext space is C = G∗k × {0, 1}n × {0, 1}n.

- Return 〈params,master-key〉.

X (extract). Let ID ∈ {0, 1}∗ be the public key to extract the corresponding private key from and let
s be master-key.

- Compute QID = H1(ID)

- Compute dID = sQID ∈ G∗j
- Return dID.

E (encrypt). Let ID ∈ {0, 1}∗ be the public key to use for encryption and let M ∈M be the plaintext
to encrypt.

- Compute QID = H1(ID).

- Pick a random σ ∈M and let r = H3(σ,M).

- Do one of the following:

1. Compute gID = ê(QID, Ppub) ∈ GT , if j = 1.

2. Compute gID = ê(φ(Ppub), QID) ∈ GT , if j = 2.

- Compute C = 〈rPk, σ ⊕H2(grID),M ⊕H4(σ)〉.

- Return C.
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D (decrypt). Let C = 〈U, V,W 〉 ∈ C be encrypted with public key ID and let dID be the corresponding
private key.

- Reject the ciphertext if P2 /∈ G∗2.

- Do one of the following:

1. Compute V ⊕H2(ê(dID, U)) = σ, if j = 1.

2. Compute V ⊕H2(ê(U, dID)) = σ, if j = 2.

- Compute W ⊕H4(σ) = M .

- Let r = H3(σ,M). If U 6= rP then the ciphertext is forged and should be rejected, otherwise M
is the decryption of C.

- Return M .

If φ is not efficiently computable then the security reduces to the BDHφ2,1,2 problem or the coBDH1,2

problem, which is a somewhat weaker result. If φ is efficiently computable, then the security reduces
to the BDHφ2,1,2 problem or the BDHφ2,2,1 the problem, but since φ is not just given as an oracle to the
adversary but is now actually computable, these are equal to the BDH2,1,2 problem and the BDH2,2,1

problem, respectively.

6.2.4 Other identity based encryption schemes

Following the Boneh-Franklin scheme, lots of other identity based encryption have been proposed.
Some try to improve on the level of efficiency or security, others try to adapt special types of public
key cryptosystems (e.g. hierarchical schemes, fuzzy schemes, etc.) to the setting of identity based
encryption. In this section we give a short overview of some important systems that have been
developed. For the actual construction and security proof of the systems we refer to their respective
articles.

Identity based encryption without random oracles

Because the random oracle model is quite controversial, an important open problem after the con-
struction of the Boneh-Franklin scheme was to develop an identity based encryption scheme which is
provably secure in the standard model. As a first step towards this goal, Canetti et al. [13] create
an identity based encryption scheme which is provably secure without random oracles, although in
a slightly weaker security model. In this weakened model, known as selective identity security, an
adversary needs to commit to the identity he wishes to attack in advance. In the standard identity
based model, the adversary is allowed to adaptively choose his target identity. The security of the
scheme depends on the hardness of the DBDH problem and the construction is quite inefficient.

As an improvement, Boneh and Boyen [6] created two efficient identity based encryption schemes,
both provably secure in the selective-identity model and also without resorting to random oracle
methodology. The first system can be extended to an efficient hierarchical identity based encryption
system (see next section) and its security is based on the DBDH problem. The second system is more
efficient, but its security reduces to the non-standard DBDHI problem.
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A later construction due to Boneh and Boyen [7] is proven fully secure without random oracles. Its
security reduces to the DBDH problem. However, the scheme is impractical and was merely given as a
theoretical construct to prove that there indeed exist fully secure identity based encryption schemes
without having to resort to random oracles.

Finally, Waters [51] improves on this result and constructs a modification of the scheme which is
efficient and fully secure without random oracles. Its security also reduces to the DBDH problem.

Hierarchical identity based encryption

The concept of hierarchical identity based encryption was first introduced by Horwitz and Lynn [30].
In traditional public key infrastructures there is a root certificate authority, and possibly a hierarchy
of other certificate authorities. The root authority can issue certificates to authorities on a lower level
and the lower level certificate authorities can issue certificates to users. To reduce workload, a similar
setup could be useful in the setting of identity based encryption. In identity based encryption the
trusted party is the private key generator. A natural way to extend this to a two-level hierarchical
based encryption is to have a root private key generator and domain private key generators. Users
would then be associated with their own primitive identity plus the identity of their respective domain,
both arbitrary strings. Users can obtain their private key from a domain private key generator, which
in turn obtains its private key from the root private key generator. More levels can be added to the
hierarchy by adding subdomains, subsubdomains, etcetera.

The first hierarchical identity based encryption scheme with an arbitrary number of levels is given by
Gentry and Silverberg [26]. It is an extension of the Boneh-Franklin scheme and its security depends
on the hardness of the BDH problem. It also uses random oracles.

Boneh and Boyen managed to construct a hierarchical based encryption scheme without random or-
acles based on the BDH problem, but it is secure in the weaker selective-ID model [6].

In the aforementioned constructions, the time needed for encryption and decryption grows linearly in
the hierarchy depth, thus becoming less efficient at complex hierarchies. In [9], Boneh, Boyen and
Goh give a hierarchical identity based encryption system in which the decryption time is the same
at every hierarchy depth. It is selective-ID secure without random oracles and based on the BDHE

problem.

Fuzzy identity based encryption

In [45], Sahai and Waters give a fuzzy identity based encryption system. In fuzzy identity based
encryption, identities are viewed as a set of descriptive attributes, instead of a string of characters.
The idea is that private keys can decrypt messages encrypted with the public key ω, but also messages
encrypted with the public key ω′ if d(ω, ω′) < ε for a certain metric d and a fault tolerance value ε.
One valuable application of fuzzy identity based encryption is the use of biometric identities. Since
two measurements of the same biometric (e.g. an iris scan) will never be exactly the same, a certain
amount of error tolerance is required when using such measurements as keys. The security of the
Sahai-Waters scheme reduces to the modified DBDH problem.
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Identity based encryption schemes without pairings

Another identity based encryption scheme that was published around the same time as the Boneh-
Franklin scheme (but turned out to be invented several years earlier) is due to Cocks. The security of
the system is based on the quadratic residuosity problem modulo a composite N = pq where p, q ∈ Z
are prime [17]. Unfortunately, this system produces very large ciphertexts compared to the pairing
based systems and thus is not very efficient.

Recently, Boneh et. al. constructed another identity based encryption system that is not based on
pairings [11]. It is related to the Cocks system since the security of it is also based on the quadratic
residuosity problem. The system is space efficient but encryptions are slow. It is proven secure in the
random oracle model.

6.3 Short Signatures

6.3.1 Introduction

Digital signatures are used to authenticate messages in an electronic environment. The concept was
first described in 1976 by Diffie and Hellman [18]. Since then, several practical signature schemes have
been proposed, but RSA and DSA are the most frequently used schemes today. Both RSA and DSA
generate relatively long signatures. In low-bandwidth communication environments, the signatures
should be as short as possible. For example, a signature printed on a postage stamp or a signature
communicated over the telephone cannot be as long as 320 bits, which is a typical keysize in today’s
implementation of DSA (due to the required security level). In this section we describe two pairing
based signature schemes that provide much shorter signatures while offering similar levels of security.

Definition 6.7. Formally, a signature scheme is specified by four randomized algorithms (I,G,S,V):

• I (setup). This algorithm takes a security multiplier k as input and returns system parameters
params.

Notation: params〉 ← I(1k).

• G (key generation). When invoked by user A, this algorithm takes the system parameters as
input and returns a public key PA (which will be used to verify signatures) and a secret key SA

(which will be used to produce signatures).

Notation: 〈PA, SA〉 ← G(params).

• S (sign). This algorithm takes a message M ∈ M and a secret key SA and returns a signature
σ.

Notation: σ ← S(params,M, SA).

• V (verify). This algorithm takes a message M ∈ M, a signature σ and a public key PA and
verifies if σ is a valid signature produced by the secret key SA that belongs to the public key PA

for the message M . It returns valid is the signature is valid, and invalid otherwise
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Notation: V(params,M, σ, PA).

Remark 6.1. Usually signature schemes are described by three algorithms instead of four. The setup
algorithm is then omitted and the key generation algorithm takes the security multiplier instead. Also,
system parameters are not explicitly passed as arguments to the sign and verify algorithms, but are
simply assumed to be available.

6.3.2 Security models

Notions of security in signature schemes

To be able to have signature schemes that are provably secure, we first need a formal definition of
security. We consider the security models for signature schemes as described by Goldwasser et. al. in
their seminal paper [27].

Similar to the security models for encryption, we distinguish between security goals and attack models.
Possible goals an adversary could have against a signature scheme of a user A are:

1. Total break. Recovering the secret key of A.

2. Universal forgery. Being able to forge a signature for any message.

3. Selective forgery. Forging a signature for a particular message chosen a priori by the adversary.

4. Existential forgery. Forging a signature for at least one message that has not been signed before.
The adversary has no control over the message.

5. Strong existential forgery [8]. Forging a signature for at least one message. The message may
have been signed before, but the forged signature should be a new signature. The adversary has
no control over the message.

These goals are in decreasing order of hardness (e.g. a total break of the signature scheme implies
any type of forgery). Therefore, signature schemes resisting existential forgery are the most desirable
systems in terms of security.

Remark 6.2. To “forge” a signature for a message M means to produce a new signature for M .
Obtaining a valid signature for M from A does not constitute forgery.

The attack models describe how much information is accessible to the adversary:

1. Key-only attack. In this attack model the adversary only knows the public key of A.

2. Known message attack. In this attack model the adversary is given a set of valid signatures
for a set of messages M1,M2, . . . ,Mn. The adversary is also given the messages, but he cannot
choose them.

3. Generic or weak chosen message attack. In this attack model the adversary is given a set of valid
signatures for a set of messages M1,M2, . . . ,Mn. These messages are chosen by the adversary
but the entire list of messages is fixed before the adversary learns the corresponding signatures
and before the adversary even sees the public key of A. Therefore, this attack is the same against
every user.
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4. Direct chosen message attack. In this attack model the adversary is given a set of valid signatures
for a set of messages M1,M2, . . . ,Mn. These messages are chosen by the adversary and this
time the adversary is allowed to construct the list of messages after learning the public key of
the user A. The attack is still non-adaptive - the attacker only sees the signatures after fixing
the entire list.

5. Adaptive chosen message attack. This attack model is the most general. The adversary is given
access to an oracle that computes signatures of A for any message. This attack is adaptive - the
oracle queries can depend on the results of previous oracle queries.

The adaptive chosen message attack is the most natural attack and being able to successfully perform
such an attack implies being able to successfully perform any of the other attacks. The usual notion of
security employed is resistance against existential forgery under adaptive chosen message attacks, but
in some situations resistance against strong existential forgery under adaptive chosen message attacks
is desirable.

Definition 6.8. A formal security definition can be given as follows. Consider the following game,
played by an adversary A and a challenger:

• Setup. The challenger runs G(1k) for a given security multiplier k, gives the adversary the
public key P and keeps the secret key S to itself.

• Signature Queries. The adversary is allowed to do sign queries. In such a query the adversary
sends the challenger a message M ∈ M. The challenger computes σi ← S(Mi, SA) and sends
σi to the adversary. The adversary does not have to commit to the list of queries in advance;
each query can depend on the result of former queries. The adversary decides when this phase
is over.

• Output. The adversary outputs a pair (M,σ) and wins the game if

1. V(M,σ, PA) = valid.

2. M /∈ {M1,M2, . . . ,Mn}.

The advantage of the adversary A attacking the signature scheme is defined as follows:

AdvA(k) = Pr[V(M,σ, PA) = valid]

where the probability is taken over the random bits used by both the challenger and the adversary.

We consider the signature scheme to be secure against existential forgery under adaptive chosen
message attacks if AdvA is negligible as a function of k for every polynomially adversary A.

Complexity assumptions

The security of the short signature schemes we will describe rely on the following complexity assump-
tions.
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Definition 6.9. An algorithm A is said to have advantage ε in solving co-CDH in (G1, G2) if

Pr
[
A(P2, aP2, Q) = aQ

∣∣∣ a← (Z/pZ)∗, Q← G∗1

]
≥ ε.

Definition 6.10. An algorithm A is said to have advantage ε in solving q-SDH in (G1, G2) if

Pr

[
A(P1, xP1, . . . , x

qP1, P2, xP2) =
(
c,

1
x+ c

P1

) ∣∣∣ x← (Z/pZ)∗,
P1 ← G∗1, P2 ← G∗2

]
≥ ε.

These problems are said to be hard in groups (G1, G2) if no polynomially bounded algorithm has
non-negligible advantage in solving the problems in (G1, G2). The asymptotic formulation of these
assumption requires a bilinear group generator again, as defined in the previous section.

Definition 6.11. Assuming the existence of a bilinear group generator G, the advantage of an algo-
rithm A in solving co-CDH for G is defined as follows:

Advco-CDH

G,A (k) = Pr

[
A(q,G1, G2, GT , ê, P2, aP2, Q) = aQ

∣∣∣∣∣ 〈q,G1, G2, GT , ê〉 ← G(1k),
Q← G∗1, a← (Z/qZ)∗

]
.

If for any randomized polynomial time (in k) algorithmA we have that Advco-CDH

G,A is a negligible function,
then G is said to satisfy the co-CDH-assumption and co-CDH is said to be hard in groups generated by G.

Definition 6.12. Assuming the existence of a bilinear group generator G, the advantage of an algo-
rithm A in solving q-SDH for G is defined as follows:

Advq-SDH

G,A (k) = Pr

 A(p,G1, G2, GT , ê, P1,

xP1, . . . , x
qP1, P2, xP2)

=
(
c,

1
x+ c

P1

)∣∣∣∣∣
〈p,G1, G2, GT , ê〉 ← G(1k),
P1 ← G∗1, P2 ← G∗2
x← (Z/pZ)∗

 .
If for any randomized polynomial time (in k) algorithm A we have that Advq-SDH

G,A is a negligible func-
tion, then G is said to satisfy the q-SDH-assumption and q-SDH is said to be hard in groups generated
by G.

6.3.3 The Boneh-Lynn-Shacham short signature scheme

The Boneh-Lynn-Schacham (or BLS) signature scheme [12] is one of the earlier pairing based proto-
cols. It offers signature lengths half the size of signatures generated by DSA, but at a similar level of
security. We describe the revised version which uses an asymmetric pairing.

Definition

The BLS-scheme is originally constructed using any Gap co-Diffie-Hellman pair, but since we are
focusing on pairing based cryptography we will translate the algorithms to the pairing based setting:

I (setup). Let k be the desired security parameter.
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- Generate three cyclic groups G1, G2 and GT of prime order and a pairing ê : G1 × G2 → GT .
The size of these groups should depend on the security parameter k. In addition, pick a random
generator P ∈ G1 and a random generator Q ∈ G2.

- Pick cryptographic hash functions H : {0, 1}∗ → G∗1. For the security proof to work, this hash
function needs to be a random oracle.

- Let params = 〈G1, G2, GT , ê, n, P,Q,H〉. The message space is M = {0, 1}n.

- Return params.

G (key generation).

- Pick a random x ∈ Z/pZ and compute V = xQ ∈ G2.

- The public key is V , and the secret key is x.

- Return 〈V, x〉.

S (sign). Let M ∈M be the message to sign and let x be the secret key.

- Compute R = H(M) ∈ G1.

- Compute σ = xR ∈ G1.

- Return σ.

V (verify). Let M ∈M be a message, σ ∈ G1 a signature and v ∈ G2 a public key.

- Compute R = H(M) ∈ G1.

- Return valid if ê(σ,Q) = ê(R, V ). Otherwise, return invalid.

Any adversary has access to the public key xQ ∈ G2 and the generators P ∈ G1 and Q ∈ G2. Forging
a signature means creating an element xR ∈ G1 when R ∈ G1 is given which is equivalent to solving
the co-CDH problem in (G1, G2), which is assumed to be hard. On the other hand, xR ∈ G1 is a valid
signature generated using the public key yQ ∈ G2 if x = y. Thus, verifying a signature is equivalent
to solving the co-DDH problem in (G1, G2), which is easy due to the existence of the efficiently com-
putable pairing.

Theorem 6.5. The BLS-scheme is consistent.

Proof. Let M ∈M be a message and σ ∈ G1 be a signature on this message generated by the signing
procedure using the public key V . We need to show that the

V(params,M, V ) = valid.

Indeed
ê(σ,Q) = ê(xR,Q) = ê(R,Q)x and ê(R, V ) = ê(R, xQ) = ê(R,Q)x.

The scheme becomes efficient when we instantiate it with groups that allow a short representation of
elements. Luckily, elliptic curves (i.e. G1 and G2 are subgroups of the group of points on an elliptic
curve E/Fq) have a short representation. Instead of taking σ as the signature, we can store just the
x-coordinate of σ. In the verification algorithm we simply pick a point σ having said x-coordinate.
Since there could be two points having this x-coordinate it is possible we have picked −σ instead.
Therefore, to preserve consistency of the scheme we also accept a signature if ê(σ,Q)−1 = ê(R, V ).

64



Security

The security of the scheme in the random oracle model is proven by the following theorem.

Theorem 6.6 (3.2 in [12]). Suppose the hash function H is a random oracle. Then the signature
scheme on (G1, G2) is secure against existential forgery under an adaptive chosen-message attack
assuming co-CDH is hard in (G1, G2). Concretely, suppose there is a forger algorithm A that has
non-negligible advantage against the signature scheme and runs in polynomial time. Then there is
an algorithm B that solves co-CDH in (G1, G2) with non-negligible advantage and runs in polynomial
time.

Intuitively, this theorem states that being able to efficiently forge a signatures allows one to efficiently
solve co-CDH in (G1, G2), which contradicts the co-CDH hardness assumption. The efficiency of the
security reduction in the proof in [12] is as follows. Suppose A has advantage ε against the signature
scheme and runs in time t. Suppose A makes at most qs > 0 signature queries and at most qH > 0
hash queries to H. Then the constructed algorithm B solves co-CDH in (G1, G2) with advantage ε′

and runs in time t′ such that

ε ≥ e(qs + 1) · ε′ and t ≤ t′ − cG1(qH + 2qs),

where cG1 is a constant that depends on G1. Here e is the base of the natural logarithm.

6.3.4 The Boneh-Boyen short signature scheme

Another short signature scheme based on pairings is due to Boneh en Boyen [8]. The signatures are
just as short as the signatures in the BLS-scheme and the scheme is much more efficient. The security
is not based on random oracles, but uses the Strong Diffie-Hellman (SDH) problem as a complexity
assumption. The scheme is proven to be existentially unforgable against an adaptive chosen message
attack.

Definition

The signature scheme is defined by the following set of algorithms:

I (setup). Let k be the desired security parameter.

- Generate three cyclic groups G1, G2 and GT of prime order q and a pairing ê : G1 ×G2 → GT .
The size of these groups should depend on the security parameter k.

- Let params = 〈q,G1, G2, GT , ê〉. The message space is M = Z/qZ.

- Return params.

G (key generation).

- Pick random generators P1 ∈ G1 and P2 ∈ G2, and random integers x, y ∈ (Z/qZ)∗.

- Compute U = xP2 ∈ G2 and V = yP2 ∈ G2 Also compute z = e(P1, P2) ∈ GT .

- The public key is the tuple 〈P1, P2, U, V, z〉 and the secret key is the tuple 〈P1, x, y〉.
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- Return 〈〈P1, P2, U, V, z〉, 〈P1, x, y〉〉.

S (sign). Let m ∈ Z/qZ be the message to sign and let 〈P1, x, y〉 be the secret key.

- Pick a random r ∈ (Z/qZ)− {x+my }.

- Compute σ = (x+m+ yr)−1P1 ∈ G1 (the inverse (x+m+ yr)−1 is computed modulo p.

- Return 〈σ, r〉.

V (verify). Let m ∈ Z/qZ be a message, 〈σ, r〉 a signature and 〈P1, P2, U, V, z〉 a public key.

- Return valid if ê(σ, U +mP2 + rV ) = z. Otherwise, return invalid.

Theorem 6.7. The Boneh-Boyen signature scheme is consistent.

Proof. Let m ∈ Z/qZ be a message and 〈σ, r〉 be a signature on this message generated the signing
procedure using the public key 〈P1, P2, U, V, z〉. We need to show that

V(params,M, 〈P1, P2, U, V, z〉) = valid.

Indeed
ê(σ, U +mP2 + rV ) = ê

(
(x+m+ yr)−1P1, xP2 +mP2 + ryP2

)
= ê
(
(x+m+ yr)−1P1, (x+m+ ry)P2

)
= ê
(
P1, P2

)(x+m+yr)−1(x+m+yr)

= ê
(
P1, P2

)
= z.

Security

The security of this signature scheme depends on a the strong Diffie-Hellman assumption, which is
the discrete logarithm analogue of the strong RSA assumption. The SDH assumption is new and not
as well studied as the BDH assumption, so in order to build confidence in this assumption, the authors
derive a lower bound on the on the computational complexity of an algorithm solving q-SDH in generic
groups [8]. The signature scheme is proven to be secure in the standard model (i.e. without the use
of random oracles) using the following theorem.

Theorem 6.8 (3.2 in [8]). The signature scheme on (G1, G2) is secure against existential forgery
under an adaptive-chosen message attack assuming q-SDH is hard in (G1, G2). Suppose there is
a forger algorithm A that has non-negligible advantage against the signature scheme and runs in
polynomial time. Then there is an algorithm B that solves q-SDH in (G1, G2) with non-negligible
advantage and runs in polynomial time.

Intuitively, this theorem states that being able to efficiently forge a signatures allows one to efficiently
solve q-SDH, which contradicts the q-SDH hardness assumption. The efficiency of the security reduction
in the proof in [8] is as follows. Suppose A has advantage ε against the signature time and runs in
time t. Suppose A makes at most qs > 0 signature queries. Then the constructed algorithm B solves
q-SDH in (G1, G2) with advantage ε′ and runs in time t′ such that

q > qs, ε ≥ 2(ε′ +
qs
p

) ≈ 2ε′, and t ≤ t′ − θ(q2T )

where T is the maximum time for a multiplication in G1 and G2.
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Chapter 7

Conclusions

We have defined elliptic and hyperelliptic curves over finite fields and shown how to compute the
group operation on them.

The Weil pairing and Tate-Lichtenbaum pairing are efficiently computable bilinear mappings defined
on elliptic and hyperelliptic curves. It seems the Tate-Lichtenbaum pairing on elliptic curves is the
most efficient and practical pairing to use. We have shown how to compute both pairings using Miller’s
algorithm.

Using the group law on elliptic and hyperelliptic curves, it is possible to define the discrete logarithm
problem on these curves. On curves with a low embedding degree (i.e. supersingular curves), pairings
can be used to reduce the problem to the discrete logarithm problem on a finite field, where sub-
exponential attacks can be used.

We have shown how pairings give rise to mathematical problems (e.g. the bilinear Diffie-Hellman
problem) that can be used as the basis for cryptographic schemes. We have discussed the conse-
quences of being able to invert pairings.

Pairings can be used to create interesting cryptographic protocols. For instance, they can be used to
create a novel cryptographic scheme, known as identity based encryption, for which currently no other
practical construction is known. In addition, pairings can be used to construct a signature scheme
that has very short signature representations.
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