
Radboud University

Master Thesis Mathematics

Isogeny cryptography with twists and
smooth primes

Author:
Maaike Heijdenrijk

Student number:
S4528301

Supervisosr:
Prof. Lejla Batina

Second reader:
Dr. Wieb Bosma

July 19, 2021

Abstract

In 2019, Craig Castello proposed a new approach to supersingular isogeny, named B-SIDH [16].
This is a version of SIDH where isogenies are computed over both the p−1 and p+1 torsion of Fp2 .
To make this cryptographic protocol work in real life, there need to be sufficiently large smooth
primes. The search for these primes is currently very active, and in this thesis we suggest a new
way of finding them. This can be found in Chapter 5. Furthermore we provide a full analysis
of the active attack of Galbraith, Petit and Shani for B-SIDH [30] in Chapter 7, and discuss its
consequences for extra security measures. In Chapter 6 we analyse the velusqrt algorithm for
B-SIDH, including different optimal strategies for B-SIDH, which can be seen as an extension of
the optimal strategies described in [2].

1

Acknowledgements

This thesis has been a real roller coaster to write. And that could never have happened without the
help of many amazing people. First of all, Lejla my supervisor, thank you for sticking with me to
the end and bringing me everywhere when that was still possible. Joost and Krijn, thank you for
answering all my questions so fast and thoughtfull. Giacuomo for making the prime search really
happening. Wouter Castryck and Cristophe Petit for helping with the mathematical challenges
that came up. Wieb for saying yes everytime I needed help. And a big big thanks to my boyfriend
and all my friends and family who dragged me through it all.

2

Contents

Abstract 1

Notation list 5

1 Background information 6
1.1 Cryptography . 6

1.1.1 Historical overview . 6
1.1.2 Modern day cryptography . 7

1.2 Post quantum cryptography . 8
1.3 Quantum computers . 9

1.3.1 Quantum algorithms . 10
1.3.2 Quantum computers today . 12

2 Elliptic Curves and Isogenies 13
2.1 Curves . 15
2.2 Elliptic curves . 16
2.3 Isogenies . 17
2.4 The Frobenius morphism . 19
2.5 Miscellaneous . 19

3 Supersingular curves 21
3.1 Supersingular curves . 21

3.1.1 Ideal class groups . 22
3.2 Twists of curves . 23
3.3 Isogeny graphs . 24

3.3.1 Isogeny graphs of twisted curves . 25
3.4 Montgomery arithmetic . 26

3.4.1 Montgomery curves . 26
3.4.2 The Montgomery ladder . 27

3.5 Velu formulae . 28
3.5.1 Isogenies between Montgomery curves . 29

3.6
√

élu formulae . 31
3.6.1 KPS . 31
3.6.2 xISOG and xEVAL . 32

3.7 Weil pairing . 33

4 Cryptography on Elliptic Curves 36
4.1 Elliptic Curve Diffie Hellman key exchange protocol 36
4.2 Supersingular Isogeny Diffie Hellman . 36

4.2.1 SIDH protocol . 37
4.3 Commutativity . 38
4.4 Computing Isogenies . 39
4.5 Security basis of SIDH . 41

3

4.6 CSIDH . 42

5 Smooth primes 44
5.1 Prevalence of smooth neighbour pairs . 44
5.2 Use in cryptography . 45
5.3 Lenstra’s method . 46

5.3.1 Continued fraction . 46
5.3.2 Pell equation . 47
5.3.3 Costs of Lenstra’s method . 47

5.4 PTE-Method . 47
5.5 Extending neighbours method . 48
5.6 Costs of extending neighbours method . 49

5.6.1 Reducing the amount of computations . 50
5.7 Finding large smooth prime numbers . 52
5.8 Finding new smooth primes . 52

5.8.1 Conclusion on the extending neighbours method 56

6 B-SIDH 57
6.1 Background on isogenies on twists of elliptic curves 57

6.1.1 Introduction . 57
6.1.2 Generalised isogenies . 57
6.1.3 Kummer line . 58
6.1.4 Isogeny graphs . 58

6.2 B-SIDH protocol . 58
6.2.1 Protocol . 58
6.2.2 Proof of correctness . 59

6.3 B-SIDH security analysis . 59
6.4 BSIDH usability . 60
6.5 Optimal strategy for BSIDH . 60

6.5.1 Order of list of prime numbers . 61
6.6 Costs of computing large degree isogenies . 64
6.7 B-SIDH key exchange algorithm . 64
6.8 B-SIDH costs for specific prime numbers . 67

6.8.1 B-SIDH algorithm for pEN . 67
6.8.2 Costs of pEN key exchange . 68
6.8.3 Key exchanges for p237 and p253 . 69

7 Analysis of B-SIDH security 70
7.1 The encryption protocol . 70
7.2 An attack on encryption protocol . 71

7.2.1 Attack with hashed key . 72
7.2.2 Attack with unhashed key . 74

7.3 Generalisation to arbitrary numbers . 74
7.3.1 Costs of active attack . 78
7.3.2 Attack with unhashed key . 79

7.4 Possible countermeasures against the attacks . 80

Bibliography 82

Appendix A 85

4

Notation list

a|b a divides b, for a, b ∈ N
An(K) affine n-space over a field K
K̄ algebraic closure of a field K
Aut(E) automorphism ring of E
char characteristic of a field
C curve

φ̂ dual of an isogeny
E elliptic curve
E/K elliptic curve defined over field K
End(E) endomorphism ring of E
Fp finite field of prime order p
Fq finite field with q elements
Fpk finite field with pk elements, with p prime
K general field
R general ring
g genus of a curve
µq group of all qth roots of unity
φ isogeny between two elliptic curves
E[m] m-torsion group of E
R∗ multiplicative subgroup of a ring R
#E number of points on elliptic curve E
Q field of rational numbers
R1 −R2 ring R1 that excluding the ring R2

Z ring of integers
Zn ring of integers modulo n
O point at infinity of an elliptic curve E
Pn(K) projective n-space over a field K
π q-power Frobenius endomorphism (x, y) 7→ (xq, yq) over a field Fqk
ζq root of unity for a number q
[m]P scalar multiplication of an point P on an elliptic curve by m ∈ |Z
E(K) set of K-rational points on E
t trace of the Frobenius morphism
⊗ tensor product
em Weil pairing over torsion points E[m]

5

1. Background information

In this thesis we will first treat the background information on cryptography and quantum com-
puters, that give us the context of why quantum cryptography is being developed. Then we will
give all mathematical background needed to understand the elliptic curves computations that are
performed in the supersingular isogeny cryptographic protocols. We then treat different elliptic
curve based cryptographic protocols, and go on to the search of specific prime numbers, before
we continue to the B-SIDH model and its security analysis. In this chapter we first mention the
history and give some background of cryptography, and then we explain the most important topics
on quantum computers.

1.1 Cryptography

In this section we treat the foundations of cryptography. Cryptography is a large field on protecting
data using certain codes. One of the main aspects is the design of cryptographic protocols that
prevent third parties from reading private messages. It has been used for millennia, and its
development has taken a flight since the development of computers.

1.1.1 Historical overview

To get a sensitive message across a kingdom was a dangerous task, there would be spies and thugs
throughout the way, and when could you be sure that the message received was the same as the
message sent? You could not always trust the messenger to not read the message and deliver
it safely. Therefore, already a long time ago people came up with ways to conceal or encrypt
messages to keep them secret. A way was writing with invisible ink, that only becomes visible
when held by candle light. A classical story tells that a Greek king used to shave the head of a
slave, tattoo the message on his head, and waited until his hair was grown back to send the slave
to deliver the message. These are good tactics when your opponent doesn’t know the methods
you use: security by secrecy. But of course only one maid needs to spill the story of the shaven
head to the enemy, and this method can never be safely used again. Another example of this
is the famous Ceasar cipher. You write your message, but shift each letter of each word for a
certain amount of letters in the alphabet. For instance A = F, B = G. The letter now becomes
unreadable nonsense, unless you know the way to transform the letters back. Over the centuries,
more advanced methods became available, like using a specific sentence as a key, or permutation,
etc. It is of course a cat and mouse game, with smart people on both sides trying to beat the
others. These methods are called security through obscurity, as the only thing that keeps the
message secure is the fact that the adversary does not know how to decode it. Already in the
19th century it was established that obscurity cannot be the only way of securing a message. One
of the most famous more modern day examples of cryptography is the Enigma code the Germans
used to encrypt their messages. Like the Titanic was deemed to be unsinkable, the Enigma code
was deemed to be unbreakable. They used advanced methods of encrypting their messages, and
changed keys every day to prevent the allies of using previously decoded messages to decode new
ones. There was however a flaw in their setup. They ended their messages with the same text
every day. Knowing this repetition that came back in all messages, it gave the English a huge

6

advantage of cracking this day’s key, and therefore being able to deduce the secret messages they
sent. This is seen as a large step to a fast allied victory of World War II.

1.1.2 Modern day cryptography

Nowadays cryptography is used to secure our online activities and other digital communications.
Signing into bank accounts, communicating via a messenger app, all actions require a way of
preventing an adversary to gain access to our data.

There are two different types of cryptography used in computers nowadays, public key and
private key. If Alice and Bob want to have a private conversation, they will encrypt their messages
to each other with a shared key, that only they know. This process is called symmetric key
cryptography, and uses stream or block ciphers to encrypt the message. To decode the message
the same process, with certain steps inverted, is used as to encode the message. The system that
is currently the NIST-standard is AES, invented by Joan Daemen and Vincent Rijmen. [24]. The
United States National Institute of Standards and Technology (NIST) is the authority in the field
of establishing the standards for cryptographic protocols. They set the standards for what should
be implemented in devices worldwide.

A message m is encrypted to a ciphercode c using an encryption function Enc, with as input a
shared secret key K. The ciphercode is then decoded using the reversed protocol of the encryption
function, the decoding function Dec with as input the same key K, to reveal the message m.

EncK(m) = c, DecK(c) = m.

A key can be split into a validation key and a session key. The session key can be used to secure
the channel using symmetric key cryptography, while the validation key is used during the secret
key establishment to assure the receiver of the key that they are dealing with the correct person,
and not an adversary.

A Hash function is a non-invertible function that sends a string of random length to a string
of specific length n.

{0, 1}∗ 7→ {0, 1}n

Hash functions are used everywhere to send and store information safely. For instance passwords
are not stored themselves, but rather their hash function (with additional data). To check if a
password is entered correctly, the password entered is hashed and compared to the stored hash
function. A good hash function is random, meaning that the output does not depend on the input,
and has a negligible probability of sending two strings to the same output.

An oracle is a ”black box” that is able to solve a specific decision problem in a single operation.
An oracle can either return a yes or no (or 1 or 0), or return the outcome of a function. A random
oracle returns a specific randomised outcome for any input. One can make queries to the oracle,
for a specific problem.

A pseudo random function (PRF) is a function that simulates a random oracle, in a way that
no efficient algorithm would be able to distinguish between a PRF and a random oracle. The input
of a PRF is calles a random seed. A key derivation function (KDF) is a function that derives a
key from a secret value, such as a password or a master key, using a PRF. It can be used to put
longer keys into a specific length key.

To be able to send messages using symmetric key cryptography, there needs to be an established
secret key first. This is often done using public key cryptography. Public key cryptography is based
on so called ”trap-door” functions. These mathematical functions are easy to compute when you
have access to a specific piece of information, and hard to compute if this piece of information is
missing. The main idea is that Alice and Bob both will pick a secret key, that they use as input
for this trap door function. The output of the function becomes their public key. These public
keys can be exchanged through an insecure channel. Using the received public key, they compute
their shared secret key using a cryptographic protocol. A cryptographic protocol is a set of rules
designed to allow secure communication under a specific set of circumstances. In a public-key
protocol Alice and Bob will only exchange information that the whole world is allowed to see -the

7

public keys- while both doing certain computations in order to end up with a shared secret key,
that they do not have to communicate to each other.

Retrieving the key using only the public information is a mathematically hard problem, and
when the key is large enough, this problem should be infeasible to solve. 128-bit security is seen as
secure, meaning that it would take 2128 bit operations to find the secret shared key. The historically
most used public key cryptography systems are RSA and Diffie-Hellman. The difficulty of RSA
[47], is based on finding the prime factors p and q of a large number N = pq, nowadays Elliptic
Curve Cryptography (ECC) is the NIST standard. RSA and standard Diffie-Hellman we describe
below, ECC is treated in Chapter 4.

Diffie Hellman key exchange The Diffie Hellman key exchange is based on taking discrete
logarithms of a number modulo a prime p. It was proposed by Ralph Merkle, Whitfield Diffie
and Martin Hellman [27]. Assume Alice and Bob want to establish a shared secret key for their
communications. They agree on a prime p and a number g coprime to p. Now Alice picks a secret
integer a, and bob a secret integer b. Alice computes ga mod p, and Bob computes gb mod p.
They exchange these new values, and repeat the process. Since taking powers is a commutative
action, we get gab mod p = gba mod p and they end up with the same key. It is a mathematically
hard problem to retrieve the key not knowing a or b.

Different types of keys A static key is a key that is reused all the time. It can for instance
be hardcoded into a device (like a smart fridge or cell phone). If this device sends a message, it
will always be encrypted using the same key. If an attacker finds out the key, they can read all
messages sent. On the other hand, there are ephemeral keys, that are only used for one specific
instance. The one-time pad is an example of an ephemeral key, or a secret key chosen for a one-
time key-exchange as described below. Static keys can also be used to generate ephemeral keys,
where one would use public key cryptography to generate a static key, which is used as a master
key to generate different ephemeral keys using private key cryptography. This is for instance used
in secure communication channels, where a new ephemeral key is created for each session. It
is cheaper than generating a new key using public key cryptography each time, and safer than
reusing the same key over multiple sessions. There are also keys used in a more hybrid setting,
where a static key is replaced with a new one after a certain period of time or amount of uses. This
happens for instance with internet security certificates like SSL (the key lock in the address bar),
where a trusted third party gives a certificate to a company assuring that communication with
that website is secure, using a specific private key. These keys are then reset when the certificate
is renewed.

1.2 Post quantum cryptography

As will be explained in the next section, it is not clear when -or if - the first full scale quantum
computer will be built. But it is of utmost importance to have the possibility for quantum-
safe communication as soon as possible. For instance, take diplomatically or military sensitive
information that is supposed to remain a secret for a long time, that is being communicated to an
overseas base at this moment. An adversary would for be able to store this data and decrypt this
the moment they have access to a quantum computer. To be secure against quantum computers
we need post-quantum cryptography : cryptographic systems that are secure against both quantum
and classical computers.

To establish a new cryptographic protocol that can be used world wide, on every computer,
one cannot simply take their preferred protocol and use it. NIST launched a competition in 2016.
looking for the best post-quantum cryptographic protocol. In the first round, people from all
over the world can then send in their created protocols. All information on these protocols is
freely accessible, and researchers are encouraged to improve these protocols and look for potential
weaknesses. In July 2020, the finalists of this competition were announced. One of the applications
is SIKE, by (Jao et al.) [4]. It is a further developed version of the cryptographic scheme SIDH

8

that is reviewed in this thesis. SIKE is Up until the writing of this thesis, no attacks that break
this scheme are known. SIKE has reached the final of the NIST competition as an Alternate
Candidates in the category ’Public-key Encryption and Key-establishment Algorithms’. In the
case of SIKE, this means that the protocol is seen as promising, but more research is needed
before it should be implemented.

SIKE is a cryptographic protocol based on Supersingular Isogeny Diffie Hellman (SIDH). In
this thesis we will look into SIDH, and mainly in a specific type of supersingular key exchange
called B-SIDH. SIDH is explained in Chapter 4, B-SIDH in chapter 6.

1.3 Quantum computers

The main reference for this section is [55]. If not specified otherwise, this book is used as the main
source. An undergraduate level of linear algebra and algebra is assumed.

Classical computers do computations using strings of bits. Bits are objects that, like a light
switch, can be either in a state 1, or “on”, or in a state 0, or “off”. These states can be represented
as vectors in the following way.

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
Quantum computers do computations on another kind of bits, that can be in an infinite amount

of states between 0 and 1. These bits are called qubits. A singe bit is represented as follows

|x〉 =

[
c0
c1

]
,

with c0 and c1 complex numbers such that |c0|2+|c1|2 = 1. Since in our physical world complex
numbers do not exist, to find the state of a specific bit we need to measure the bit. When a qubit
is measured, it becomes an ordinary bit, |0〉 or |1〉, just like Schrödingers cat is both alive and
dead until you open the box. The probability that the qubit after measurement will be found in
state |0〉 is given by |c0|2, and the chance that it will be found in state |1〉 is given by |c1|2.

Just as on a classical computer, we can build logical gates on a quantum computer -these are
called quantum logical gates. Classical logical gates cannot all be used in a quantum computer,
since quantum logical gates have the requirement that they must be inversible. The classical logical
gate and is not inversible, as you cannot retrieve the input deterministically from the output. The
most interesting quantum logical gates are described below.

The Hadamard gate The Hadamard gate brings a qubit in superposition. It makes a qubit
”half |0〉 and half |1〉.” It is represented by the following matrix

H =

[
1√
2

1√
2

1√
2
− 1√

2

]

and is normally drawn in a circuit diagram as

.

The Toffoli gate The most common quantum logical gate is the Toffoli gate. It takes a qubit
|x, y, z〉 and sends it to |x, y, x⊕ y ⊕ z〉. x and y are called the control bits. In a circuit diagram
it looks as follows:

9

1.3.1 Quantum algorithms

Security of cryptographic public key protocols relies on mathematically hard functions, as de-
scribed in section 1.1 of this chapter. But the security for current protocols is only guaranteed for
classical computers. In the next section we will discuss Grover’s algorithm and Shor’s algorithm,
that can both be adapted to retrieve a private key significantly faster for all current public key
protocols.

Grover’s Algorithm In 1996 Lov Grover designed a quantum algorithm to speed up database
searches [32]. It optimises the search for a specific, known, object in a database. Mathematically,
this equation can be described as follows. Given a function f : {0, 1}n → {0, 1} such that
f(x) = 1 if x = x0 and 0 if x 6= x0 for exactly one binary string x0, the goal is to find x0.

For classical computers, this would take at maximum 2n evaluations of f , and on average 2n/2

evaluations. We will show that using Grover’s algorithm it will take a quantum computer only

2
√
n/2 evaluations on average. The algorithm

Algorithm 1 Grover’s Algorithm

Data: A state |0〉
Result: string x0 such that f((x0) = 1
Apply H⊗n on x0

for i in
√

2n do
Apply phase inversion operation Uf (I ⊗H) on x0

Apply inversion about mean operation −I + 2A on x0

end
Measure x0

Here ⊗ is the tensor product of two matrices, and H⊗n the Hadamard matrix tensored with
itself n times.

Uf is the matrix that does the following:

|x, y〉 7→ x, f(x⊕ y〉 (1.1)

.
A is the matrix of size n with on every entry 1

2n . Multiplying a matrix x0 by (-I + 2A) will
inverse the values about the average of the string x0. This is done to boost the separation of the
phases.

As an example, consider the vector [8, 8, 8, 8, 8]. We now apply phase inversion operation
on the fourth vector: [8, 8, 8,−8, 8]. Then calculating the inversion about the average gives
[1.6, 1.6, 1.6, 17.6, 1.6]. The difference between the numbers is now 16. Applying the phase op-
eration Uf (I ⊗H) and inversion about the average again gives [−6.08,−6.08,−6.08, 13.12,−.08].
The difference between the fourth and the other elements is now −19.2. So we have separated the
numbers further. Research shows that doing this

√
2n times is needed to find x0. Doing it more

times will be too much.
While this algorithm speeds op searches a lot, it is no exponential improvement. Still, this

algorithm is important because for many post-quantum cryptographic protocols, it is one of the
best algorithms to get the private key knowing only the public keys.

The following algorithm by Shor is the one that actually breaks current public key cryptogra-
phy.

10

Shor’s Factoring algorithm A paper published by Shor, [50], describes an algorithm that can
solve RSA and discrete logarithm problems in polynomial time instead of exponential time, essen-
tially breaking public key cryptography. The algorithm described below can solve ordinary discrete
logarithms, for adaptations of the algorithm that can solve Elliptic curve discrete logarithms, see
[45]. For an adaptation to solve integer factorisation, see [50].

As described in section 1.1.2, assume we have numbers g, y ∈ Z, with a prime p such that
g, y < p. Given that gx = y mod p, we need to find x.

The idea of Shor’s quantum algorithm is to find the period of a function f . In the case of
discrete logarithms, the function f is described by:

f : Zp × Zp −→ Zp, f(a, b) = gay−b.

It is clear that the kernel of this function is generated by (x, 1). Thus, if we find the kernel of f ,
we find our desired x.

To find the kernel of f , we will try to find its period. This uses the quantum computer property
that evaluates f at all points simultaneously. A representation for this algorithm is to visualise two
sine functions, one with period g and the other one with period y, and to look for a point where
the combination of the two sine functions starts to repeat itself. This point will be (a multiple of)
x.

Note that a quantum algorithm is always probabilistic, not deterministic. This means we
can find x with great probability, but not always. Therefore the algorithm has to be repeatedly
executed to find x with sufficient certainty.

Algorithm 2 Shor’s Algorithm

Data: Three registers of length p− 1 of qubits in state |0〉
Result: x such that gx = y mod p
Bring the first two registers of qubits in superposition using the Hadamard gate.
In the third register, compute gayb.
Apply Quantum Fourier Transformation to both of the two first registers.
Measuring the first two registers should give a pair a′, b′ such that x = b′(a′)−1.

The first step is to bring the two registers of qubits into superposition:

1

q

p−1∑
a=0

p−1∑
b=0

|a, b〉 (1.2)

.
Adding the third register gives

1

q

p−1∑
a=0

p−1∑
b=0

|a, b, gayb〉 (1.3)

,
in which the last part can also be written as gayb = ga(gx)b = ga0 . The order of g is p, making

this equal to a+ xb ≡ a0 mod p. This gives that for each b there is exactly one solution. We find
for the state of the first two registers:

1

q

q−1∑
b=0

|a0 − xb, b〉 (1.4)

.
The next step is to apply quantum Fourier transformation. We will not describe in detail how

this process works, for more explanation on this see [55].
The Fourier transform acts on base states as:

|z〉 7→ 1
√
p

p−1∑
z′=0

ωzz
′

p |z′〉 with ω = e2πi/p. (1.5)

11

Combining 1.5 and

1
√
p

1

p

p−1∑
a′,b′=0

p−1∑
b=0

ω(a0−xb)a′
p ωbb

′

p |a′, b′〉 (1.6)

.
The sum over b gives pωa0a

′

q if b ≡ xb′(mod p) and vanishes otherwise.
This gives

1
√
p

p−1∑
a′=0

ωa0a
′

p |a′, b′ ≡ xa′ mod q〉 (1.7)

.
It is clear that the probability of measuring a basis state is independent of a0. So irregardless

of the state that is measured in the third register, we will obtain a pair a′, b′ that can give us d as
long as a′ 6= 0.

In this thesis we will not go explain on how to execute these algorithms using quantum logical
gates. In [48] it is estimated that to break elliptic curve cryptography at 128-bit security, you
would need at least 2330 qubits and 1.26 ∗ 1011 Toffoli gates, and factoring 3072-bit RSA would
require almost 6200 qubits and 1.86 ∗ 1013 Toffoli gates.

1.3.2 Quantum computers today

One of the questions that remains is when to expect full scale quantum computers to work. As of
July 2021, there are already exciting innovations happening in the field, with the outlook on more.
IBM has published a roadmap that shows their intention of having a 1000-qubit computer by 2025.
Currently their best computer has 127 qubits. As of 16-06-2021, in Germany a research institute,
the Fraunhofer-Gesellschaft, officially bought the first commercial quantum computer from IBM
[43]. It has 27 qubits and works as a full quantum computer. As described in the section above,
they are not able to crack current cryptography with it, but it is a start. Google has already
in 2019 published an article [5], where it shows quantum supremacy on a specific computation
done in 200 seconds on a 53-qubit quantum computer, for which a classical computer would
have needed around 10.000 years. Some other prospects are less promising, as for instance the
Microsoft-backed research into qubits based on Majorana particles turned out to be unsuccesfull,
the Majorana parts that were thought to be examined turned out to be just a statistical error.
For now, quantum computers are nowhere near being able to break security like RSA. However,
development is ongoing and progress is being made by many different companies. These examples
show that large-scale quantum computers might be realised within the next decennium, making
it extremely relevant to implement quantum cryptography as soon as possible.

12

2. Elliptic Curves and Isogenies

In this section we give a background on the mathematics needed to formally define an elliptic
curve, and the basic properties of an elliptic curve and some extra theorems needed later on in the
thesis. An undergraduate mathematics level of the reader is assumed, specifically on fields and
number theory. If not mentioned otherwise, the source is [51].

Definition 2.0.1. An Affine n-space over a field K is the set of n−tuples

An = An(K̄) = {P = (x1, ..., xn) : xi ∈ K̄}.

where K̄ is the closure of K. The set of K−rational points of An is obtained in a similar way

An = An(K) = {P = (x1, ..., xn) : xi ∈ K}.

Definition 2.0.2. Let K̄[X] = K̄[X1...Xn] be a polynomial ring in n variables, and I ⊂ K̄[X] an
ideal. We associate a subset of An to I:

VI = {P ∈ An : f(P) = 0 ∀ P ∈ V }.

An affine algebraic set is any set of the form VI .
For all algebraic sets V , the ideal of V is given by

I(V) = {f ∈ K̄[X] : f(P) = 0, ∀ P ∈ V }.

V is called an algebraic variety if I(V) is a prime ideal in K̄[X].

Definition 2.0.3. Projective n-space over K is defined as Pn = Pn(K̄), the set of n+ 1 tuples

P = (x0, ...xn) ∈ An+1,

such that not all xi are zero, modulo the equivalence relation ∼ :

(x0, ...xn) ∼ (y0, ..., yn) = Q.

if there is a λ ∈ K̄ such that P = λQ. An equivalence class {(λx1, ..., λxn) : λ ∈ K̄} is denoted
[x1 : ... : xn]. The points xi are called homogeneous coordinates.

Definition 2.0.4. A polynomial f is homogeneous of degree d if

f(λX0, ..., λXn) = λdf(X0, .., Xn), ∀ λ ∈ K̄.

An ideal I ∈ K̄[X] is homogeneous if it is generated by homogeneous polynomials.

Analogous to the affine definition, we can now define a projective algebraic variety.

Definition 2.0.5. Associate a subset of Pn to a homogeneous ideal I as follows:

Vi = {P ∈ P : f(P) = 0, ∀ homogeneous F ∈ I}.

13

A projective algebraic set is any set of the form VI with I homogeneous.

We denote the homogeneous ideal of V by

I(V) = {f ∈ K̄[X] : f homogeneous and f(P) = 0, ∀ P ∈ V }

A projective variety is a projective set of which its homogeneous ideal I(V) is a prime ideal in
K̄[X].

Definition 2.0.6. Define the affine coordinate ring of a variety V defined over K (Denoted V/K)
as

K[V] =
K[X]

I(V)

The local ring of V at P , denoted K̄[V]P is given by

K̄[V]P = {F ∈ K̄(V) : F = f/g for some f, g ∈ K̄[V] with g(P) 6= 0.}.

The functions in K̄[V]P are called regular at P , and just regular if they are regular at all P .

Definition 2.0.7. If V is a projective variety, and P ∈ V such that P ∈ An ⊂ Pn is regular at
P if it is in the local ring of V ∩ An at P .

Definition 2.0.8. An affine variety V is nonsingular at P ∈ V , if the matrix(
∂fi
∂Xj

(P)

)
1≤i≤m, 1≤j≤n

has rank n − dim(V), with f1, ..., fm a set of generators for K[X]. The dimension of V is the
transcendence degree of K̄(V) over K̄. A projective variety is nonsingular at P if V ∩ An is
nonsingular at P . If a function is not nonsingular at P , it is called singular at P .

Definition 2.0.9. Let V1, V2 ⊂ P be projective varieties. A rational map from V1 to V2 is a map
of the form

φ : V1 −→ V2 φ = [f0, ..., fn],

where all fi ∈ K̄(V1) have the property that for all P ∈ V1 that they are defined, and that

φ(P) = [f0(P), ..., fn(P)] ∈ V2.

φ is called regular at P ∈ V1 if there is a function g ∈ K̄(V1) such that

1. each g · fi is regular at P ;

2. g · fi(P) 6= 0 for some i.

If such a g exists, we write
φ(P) = [(gf0)(P), ..., gfn)(P)].

A rational map that is regular at every point is called a morphism.

We define two varieties V1, V2 to be isomorphic, written V1
∼= V2, if there are morphisms

φ : V1 → V2 and ψ : V2 → V1 such that φ ◦ ψ and ψ ◦ ψ are the identity maps on V1 and V2.

14

2.1 Curves

Definition 2.1.1. A curve is an projective variety of dimension 1.

Theorem 2.1.2. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant or
surjective.

Let C1 and C2 be curves defined over K, with φ : C1 → C2 a nonconstant rational map defined
over K. Composition with φ induces an injection of function fields,

φ∗ : K(C2) −→ K(C1), φ∗f = f ◦ φ.

Definition 2.1.3. Let φ be a map of curves defined over K. If φ is constant, we define the degree
of φ to be 0. Else, we define its degree to be

deg φ = [K(C1) : φ∗K(C2)].

This is always finite, see [33] II.6.8. We call φ separable, inseparable or purely inseparable if the
field extension K(c1)/φ∗K(C2) has that property.

For C a curve and P ∈ C, We can define a valuation on the local ring of C at P K̄[C]p as
follows

ordP : K̄[C]p −→ N ∪∞ ordP (f) = sup{d ∈ Z : f ∈Md
P }.

Here Md
P is a maximal ideal of K̄[V] given by

MP = {f ∈ K̄[V] : f(P) = 0}.

Defining ordP (f/g) = ordP (f)− ordP (g), we can extend ordP to K̄(C):

ordP : K̄(C) −→ Z ∪∞.

A uniformizer for C at P is any function t ∈ K̄(C) with ordP (t) = 1
The divisor group of a curve C is the free abelian group generated by the points of C. A divisor

is a sum
D =

∑
P∈C

nP (P), np ∈ Z.

We have tat nP is zero for almost all P . The degree of D is defined by

degD =
∑
P∈C

nP .

Let C be smooth, and let a function f ∈ K̄(C)∗, then the divisor of f is given by

÷(f) =
∑
P∈C

ordP (f)(P).

Definition 2.1.4. For a curve C, the space of differential forms on C, denoted ΩC , is the K̄−
vector space generated by symbols of the form dx, with x ∈ K̄(C), with the relations d(x+ y) =
dx+ dy, d(xy) = xdy + ydx and da = 0, for all x, y ∈ K̄(C), a ∈ K̄.

For an element ω ∈ ΩC we can associate a divisor to ω

÷(ω) = ordP (ω)(P) ∈ Div(C).

Definition 2.1.5. A canonical divisor class of a curve C is the image of divω in the Picard group
Pic(C). Any divisor in this divisor class is called a canonical divisor

15

A divisor is positive, denoted D ≥ 0, if nP ≥ 0 for every P ∈ C. Similarly, for divisors D1, D2,
we write D1 ≥ D2 to say D1 −D2 is positive.

For a divisor D inDiv(C) we can associate to it a set of functions

 L(D) = {f ∈ K̄(C)∗ : div(f) ≥ −D} ∪ 0.

Its dimension is given by
`(D) = dimK̄ L(D).

Theorem 2.1.6. [Riemann-Roch] Let C be a smooth curve and let KC be a canonical divisor
on C. Then there is an integer g ≥ 0, such that

`(D)− `(Kc −D) = degD − g + 1

for all D ∈ Div(C).

The integer g is called the genus of the curve C.

2.2 Elliptic curves

Definition 2.2.1. An elliptic curve is a pair (E,O) with E a curve of genus 1 and O ∈ E a fixed
point. Usually it is shortened by writing just E and assuming O.

All elliptic curves can be written as triples (X,Y, Z) that are solutions to the following cubic
equation in P2,

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (2.1)

This equation, and all following, are called Weierstrass equations. Using the substitution x = X/Z
and y = Y/Z we can rewrite this equation to

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2.2)

together with the base point O = [0, 1, 0] at infinity. if the constants ai lay in a field K, we say E
is defined over K, denoted as E/K.

To an elliptic curve we can assign certain invariants. the discriminant ∆ = −b22b8 − 8b34 −
27b26 + 9b2b4b6, where b2 = a2

1 + 4a4, b4 = 2a4 + a1a3, b6 = a2
3 + 4a6 and b8 = a2

1a6 + 4a2a6 −
a1a3a4 + a2a

2
3 − a2

4, and the j-invariant j =
b22−24b4

∆ .
In [51] III.1.4 it is proven that two elliptic curves are isomorphic over K̄ if and only if they have

the same j-invariant. On the other hand, for all points j0 ∈ K̄ there is an elliptic curve defined
over K(j0) with a j-invariant equal to j0.

In this section we assume E is an elliptic curve over a field K, specified by a Weierstrass
equation. Points P on E are given by affine coordinates (x, y), together with the point at infinity
O. Since the equation is of degree 3, any line through a point P has two more intersection points
on E, Q and R. P,Q and R do not have to be distinct, as a line can be tangent to the curve.

We define a group law ⊕ on E as follows
Let L be the line through P and Q, or the line tangent to P (if Q = P). This line intersects E

in one more point R. A second line L′ runs through R, the point at infinity O and a third point.
We call this point P ⊕Q. The group law is explained schematically in 2.1.

This is indeed well defined, and can be seen as group addition, as justified in [51] III 2.2.
We define E(K) as the subgroup of E that contains all zero points (x, y) of the Weierstrass

equation that are defined over K, together with O.
Addition on E is not trivial. If we have points P = (x0, y0), Q = (x1, y1) we have the following

formulae for addition

• P +O = O + P = P ,

16

−4 −2 2 4

−4

−2

2

4

E

P

[2]P

x

y

−4 −2 2 4

−4

−2

2

4

E

P
Q

P +Q

x

y

Figure 2.1: Addition of two points P and Q, and doubling of a point P on an elliptic curve
E : y2 = x3 − 3 ∗ x+ 5.

• −P = (x0,−y0 − a1x0 − a3)

• for x0 6= x1 define λ = y1−y0
x1−x0

and ν = y0x1−y1x0

x1−x0

• If Q = P and y1 6= 0, define λ =
3x2

0+2a2x0+a4−a1y0
2y0+a1x0+a3

and ν =
−x3

0+a4x1+2a6−a3y1
2y0+a1x0+a3

• Then the line L through P and Q is defined by L : y = λx+ ν. The point P +Q = (x2, y2)
is thus given by

x2 = λ2 − a1λ− a2 − x1 − x0

y2 = −(λ+ a1)x2 − νa3.

An elliptic curve E is, as shown in Equation 2.1, a plane in P2, with coordinates (X : Y : Z).
We make a surjective map φ to P1 given by

φ : E → P1

(X : Y : Z) 7→

{
(X : Z) if Z 6= 0

(1 : 0) if Z = 0.

Using this map we can establish a bijection between P1 and E/{±1}. We denote the projective
line with the structure of E by the Kummer line of E.

Later we will see that in cryptographic applications, it is possible to work over the Kummer
line of an elliptic curve, making computations faster.

2.3 Isogenies

Definition 2.3.1. Given two elliptic curves E1 and E2, we define an isogeny as a morphism

φ : E1 −→ E2 satisfying φ(O) = O.

If E2 = E1, we call φ an endomorphism. The invertible elements of the ring of endomorphisms
End(E) form the group Aut(E), the automorphisms of the curve E.

17

As shown in 2.1.2 we either have either φ(E1) = O or φ(E1) = E2. Two curves E1 and E2 are
isogenous if there is an isogeny from E1 to E2 such that φ(E0) 6= O. in Definition 2.3.6 we will
see this is an equivalence relation.

Since all isogenies besides the zero map are surjective, they are finite maps of curves. This
gives the usual injection of function fields

φ∗ : K̄(E2) −→ K̄(E1).

We define the degree of the isogeny φ as the degree of the finite extension K̄(E1)/φ∗K̄(E2), and
give the zero map degree 0.

Definition 2.3.2. The multiplication-by-m isogeny is given by

[m]P = P + ...+ P︸ ︷︷ ︸
m times

.

This map is an isogeny.

Definition 2.3.3. Given an elliptic curve E, and m ∈ Z with m ≥ 1. The m-torsion subgroup of
E, E[m] is the set of points of order m:

E[m] ∼= {P ∈ E : [m]P = O}.

Theorem 2.3.4. For E an elliptic curve over a field K with char(K) = p > 0, m ∈ Z, with m 6= 0
and p - m, we have

E[m] =
Z
mZ
× Z
mZ

Isogenies have certain useful properties.

Theorem 2.3.5. Let φ : E1 −→ E2, ψ : E1 −→ E2 be isogenies, with φ separable, and let Φ be
a finite subgroup of E1. Then we have the following

1. deg(φ) = # kerφ

2. for all P,Q ∈ E, φ(P +Q) = φ(P) + φ(Q)

3. If φ and ψ are nonconstant, and kerφ ⊂ kerψ then there is a unique isogeny λ : E2 −→ E3

such that ψ = λ ◦ φ

4. There is a unique elliptic curve E′ and a separable isogeny φ : E1 −→ E′ such that kerφ = Φ.

Proof. See [51]III 4.10, 4.11 and 4.12

This theorem is quintessential for supersingular isogeny cryptography, as we will see in 4.2.
Assume we have a certain subgroup H of an elliptic curve of order n = pk11 ...p

kr
r . Using Theorem

2.3.5 we can find a unique separable isogeny φ that has H as kernel. We know the degree of this
isogeny is n, and using Theorem 2.3.5.3 we can show that if we take a point in H with degree pi,
we can create a chain of isogenies ψi such that φ = ψ1 ◦ ... ◦ ψs, with s =

∑r
i=1 ki.

Definition 2.3.6. There exists a unique isogeny

φ̂ : E2 −→ E1,

such that
φ̂ ◦ φ = [m] and φ ◦ φ̂ = [m].

This isogeny is called the dual isogeny of φ.

The proof of this statement can be found in [51]III.6.1. As proven in [51] II.6.3, the degree of
the dual of a function φ is the same as the degree of φ, and the dual of the dual of φ is just φ.
Given that every isogeny has a dual, being isogenous becomes an equivalence relation.

18

2.4 The Frobenius morphism

Definition 2.4.1. Given a field K of characteristic p > 3, q = pr and an elliptic curve E/K,
E : y2 = f(x). Then the Frobenius morphism of an elliptic curve is defined by

φq : E → E(q), (x, y) 7→ (xq, yq),

where E(q) is the curve defined by taking the coefficients of the equation for E to the qth power.

Note that when K = Fq, φq is actually the identity on K, so E(q) = E. The set of points fixed
by φq is exactly E(Fq).

Theorem 2.4.2. Let E be an elliptic curve defined over a field Fq. We have

1. |#E(Fq)− q − 1| ≤ 2
√
q. (Hasse)

2. For a = q + 1−#E(Fq), we have for the Frobenius morphism φq

φ2
q − aφq + q = 0 in End(E).

We therefore also call a the trace of the Frobenius morphism, denoted tr(φq)

Proof. See [51] V.1.1 and V.2.3.

2.5 Miscellaneous

Hard Homogenous Spaces

In [22] the notion of Hard Homogenous Spaces is introduced. It is said to be an efficiently com-
putable action

∗ : G× S → S

for G a finite commutative group and S a set. It has the following properties:

• for all s ∈ S, * acts free: gs = s→ g = idG

• for all pairs (s1, s2) ∈ S2, * acts transitive: there is a group element g ∈ G such that gs1 = s2

• Given s0, s1 ∈ S, it should be hard (non-polynomial) to find a g ∈ G such that g ∗ s0 = s1

• Given s0, s1, s2 ∈ S, such that s1 = g ∗ s0, it should be hard to find an s3 = g ∗ s2.

To be able to make computations on hard homogenous spaces, the following operations are required
to be easy (polynomial time):

• Compute the group operation in G

• Sample randomly from G with almost uniform distribution

• Compute the action ∗ of a group element g ∈ G on some s ∈ S

The Chinese remainder theorem

Theorem 2.5.1. For N = n1 · ... · nk, with all ni pairwise coprime, the map

x mod N 7→ (x mod n1, ..., x mod nk)

defines a ring isomorphism
Z/NZ ∼= Z/n1Z× ...× Z/nkZ. (2.3)

19

Proof. First we prove that if there exists an x that satisfies equation (2.3) then x is unique, and
then prove its existence.

Suppose x and y are both integers that are solutions to all congruence relations. This means
they give the same remainder when divided by ni, so their difference x − y is a multiple of each
ni. All ni are pairwise coprime, so x− y is therefore also divisible by N . This means x and y are
equivalent modulo N . This proves uniqueness.

For existence, we give a constructive proof that we can use to find x.

x ≡ a1 mod n1

x ≡ a2 mod n2

There exist integers m1 and m2 such that m1n1 +m2n2 = 1. A solution for x is then given by

x = a1m2n2 + a2m1n1

More general systems of k equations can be solved by iterating this process k − 1 times.

20

3. Supersingular curves

We continue with giving specific properties of elliptic curves, and properties of maps between
elliptic curves. After that, we will focus on the properties of supersingular elliptic curves and
Montgomery curves. We end with a section on isogeny graphs. The main sources for this sections
are [51] and [33].

3.1 Supersingular curves

Definition 3.1.1. An algebra over a field K is a vector space A over K equipped with a binary
operation

· : A×A −→ A

such that the following equations hold:

1. (x+ y) · z = x · z + y · z

2. z · (x+ y) = z · x+ z · y

3. (ax) · (by) = (ab)(x · y)

for x, y, z ∈ A, a, b ∈ K.

Definition 3.1.2. Let K be a finitely generated Q-algebra. An order R of K is a subring of K
that is finitely generated as a Z-module, and satisfies R⊗Q = K.

A quaternion algebra is a Q - algebra of the form

K = Q + Qα+ Qβ + Qαβ

with
α2, β2 ∈ Q, α2, β2 < 0, βα = −αβ.

Theorem 3.1.3. Given an elliptic curve E over a field K, with char(K) = p > 0, the endo-
morphism ring End(E) of E is either an order in an imaginary quadratic field, or an order in a
quaternion algebra. In the first case, we call E ordinary. In the second case, E is supersingular.

Proof. See [51]III.9.4.

Theorem 3.1.4. If E is supersingular, j(E) ∈ Fp2 .

Proof. See [51]V.3.1

This theorem proves that there are only finitely many supersingular elliptic curves over Fq.
The next theorem shows exactly how many, and also how to check if a curve is supersingular.

Theorem 3.1.5. Let Fq be a field of characteristic p > 3.

21

1. Let E/Fq, with q = pr be defined by the Weierstrass equation

E : y2 = f(x).

Then E is supersingular if and only if the coefficient of x(p−1) in f(x)(p−1)/2 is zero.

2. There is only one supersingular curve in characteristic 3, and for p ≥ 5, the number of
supersingular curves over a field of characteristic p is given by

[
p

12

]
+

0 if p ≡ 1 mod 12

1 if p ≡ 5 mod 12

1 if p ≡ 7 mod 12

2 if p ≡ 11 mod 12

Proof. See [51]V.4.1.

Theorem 3.1.6. Given an elliptic curve E over a field K/Fq, with char(K) = p. Then E is
supersingular if and only if the trace of the Frobenius morphism is equal to

tr(φq) ≡ 0 mod p.

Proof. See [51] Exercise 5.10a.

Corollary 3.1.7. Given an elliptic curve E defined over Fp, E is supersingular iff #E = p + 1.
For E defined over Fp2 , we have, denoting the p2-Frobenius morphism with φ,

tr(φ) = ±2p, #E = (p± 1)2

tr(φ) = ±p, #E = p2 ± p+ 1

tr(φ) = 0, #E = p2 + 1

Proof. Combining theorem 2.4.2 and 3.1.6 we get | tr(φq)| ≤ 2
√
q, and tr(φq) can only be a multiple

of p. In the case q = p,this only leaves the option tr(φq) = 0, so using 2.4.2 we get #E(Fp) = p+1.
For q = p2 there are five options for tr(φq), as described above.

3.1.1 Ideal class groups

Here we will briefly introduce ideal class groups in the setting of submodules of End(E) of a
supersingular elliptic curve E. For more information on modules and fractional ideals, we refer
to [6]. As described in Theorem 3.1.4, a supersingular curve has an endomorphism ring End(E)
isomorphic to an order of a quaternion algebra. Here we are concerning ourselves with a subring O
of End(E) that is isomorphic to an order of an imaginary quadratic field, in particular O = Z[π],
where π is the Frobenius morphism. In particular, O is commutative. Note that this is also
the form of the endomorphism ring of ordinary elliptic curves. While this is not the case for all
supersingular curves, it can be shown (see [12]) that there exist supersingular curves that have
such a subring in their endomorphism ring. We define `(O, π) to be that set of elliptic curves that
have O as a subgroup of their endomorfism ring.

Definition 3.1.8. The norm of an O-ideal a is defined as

N(a = | O /a| = gcd(N(α)|α ∈ a).

Especially, we have
N(ab) = N(a)N(b).

22

In the next paragraph we will introduce the ideal class group of O. A fractional O-ideal is
an O-submodule of End(E) of the form αa, with α ∈ End(E) nonzero. A fractional O-ideal is
invertible if there exists a fractional O-ideal b such that ab = O. All principal fractional O-ideals
are invertible. We now get two groups, the set of invertible fractional ideals I(O), and its subgroup
of principal fractional ideals P (O).

Definition 3.1.9. The ideal class group of O is defined as the quotient

cl(O) = I(O)/P (O).

The size of the ideal class group therefore is an indication of how much O is not a principal
ideal domain. Below we will prove some properties of the ideal class group.

Theorem 3.1.10. Let O be an order in an imaginary quadratic field and π ∈ O such that `p(O, π)
is non-empty. Here `p(O, π) is the set of elliptic curves defined over FpT with Endp(E) ∼= O such
that π corresponds to the Fp Frobenius endomorphism of E. Then the ideal-class group cl(O) acts
freely and transitively on the set `p(O, π) via the map

cl(O)× `p(O, π)→ `p(O, π)

([a, E] 7→ E/a

Where E/a is defined by a N(a) degree isogeny

φa : E → E/a.

Proof. See [54].4.5.

The curve E/a is often written as [a] ∗ E or [a]E.

Theorem 3.1.11. Let p ≥ 5 be a prime such that p ≡ 3 mod 8, and let E/Fp be a supersingular
elliptic curve. Then there is a subring Z[π] of the endomorphism ring End(E) if and only if there
exists a A ∈ Fp such that E is Fp isomorphic to the curve E : y2 = x3 + Ax2 + x. If such an A
exists, it is unique

Proof. See [12] Proposition 8.

To finish this section, we define a specific type of prime that helps split the ideal class group
in smaller parts.

Definition 3.1.12. An Elkies prime is a prime ` that splits O: There exist l, l′ ∈ O such that
`O = ll′. The ideal l is generated as l = (`, π − λ), where λ is an eigenvalue of the Frobenius
morphism on the ` torsion. The conjugate of l is l′.

3.2 Twists of curves

Definition 3.2.1. Given an elliptic curve E/K, a twist of E is a curve E(t) such that E and E(t)

are not isomorphic over K, but are isomorphic over K̄. If they are isomorphic over K2, E(t) is
called a quadratic twist of E.

Given an elliptic curve E/K, defined as E : y2 = f(x), we can create a quadratic twist of E
as follows. For d nonsquare in K, let K(

√
d) be a quadratic extension of K. A quadratic twist of

E is now given by
E(t) : dy2 = f(x).

It can be seen that for all x ∈ K, for K not a field of order 2, (x, f(x)) lies on either E or E(t),
as either f(x) is a square in K and (x, f(x)) lies on E, or f(x) is not a square and lies on E(t), by
resizing the y-coordinate. (In a field of order two all points are squares). There is one exception

23

in the case y = 0. In this case (x, f(x)) is a point on both E and E(t). Noting this, we can count
the points on E and E(t), using that if (x, y) ∈ E, (x,−y) ∈ E. For a field Fq, this gives

#E + #E(t) = 2q + 2.

Using Theorem 2.4.2, this gives us that the Frobenius traces tE of E and t
(t)
E of E(t) are related

as follows
tE = −t(t)E . (3.1)

Using equation (3.1) we can now see that for supersingular curves over Fp2 , as described in Corol-
lary 3.1.7, the curves with Frobenius trace −p or −2p are the quadratic twists of curves with trace
p respectively 2p.

Interestingly, while these curves are isomorphic over Fp4 , they are not isogenous over Fp2 , as
from 3.1.7 we can see that they do not have the same number of points on the curve. This means
that every point on the isogeny graph is actually represented by two different twists over Fp2 , as
will be described in section 3.3.

3.3 Isogeny graphs

Definition 3.3.1. A graph G is a pair G = (V,E), where V = {v1, ..., vn} is a set of vertices, or
points, and E ⊆ (V, V) is a set of edges, or lines between these points.

A graph is directed if (vi, vj) 6= (vj , vi) when i/neqj, and undirected otherwise. A multigraph
is a graph that allows multiple edges (vi, vj), and also loops (vi, vi). A graph is called connected
if for all vertices vi and vj , there is a path of edges from vi to vj .

A graph is called k-regular if all vertices have k edges connected to it.
The Adjacency matrix A of a graph is defined to be the n× n graph that has a 1 at the ij-th

entry if and only if there is an edge from vi to vj , and a 0 if this is not the case. For all matrices,
all eigenvalues satisfy the bound |λ| ≤ k. Note that the adjacency matrix of an undirected graph
is symmetrical.

Given a graph G, and a subset of the vertices A, the vertex boundary of a subset is

δv(A) = {v ∈ G−A| there is an edge between v and a vertex in A}.

Let E be the set of edges (x, y) in G. The edge boundary of A in G is

δe(A) = {(x, y) ∈ E|x ∈ A, y ∈ G−A}

Definition 3.3.2. An expander graph is a k-regular graph G with #V vertices such that there
exists a c ∈ R≥0, such that for all subsets A ⊆ V with #A ≤ #G/2

#δv(A) ≥ c ·#A

We will now introduce Ramanujan graphs. For the source on this part of the text, see [41]

Definition 3.3.3. A graph has the Ramanujan property if for all nontrivial eigenvalues that are
not equal to −k,

|λ| ≤ 2
√
k − 1.

Theorem 3.3.4. Ramanujan graphs are expander graphs.

Proof. If G is a regular graph, then according to Definition 3.3.2

#δv(A) ≥ #A · k − λ1(G)

2
,

when #A ≤ #G/2. Here λ1 is the smallest eigenvalue of G. Thus

#δv(A) ≥ (
1

2
− λ1(G)

2k
) ·#A

so take c = 1
2 −

λ1(G)
2k , this shows that Ramanujan graphs are expander graphs.

24

An isogeny graph is a graph with its vertices consisting of the isomorphism classes of elliptic
curves over a field F , and the edges are the isogenies between the elliptic curves. A supersingular
isogeny graph is a graph with only isomorphism classes of supersingular elliptic curves over a field
F . Since all supersingular elliptic curves are isomorphic to a curve over Fp2 , supersingular isogeny
graphs are finite. For edges, we define two isogenies φ1, φ2 to be isomorphic if there exists an
automorphism α ∈ Aut(E) such that φ1 = αφ2.

Theorem 3.3.5. A supersingular isogeny graph with vertices and edges being isomorphism classes
of elliptic curves and degree ` isogenies, is a connected `+1 regular multigraph with the Ramanujan
property.

Proof. See [42] theorem 1.

In Figure 3.1 an example of an isogeny graph is given.

Figure 3.1: Isogeny graph of degree 3 over F̄97.

Theorem 3.3.6. A supersingular isogeny graph over K = Fp2 is undirected if and only if p ≡ 1
mod 12.

Proof. A supersingular isogeny graph is undirected if for every isogeny φ : E1 → E2 there exist
a unique dual isogeny φ̂ : E2 → E1, up to automorphism. But it can be the case that the
automorphism group Aut(E1) does not have the same size as Aut(E2). In [51]III.10 it is shown
that this problem arises if one of the curves has complex multiplication by either

√
−1 or e2πi/3.

What happens then is that two isogenies E1 → E2 can have equivalent dual isogenies, even
though the original isogenies are not equivalent. If a curve does not have either of these complex
multiplications, Aut(E) = {±1}. In [42], Proposition 4.6, it is proven that if p splits in both
Z[
√
−1] and Z[e2πi/3] the curve will not have this complex multiplication, and that this is the case

if and only if p ≡ 1 mod 12.

Theorem 3.3.7. Let G be a Ramanujan graph. A random walk of length at least log 2#G/#S1/2

log(k/λ1)

starting from v will end in S with probability between 1
2

#S
#G and 3

2
#S
#G .

Proof. see [34] Lemma 2.1

3.3.1 Isogeny graphs of twisted curves

As described in Corollary 3.1.7, there are five different isogeny classes for supersingular elliptic
curves defined over Fp2 , all corresponding to a different Frobenius trace. Two curves are isogenous

25

only if #E1 = #E2. Therefore, if we take a curve E with #E = (p+ 1)2, and its twist E′,#E =
(p− 1)2, they will never lay on the same isogeny graph over Fp2 . Define the isogeny graph of G2p

and G−2p as the graphs with as vertices the j-invariants (defined over Fp2), and with edges the
isogenies up to automorphism between the elliptic curves.

Theorem 3.3.8. The graphs G2p and G−2p are isomorphic, and they are both isomorphic to the
general isogeny graph over F̄p2

Proof. See [1].

3.4 Montgomery arithmetic

In this part of the section we describe what is the Montgomery form of an elliptic curve, and how
we can use these kind of forms to compute isogenies and point multiplications effectively.

3.4.1 Montgomery curves

In 1987, Peter Montgomery proposed in [40] a specific form of elliptic curves, that have special,
beneficial, addition properties. These curves are called Montgomery curves and are described by
the equation below.

E/K : by2 = x3 + ax2 + x, (3.2)

Under the conditions that b 6= 0 and a2 6= 4.
All Montgomery curves share certain useful properties.

• The point (0, 0) has order two

• There are two points Q4 of order four given by

Q4 ∈ {(1,±
√

(a+ 2)/b), (−1,±
√

(a− 2)/b)} (3.3)

with [2]Q4 = (0, 0)

• There are two other points P of order two, with x-coordinate given by x2
p + axp + 1 = 0.

As will be proven below, a great asset of Montgomery curves is that addition of points and
isogenies can be computed on the Kummer line, so we need only the X and Z coordinates of a
point, and we can disregard the Y -coordinate. This is useful as it gives the opportunity to use
more efficient algorithms for addition, scalar multiplication and isogeny computation, without the
need to compute inverses or square roots.

Theorem 3.4.1. For any Montgomery curve E over a field K, a point P ∈ E, for any integers
n,m the two points given by Pn = [n]P = (Xn : Zn), and Pm = [m]P = (Xm : Zm) can be added
to obtain the point Pn+m = [n+m]P , with the following coordinates:

Xm+n = Zm−n((Xm + Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2

Zm+n = Xm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2.

The costs for adding two points then is 3M + S + 5a. Here M is a multiplication, in K, S a
squaring in K and a an addition in K.

In the case that m = n, the operation is equal to doubling a point. Equations are then given
by

X2n = (Xn + Zn)2(Xn − Zn)2

Z2n = ((Xn + Zn)2 − (Xn − Zn)2)(Xn − Zn)2 + ((a+ 2)/4)((Xn + Zn)2 − (Xn − Zn)2).

26

And the costs are 2S + 2M + 5a plus one scalar addition.

Proof. See [40], §10.

.
Efficient algorithms for these computations are given for instance in [20].

3.4.2 The Montgomery ladder

Using Theorem 3.4.1 one can create a fast algorithm for multiplying a point on an elliptic curve,
as described in [40]. This process is called the Montgomery ladder. The advantage of using the
Montgomery ladder over double-and-add for multiplying a point is that the Montgomery ladder
always terminates in a fixed amount of time, therefore it leaks no power consumption data during
a side-channel attack, and is also not vulnerable to timing attacks. In Algorithm 3 below the
process of multiplying a point using the Montgomery ladder is described. Here double and add
represent the algorithms for doubling and adding a point as described in Theorem 3.4.1.

Algorithm 3 Montgomery Ladder

Data: A point P ∈ E and an integer d ∈ N.
Result: A point [d]P ∈ E.
R0 = 0, R1 = P
Write d in binary representation: d = d0 + 2d1 + 22d2 + ...+ 2mdm
for i = i downto 0 do

if di = 0 then
R1 = add(R0, R1)
R0 = double(R0)

end
else

R0 = add(R0, R1)
R1 = double(R1)

end

end

The costs of the Montgomery ladder come down to log(d) additions and doublings, costing in
total 3S + 5M + 10a plus one scalar multiplication per round.

If we would like to know a point [m]P+Q, one could first compute [m]P using the Montgomery
ladder and then add Q. However, this is quite slow. Using specific properties of the Montgomery
curves, we can compute this a lot faster using differential addition, where we use the difference
P −Q to compute [m]P +Q.

Theorem 3.4.2. Given two projective points P = (XP , ZP), Q = (XQ, ZQ) and their difference
P −Q = (X	, Z), the projective point P +Q = (X⊕, Z⊕) is given by

X⊕ = Z	(XP − ZP)(XQ + ZQ)− (XP + ZP)(XQ − ZQ))2

Z⊕ = X	XP − ZP)(XQ + ZQ) + (XP + ZP)(XQ − ZQ))2

Proof. See [40] 10.3.1.

This can be efficiently computed, see for instance [20] Algorithm 3.2.1. This algorithm will be
referred to as dADD. The costs are 4M+ 2 S + 6A (one multiplication less if Z	 is normalised
to 1).

A way to compute [m]P+Q is then given by [25] Algorithm 4.1.1, and is also given in Algorithm
4. It is constructed in the same way as the Montgomery ladder.

27

Algorithm 4 Computing [d]P+Q

Data: Points P,Q, P −Q ∈ E, given as projective coordinates, and an integer d ∈ N.
Result: A point [d]P +Q ∈ E.
A = 0, B = P,C = P
Write d in binary representation: d = d0 + 2d1 + 22d2 + ...+ 2mdm
for i = i downto 0 do

if di = 0 then
A = double(A)
B = dADD(A,B, P)
C = dADD(A,C,Q)

end
else

A = dADD(A,B, P)
B = double(B)
C = dADD(B,C, P −Q)

end

end

The costs of computing [d]P +Q is

C = dlog(d)e · (Cdouble + 2CdADD) = 16 log(d) (3.4)

in field multiplications if we assume a squaring equals a multiplication and ignore the additive
costs.

In the following sections we will denote addition of two multiples of P by add, and the doubling
of a point by double.

Theorem 3.4.3. Given an elliptic curve E over a field K with char(K) 6= 2, if E or its twist has
a point of order 4, E is isomorphic over K̄ to a Montgomery curve.

Proof. See theorem 3.2 and 3 in [7].

So, if it is given that for an elliptic curve E, the group E(K) has group structure (Z/(p±1)Z)2,
and its twist E′ has group structure E′(K) = (Z/(p∓1)Z)2, it is clear that E and E′ are isomorphic
to Montgomery curves, since p is always an odd number.

3.5 Velu formulae

In this section we will look at a famous algorithm for computing isogenies, due to Velu [53]. First
we will give the general theorem, and then give a simplified version that is sufficient for most
isogeny computations on Montgomery curves.

Theorem 3.5.1. Let E be an elliptic curve over a field K defined by

F (x, y) = x3 + a2x
2 + a4x+ a6 − (y2 + a1xy + a3y) = 0. (3.5)

Let G be a finite subgroup of E(K̄). Let G2 be the set of points in G\{OE} of order 2 and let G1

be such that #G = 1 + #G2 + 2#G1 and

G = {OE} ∪G2 ∪G1 ∪ {−Q|Q ∈ G1}.

Write the two partial derivatives of F as follows

Fx = 3x2 + 2a2x+ a4 − a1y, Fy = −2y − a1x− a3.

28

Define for a point Q = (xQ, yQ) ∈ G1 ∪G2 two functions as follows

u(Q) = (Fy(Q))2 = (−2yQ − a1xQ − a3)2

t(Q) =

{
Fx(Q), if Q ∈ G2.

2Fx(Q)− a1Fy(Q), if Q ∈ G1.

Then define

t(G) =
∑

Q∈G1∪G2

t(Q)

w(G) =
∑

Q∈G1∪G2

(u(Q) + xQt(Q))

now set A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5t(G), A6 = a6 − (a2
1 + 4a2)t(G)− 7w(G).

Then the map φ(x, y) 7→ (X,Y), with

X = x+
∑

Q∈G1∪G2

t(Q)

x− xQ
+

u(Q)

(x− xQ)2
(3.6)

Y = y −
∑

Q∈G1∪G2

u(Q)
2y + a1 + a3

(x− xQ)3
+ t(Q)

a1(x− xQ) + y − yQ
(x− xQ)2

+
a1u(Q)− Fx(Q)Fy(Q)

(x− xQ)2
(3.7)

is a seperable isogeny from E to

E′ : Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6,

with kernel G.

Proof. See [53]

This function can be used to create isogenies E → E/G. The problem with this function is
that it is quite slow, especially for larger degree isogenies. Also it gives no specific algorithm that
maps curves with specific properties to other curves with those properties, for instance it does
not necessarily map Montgomery curves to Montgomery curves. This made dealing with 2-degree
isogenies more difficult for instance, as described in [25]. Recent improvements have been made in
this by Castello and Hisil in [17], and especially for 2-degree isogenies by Renes in [46]. However,
the fastest improvemnt so far is proposed by Bernstein and De Feo in [8], and is more optimised
by [2]. In the next sections we will give both the algorithms as proposed by Castello and Hisil
that work best for small degrees isogenies over Montgomery curves, and the algorithm as proposd
by Bernstein and De Feo.

3.5.1 Isogenies between Montgomery curves

In [17] it is described how we can compute isogenies between Montgomery curves not using the
more costly Vélu formulas [53], but instead using a cheaper formula. This works for all odd-degree
isogenies. In [46] it is shown that with a little adaptation, this formula can also be applied to
specific degree 2 isogenies. The theorem as proven in [17] is given below.

Theorem 3.5.2. For a field K with char(K) 6= 2, let P ∈ E(K̄) be a point of order ` = 2d + 1

on the Montgomery curve E/K : by = x3 + ax2 +x and write σ =
∑d
i=1 x[i]P , σ̄ =

∑d
i=1

1
x[i]P

and

π =
∏d
i=1 x[i]P . The Montgomery curve

E′/K : b′y2 = x3 + a′x2 + x (3.8)

with

29

a′ = (6σ̄ − 6σ + a) · π and b = b · π2 (3.9)

is the codomain of the `-isogeny φ : E → E′ with ker(φ) = {P}, which is defined by the
coordinate maps

φ : (x, y) 7→ (f(x), y · f ′(x)), (3.10)

where

f(x) = x ·
d∑
i=1

(
x · x[i]P−1

x− x[i]P
)2 (3.11)

with derivative f ′(x)

Proof. See Section 3 in [17].

Given any arbitrary odd prime p we can use Theorem 3.5.2 to write an algorithm that computes
a fast isogeny. This algorithm splits computation on three parts. First, the points [s]P will be
computed and stored. This algorithm is generally known as KPS, stemming from Kernel Points, as
it is used to generate the points in the kernel of the isogeny. Then there can be two algorithms run
in parallel, XISOG and XEVAL, where the first computes the coefficient A′ for the new codomain
E′ of the isogeny φ : E → E′, and the other computes the image Q′ for a point Q′ = φ(Q).

First, we generate the kernel points [i]P and store them. This is the KPS algorithm. These
points can be computed using the Montgomery ladder.

Take p = 2d + 1. Using the Kummer line, we represent points P on curve E/K : y2 =
x3 + ax2 +x. as (Xp : Zp). As stated before in this section, Montgomery curves have three points
of order 2: P0 = (0 : 1), Pα = (Xα : Zα) and P1/α = (Zα : Xα), with a = −(α2 + 1)/α. Rewriting

the last part in P1 and writing a = A
C gives us the computation of xISOG:

(a : 1) = (A : C) = (X2
α + Z2

α : XαZα). (3.12)

This makes it clear that we can represent the curve E using the point (Xα : Zα) as rep-
resentative. This way, we can do isogeny computation, using only the calculations on specific
points.

For any point (X : Z) on the Kummer line of E, we can now find the corresponding point
(X ′, Z ′) on the curve E′, the codomain of the isogeny φ, by computing f(X : Z). This is the
xEVAL computation. The coordinates (X ′, Z ′) are given by

X ′ = X · (Πd
i=1(X ·Xi − Zi · Z))2

Z ′ = Z · (Πd
i=1(X · Zi −Xi · Z))2.

.
We can rewrite these equations following Montgomery [40], making the computation more

efficient.

X ′ = X · (Πd
i=1((X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)))2

Z ′ = Z · (Πd
i=1((X − Z)(Xi + Zi)− (X + Z)(Xi − Zi)))2

.
Here (Xi : Zi) are the coordinates of the i-th multiple of P , [i]P , on the Kummer line. These

(Xi : Zi) are the Kernel points, and we find them with the KPS algorithm. To find the equation
for the new curve E′, we can compute (X ′α : Z ′α), and retrieve a using Equation 3.12. The curve
is then given by

E′ : y2 = x3 + ax2 + x.

30

The problem with Vélû’s function is that it becomes slower for larger degree isogenies. As
described in Theorem 2.3.5, isogenies can be split into smaller isogenies under circumstances.
However, if the degree of an isogeny is prime, it cannot be split. In B-SIDH, there will be
computations of large prime degree isogenies. To compute these in more reasonable time, an
improved way of calculating large degree isogenies is proposed by [8], and is more optimised by
[2]. The idea of these optimisations is based on a result by Pollard [44] on evaluating polynomials
whose roots are powers. The name for this new Vélu function is

√
élu formulae, and the algorithm

is explained in the section below.

3.6
√

élu formulae

We will begin by stating a version of Velu’s theorem, adapted to Montgomery curves.

Theorem 3.6.1. Let E : y2 = x3 +Ax+x be a Montgomery curve, with A2 6= 4. Let P ∈ E be a
point with deg(P) = `, with ` an odd prime number. There exists a separable isogeny φ : E → E′

with kernel G = 〈P 〉 and E′ : y2 = x3 +A′x2 + x. We define the functions

d =

(
A− 2

A+ 2

)`(
hS(1)

hS(−1)

)S
, S = {1, 2, .., `− 2} (3.13)

hS(X) =
∏
s∈S

(X − x([s]P). (3.14)

Then A′ is given by

A′ = 2
1 + d

1− d
. (3.15)

The evaluation of the x-coordinate Qx of a point Q ∈ E on E′ is given by

φx(Qx) = X`hS(1/Qx)2

hS(Qx)2
. (3.16)

Proof. See [2]

By far the largest part of computation of A′ and Qx is from computing hS(X). To speed up
this computation, a baby-step giant-step algorithm is used. In the rest of this section, we will give
a more detailed look into the algorithm that computes the isogeny. Just like the algorithm given
in the previous section, this algorithm is divided into three parts, KPS, xISOG and xEVAL.

3.6.1 KPS

To compute the kernel points, we will split the set S as given in Equation (3.13) by an index set.
In the end this algorithm will output three sets I, J and K that together store all points [s]P .

Definition 3.6.2. An index system for a set S is given by sets I, J , such that the maps I×J → S
given by (i, j) 7→ i+ j and (i, j) 7→ i− j are injective and their images I+J and I−J are disjoint.
We write I ± J = (I + J) ∪ (I − J), and K = S\(I ± J), such that S = I ± J ∪K. Note that I
and J themselves need not be subsets of S, only I + J and I − J .

The index set used in the KPS algorithm for S = {1, 3, 5...,m} is given as follows. Define
I = {2b(2i+1)|0 ≤ i < b′} and J = {2j+1|0 ≤ j < b}. Here b = b

√
m+ 1/2c, b′ = b(m+1)/(4b)c

if b 6= 0, and b′ = 0 if b = 0. K is given by {4bb′ + 1, ...,m− 2,m}.
In the case of m = 19, we get b, b′ = 2 and I = {4, 12}, J = {1, 3} K = {17, 19}. This gives

for the sets I + J = {5, 7, 13, 15} and I − J = {1, 3, 9, 11}, so indeed S = K + (I ± J).
Now the KPS algorithm is given by 5

31

Algorithm 5 KPS in
√

élu

Data: An elliptic curve E/Fq and a point P ∈ E(Fq) of order `, an odd prime.
Result: An index system I,J ,K for multiples of P .
b← b

√
`− 1/2c, b′ ← b(`− 1)/(4b)

I = {2b(2i+ 1)|0 ≤ i < b′}
J = {2j + 1|0 ≤ j < b}
K = {4bb′ + 1, ..., `− 4, `− 2}
I = {x([i]P)|i ∈ I}
J = {x([j]P)|j ∈ J}
I = {x([k]P)|k ∈ K}

3.6.2 xISOG and xEVAL

Now we’ll use the sets found in KPS to compute the coefficient A′ of E′ = x3 +A′x2 + x, and the
x-coordinate α′ of the point φ(Q) ∈ E′(Fq), with Q ∈ E(Fq). In Algorithms 6 and 7 respectively
the steps to compute these values are described. There are a few things to note regarding these
computations. First of all, we need to compute resultants of polynomials over a finite field.

Definition 3.6.3. The resultant of two polynomials f = anx
n+ ...+a0, g = bmx

m+ ...+b0 ∈ F[x]
with roots f(αi) = 0 and g(βi) = 0 respectively, is given by

Res(f, g) = amn b
n
m

∏
i,j

(αi − βj).

Note that the resultant is 0 if and only if f and g share a root.

Computing the resultant in general is quite tedious, but if the factorisation of f = a
∏

0≤i<n(x−
αi) is known, this can be done efficiently, and we can rewrite the formula as

Res(f, g) = am
∏

0≤i<n

g(αi).

The resultant is now given by first computing each g(αi), which can be done using continued
fractions (see 5.3.1) and then multiplying the parts together.

The main difference with evaluating polynomials in [44] is that the x-map of a coordinate is not
a homomorphism. However, there exists a relation between x(P), x(Q), x(P +Q), and x(P −Q).
This relation is described by

Z − x(P +Q))(Z − x(P −Q)) = Z2 +
F1(x(P), x(Q))

F0(x(P, x(Q))
X +

F2(X(P), X(Q))

F0(x(P), x(Q))
.

The three polynomials in F[X,Y] are given by:

F0(X,Y) = X2 − 2XY + Y 2

F1(X,Y) = −2(X2Y + (Y 2 + 2AY + 1)X + Y)

F2(X,Y) = X2Y 2 − 2XY + 1.

Using this information, we now describe the algorithms to compute xISOG and xEVAL. The
results are due to [8]. Note that there is a lot of overlap between the two algorithms, cheapening
the computation.

32

Algorithm 6 xISOG in
√

élu

Data: An elliptic curve E/Fq and a point P ∈ E(Fq) of order ` - an odd prime, and I,J ,K from
KPS

Result: A′ ∈ Fq, with E′/Fq = x3 +A′x2 + x the image of E/〈P 〉.
hI ←

∏
xi∈I(X − xi) ∈ Fq[X]

E0,J ←
∏
xj∈J (F0(X,xj) + F1(X,xj) + F2(X,xj)) ∈ Fq[X]

E1,J

∏
xj∈J ← (F0(X,xj)− F1(X,xj) + F2(X,xj)) ∈ Fq[X]

R0 ← ResX(hI , E0,j) ∈ Fq
R1 ← ResX(hI , E1,j) ∈ Fq
M0 ←

∏
xk∈K(1− xk) ∈ Fq

M1 ←
∏
xk∈K(−1− xk) ∈ Fq

d←
(
A−2
A+2

)` (
M0R0

M1R1

)8

A′ = 2 1+d
1−d

Algorithm 7 xEVAL in
√

élu

Data: An elliptic curve E/Fq and a point P ∈ E(Fq) of order ` - an odd prime, and I,J ,K from
KPS, the x-coordinate α 6= 0 of a point Q ∈ E(Fq)\〈P 〉.

Result: The x-coordinate α′ of a point φ(Q) ∈ E′(Fq), with E′(Fq) the image of E/〈P 〉.
hI ←

∏
xi
∈ I(X − xi) ∈ Fq[X]

E0,J ←
∏
xj∈J (F0(X,xj)/α

2 + F1(X,xj)α+ F2(X,xj)) ∈ Fq[X]

E1,J

∏
xj∈J ← (F0(X,xj)α

2 − F1(X,xj)α+ F2(X,xj)) ∈ Fq[X]

R0 ← ResX(hI , E0,j) ∈ Fq
R1 ← ResX(hI , E1,j) ∈ Fq
M0 ←

∏
xk∈K(1/α− xk) ∈ Fq

M1 ←
∏
xk∈K(α− xk) ∈ Fq

α′ =
(
M0R0

M1R1

)2

The costs of computing an isogeny with this method are described in [2], and amount in total
to approximately

cost(b) = 4(9blog2(3)(1− 2
2

3

log2(b)+1

) + 2b log2(b)) + 3((1− 1

3log2 b+1
blog2(3) + 37b+ 3 log2(b) + 16,

(3.17)
Where b is given in Section 3.6.1, and is given by b `−1

2 As described in [2], currently this method
beats the traditional Velu formula when the isogeny has degree ` ≥ 87.

Remark 3.6.4. In some cases we will not work over the base field Fp, but over Fp2 . Multiplication
in Fp2 equal 3 multiplications in Fp. In Fp2 squaring has a cost of 0.8 multiplications, so equation
3.6 becomes a bit less than 3 · cost(b) in Fp. How much exactly it costs is not yet computed.

3.7 Weil pairing

Definition 3.7.1. Given a ring R, with R-modules M,N,L. A pairing is a R-bilinear map

e : M ×N → L

The Weil pairing is a function we can compute on the torsion groups of elliptic curves. As we
know, the group of m-torsion points of elliptic curve E has the form E[m] ∼= Z/mZ× Z/mZ.

33

Now take a point T ∈ E[m], and a point T ′ such that [m]T ′ = T . Then there is a function
g ∈ K̄(E) such that

÷ (g) =
∑

R∈E[m]

(T ′ +R)− (R). (3.18)

Definition 3.7.2. A mth root of unity in a field K is a number defined ζ such that ζm = 1. ζ
is a primitive root of unity if for all 1 ≤ i lem ζi 6= 1. The group of mth roots of unity µm is the
cyclic group generated by a primitive mth root of unity. µm ⊆ K∗

For the proof of the last statement, see [51]III.8.1.1.

Definition 3.7.3. The Weil pairing is defined as

em : E[m]× E[m]→ µm (3.19)

with

em(S, T) =
g(X + S)

g(X)
, for any point X ∈ E. (3.20)

This function is constant, independent of the chosen X ∈ E, and maps to the roots of unity of m,
µm.

Theorem 3.7.4. Given points S, S1, S2, T, T1, T2 ∈ E[m] then

1. em is bilinear: em(S1+S2, T) = em(S1, T)+em(S2, T), em(S, T1+T2) = em(S, T1)+em(S, T2).

2. em(T, T) = 1.

3. If em(S, T) = 1 for all S ∈ E[m], then T = O.

Proof. See [51] III.8.1.

Theorem 3.7.5. For m prime, given two points S, T ∈ E[m], both not O, S and T are

• if 〈S, T 〉 = E[m], em(S, T) is a primitive root of unity,

• linearly dependent if em(S, T) = 1.

Proof. If S and T are linearly dependent, then assume we can write S as S = [n]T . Theorem
3.7.4.1 gives em(S, T) = em(T, T)n, and then Theorem 3.7.4.2 gives em(S, T) = em(T, T)n = 1.
Assume S, T generate E[m] and em(S, T) not a primitive root of unity. Then there must exist a
r < m such that em(S, T)r = 1. using linearity em(S, t)r = em([r]S, T) = 1. But note that for any
P ∈ E[m] we have P = [a]S + [b]T . This gives

em([r]S, P) = em([r]S, [a]S + [b]T) = em([r]S, [a]S) · em([r]S, [b]T) = 1ar · em([r]S, T)b = 1 · 1b = 1

Using 3.7.4.3 this gives that [r]S = O. But S is part of a basis for E[m] so ord(S) = m 6= r. This
proofs that em(S, T) is a primitive root of unity, and therefore also that ord(em(S, T) = m.

Proposition 3.7.6. Let φ : E1 → E2 be an isogeny of elliptic curves. Then for all points
S ∈ E1[m], T ∈ E2[m]

em(S, φ̂(T)) = em(φ(S), T)

Proof. See [51]III.8.2

Theorem 3.7.7. Given an isogeny φ : E → E′ of degree D and two points P,Q ∈ E[m],

em(φ(P), φ(Q)) = em(P,Q)D

Proof. Using Theorem 3.7.6 we get

em(P, φ̂(φ(Q))) = em(φ(P), φ(Q))

and 2.3.6 gives φ̂(φ(Q)) = [deg(φ)]Q, so applying 3.7.4.1 this gives

em(φ(P), φ(Q)) = em(P, φ̂(φ(Q))) = em(P, [m]Q) = em(P,Q)deg(φ)

34

Miller’s algorithm With the information above, it is hard to compute a Weil pairing for two
points. Miller [39] constructed an algorithm to efficiently compute the Weil pairing of two points.
For this an alternative definition of the pairing is required. See [51], Exercise 3.16 for this definition.

Define a function hP,Q as follows, for two points P,Q on an elliptic curve E : y2 +a1xy+a3y =
x3 +a2x

2 +a4x+a6, with P = (xp, yP), Q = (xQ, yQ), and λ the slope of the tangent line between
P and Q:

hP,Q =

{
y−yp−λ(x−xp)

x+xP +xQ−λ2−a1λ+a2
, if λ 6=∞

x− xP if λ =∞

Then the algorithm is defined as:

Algorithm 8 Miller’s algorithm

Data: Two points S, T ∈ E[m]
Result: A root of unity x ∈ µm

S = P, T = Q and f = 1, g = 1
for i = t− 1 to 0 do
f = f2 · hS,S
P = 2P
if ε = 1 then
f = f · hS,P
S = S + P

end

end
Repeat for T and g.
Pick a point R ∈ E such that R /∈ 〈T, S〉
em = f(R+T)

f(R) / g(S−R)
g(−R)

35

4. Cryptography on Elliptic Curves

In this Chapter we first introduce the Elliptic Curve Diffie Hellman key exchange, and then discuss
different aspects of Supersingular Isogeny Diffie Hellman.

4.1 Elliptic Curve Diffie Hellman key exchange protocol

Another, more secure, way of obtaining a shared secret key for two persons using the Diffie Hellman
key exchange is using addition of points on an elliptic curve instead of computing powers of numbers
modulo a prime. This scheme is called elliptic curve Diffie Hellman and is usually shortened to
ECDH. ECDH is first proposed by Miller [39] and is now widely implemented worldwide. In this
section we will explain how we can use elliptic key addition to obtain a shared secret key. Alice
and Bob want to create a shared secret key using the elliptic curve group operation. First they
agree on an elliptic curve E/K to work on. This key is usually part of public parameters and
optimised to offer good security. For more info on preferred elliptic curves for ECDH, see [3].
They then agree on a point P = 〈x, y〉 that generates a subgroup of E[K]

Now Alice and Bob pick a secret random integer, a respectively b, and calculate their public
keys, QA = [a]P and QB = [b]P . They then exchange their public keys. Multiplying by b,
respectively a, provides them with their secret shared key [ab]P . Retrieving a from only QA and
the given parameters is a harder problem than solving a discrete logarithm in a cyclic group, see
[39]. The ECDH protocol is described below in Figure 4.1 using a commutative diagram.

P QA = [a]P

QB = [b]P QAB = [ab]P

×b

×a

×a

×b

Figure 4.1: The commutative diagram of the Elliptic Curve Diffie-Hellman key exchange protocol.

It should be noted that these examples, among all other ‘textbook’ explanations of crypto-
graphic protocols, should never be implemented in the form they are explained in this text. This
way they are vulnerable to all kinds of attacks. Security measures like for instance padding and
hashing should always be taken to prevent any adversary to take advantage of the public data.

4.2 Supersingular Isogeny Diffie Hellman

As described in Section 1.2, with the prospect of life-scale, functioning quantum computers, there
is the need for more advanced assymetric key cryptography to secure electronic communication.
One of the suggestions for a new cryptographic scheme is based on supersingular isogeny Diffie

36

Hellman (SIDH). In this section we will explain how this protocol works and prove its correctness.
SIDH lies at the basis of the NIST proposal SIKE. Using supersingular curves for cryptographic
uses is first proposed in [22], and the first properly working key exchange protocol is described in
[25], by Jao and DeFeo.

As described in Section 1.3.1, the Shor algorithm exploits periodic functions, like elliptic curve
addition. SIDH therefore does not work with a periodic function, but uses the hardness of com-
puting large degree isogenies as explained in 4.2.1. Security aspects of SIDH will be discussed in
Chapter 7.

4.2.1 SIDH protocol

The first step for Alice and Bob is to agree on a supersingular elliptic starting curve E0 over a
field Fq, with q = p2. p is a prime of the form p = `eAA `eBB f± 1, with f a cofactor to make p prime.
The curve will have cardinality (`eAA `eBB f)2. In the SIKE submission, `A is taken to be 2, and `B
to be 3, and the curve is taken to be y2 = x3 + 6x2 + x. In Theorem 3.1.5 it is described how to
test if a curve is supersingular.

Besides the curve E0, the public parameters also include points, PA and PB , QA and QB , such
that 〈PA, QA〉 = E0[`eAA] and 〈PB , QB〉 = E0[`eBB]. Thus the points are chosen to generate the `eAA -
and `eBB -torsion groups.

Alice then chooses her secret integers mA and nA, not both divisible by `eAA , so that RA =
[ma]PA + [nA]QA has order `eAA . She computes an isogeny φA : E0 −→ EA with EA ∼= E0/〈RA〉,
as according to Theorem 2.3.5 every subgroup A of E0 gives way to a unique curve E0/A = EA
and a unique isogeny between them. Bob acts mutatis mutandis. How to compute the isogenies
between elliptic curves is described in the next section. Alice also computes the images of PB and
QB on EA

Alice and Bob exchange their public keys; curve EA, and the points φ(PA), φA(QB), are send
to Bob, Alice receives EB , φB(PB), φB(QA) . The isogenies φA, φB and the points RA, SA stay
private.

In the last phase Alice computes an isogeny φ′A : EB −→ EAB with kernel [ma]φB(PA) +
[nA]φB(QA). Bob proceeds in the same way to generate EBA ∼= EAB . They can then use the
common j-invariant of EAB as a secret shared key, since isomorphic curves have the same j-
invariant.

The SIDH protocol is explained in schematic form in Figure 4.2.

37

SIDH Key Exchange protocol

Public parameters :

E0, p, `A, `B , PA, PB , QA, QB

Alice Bob

RA = [mA]PA + [nA]QA RB = [mB]PB + [nB]QB

φA : E → EA = E/〈RA〉 φB : E → EB = E/〈RB〉

EA, φA(PB), φA(QB)

EB , φB(PA), φB(QA)

EAB = EB/〈[mA]φB(PA), [nA]φB(QA)〉 EBA = EA/〈[mB]φA(PB), [nB]φA(QB)〉
Output: j(EAB) Output: j(EBA)

E0 EA ∼= E0/〈RA〉

EB ∼= E0/〈RB〉 EAB ∼= E0/〈RA, RB〉

φA

φB φ′B

φ′A

Figure 4.2: The SIDH protocol explained schematically.

One difference that is immediately noticeable when looking at this key-exchange, is that there is
more information exchanged than in normal Diffie Hellman key exchanges. Besides the curves EA
and EB , Bob and Alice must also exchange the auxiliary points φ(PA), φA(QB)φB(PB), φB(QA).
The reason for this is that the endomorphism ring is not commutative, as proven in Theorem 3.1.3.
This unfortunately makes the public key larger and may open this protocol to attacks. Proposals
to use ordinary elliptic curves, with commutative endomorphism rings, are also made, but have
thus far always proven vulnerable to attacks [9], [14]. In the next section the proof is given that
with these extra auxiliary points, SIDH is indeed a commutative protocol.

4.3 Commutativity

Theorem 4.3.1. The curves EAB and EBA are isomorphic.

Proof. According to theorem 2.3.5.4 the curve EAB is isomorphic to

EAB ∼= EB/〈[ma]φB(PA) + [nA]φB(QA)〉.

Theorem 2.3.5.2 gives

[ma]φB(PA) + [nA]φB(QA) = φB([ma]PA) + φB([nA]QA)

= φB([ma]PA + [nA]QA) = φB(RA). (4.1)

Therefore
EAB ∼= EB/〈φB(RA)〉.

38

In the same way it follows that
EB ∼= E0/〈RB〉.

Therefore we have that the kernel of

(φ′A ◦ φB) : E0 −→ EAB is 〈RA, RB〉.

Since
EBA ∼= EA/〈[mB]φA(PB) + [nA]BφA(QB)〉 = EA/〈φA(RB)〉,

and EA = E0/〈RA〉, this gives for the kernel of

(φ′B ◦ φA) : E0 −→ EBA

(which is again an isogeny since both φ′B and φA are surjective, making φ′B ◦ φA a surjective
homomorphism between elliptic curves, and therefore an isogeny) that

ker((φ′B ◦ φA) : E0 −→ EBA) = 〈RB , RA〉.

Since 〈RB , RA〉 = 〈RA, RB〉, it follows that the kernels of φ′B ◦ φA and φ′A ◦ φB are the same.
The only thing left to prove is that the kernels are subgroups of E0, then it follows from Theorem
2.3.5.4 that φ′B ◦ φA = φ′A ◦ φB , and that E0/〈RA, RB〉 again is an elliptic curve. We have

order(RA) = `eAA 6= `eBB = order(RB),

thus 〈RA〉+ 〈RB〉 = 〈RA, RB〉 is a subgroup of E0. This proves that EAB ∼= EBA.

4.4 Computing Isogenies

As proven in Theorem 2.3.5.1, the size of the kernel of the isogeny is the degree of the isogeny. To
compute the curve EA we will have to compute a degree `eAA isogeny. As described in Sections 3.5
and 3.4, computing isogenies can be done using Vélu’s formulas or by using special properties of
Montgomery curves. In both scenarios, the costs of computing an isogeny increase significantly by
increasing the degree of the isogeny. As shown in Theorem 2.3.5.3, there is a solution to this. We
can split the isogeny into smaller isogenies, the size of `A, as long as the kernel of each isogeny is
contained in the kernel of the larger isogeny. In [25] Jao and DeFeo describe a method to compute
these isogenies, using multiplication of the kernel generator R. For any isogeny of degree `e, we
can compute the isogeny sequentially using the following calculations.

Ei+1 = E1/〈`e−i−1Ri〉 (4.2)

φi : Ei → Ei+1 (4.3)

Ri+1 = φi(Ri) (4.4)

A schematic overview of this method is shown in Figure 4.3.
To optimise the amount of computations, not all edges on this graph should be computed.

In Section 4.2 it is shown that to calculate a new isogeny φi+1, we need the curve Ei+1 and the
generator of the kernel `e−iRi+1. So we need only the two outermost lines of the graph, and the
nodes in the lowermost row. In [25] it is described how to find a strategy that uses the least
amount of edges, and therefore computations, to find all these points. Assuming multiplying and
computing an isogeny take an equal amount of computation, the best way of computation is a
balanced strategy. Asymptotically this would require 1

2 log 2n log n left and right edges. If there is a
discrepancy in cost between multiplication and isogeny computation, an optimal strategy gives the
cheapest way of computing a large isogeny, balancing the amount of multiplications and isogeny
computations required.

39

[`5]R0

[`4]R0

[`3]R0

[`2]R0

[`]R0

R0

R1

R2

R3

R4

R5

[`4]R1 [`3]R2 [`2]R3 [`]R4

[`]

[`]

[`]

[`]

[`]

φ0

φ0

φ0

φ0

φ0

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ3

φ3

φ4

Figure 4.3: Computational structure of the construction of φ = φ4 ◦ ... ◦ φ0

Optimal strategy Jao and De Feo describe in [25] an optimal strategy for computing isogenies
of degree pn. In [25] Lemma 4.5, it is proven that the cost for an optimal strategy of length n is

Cp,q(n) = min
i=1,..,n−1

(Cp,q(i) + Cp,q(n− i) + (n− i)p+ iq). (4.5)

Here p is the cost of one multiplication, q the cost of one isogeny, and n the length of the strategy
(equal to the degree of the isogeny). Equation 4.5 is recursive. It takes the input of smaller
triangles to compute the cost of the larger triangle. Here a triangle is a triangular subgraph with
it’s outer edges having a ramification on the outer edge of the larger triangle.

In [56] they give an efficient algorithm to compute the optimal strategy for any given n, p, q
using Equation 4.5. This is described in Algorithm 9. The result of the algorithm is a strategy
S, with S a list of length n, of values si ∈ {0, ..., n − 1} such that each si indicates how many
multiplicative edges we have to take before we encounter a ramification or a leaf on the strategy
drawn over the graph in Figure 4.3.

40

Algorithm 9 Optimal strategy

Data: The length of the strategy n, cost of multiplication p, cost of isogeny computation q
Result: An optimal strategy S with cost C
C, P = [1, ..., n+1] for k = 2 to e do

j = 1, z = k − 1
while j < z do
m = j + b(z − j)/2c
w = m+ 1
t1 = C[m] + C[k −m] + (k −m) · p+m · q
t2 = C[w] + C[k − w] + (k − w) · p+ w · q
if t1 ≤ t2 then
z = m
else
j = w

end

end

end
C[k] = C[j] + C[k − j] + (k − j) · p+ j · q
S[k] = j

end
return S

So we end up with an optimal strategy given as a list P of integers a. The 2n-degree isogeny
can then be computed as described in Algorithm 10.

Algorithm 10 General overview of SIDH key exchange protocol

Data: A kernel point RA of order 2n, a strategy S of length n− 1 with total amount of isogenies
s a starting curve E : y2 = x3 +Ax2 + x and points PB , QB , PQB .

Result: The constants A′, C ′ that define the curve EA = E0/EA, the images of PB , QB , PQB on
EA.

for i is 1 to s do
while j < s− i do

m = S[s− i− j + 1]
T = [2m]R
j+ = m

end
I, J,K = KPS(T,A,C)
A,C = xISOG2(T,A,C, I, J,K)
R,PB , QB , PQB = xEV AL2(R,PB , QB , PQB , A,C, I, J,K)

end
I, J,K = KPS2(T,A,C)
A,C = xISOG2(T,A,C, I, J,K)
PB , QB , PQB = xEV AL2(PB , QB , PQB , A,C, I, J,K)
A = A/C

4.5 Security basis of SIDH

The hardness of the SIDH protocol can be stated as two problems, that are given below.

1. (Supersingular isogeny problem) Given a finite field K and two supersingular elliptic curves
E1, E2 defined over K such that #E1 = #E2, compute an isogeny φ : E1 → E2.

41

2. (Endomorphism ring computation) Given an elliptic curve E defined over a finite field K,
compute its endomorphism ring.

There is an equivalence of categories between the set of supersingular curves and the set of maximal
orders of a quaternion algebra, [36] Theorem 45. This means that, at least heuristically, problems
1 and 2 are the same, meaning that one can turn an algorithm that computes isogenies into an
algorithm that computes the full endomorphism ring of an elliptic curve, and vice versa. Using
the birthday paradox, there exists an algorithm for computing any endomorphism ring in O(

√
p)

time, see [29].
Since in the protocol auxiliary points are sent, SIDH is vulnerable to active attacks [30]. In

this paper it is described how by modifying the information, the information returned leaks the
final bits of the secret key. A modification of this protocol that adapts this to B-SIDH is described
in Section 7.

Another option would be to view the security of SIDH as a random walk on an isogeny graph,
as described in Section 3.3. The drawback here is that for a walk to be random enough, as shown
in Theorem 3.3.7, it should have length of order p. In the SIDH protocol the random walks are
of length

√
p. Security claims made based on randomness of the random walk are therefore not

strong. B-SIDH does not have the same issue as it uses walks of length p, as will be shown in the
Chapter 6.

4.6 CSIDH

SIDH was not the first Isogeny-based cryptographic protocol proposed. The first instance of
using isogenies in cryptography was independently found by Couveignes [22] and Rostovtsev and
Stolbunov [49]. These proposals work over a field Fq of ordinary elliptic curves. As described in
Section 3.1.1 In ordinary elliptic curves, the ideal-class group cl(O) is commutative and acts freely
and transitively on the set of elliptic curves that haveO as its endomorphism ring. While the results
seemed promising, there were two major drawbacks: first, it can be solved by the abelian hidden
shift problem. Secondly, it is extremely slow. Completing a 128-bit secure key exchange takes
minutes on normal computers. In 2018, a new key-exchange was proposed, CSIDH, [CSIDH],
based on the CRS method, that adapts this method to supersingular curves and uses a part of
the endomorphism ring that is commutative as described in Section 3.1.1, so one can use it as a
commutative scheme. The main benefits compared to SIDH are that there is no need to using
auxiliary points, which may prove vulnerable to attacks, and that it can be used as a static key
exchange. Its keys are smaller, and it is easy to validate public keys without fear for the active
attack described in Chapter 7. In this section we will briefly describe the CSIDH protocol.

First we note that the Hard Homogenous Spaces as described in Section 2.5 give way to a
Diffie-Hellman style key exchange: Alice and Bob agree on a element in a set s ∈ S. They have
private keys a, b ∈ G. Their public keys are given by a ∗ s and b ∗ s, their shared secret key is
ab∗ s = a(b∗ s) = b(a∗ s). The hardness assumptions given in Section 2.5 make that this is indeed
a good Diffie-Hellman key exchange.

As described in Section 3.1.1, we can see the isogeny class action

cl(O)× `p(O, π)→ `p(O, π)

[a] ∗ E 7→ [a] ∗ E

as a free and transitive action. Also, from [12] it follows that E is a supersingular curve with
cl(O) as a subgroup of its endomorphism ring. Together with hardness properties as described in
[12] that are required as stated in Section 2.5, this makes that we can see the ideal class action
as described in Section 3.1.1 as a hard homogenous space. We can thus use it as a Diffie Hellman
key exchange protocol. Below we will explain shortly the CSIDH protocol. For more details we
refer to to the original CSIDH paper [12].

Any ideal a ∈ cl(O), can be represented as a product of small prime ideals, as described in [12].
Here it is also described that we can use Velu’s formulae of Section 3.5 to compute a larger ideal

42

l ∈ cl(O) if we know its composition into smaller prime ideals. Now to start the key exchange, we
first pick a large prime p = 4 · `1 · ... · `n − 1 where the `i are small distinct odd primes. It can
be proven that all these primes are Elkies primes. We pick a starting curve E0/Fp with a subring
of the endomorphism ring equal to Z[π], where π is the Frobenius morphism. We can then find
ideals l in the ideal-class group of the following form

l =
∏
i

leii .

We can expect different ideals of this form but with different parameters ei to be in different
classes of cl(O) almost always (see [12]). Assume we pick the ei from a range {−m, ...,m}. We
can then describe the ideal l as a vector (e1, .., en).

For the key exchange, we now have a prime p and a starting curve E0. For private keys, Alice
and Bob pick a secret vector (e1, ..., en) and (e′1, .., e

′
n) from a range {−m, ...,m}. They are then

able to compute ideal classes [a], [b] with [a] = [le11 , .., l
en
n]. Alice and Bob now compute Ea = [a∗E]

and Eb = [b ∗ E]. Their public keys are A and B, the unique values representing their curves
as given in Theorem 3.1.11. To verify that the keys they received from eachother are honestly
generated, they can verify if the curve of the other lies in `p(O, π). An algorithm for this is given
in [12]. For the shared secret key, they compute E1 = [a][b] ∗ E0 = [a]Eb. The secret key is then
the value S representing E1. The key is the same since cl(O) is commutative and S is unique due
to Theorem 3.1.11.

There are similarities and differences between CSIDH and SIDH. It uses the same Velu formula
to compute its keys, but needs no auxiliary points to make the diagram commute. We will see
in the Chapter 6 that there are even more similarities between B-SIDH and CSIDH, where both
protocols work with different small prime degree isogenies.

43

5. Smooth primes

This chapter treats a specific kind of prime numbers, B-smooth primes, and describes a method
to systematically find these prime numbers, that has not been used before in cryptography to
find new smooth prime numbers. The definition for a B-smooth prime is derived from B-smooth
numbers. A number is called B-smooth if it has no prime divisors larger than B. A number is
often called smooth if it is B-smooth for a sufficiently small B.

Definition 5.0.1. A B-smooth prime is a prime number p such that both p − 1 and p + 1 are
B-smooth.

For instance, p = 10635661441913127573799 is a 150-smooth prime, as p+ 1 = 23 · 52 · 79 · 112 ·
192 · 412 · 131 · 137, and p− 1 = 2 · 34 · 134 · 29 · 67 · 71 · 73 · 103 · 107 · 139 · 149.

The task of finding large smooth primes is not an easy one. The fastest methods currently
known first find smooth neighbours. A pair of numbers m,m+ 1 is a B-smooth neighbour pair if
both m and m + 1 are B-smooth. A smooth prime numbers is found by multiplying the smooth
neighbours by two and checking if 2m + 1 is a prime number. Large smooth neighbours are
rare, as described in Section 5.1, and there is no efficient way of computing them. In literature,
there exist complete lists up to 200-smooth neighbours. Smooth neighbours can be found solving
Pell equations, as described in Section 5.3 below. The drawback of this is that the amount
of computations needed grows exponentially as the smoothness bound increases. In this paper
we explore another option of finding smooth neighbours using the extended smooth neighbour
technique.

5.1 Prevalence of smooth neighbour pairs

If we want to find a smooth neighbour pair m, m + 1, we can translate this to finding a smooth
number m · (m+ 1). Finding such a pair depends on the availability of B-smooth numbers.

Definition 5.1.1. The amount of B-smooth numbers m, with m at maximum N , is given by

Ψ(N,B) = #{1 ≤ m ≤ N : m is B-smooth.}.

There is no exact function to compute Ψ(N,B) for all N,B ∈ Z. There are multiple estimations
on Ψ(N,B) in literature, of which the Dickman-rho function as given in Theorem 5.1.2 below, is
one of the most used.

Theorem 5.1.2 (Dickman-rho function). For the amount of smooth numbers Ψ(N,B) there
exists a function φ(u) such that

Ψ(N,N1/u)

N
∼ ρ(u) as N →∞.

For u > 1 φ(u) is defined by

ρ′(u) = −ρ(u− 1)

u

44

B Ψ(2128, B) Ψ(2129, B) Ψ(2129, B)−Ψ(2128, B) (Ψ(2129, B)−Ψ(2128, B))/2128

100 1.26263 · 1011 4.95798 · 1011 3.69534 · 1011 ·1.08596 · 10−27

200 1.58239 · 1016 1.76536 · 1016 1.82970 · 1015 5.37705 · 10−24

300 2.55764 · 1018 3.07853 · 1018 5.20891 · 1017 1.53076 · 10−21

400 5.75545 · 1019 7.06651 · 1019 1.31105 · 1019 3.85285 · 10−20

500 5.19236 · 1020 6.54362 · 1020 1.35078 · 1020 3.96960 · 10−19

600 2.75653 · 1021 3.51636 · 1021 7.59831 · 1020 2.23294 · 10−18

800 3.12884 · 1022 4.09757 · 1022 9.68738 · 1021 2.84686 · 10−17

1000 1.73856 · 1023 2.83710 · 1023 1.09854 · 1023 3.22832 · 10−16

2000 1.72242 · 1025 3.42890 · 1025 1.70648 · 1025 5.01489 · 10−14

5000 2.02014 · 1027 4.02079 · 1027 2.00064 · 1027 5.87937 · 10−12

10000 3.59283 · 1028 7.17787 · 1028 3.58503 · 1028 1.05354 · 10−10

15000 1.54649 · 1029 3.06992 · 1029 1.52342 · 1029 4.47693 · 10−10

Table 5.1: Estimation of the amount of B-smooth prime numbers between a = 2128 and b = 2129

and the probability that a number between a and b is B-smooth for different values of B.

Proof. See [23] Theorem 1.4.9.

We can make an estimate for the upper bound of the chance that m+ 1 is B-smooth when we
know m is B-smooth as follows. We compute

C = (Ψ(b, B)−Ψ(a,B))/(b− a)

for a, b suitable close to each other, and such that a ≤ m ≤ b. C then gives us the probability that
any number m ∈ [a, .., b] is B-smooth, so in particular, it gives an upper bound for the chance
of m + 1 being B-smooth if we know m is B-smooth. In an ideal situation, we would be able to
compute Ψ(a,B) and Ψ(b, B) as exact as possible, as we would have

D = #B-smooth m = Ψ(b, B)−Ψ(a,B), for a ≤ m ≤ b.

But as described above, we unfortunately only have approximations for Ψ(b, B). Table 5.1
shows computed values using the Dickman-rho function to give an estimation for C and D for
different values of B, taking a = 2128 and b129 to give an upper bound on how hard it is to find a
B-smooth neighbour pair in the range of 2128. The values are computed using the dickman rho
function of Sage. We can see that the chances are quite small for encountering B-smooth numbers,
as expected, but the changes increase rapidly when B-gets larger. For B ∼ 15000, a smooth prime
of bitlength 253 has been found, see Section 5.4. Up until B = 100, (most probably) all smooth
neighbour pairs are published in [38], and we know no smooth neighbour pair of around size 2128

exists, the largest pair having bitlength 65.
What Table 5.1 shows us is that the chance of finding a B-smooth number is small, and

increases significantly when we make B larger. It is hard to say how the numbers given in Table
5.1, an upper bound for the amount of smooth neighbour pairs, relate to the actual amount of
smooth neighbour pairs. But these numbers can give us a comparison on how hard it is to find
a B-smooth neighbour pair in relation to other smoothness bounds. We can also clearly see from
these upper bounds that finding a B-smooth neighbour pair is not an easy task, and it may very
well be that throughout the years improved methods for finding them will be discovered, and
larger smooth primes be found.

5.2 Use in cryptography

As explained in section 3.2, for every supersingular elliptic curve E defined over Fp2 , there exists
a twist E′, such that E(Fp2) = Zp−1×Zp−1 and E′(Fp2) = Zp+1×Zp+1 or vice versa. To feasibly
compute isogenies using both twists, p− 1 and p+ 1 must both be smooth to a certain extent, as

45

isogeny computations become a lot more expensive as their degree becomes larger, as described in
3.6. [16] proposes a cryptographic protocol called B-SIDH using both twists, and will be discussed
in section 6. The advantage is that in SIDH the torsion groups have order ≈ √p, and in B-SIDH
the torsion groups have order ≈ p, meaning that quadratically smaller primes can be used to
achieve the same level of security.

Thus, for the B-SIDH protocol to be applicable in real life cryptography, a smooth prime p
with bitlength around 250 is needed. There is no strict smoothness bound for the prime, but as
shown in Section 3.6, the costs of computing a larger degree isogeny grow in size quite quick, with
costs of different isogeny degrees given in Section 6.7. Ideally one would therefore have prime
degrees of maximum smoothness bound B = 1000. No such prime is known at this moment. We
tried to find a large enough prime using the extending neighbours method as described in Section
5.5. The results are described in Section 5.8. Before we go to the extending neighbours method,
we first describe two other methods that can be used to find prime numbers, Lenstra’s method
and the PTE method.

5.3 Lenstra’s method

A standard way of computing smooth neighbours is by using Størmer’s theorem [52]. This theorem
proves that for every smooth bound B, there are only finitely many pairs S, S + 1 that are B-
smooth. Also there is an explicit way to find all of these numbers using the Pell equation.

Theorem 5.3.1 (Størmer). Let q1 < q − 2 < ... < qm be a given set of m primes, and let Q be
the set generated by them. Let Q′ be the subset of all square-free members of Q. Let S be an
integer such that both S and S + 2 belong to Q. Then S = xn − 1 where (xn, yn) is a solution of
the Pell equation

x2 −D · y2 = 1 (5.1)

in which 1 < D ∈ Q, 1 ≤ n ≤ qm−1
2 , yn ∈ Q.

Proof. See [52].

To solve the Pell equation, a normal method is to use continued fraction, as described by [37].

5.3.1 Continued fraction

A continued fraction is a way of representing a number r ∈ R by an infinite fraction.
Any square root

√
x can be written as follows

√
x = 1 +

x− 1

1 +
√
x

This gives for a continued fraction

√
x = 1 +

x− 1

2 +
x− 1

2 +
x− 1

2 + · · ·
Continued fractions for square roots are cyclic, which means that after a certain period the

fractions start to repeat themselves. This is the case since the group of units of Z[
√
d] is the

product of ±1 and an infinite cyclic group. For
√

14, the cycle has length 4 as is shown in 5.2

√
14 = 3 +

1

1 +
1

2 +
1

1 +
1

3 +
√

14

(5.2)

46

To find a rational approximation for
√
x, one can truncate the continued fraction after the

first cycle. For the case x = 14, this would mean setting 1
3+
√

14
= 0 in the lowest fraction.

This gives 15
4 = 3.75 as an approximation for

√
14 ≈ 3.7416. This first solution is called the

fundamental solution. Other, more precise, solutions can be found by truncating at a later point
in the continued fraction.

5.3.2 Pell equation

To solve a Pell equation x2−D · y2 = 1, one can rewrite the equation to (x+
√
dy)(x−

√
dy) = 1.

Then applying the continued fraction method as described in the previous section, gives a fraction
a
b as an approximation for

√
d, and by setting x = a, y = b this gives the first solution, the

fundamental solution, to the Pell equation. Indeed 152 − 14 · 42 = 1. All other equations can be
found using the following

xn + yn
√
d = (x1 + y1

√
d)n

Lenstra’s algorithm using continued fraction to solve the Pell equation is given in algorithm 11

Algorithm 11 Lenstra’s Simple Continued Fraction method

Result: A list of numbers xi such that xi and xi + 1 are B-smooth
Create list of primes X = {qi := q1 < q2 < ... < qn = B, qi prime}
for qi in X do

D = qj11 · ... · qjnn , for ji ∈ {0, 1}
Solve Pell equation x2 −D · y2 = 1 to obtain (x1, y1)
x2 −D · y2 = (x+

√
dy)(x−

√
dy) Write

√
d as continued fraction until first cycle is reached.

Replace
√
d with 1 in the fraction, set fraction as a

b . (x1, y1) = (a, b) for p < qn/2 do
xp = x1xk + ny1yk
yp = x1yk + y1xk
if yp is B-smooth then

(xp − 1, xp + 1) are B-smooth

end

end

end

5.3.3 Costs of Lenstra’s method

As described in [37], the cost of the continued fraction method is at most
√
d(1 + log(d))c for

a certain c independent of d. Most importantly, it is exponentially slow and will fail to run in
polynomial time. Unfortunately, this means that currently to compute B-smooth neighbour pairs
for B rapidly becomes infeasible for B > 150.

5.4 PTE-Method

A paper by Costello et al. [19] approaches the search to new smooth primes differently. In this
section we’ll shortly explain this approach and their most important findings The method is based
on solving the Prouhet-Tarry-Escott (PTE) problem, where for multisets {a1, ..., an}, {b1, ..., bn}
the following equation hold for all 0 ≤ i ≤ n− 1:

ai1 + ...+ ain = bi1 + ...+ bin.

These multisets then give rise to polynomials

a(x) =

n∏
i=1

(x− ai) b(x) =

n∏
i=1

(x− bi).

47

It is proven that a(x) and b(x) will differ only by a constant C ∈ Z. If you then can find ` ∈ Z
such that a(`) ≡ b(`) ≡ 0 mod C, then you have that a(`)

C −
b(`)
C = 1. Thus a(`) and b(`) are the

smooth neighbours we are looking for.
This method resulted in the best bound B < 215 so far for a prime p within the range 2240 <

p < 2256. One of the successful prime numbers found is

pPTE = 2653194648913198538763028808847267222102564753030025033104122760223436801,

with a bitlength of 241 and a smoothness bound of B = 32029. The prime of its neighbours are
given below.

pPTE − 1 = 212 · 52 · 72 · 112 · 132 · 17 · 29 · 31 · 43 · 53 · 103 · 113 · 181 · 191 · 211 · 277 · 557

·1093 · 2663 · 2897 · 3347 · 4783 · 7963 · 8623 · 9787 · 19841 · 31489

pPTE + 1 = 2 · 32 · 232 · 412 · 712 · 832 · 9192 · 11172 · 11632 · 12372 · 65712 · 119272 · 186372 · 320292

The main difference between this method and the others described in this section is that it
calculates the probability to find a smooth neighbour pair using specific parameters in a search
space, and using optimised parameters searches this search space until a satisfactory prime is
found. As described in [19], the probability of finding new smooth neighbours using the PTE-
method is higher than any other method used so far for prime numbers of the desired bitlength.
The other two methods described in this chapter work with building a larger and larger set of
smooth neighbours, with not the aim to find numbers of a specific length, but to find as many
B-smooth neighbours as possible. This makes them slower and not applicable to specific search
spaces, only by increasing B over time. The benefit there is that you get a more comprehensive
list of B-smooth primes, which can give better results if you want to keep B as low as possible.

5.5 Extending neighbours method

In this section we will describe a new way of finding smooth prime numbers, that has never been
used in such a way before. It is based on a method described in [15]. The idea is to start with a
set of B-smooth numbers X, and to expand this set by finding smooth neighbours using already
found smooth neighbours. First we will explain the algorithm, then we will describe the results
and give an estimation for the complexity of the algorithm.

Assume we start with a set of numbers X = {1, ..., B}. These numbers are all B-smooth. Then
take all pairs (a, b) ∈ X2 and compute

a

a+ 1
· b+ 1

b
=
c

d
,

with c and d coprime. It is clear that both c and d are B-smooth. To find a smooth neighbour
pair, check if d = c + 1. If this is the case, add c to X. This way a new set X(1) is created,
that is the union of X and all such numbers c. Then iterate this process until for a certain n,
X(n) = X(n+1). The theorem below proves that all smooth neighbours can be found using this
method.

Theorem 5.5.1. Given any B-smooth neighbour pair c, c+ 1, there exist a, b such that

a

a+ 1
· b+ 1

b
=

c

c+ 1
. (5.3)

Proof. Assume u|c, v|(c+ 1) and u < v. Then write for a and b:

a = c− u

v
(c+ 1), b =

v

u
c− (c+ 1).

48

One can easily verify that a and b satisfy equation (5.3):

a

a+ 1
· b+ 1

b
=

c− u
v (c+ 1)

c− u
v (c+ 1) + 1

·
v
uc− (c+ 1) + 1
v
uc− (c+ 1)

=
(c− u

v (c+ 1))(vuc− (c+ 1) + 1)

(c− u
v (c+ 1) + 1)(vuc− (c+ 1))

=

c(vuc− 2c+ u
v (c+ 1)− 1)

(c+ 1)(vuc− 2c+ u
v (c+ 1)− 1)

=
c

c+ 1

The process is described as an algorithm below.

Algorithm 12 Using near 1 division to find new smooth neighbour pairs

Data: A list of B smooth numbers X0 = 1,, B.
Result: A list of numbers xi such that xi and xi + 1 are B-smooth
while X(i) 6= X(i+1) do

for x, y in X(i), x < y do

if x
x+1 ∗

y+1
y = z

z+1 for a certain z ∈ Z then

X(i) = X(i) ∪ z
end

end

X(i+1) = X(i)

end

This algorithm works remarkably well, for the following reason. Computing the fractions gives

x

x+ 1
· y + 1

y
=
xy + x

xy + y

This provides a smooth neighbour pair in the case that either y − x = 1, or when y − x|xy + x
and y − x|xy + y. The last case is true because we have xy + x = k · z, xy + y = k · (z + 1), for a
constant k ∈ N, and combining the two equations gives xy + y = xy + x+ c, so c = y − x. So for
specific instances of x and y, this always returns a smooth neighbour pair.

Note that this method does not return a complete list of all B-smooth numbers. For instance,
to find the largest 97-smooth number z, this method requires at smallest the use of two 227-
smooth neighbours x and y [15]. This is possible since in the fraction both parts are divisible by
227. However, it does find almost all B-smooth numbers. Of the 13, 374 97-smooth neighbours,
only 37 were not found using X = {1, ..., 97} as starting set.

5.6 Costs of extending neighbours method

This algorithm is faster than Lenstra’s method. It requires O(n2) multiplications for n the number
of elements of the last set. The values of n for different values of B are described in Table 5.2.
Using the methods described in Section 5.6.1 the algorithm is optimised, causing the CPU time to
be as low as possible. In Figure 5.1 the real computational costs are shown and compared to the
n2 maximum multiplications. Unfortunately the data in computing the CPU time is incomplete,
as for the last part from B = 500 to B = 560, the running time took so long the computer
automatically reset itself, not saving the CPU time for the first part it ran. Because of the long
run time of several weeks, it was decided not to rerun the algorithm to obtain this data. What
we can see in Graph 5.1 is that the algorithm is nearly exponential, while the value n2 grows less
then exponential. One possible explanation for this is that due to the optimisations proposed in
Section 5.6.1, relatively more pairs are compared for larger values of B than for lower values, as
there are more pairs (x, y) that fit in the bound x ≤ 2y. Therefore, there is a proposal for another

49

optimisation of the algorithm, to make it run faster for larger smoothness bounds B by setting
to set even more restrictions on the value y/x during the running of the algorithm. So one could
for instance set limits on the set size n, and when a certain limit is reached when running the
algorithm, so when at least a specific amount M of smooth neighbour pairs is being compared,
the maximum value y/x is set to be even smaller. You could start with for instance y/x = 2, and
decrease it to smaller values, eventually even reaching small values like y/x = 1.1. Currently, a
team from Microsoft research is looking into the possibilities this provides.

value of B value of n value of n2

50 1495 2, 23 · 106

100 16096 2, 59 · 108

150 85291 7, 27 · 109

200 343808 1, 18 · 1011

250 922864 8, 52 · 1011

300 2268166 5, 14 · 1012

350 5196435 2, 70 · 1013

400 12352868 1, 53 · 1014

450 25222339 6, 36 · 1014

500 47348072 2, 24 · 1015

550 80533790 6, 49 · 1015

Table 5.2: Size of n for different smoothness bounds

100 200 300 400 500

101

102

103

104

105

106

107

Smoothness bound B

cl
o
ck

ti
m

e
on

C
P

U

Comparing smoothness bound to clock time

(a) Costs of extending neighbours method for
different values of B. Here the next step to Bi+1

is always taken with the set of Bi-smooth primes
precomputed

0 100 200 300 400 500 600

106

108

1010

1012

1014

1016

Smoothness bound B

n
2

Comparing smoothness bound to n2

(b) Value of n2 for different smoothness bounds
B, as given in Table 5.2, where n is the total
amount of smooth neighbour pairs found.

Figure 5.1: Comparing expected maximum amount of computations n2 to the real CPU times
when running the extended neighbour algorithm.

5.6.1 Reducing the amount of computations

One measure to reduce the amount of computations is described below.
We have

(y − x)|((x+ 1)y), (y − x)|((y + 1)x).

50

Also, y, y + 1 are coprime, so the chance that (x+ 1) · y and (y + 1) · x are divisible by the same
number r decreases rapidly for increasing size of r. We can see in real-life results this means that
almost for all successful attempts of finding a smooth neighbour pair, x ≤ y ≤ 2x. In 5.2 the
distribution for x relative to y is given. One may even argue to reduce these boundaries further
to x ≤ y ≤ 1.5x.

Figure 5.2: ratio x to y for pairs creating 59-smooth neighbours

To see the impact applying this measure has on the total of neighbour pairs found and the
speed improvements, we have run the program for different restrictions on the compared values
(x, y) for different smoothness bounds B. In Table 5.3 the main differences are shown. It is clear
that when we are not putting any restrictions on the comparison of values the CPU time increases
significantly, for B = 200 it is already a 40-fold increase compared to restricting x ≤ 2y, while there
is only a 0.4% increase in smooth neighbour pairs found. This justifies our restriction to compute
only pairs (x, y) that lie significantly close to each other. The differences between x ≤ 1.5y and
x ≤ 2y are less significant, and for now we chose to keep the boundary x ≤ 2y, as it gives more
smooth neighbour pairs for a small increase in costs.

B x ≤ 1.5y x ≤ 2y no restrictions
50 15 15 9
100 37 37 125
150 160 189 3437
200 1193 1736 67781

(a) CPU time for different runs of the extending
neighbours algorithm, for different smoothness
bounds B and restrictions on comparing pairs
(x, y).

B x ≤ 1.5y x ≤ 2y no restrictions
50 1495 1496 1497
100 16037 16049 16093
150 85157 85284 85513
200 342770 343495 344867

(b) Number of smooth primes found for different
runs of the extending neighbours algorithm, for
different smoothness bounds B and restrictions
on comparing pairs (x, y).

Table 5.3: Comparing the improvent of restricting the amount of pairs (x, y) compared versus the
reduction in B-smooth neighbour pairs found for different values of B

51

5.7 Finding large smooth prime numbers

In this section we will discuss the search for large prime numbers and our results. We ran the
algorithm given in [11] on the Dagobert computer of the ICIS institute at Radboud University.
This computer has 4 E7-4870 v2 processors, of which we were able to use half. The algorithm was
optimised by Giacomo Bruno. With this algorithm we were able to compute up to 560-smooth
neighbour pairs, which took around 2 months. In total, we found 87026090 560-smooth neighbour
pairs, of which 8368969 resulted in a smooth prime number. In this section we will first show the
highest primes and smooth neighbours we found, then analyse the overall data gathered and give
an estimation for future successes.

5.8 Finding new smooth primes

The largest smooth neighbour pair we found was 123-bit large. It is given by m, m+ 1 with

m = 8967051361159679709850013219990517200.

Unfortunately, the largest 6 neighbour pairs found did not yield any smooth prime numbers.
The largest smooth prime found is

pEN = 206563233444570751827239872749937601, (5.4)

which is 449-smooth and has a bitlength of 118. Its neighbours are

2 · 34 · 112 · 292 · 372 · 432 · 472 · 1272 · 1572 · 1932 · 3892 =

206563233444570751827239872749937602,

and

26 · 52 · 132 · 172 · 23 · 53 · 89 · 151 · 271 · 277 · 307 · 317 · 331 · 353 · 421 · 449 =

206563233444570751827239872749937600.

This is around half the required size of bit length 240 that is needed for B-SIDH primes in the
current security standards required.

In Figure 5.3 the highest smooth neighbours and highest prime for different runs of the algo-
rithm with smoothness bound B are shown. This is not necessarily the highest prime/neighbour
found that has a smoothness bound of B, as it may be that some neighbours with a smoothness
bound B are only found when running the algorithm for a higher smoothness bound C < B, as is
described earlier in this section.

We see that in the beginning, there is an almost exponential increase in the size of the largest
smooth neighbour and smooth prime found. Around B = 450 the curve flattens quite fast. This
is also around the time where the computation time needed for the algorithm to complete became
significantly longer, taking days or weeks to complete. Another important thing to notice is that
the largest prime numbers found are significantly smaller than the largest neighbours found. This
is due to the fact that only around 10% of the neighbour pairs produces a smooth prime. As we
can see in Figure 5.4, where the largest 100 values per run of the algorithm are plotted, there are
per round usually a few neighbours that are significantly larger than the rest, and the chance of
one of those neighbour pairs resulting in a smooth prime is therefore small. however, sometimes
we get lucky. This is what happened for prime pEN , that has a smoothness bound of 449. It can
be seen in Figure 5.4 that this point is significantly larger than is to be expected. This is what
happens when the largest neighbour pair found does result in a smooth prime. This is promising
for the future, as it is expected that this will happen in around 10% of the cases. While Figure

52

0 100 200 300 400 500 600
1010

1017

1024

1031

1038

Smoothness bound B

m
ax

im
u

m
n

ei
gh

b
ou

r

Largest neighbour found per round

(a) For each run with the algorithm on a start-
ing set {1, ..., B}, the largest smooth neighbour
pair is shown. It may be that a B smooth neigh-
bour is found only while running the algorithm
for bound C > B.

0 100 200 300 400 500 600
107

1014

1021

1028

1035

Smoothness bound B

S
iz

e
of

la
rg

es
t

p
ri

m
e

Largest primes per round

(b) For each run with the algorithm on a start-
ing set {1, ..., B}, the largest smooth prime is
shown. It may be that a B smooth prime
is found only while running the algorithm for
bound C > B.

Figure 5.3: Highest prime numbers and smooth neighbours found for specific smoothness bounds
B.

5.3 shows a more negative picture on the growth size, we can see that in case that we find such
an outlier again, the largest prime found can increase in size rapidly.

As mentioned before, the largest B-smooth prime may be found when running the algorithm
for a larger smoothness bound C > B. It is interesting to see the difference between the highest
prime found per round and the highest prime per B overall. If there is a large difference between
the two, it is (if computational time and space allow) interesting to look for a large B-smooth
prime with a larger search bound C, and then disregard the primes that are not B-smooth. In
Figure 5.5 we can see that for almost all smoothness bounds B below 400, we find a higher value
for the largest smooth neighbour and/or the largest prime. This indicates that quite a few large
B-smooth neighbours are found by searching on bigger bounds, as the chance of a finding a smooth
prime is quite low, as discussed above. For the smoothness bounds B larger than 400 there are
no larger values found, which is within expectations as there are fewer bounds C > B that have
been searched that could possibly result in larger B-smooth values. But overall, the results are
almost never significantly higher when the larger smoothness bounds are included. This means
that if you want to find a large B-smooth prime, it is usually sufficient to look with smoothness
bound B.

Another interesting question to look into is the distribution of the smooth neighbour pairs and
primes for a smoothness bound B. We plotted the density distributions for smooth neighbours
found for different runs of the algorithm for a smoothness bound B in histogram plots in Figure
7.1, given in Appendix A. Both axis are on logarithmic scale. For the y axis this is because this
way we can show more clearly the largest values found, as there are usually only few and on a linear
scale this would hardly be visible. For the x-axis this is again because of the outliers, as the largest
result may be 10 times as large as the second-to-largest value found, skewing up distribution. Also,
this way we can better visualise the bounds where we expect to find the most B-smooth primes.
So note that while Figure 7.1 shows a bell curve, the median of the values is actually more to
the right of the data. We made the same plots but then for B-smooth primes in Figure 7.2, also
given in Appendix A. We can see that the B-smooth primes found follow have the same density
distribution as the B-smooth neighbours found, indicating a uniform chance of a number being
prime. Furthermore we see some outliers on the right, which match with those seen in Figure 5.4.

53

(a) Highest values found for smooth neighbours
per smoothness bound B

(b) Highest values found for smooth primes per
smoothness bound B

Figure 5.4: Per run of the algorithm for a smoothness bound B, the 100 highest primes and
neighbours.

0 100 200 300 400 500 600
1010

1017

1024

1031

1038

Smoothness bound B

S
iz

e
of

la
rg

es
t

n
ei

gh
b

ou
r

Largest neighbours per smoothness bound

Highest in total
Highest per round

(a) In total the largest smooth neighbour pair
for each smoothness bound B.

0 100 200 300 400 500 600
107

1014

1021

1028

1035

Smoothness bound B

S
iz

e
of

la
rg

es
t

p
ri

m
e

Largest primes per smoothness bound

Highest in total
Highest per round

(b) In total the largest smooth prime for each
smoothness bound B.

Figure 5.5: Largest smooth neighbour pair and prime for each bound B. These values were usually
found for running the algorithm with a smoothness bound C > B.

As all these graphs have a normal distribution, it is expected that for larger smoothness bounds B,
this will still be the case, and we can keep expecting high outliers. What these graphs also show
is how many large smooth prime numbers there are, just a bit smaller than the largest smooth
primes found. Maybe this is currently not relevant for B-SIDH, but there may be instances where
large smooth prime numbers are needed of lower bit length than 240, and this data shows that
the extending neighbours method will provide plenty examples. Who knows what applications
this will have in the future. And if there are some computational speed-ups and we are able
to run this algorithm for significantly larger B, this will also for cryptographic purposes provide
plenty of choice for the prime p needed, which is interesting due to implementation optimalisation
requirements (see Section 6.7 for an example of this). Not only for B-SIDH, but maybe also for
SQIsign [26] this may be interesting.

The graphs of Figure 7.1 seem to indicate a certain bound on the size of B-smooth neighbours.
While there may be some outliers, almost all numbers stay lower than a specific bound. This
raises an interesting question on whether this is a universal property for all B-smooth primes, and
whether we can establish this bound. While that research goes beyond the scope of this thesis, it

54

is highly relevant for future searches for smooth primes for B-SIDH.
To make a start with this, we did a regression analysis on a possible expected largest smooth

neighbour and smooth prime to be found for smoothness bound B. The results are shown in
Figure 5.6. From 5.4 it can be seen that the size of the largest B-smooth prime numbers does
not increase linearly compared to B. However, making a regression analysis can be quite tricky,
so we chose to make a linear regression analysis to provide an upper bound for the expected size
of a 1000-smooth prime number. Since the dataset of only the largest prime/neighbour itself is
quite small, we took the 100 largest primes/neighbours for different values of B. The results are
computed using the numpy linear regression function.

(a) A linear regression analysis for the largest prime
of smoothness bound B = 1050.

(b) A linear regression analysis for the largest
neighbour pair of smoothness bound B = 1050.

Figure 5.6: Linear regression analysis for smooth neighbours and smooth primes up until smooth-
ness bound B = 1050 using as data the 100 largest values for specific smoothness bounds B.

As we can see from Figure 5.6, a maximum estimation for the largest smooth neighbour pair
m,m+ 1 would be around size m = 1050, with possible outliers until m = 1052. An estimation of
the largest smooth prime would be around p = 1046. This corresponds to a prime of bit length
152, nowhere near enough for being useable in a B-SIDH key exchange. To make an estimation
on the minimum bound B so that we could use the B-smooth prime p for B-SIDH, we made a
larger regression analysis, as shown in Figure 5.7. We assumed here that a minimum bit length of
230 would be required, corresponding to a 68-digit prime number.

(a) A linear regression analysis until smoothness
bound B = 1750 for smooth neighbours.

(b) A linear regression analysis until smoothness
bound B = 1750 for smooth primes.

Figure 5.7: Linear regression analysis for smooth neighbours and smooth primes to find an upper
bound for a 68-digit smooth prime.

55

Here the limitations of our analysis clearly show, as in Figure 5.7a the estimated size of the
largest smooth neighbour pair of smoothness bound B = 1750 is around 1077, while for the largest
smooth prime this smoothness bound correspond to an expected size of 1068. But as we are giving
an upper bound here, not an exact estimation, we can still say that we do not expect to find a
prime suitable for B-SIDH key exchange that is smoother than 1750-smooth.

5.8.1 Conclusion on the extending neighbours method

As a conclusion, this method initially proved very promising in finding new smooth primes. It is
a lot faster than using Lenstra’s method, and has as great benefit that it builds up from previous
results, so you do not need to compute sets of smooth neighbour pairs again. It is also very
complete, while not as complete as Lenstra’s method it manages to give a comprehensive list of
smooth neighbour pairs. When this method is run for large enough starting sets, it can give a
clear indication of the expected bit lengths of B-smooth primes for a specific B. In the search
for smoother primes this can be a great asset. Also, if there is access to a faster computer, the
search for B-smooth primes with B larger could be continued. We do not expect to find any
250-bit primes with this method, but at least 150-bit primes should be a reasonable estimation.
As discussed in Section 5.6.1, the difference between a and b could be investigated further. Now
our computing capacity didn’t allow us to research this for larger primes, but we think this could
be really valuable information.

However, in the end, even with many improvements made to the algorithm, it still has exponen-
tial growth. And while we hoped that the costs were low enough to make computations possible
for at least until B = 1000, at B = 500 our supercomputer reached its maximum capacity. After
this value it took almost a week already to compute the next neighbour pairs with smoothness
bound B = 520. Also the results were no longer as promising as in the beginning, as is shown in
Figure 5.2. In the end we hoped to find at least one prime number with at least a bitlength of 128,
but so far this has not happened. A few things are here to consider. The algorithm itself is still
very valuable in finding smooth neighbour pairs, as it managed to find a stunning 87026090 pairs
of smoothness bound B = 560. If there is a wish to continue the search for large smooth neighbour
pairs, this method could be used, albeit it being on a significantly faster computer. When looking
for smooth primes that can be used in B-SIDH key-exchanges, we advise to look for primes that
have a minimal smoothness bound of B = 1750.

56

6. B-SIDH

In this section we will treat an alternative to the standard SIDH protocol, using smooth primes.
We will first describe how to create a commutative protocol using twisted elliptic curves. Then we
will explain the adapted SIDH protocol, called BSIDH, that was introduced by Costello in [16].

6.1 Background on isogenies on twists of elliptic curves

6.1.1 Introduction

The standard SIDH protocol as described in SIKE uses primes of the form p = c · 2e · 3f ± 1. This
has advantages for calculating isogenies fast, as larger isogenies can be split into multiple smaller
computations using the prime factors of the isogeny, as described in Theorem 2.3.5. As seen in
Section 3.5, the smaller the isogeny, the cheaper the computation. In this chapter we will evaluate
the benefits and drawbacks of using more generalised isogenies with higher degree calculations, in
exchange for the opportunity of using smaller prime fields.

6.1.2 Generalised isogenies

As seen in Section 3.3.8, each j-invariant over F̄p2 is represented by E and its twist E′. In the
case of supersingular isogeny cryptography, the Frobenius traces of these curves are 2p and −2p,
such that #E(Fp2) = (p+ 1)2 and #E′(Fp2) = (p− 1)2. E and E′ are isomorphic over Fp4 . The
torsion groups are given by

E(Fp2) = Zp+1 × Zp+1

and
E(Fp2) = Zp−1 × Zp−1.

Over Fp4 , the torsion group becomes

E(Fp4) = Zp2−1 × Zp2−1.

The morphism mapping E to its quadratic twist E′ is

σ : E → E′, (6.1)

(x, y) 7→ (x, δy), (6.2)

for a δ ∈ Fp4 − Fp2 . This is a group morphism, but, as stated before, not an isogeny in Fp2 .
Assume P is a point (xP , yP) of E(Fp2), and Q is a point (xQ, yQ) of E′(Fp2). One could

compute the isogenies

φP : E → E/〈P 〉
φQ : E′ → E′/〈Q〉

but over Fp2 , one cannot compute

φP : E → E/〈Q〉
φQ : E′ → E′/〈P 〉,

57

as these points do not lie on these respective curves. However, it is possible to lift the process to
F4
p, in which Equation 6.1 is an isogeny. Setting φ′P = (φP ◦ σ), φ′Q = (φQ ◦ σ) this gives

φ′P : E → E/〈σ(P)〉 (6.3)

φ′Q : E′ → E′/〈σ−1(Q)〉 (6.4)

which are both well defined isogenies over Fp4 .

6.1.3 Kummer line

As described in Section 3.2, for all x ∈ Fp2 , either (x, y) ∈ E, or (x, y) ∈ E′ for a y ∈ F2
p, with

the exception of points of order 2. This means that like in SIDH, we are still able to represent a
point (x, y) using the Kummer line, as a point (x, y) ∈ E will still be unique as a point (x,−) on
the Kummer line.

It is easy to see that when working over the Kummer line, the map σ, as defined in the previous
section, acts as the identity map:

σ : (x,−) 7→ (x,−).

Thus we can lift the implementation to Fp4 without actually having to do any extra calculations.
This means that Alice can pick a point of the (p+ 1) torsion, Bob can pick a point of the (p− 1)
torsion, and without any extra computations they are able to exchange their public keys.

6.1.4 Isogeny graphs

As proven in 3.3.8, the isogeny graphs of two twists E and E′ over Fp2 are isomorphic, and both
are isomorphic to the isogeny graph of Fp2 . This means that to take a walk on an isogeny graph
of E is exactly the same as taking a walk on an isogeny graph of E′.

6.2 B-SIDH protocol

This protocol is introduced by Costello in [16]. The main difference compared to normal SIDH is
to let Alice and Bob operate on different quadratic twists of a curve E, so that they are working
on the p− 1 and p+ 1 torsion groups. This has as benefit that you can take much smaller primes
for computations, as normally Alice and Bob operate on torsion groups around size

√
p. The trade

off is that we can no longer cherry-pick primes with small degree prime factors for p+1, as we now
also need to take the prime factors of p− 1 into account. In Chapter 5 we describe the search for
suitable large primes. As described in Section 6.1.2, to work over two quadratic twists of a curve,
the process needs to be lifted to Fp4 . But, as explained in Section 6.1.3, this makes no difference
for implementation, as we compute over the Kummer line and disregard the y-coordinate.

6.2.1 Protocol

Alice and Bob agree on a prime p, with p+ 1 = pm1
1 · ... · pmk

k , and p− 1 = qn1
1qml

l as respective
prime compositions. Alice and Bob choose two points PA, QA and PB , QB that generate the p+ 1
and p − 1 torsion groups. Either 4 - (p − 1) or 4 - (p + 1). Since both torsion groups need
to be coprime (see 4.3.1), the points that generate the torsion group that is not dividable by
4 are multiplied by 2. They pick their secret integers rA, rB , and compute their secret kernels
〈PA+[rA]QA〉, 〈PB+[rB]QB〉. They compute their secret isogenies φA, φB as in the SIDH protocol,
and exchange the resulting curves EA = E0/〈PA+[rA]QA〉, EB = E0/〈PB+[rB]QB〉 and auxiliary
points φA(PB), φB(QA) and φB(PA), φB(QA). They compute their new secret kernels 〈φB(PA) +
[rA]φB(QA)〉 and 〈φA(PB) + [rB]φ(QB)〉. Using these kernels, they both compute their secret
isogenies again, and will then end up with curves EAB = EA/〈φA(PB) + [rB]φ(QB)〉 and EBA =
EB〈φB(PA)+ [rA]φB(QA)〉. These curves have the same j-invariant, that will be the shared secret

58

key. The protocol is explained schematically in figure 4.2, the same as used for the normal SIDH
protocol.

6.2.2 Proof of correctness

Theorem 6.2.1. The curves EAB and EBA are isomorphic.

Proof.

EBA = EA/〈φA(σ(PB)) + [rB]φA(σ(QB)〉 = E/〈σ(PB) + [rB]σ(QB), φA(σ(PB)) + [rB]φA(σ(QB)〉

and in the same way

EAB = E/〈σ(PA) + [rA]σ(QA), φB(σ(PA)) + [rA]φB(σ(QA))

Since in E(Fp4) σ is an isomorphism, when working over Fp4 this becomes equal to

EBA = E/〈PB + [rB]QB , φA(PB) = [rB]φA(QB)

EAB = E/〈PA + [rA]QA, φB(PA) = [rA]φB(QA)

Then, using a proof analogous of the proof of theorem 4.3.1, it can be shown that j(EAB) =
j(EBA). The only non-trivial part of the adaptation is that the orders of RA = PA + [rA]QA and
RB = PB + [rB]QB are coprime, but this is the case since we doubled the points that did not not
have order dividable by four, making their order an odd number. And since we work on the p+ 1
and p− 1 torsion, the orders cannot share any other prime divisor.

The implementation of the BSIDH protocol happens in Fp4 , but this is a mere technicality, as
we work over the Kummer line, where we do not take the y-coordinate into account. This way the
implementation of SIDH can be used, as long as Alice takes her points from the (p+ 1) torsion of
E, and Bob his points from the (p− 1) torsion of Et.

6.3 B-SIDH security analysis

The main security problems, as given in Section 4.5, remain the same for BSIDH compared to
SIDH.

• (Supersingular isogeny problem) Given a finite field K and two supersingular elliptic curves
E1, E2 defined over K such that #E1 = #E2, compute an isogeny φ : E1 → E2.

• (Endomorphism ring computation) Given an elliptic curve E defined over a finite field K,
compute its endomorphism ring. There could be made a small remark regarding the field
K, as in SIDH this is Fp2 , and for BSIDH this is Fp4 . At minimum, working over a larger
field should not make these problems harder.

In terms of random walks on isogeny graphs, there are two main differences. The first is that
the length of the random walk is around length p, meaning that it would be more random than
the walks in SIDH. A possible drawback may be the switching between isogeny graphs. But this
also happens in CSIDH [12] and CRS [49], and no security problems have come forward so far in
these protocols.

As BSIDH also requires the exchange of auxiliary points, it is vulnerable to active attacks, just
as SIDH. An adaptation of the attack by Galbraith and Petit [30] is described in Section 7. As is
shown there, this attack loses a lot of its strength due to the larger degree isogenies.

59

6.4 BSIDH usability

Is BSIDH an alternative for SIDH? As discussed in Section 6.3, there are no known security
drawbacks to using BSIDH in regards of security so far, and some benefits in regards to the length
of the random walks on isogeny graphs. Then there is one other important aspect to consider:
the costs. These are split between computation costs and key length. For key length BSIDH is
clearly an advantage, as the keys are directly linked to the size of the prime number, which is
quadratically larger in SIDH than BSIDH. The other aspect, computation cost, is the main issue.
For this we refer back to Chapter 5. For BSIDH to work, we need to have a smooth prime number.
The smoother the prime number, the cheaper the computation. Finding such a prime number,
however, is not easy, as is demonstrated in Chapter 5. The applicability of BSIDH therefore stands
or falls with the option of finding appropriate prime numbers.

One possible application of BSIDH is a server-client trade off. In a case where Alice has a
device with strong computational power, and Bob’s device’s power may be restricted, we can find
prime numbers of which one neighbour is a lot more smooth than the other, reducing computation
costs for Bob while increasing costs for Alice. This may be the case for instance where Alice is a
server, and Bob is a smartphone making a connection to that server. One instance of this will be
treated in Section 6.8.

In the rest of the chapter, we will look into one instance of such a trade off. Furtherore we will
look in detail in the B-SIDH algorithm, with a special focus on optimal strategies. We will also
compute the costs for computing a B-SIDH key exchange for different primes.

6.5 Optimal strategy for BSIDH

As described in Section 4.4, we can optimise large degree isogeny computation by splitting an
isogeny of length m = `k11 · ...`knn by sequentially computing isogenies `i.

φ = φ1 ◦ ◦ φn.

The main difference with SIDH is that we now compute the isogeny φ while the φj have different

degrees `i. We compute φ by making a list L = [`k11 , ..., `
km
m], and then computing first k1 `1 degree

isogenies, up until the end where we compute km `m degree isogenies. We have that n =
∑m
i=1 ki.

We compute the general isogeny

φ : E0 → EA = E0/〈R〉,

where for each step in between we compute

Ei+1 = Ei/〈[
m∏

j=r+1

`
ej
j · `

kr−s
r]Ri〉, i =

r∑
j=1

ej + s

So for each next isogeny we need to compute the Ri multiplied by the product of all degrees of
the isogenies yet to be computed.

In Section 4.4 an optimal strategy for SIDH is described, to make a balance between isogeny
computations and multiplication of the kernel point. The question now is how an optimal strategy
for BSIDH looks like, so how can we generalise the SIDH optimal strategy to work for a mix of
different degree isogenies. We will call a multiplication-based strategy one where we only compute
the minimum n isogenies, and in exchange do a lot of extra point multiplications. We call a
strategy balanced if we find an optimum between multiplications and isogenies. An example of a
really balanced strategy is given in Figure 6.1. For a complete multiplication-based strategy see
Figure 6.2.b.

For CSIDH and B-SIDH determining the strategy is largely the same problem, as in essence
it does not matter if we do isogeny computation or class action computation, in both cases we
need to find the same balance between multiplications and one other operation, for which that

60

Figure 6.1: Optimal strategy for Alice’s torsion for the prime p237.

multiplication is needed. So for B-SIDH we can take the same theory behind optimal strategies
that have already been researched for CSIDH, for instance in [13]. An adaptation to BSIDH of
their strategy is described below.

The optimal strategy for SIDH as described in Section 4.4 is in the basis really similar. The
main difference is that now there

For a fixed list of prime degree isogenies

L = [`1, ..., `n]

we compute an optimal strategy. Were we to change the order in L, we could get a different
strategy.

We will now compute the optimal strategy P (L) analogous to computing a SIDH optimal
strategy. Just like in Section 4.4 we use a recursive formula where we compute the cost of a larger
triangle by computing optimising over the cost of its smaller triangles. The difference is that the
costs of the triangle depends on the degree of the isogenies, so not every edge in our graph has the
same costs, where with SIDH we had fixed costs. In line with Equation (4.5) we define the costs
as

C(L) = min
i∈{1,...,n−1}

(C(Li) + C(Ln−i) +

n−i∑
j=1

q`j +

i−1∑
k=0

p`n−k
) (6.5)

Where qlj is the cost associated to computing a `-degree isogeny, and pln−j
the costs associated

to multiplication for `i. L
1 and L2 are disjoint sublists L1 = [`1, .., `i] and l2 = [`i+1, ..., `n] of L.

We can define the strategy for any list Lk,j = [`j+1, .., `k+j] as follows, where j ∈ {0, .., n− 1},
k ∈ {1, .., n}

P (Lk,j) = [s] catP (Lk−s,j+s) catP (Ls,j)

Where s is the i such that C(Lj,k) as defined in Equation 6.5 is minimal.

6.5.1 Order of list of prime numbers

So what is important is the order in which the isogenies are computed. Ideally, we could compute
the strategies for all different orders and pick the best one, but given the amount of different
primes involved in the computation, it is not feasible to take all orderings of prime numbers into
account when computing the optimal strategy, since as discussed in [13] this costs

n−1∑
i=1

i! ·
(
n

i

)
� 2n,

where n is the length of the list. This makes it infeasible to compute for large n, so that we
will have to make some educated assumptions on the order of the list. In the paper discussing

61

optimal strategies for CSIDH [13], it is assumed that using a list L with primes ordered from
small to big is the best option. But CSIDH uses relatively small primes, where in BSIDH primes
are larger and may differ wildly depending on the chosen prime. Therefore it is interesting to
discuss a few possible ”good” orderings of L that may give the best outcomes. Note that for
different primes, different orderings may work better, and don’t even have to be the same for Alice
and Bob, as the degrees of isogenies they compute is completely different. One important thing
to notice is that The last prime in the list should always be the highest, as we do not need to
compute xEVAL for the kernel points in the last round (see Section 6.7, and this way we omit the
most expensive xEVAL computations. Also it may be that for public key generation and shared
secret key computation, there is a inequality in costs for different strategies depending on the
ordering, as there are less xEVAL computations in the shared secret key computation, making a
more balanced strategy more favourable.

To test our theory we picked the following prime p237, that has a lot of large primes in its
torsion group for Bob and only few small primes. The difference between a standard CSIDH
prime and p237 is thus quite large, which makes it a good test prime to see the difference in prime
ordering for CSIDH and B-SIDH for optimal strategies.

p237 = 188098835761489939757482570291811148273499283258225940944664269318258687 (6.6)

Which has as torsion group for Alice

TA = 219 · 324 · 176 · 196 · 316 · 376 · 5312,

and as torsion group for Bob is equal to

TB = 7·13·43·73·103·269·439·881·883·1321·5479·9181·12541·15803·20161·24043·34843·48437·62753·72577.

We tried out many possible orderings for Bob’s list of primes and computed the strategies
and its costs for the key exchange, of which we found four interesting orderings that we want to
highlight specifically. They are described below. To demonstrate the importance of having the
highest prime last, as ordering five a complete high-to-low ordering is included. Here high-to-low
refers to the ordering of the primes based on their size.

1. From high to low: a complete multiplication based strategy, with the multiplications as
cheap as possible. The last prime is the highest.

2. From low to high: a strategy as balanced as possible

3. First the cheapest 5 primes ordered from low to high, then the other primes from high to
low. The last prime is the highest. This gives the same optimal strategy as list order 2.

4. From high to low, but the order of the second-to-last 9 primes switched (that are all the
primes with size less than 1000). The last prime is the highest. This was an idea to combine
a balanced strategy with low multiplicative costs as the costs for the final multiplications
are negligible compared to the first ones.

5. For comparison a high-to low strategy where the last prime on the list is the highest prime.

In Figure 6.2 the different strategies depending on the ordering of Bob’s primes are shown,
with in Table 6.1 the respective costs of public key generation and shared key generation that are
computed using the SIBC library [31].

From Table 6.1 we can first conclude that even for torsion groups with large prime factors and
few small primes, the differences in costs for different orderings are small. There is virtually no
difference between an almost multiplicative ordering such as (2) and a more balanced strategy as
(1). However, we see that a combination of a balanced strategy and given as in ordering (4) is

62

(a) Optimal strategy for order #1 and #3. (b) Optimal strategy for order #2.

(c) Optimal strategy for order #4. (d) Optimal strategy for order #5.

Figure 6.2: Plots of different strategies depending on the order of the prime list L for Bob’s torsion
for the prime p237. Different orders are described in this section.

List order costs PKG compare PKG costs SKG compare SKG
1 2.207 100 1.192 100
2 2.208 100 1.193 100
3 2.201 0.997 1.186 99.5
4 2.207 100 1.192 100
5 2.313 1.298 104.8 108.8

Table 6.1: Different list orderings as described in this section with the costs for public key gener-
ation (PKG) and shared secret key generation (SKG), also compared to the costs of the current
standard order low-to-high.

63

cheaper than all other orderings. It is also quite a simple adaptation to make, as one just needs to
compute the optimal strategy for a low-to-high ordering and then switch the order of the primes
that are in the multiplicative part of that strategy. Even though it is a small improvement, it still
decreases costs of isogeny computation and therefore we recommend implementations of B-SIDH
to use this ordering over a low-to-high ordering.

In the last part of this chapter we will look concretely into the cost of completing a BSIDH
key-exchange for different primes with the most recent knowledge on isogeny computation and
optimal strategies.

6.6 Costs of computing large degree isogenies

In this section we will compute the costs of a BSIDH key exchange for three primes, p237 6.6, p253
6.7 and pEN 6.6. The last prime is found using the extending neighbours method as described in
Section and 5.5. It is not the highest prime found with this method, as currently the only existing
B-SIDH implementation only accepts primes of the form p ≡ 3 mod 4. Therefore the highest 4
primes found were not eligible for this analysis.

pEN = 568254508113466749936016007195999,

which is 521-smooth and has a bit length of 109. It’s neighbours are

2 ·72 ·11 ·19 ·312 ·37 ·41 ·893 ·139 ·167 ·211 ·227 ·2292 ·463 = 568254508113466749936016007195998

and

29 · 3 · 53 · 134 · 23 · 29 · 1272 · 131 · 173 · 193 · 271 · 479 · 5212 =

568254508113466749936016007196000.

p253 = 11402780996313137804419565692258934141207562497476991733713707020990899136527,
(6.7)

which is 76667-smooth and has a bit length of 253. It’s neighbours are

2 · 1118 · 19 · 2313 · 47 · 79 · 83 · 89 · 151 · 3347 · 17449 · 33461 · 51193

and

29 · 3 · 716 · 179 · 318 · 311 · 571 · 1321 · 5119 · 6011 · 14207 · 28477 · 76667.

We will first describe the algorithm to complete a B-SIDH key exchange in detail and give
costs of different elements, then describe the optimal strategies for these primes, and then give an
overview of the costs, both expected and calculated using the SIBC-library [31].

6.7 B-SIDH key exchange algorithm

Public parameters For the B-SIDH protocol we have the following public parameters. First
there is the starting curve E0. For primes of the form p ≡ 3 mod 4, this is for now set to be

E0 : y2 = x3 + 6x2 + x.

64

This is always supersingular if p ≡ 3 mod 4. As described in [21], this is a better starting curve
than the always supersingular curve E′0 : y2 = x3 + x, as E′0 is theoretically less secure as it gives
information on the first performed 2-isogeny. For B-SIDH, it has not been investigated whether
using E0 as a starting curve has significant benefits over E′0, which is an interesting problem to
look at. For this example we only use primes of the form p ≡ 3 mod 4, so we face no problems
using E0, but this may become an issue as from Chapter 5 we see how hard it is to find suitable
smooth primes, and we might encounter useful primes of the form p ≡ 1 mod 4.

Also as public parameters we have x-coordinates of the points PA, QA, PQA = PA−QA on E0

of order N |p+ 1. These points can be generated as follows:
Generate a point PA of order M and a point QA of order M on the curve E/Fp2 : y2 =

x3 +Ax2 + x. These points can be generated by using an iterative algorithm that takes a random
point T = (a + b ∗ i : c + d ∗ i : 1) ∈ E(F2

p). Here i is the root of the quadratic formula x2 + c
that creates the extension field Fp2 over Fp, with c not a square in Fp and i not in Fp. Then the
algorithm checks whether

[
p− 1

q
]T 6= (0 : 1 : 0)

for all prime divisors q of p− 1. If this is the case, the point has order p− 1. We find two random
points S, T this way, and compute their Weil pairing (see Section 3.7.4) to check if they are linearly
independent. Continue the search for S until you find a point S such that eN (S, T) = 1 and they
are linearly independent. The points PA and QA are then given by

PA = [
p− 1

N
]T, QA = [

p− 1

N
]S.

Finally the point PQA = PA −QA is computed. The x-coordinates of the points are stored.
And finally we have the x-coordinates of the points PB , QB , PQB = PB −QB on Et0 of order

M |p−1, a quadratic twist of E0. To find points T that fit our requirements, we compute a j ∈ Fp4 .
such that j is not a square in Fp4 . The element k = j2 is then a nonsquare element in F2

p. We
can construct our field Fp4 such that Fp4 = Fp2 [j] We find the points by finding elements x ∈ Fp2
such that z = x3 +Ax2 + x is a nonsquare element in Fp2 . We then must have that k · z = y2 for
a y ∈ Fp2 . The point T is then given by (x : k(x3 + Ax2 + x) : 1). Then for finding S the same
procedure as described above is followed to make S linearly independent from T . Now the points
PB and QB are given by

PA = [
p+ 1

M
]T, QA = [

p+ 1

M
]S

Note that we must have gcd(N,M) = 1, so if p ≡ 3 mod 4, so M is usually taken to be p−1
2 .

Now that we have the public parameters, we need to compute the secret key

Secret key generation For Alice, pick any random integer sA ∈ {0, .., p + 1}. For Bob, pick
any random integer sB ∈ {0, .., p− 1}. Then compute the kernel points

RA = PA + [sA]QA, (6.8)

RB = PB + [sB]QB . (6.9)

(6.10)

This computation is done using the three-point ladder algorithm 4. For this we need the points
PQA and PQB . Because we asserted that the points P and Q are linearly independent, we know
that the order of RA and RB will be N and M respectively.

Public key generation The goal of Alice and Bob is to compute the secret isogenies φA and φB .
This is done by computing φA(E0) = EA = E0/RA and the extra points φA(PB), φA(QB), φA(PQB)
(vice versa for Bob). The curve and points are computed using the optimal strategy. The optimal
strategy for B-SIDH is treated extensively in Section 6.5. The optimal strategy computation for
the curve E0 results in a list

L = [c1, ..., cn].

65

With this list we create the outer loop for our public key generation, as described in Algorithm
13.

From our optimal strategy computation we get a strategy S = [a1, ..., an] with instructions on
when to compute isogenies and when to compute multiplications.

Algorithm 13 Outer loop of B-SIDH key exchange protocol

Data: A kernel point RA of order N , a strategy S of length n − 1, with maximum of isogeny
computations s, a list of primes L, a starting curve E and points PB , QB , PQB .

Result: A curve EA = E0/EA with curve constant A, the images of PB , QB , PQB on EA.
for i is 1 to s− 1 do do

while j < s− i do do
m = S[s− i− j + 1]
c =

∏m
1 `n−k T = [c]R j+ = m

end
I, J,K = KPS`i(T,A,C)
A,C = xISOG`i(T,A,C, I, J,K)
R,PB , QB , PQB = xEV AL`i(R,PB , QB , PQB , A,C, I, J,K)

end
I, J,K = KPS`n(T,A,C)
A,C = xISOG`n(T,A,C, I, J,K)
PB , QB , PQB = xEV AL`n(PB , QB , PQB , A,C, I, J,K)
A = A/C

Each point multiplication [m]Ri can be computed using the Montgomery ladder algorithm 3.
For isogeny computation we have three different parts, as described in 3.5 and 3.6. To optimise
our computation, we use either traditional Velu formula to compute the isogeny, or the sqrtvelu
formula. Currently isogenies of degree less than 87 are faster computed using traditional Velu
formula. This distinction is also made in Algorithm 13. For each isogeny computation, we start
with the kernel points generation as described in Algorithm 3.13. We know from Section 3.4 that
the type of elliptic curves we use are always isomorphic to a specific Montgomery curve. So we
can use the xISOG algorithm 3.15 to compute the new value Ai+1 of Ei+1 : y2 = x3 +Ai+1x

2 +x,
where Ei+1 = φi(Ei) = Ei+1/[mi]Ri. Then we need to push points through the isogeny. To be
able to compute the next isogeny, we need the image Ri+1φi(Ri). Note that we only need the
image of this point to compute the next isogeny, so we especially do not need to compute Ri+1

in the last round of isogeny computation. For the auxiliary points, we need to compute for each
round, also the last, the points PQB,i+1 = φi(PB,i), PB,i+1 = φi(QB,i), QB,i+1 = φi(PQB,i). The
images of all these points are computed using the xEV AL Algorithm 3.16.

Public key exchange Alice send to Bob the value AA of her curve EA : y2 = x3 + AAx
2 + x,

together with the images of his public keys on her curve EA, φA(PB), φA(QB), φA(PQB). She
receives from Bob the value AB corresponding to the curve EB : y2 = x3 + ABx

2 + x, and the
images of her public keys on Bob’s curve EB , φB(PA), φB(QA), φB(PQA). They compute their
new kernel points using again the three point ladder algorithm 4.

RA = φB(PA) + [sA]φB(QA), (6.11)

RB = φA(PB) + [sB]φB(QB). (6.12)

(6.13)

Shared secret key generation In this step, Alice and Bob compute the curves EAB =
φA(EB) ∼= EBA = φB(EA). This is done in the same way as in Section 6.7, with one differ-
ence: We do not need to compute the images of the points PB , QB , PQB (or PA, QA, PQA) in

66

(a) Optimal strategy for Alice. (b) Optimal strategy for Bob.

Figure 6.3: Optimal strategies for Alice and Bob for torsion groups of pEN .

the case of Bob. Therefore, we only need to apply the xEV AL Algorithm 3.16 on the point RA
respectively RB . Again, we use the optimal strategy for this. Note that the optimal strategy may
be slightly different since we need to do less xEV AL computations, favouring more isogeny-based
strategies as isogeny computations becomes cheaper now. The starting curves for Alice and Bob
are now EB for Alice and EA for Bob. After computing their isogenies φA(EB) = φB/RA = EAB
and φB(EA) = EA/RB = EBA, using the same method as described in Section 6.7, they arrive
at the shared secret curve EAB ∼= EBA. They compute the j-invariant from the value AAB of
EAB : y2 +AABx

2 + x. The j-invariant is their shared secret key. As follows from Section 7, this
key should be hashed before it is used.

This is detail what happens in a B-SIDH key exchange with the most advanced implementation.
In the next section we will analyse the costs of this key exchange for two specific prime numbers.

6.8 B-SIDH costs for specific prime numbers

As described in the previous section, we will now look concretely into the costs of a B-SIDH key
exchange for different prime numbers. We will first elaborately go into the algorithm and costs of
the B-SIDH protocol for the prime PEN , then shortly treat p237 and p253 B-SIDH key exchanges,
and in the end compare the results.

6.8.1 B-SIDH algorithm for pEN

As discussed in section 6.5, we will compute the optimal strategy using the low-to-high ordering,
and then see if we can optimise this further. As we can see in Figure 6.3, it is indeed possible
to optimise the ordering of the primes a bit further, resulting in around 2000 less multiplications
needed in total for the whole key exchange.

For Alice using pEN this will give an optimal strategy

y = [8, 5, 4, 2, 1, 1, 2, 1, 1, 3, 1, 2, 1, 7, 6, 5, 4, 3, 2, 1]. (6.14)

For Bob using pEN this will give an optimal strategy

x = [9, 4, 2, 2, 1, 1, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1]. (6.15)

For the prime pEN we got the following public points, where i denotes the root of the generating
polynomial of Fp2 over Fp.

67

PA = 476885896216129711847003777043170 + 303803522507547031309866329405794i,

QA = 95211921232596470656599474737267 + 535579974553724510749548409096772i,

PQA = 35136863103700184869400562294657 + 18543079814394764550016581294258i,

PB = 522366699383065120792952767676853 + 448191885270909062726083421604809i,

QB = 203521641971392657745146167565782 + 389175539296221619767167295512964i,

PQB = 10230159858589298942730075139544 + 176114589698874269173696707456156i.

As a secret key for Alice we pick

sA = 114314656912255065538433627282249,

and for Bob we get
sB = 105911890536888197355446943574000.

We then use the optimal strategy as given in Figure 6.3 and Equations 6.14 and 6.15 to compute
the public keys of Alice and Bob.

We get

EA : y2 = x3 + (171250176368517566676622487461951 + 277461756671391309469309533262185i)x2 + x,

EB : y2 + x3 + (109359357352596807571045003078604 + 198553169085393661325093810034736i)x2 + x.

Then we again compute the secret isogenies φA and φB , resulting in a shared secret key

j(EAB) = 346730674433960568601827881986809 + 386593403626889625879546386427046i.

6.8.2 Costs of pEN key exchange

Here we make an estimation of certain aspects of the costs of a pEN key exchange assuming the
public parameters are known, and using the SIBC library [31] we compute the actual costs for the
key exchange.

In Equation (3.4) it is given that computing a multiplication P = [m]P has a cost of maximum
16dlog(m)e. If we take Bob’s torsion group and follow the optimal strategy, we can compute the
order of the first multiplication in the key-exchange. This is given by

16log(
M

`1
) = 16 ∗ dlog(568254508113466749936016007195998/7)e = 1702

The costs for the most costly isogeny computation can be estimated by Equation (3.17). We

then have the costs for xEV AL, xISOG and KPS. This is given by, where b =

√
(521)−1

2 ,

cost(b) = 4(9blog2(3)(1− 2
2

3

log2(b)+1

) + 2b log2(b))+

3((1− 1

3log2 b+1
blog2(3)) + 37b+ 3 log2(b) + 16 = 3489.

In total the costs for Alice and Bob to compute their pEN B-SIDH key-exchange are 43000 M
and 41000 M respectively.

68

Torsion group Costs PKG Costs SKG Total costs
p237A 0.029 0.22 0.051
p237B 0.743 0.389 1.132
p253A 0.313 0.157 0.470
p253B 0.256 0.131 0.387
pENA 0.028 0.016 0.043
pENB 0.026 0.015 0.041

Table 6.2: Costs in Fp2 multiplications for computing the costs for public key generation, shared
key computation and the costs of a B-SIDH key exchange for Alice, Bob and for primes p237 and
p253.

6.8.3 Key exchanges for p237 and p253

To make a comparison in the costs of the key exchange for pEN , here we also give the costs for
two other primes. p237 is a prime that has a very smooth p + 1 torsion group and significantly
less smooth p− 1 torsion group. This is, as described in Section 6.4, a possible prime for applying
key-exchanges between two devices where one device has significantly less computing power than
the other. p253 is a more balanced prime, with both torsion groups being almost equally smooth.

The total costs of computing a B-SIDH key exchange with p253 and p237 are described in
Table 6.2. These costs are computed using the SIBC-library [31]. Costs are given in millions of
Fp multiplications, ignoring the cost of additions.

It is from Table 6.2 that completing a B − SIDH key exchange for p237 we have that Alices
key exchange is around 20 times cheaper than Bob’s key exchange. In the case of p253, the total
costs are lower for computing the whole key exchange compared to p237, but both Alice and Bob
use around eight times more computation then Alice does in her p237 key exchange.

As comparison we also added the costs for a pEN key exchange. Since the key size of pEN is
around half of that of p237 and p253, we can make a comparison of costs by doubling the costs
for the pEN key exchange, as the costs of a B-SIDH key exchange scale linearly when the key size
grows exponentially (assuming the size of the primes dividing p − 1 and p + 1 stays the same,
and knowing that point multiplication using the Montgomery ladder scales logarithmically). We
would then get ”costs” of 86000M for Alice, and 84000M for Bob. We then see that the costs for
Alice and Bob to compute a pEN key exchange are in comparison still higher than the costs for
Alice to compute a p237 key exchange, which is to be expected as her largest primes in p237 are
10 times smaller than the keys of Alice and Bob in pEN . But compared to p253, the costs of pEN
are still around 5 times cheaper. This indicates how much costs savings can be gained when we
find more optimal primes for B-SIDH.

Now we look a bit closer into costs of specific isogenies. If we take the estimation from Chapter
5 that we would need at least B = 1750 as a smoothness bound for 230-bit smooth primes, we
use Equation (3.17) to compute an estimation for a 1750-degree isogeny, in which we compute the
costs given in millions of Fp2 multiplications. The costs are for performing KPS, xISOG and one
xEVAL computation using the

√
élu formula of Section 3.6.

cost(1750) = 8834M.

If we compare that to the costs of just one 76667-degree isogeny as used in Bob’s torsion of p237,
that has a computed cost of

cost(76667) = 171929M.

To compare we note that one 76667-isogeny equals the costs of one 1750 and one 43 degree isogeny,
which has a cost of 270 multiplications, we see that it is over 10 times cheaper to use the 1750-
degree isogeny. In conclusion we see that our found prime pEN would give a cheap B-SIDH key
exchange had it been of the correct length. We hope in the future the extending neighbours
method may lead to a viable smooth prime for B-SIDH key exchange.

69

7. Analysis of B-SIDH security

In this chapter we will introduce an encryption scheme for BSIDH, and adapt a known attack
on SIDH to the B-SIDH encryption scheme, by applying it to larger degree isogenies. As far as
we know, this scheme has not been adapted to large degree isogenies before. This chapter can
therefore be seen as one of the original contributions of the thesis.

We can adapt the SIDH and B-SIDH protocols from a key-exchange protocol to an encryption
scheme. Key exchange protocols of SIDH and B-SIDH are described in Sections 4.2.1 and 6.2
respectively. In this case, both parties simultaneously generate private and public keys, resulting
in a shared secret key, which can then be used as a key for a different cryptographic system to
encode a message, for instance using AES. In the encryption protocol however, Bob uses Alice’s
public keys to encrypt a message, and Alice uses Bob’s public keys to decrypt this message. So
the SIDH or B-SIDH key would be used as a one-time pad to encrypt a message, without the
addition of any other cryptographic protocol. The same encryption protocol can be described for
both SIDH and B-SIDH.

In this chapter we will first describe the encryption protocol for B-SIDH, then give a short
summary of an attack on SIDH as described in [30]. We then adapt this protocol to work for
general isogenies with large prime factors, such as the ones used in B-SIDH, and give a short
overview of its costs. In the final section we will describe specific countermeasures for B-SIDH
against the attack of section 7.1.1.

7.1 The encryption protocol

The use of encryption protocol is to encode a message m using a shared secret key established
by a B-SIDH protocol. Below an encryption protocol for B-SIDH is given. Assume Bob wants to
send Alice a secret message using B-SIDH as encryption method. They agree on a curve E over
a field K, with Alice working in E[tA] and Bob working in E[tB]. The procedure uses the same
secret key j(EAB), the j-invariant of their shared curve EAB, as the key exchange protocols. To
protect the secret key jAB , it will be hashed before being used. For this they agree on a hash
function Hk : Fp2 → {0, 1}n, where k ∈ Fp2 is a random key chosen by Alice. Alice picks random
integers 0 ≤ a1, a2 ≤ tA, with either a1 or a2 coprime to ta and computes EA, φA(QB), φA(PB)
as described in 6, with φA : E → E/〈[a1]Pa, [a2]QA〉. Bob receives Alice’s public key. He has his
message m ∈ {0, 1}w. He picks random integers 0 ≤ b1, b2 ≤ tB , with at least b1 or b2 coprime
to tB and computes EB , φB(QA), φB(PA). He then computes EAB using his secret keys. Now he
can encode the message m, c = m⊕Hk(j(EAB). He sends the tuple (EB , φB(QA), φB(PA), c) to
Alice. To decode the message, Alice computes EAB using φB(QA), φB(PA) and EB . She recovers
m by m = c⊕Hk(j(EAB)). In the table below the protocol is explained schematically.

70

B-SIDH encryption protocol

Public parameters :

E, K, PA, PB , QA, QB , fk

Alice Bob

RA = [a1]PA + [a2]QA

φA : E → EA = E/〈RA〉
k ← Fp2

EA, φA(PB), φA(QB), k

RB = [b2]PB + [b1]QB

φB : E → EB = E/〈RB〉
EAB = EA/〈[b1]φA(PB), [b2]φA(QB)〉
m is Bob’s secret message

c = m⊕Hk(j(EAB))

EB , φB(PA), φB(QA), c

EAB = EB/〈[a1]φB(PA), [a2]φB(QA)〉
m = c⊕Hk(j(EAB))

Output: m

In the method described above we used a secret key for Alice (a1, a2). Now we show that
instead of a1, a2, Alice could also pick only one secret key a.

Theorem 7.1.1. Let P,Q ∈ E[tA] be linearly independent generators of E[tA]. Then for some
(a1, a2) ∈ Z2 with at least one coprime to tA, we have that (a1, a2) ∼ (1, α) or (a1, a2) ∼ (α, 1)
for some α ∈ Z.

Proof. We define (a1, a2) ∼ (a′1, a
′
2) if 〈[a1]P + [a2]Q〉 = 〈[a′1]P + [a′2]Q〉 for all P,Q ∈ E[p − 1].

This relation is satisfied if (a1, a2) = (θa′1, θa
′
2) for any θ ∈ Z∗2n . Now if a1 is coprime to tA, we

have that a1 is invertible modulo the order of the group. So let θ ≡ a−1
1 mod p− 1, then θ is also

not divisible by any of the qk, and thus we will have

〈[a1]P + [a2]Q〉 = 〈[θa1]P + [θa2]Q〉 = 〈P + [α]Q〉.

The first equality holds since θ is coprime to tA. The second equality follows if we define α = θa2.
If a1 is dividable by at least one of the qk, a2 cannot be divided by any of them, and we can show
using the same procedure that (a1, a2) ∼ (1, α)

So there is no loss of generality for Alice to have her key of the form (1, α) or (α, 1) instead
of (a1, a2) But even if Alice does not use such a simplification, an attacker can assume the secret
key is one of these forms without any loss of generality.

7.2 An attack on encryption protocol

In this section we will describe an attack on encryption protocols where Alice’s torsion group has
size `n, for a prime number `. This is for instance the case in the SIDH protocol. The section
below is an adaptation of the attack described in [30]. In this paper only the case ` = 2 is treated

71

explicitly, but in Remark 2 it is explained shortly how to extend the attack to ` = p for any prime
p. In the next section, we will look at the generic case where the torsion group equals

∏m
i=1 p

ki
i .

Assume we have access to either one of these oracles:

1. O(E,R, S) = E/〈[a1]R+ [a2]S〉.
In the case of the key exchange protocol, this corresponds to Alice taking Bob’s public
keys, completing her side of the protocol and giving the shared j-invariant as output. In
the encryption protocol, this corresponds to an encryption without the hash function c =
m⊕ j(EAB), and Alice decrypting Bob’s ciphertext and returning the plaintext m.

2. O(E,R, S,E′) which returns 1 if j(E′) = j(E/〈[a1]R+ [a2]S〉) and 0 otherwise.
In the setting of the encryption protocol, this corresponds to Bob having access to a decryp-
tion oracle for Alice. By choosing a random ciphertext c, Bob could ask for a decryption of
(EB , R, S, c) and get an m such that c = m⊕Hk(j(EAB)). Bob can then check whether or
not c⊕m = Hk(j(E′))

First we will explain the attack for Oracle 2, which is a more complicated attack but also is
not as easy to counter . Due to the fact that for the encryption protocol this attack corresponds
to an attack on a hashed secret key j(EAB , we will call this attack the ”attack with hashed key”,
and the attack using Oracle 1 the ”attack with unhashed key.”

7.2.1 Attack with hashed key

First step of the attack As described in theorem 7.1.1 above, we can assume that Alice’s key
is either (α, 1) or (1, α).

The attacker generates Eb, S = φB(QA), R = φB(PA) and EAB as in the protocol. We can
write Alice’s secret key α in `-expansion: α = α0 + α1 · ` + ... + αn · `n. If we want to recover
αi, we can write the key as α = Ki + αi · `i + α′ · `i+1, with Ki known, αi and α′ unknown, and
αi ∈ {0, ..., `− 1}.

To find the first `-ary bit, query (EB , R, S+[m][`n−1]R,EAB) to the oracle for m ∈ {0, .., `−1}.
If the oracle returns 1 then EB/〈[a1]R+[a2](S+[`n−1]R)〉 is isomorphic to EB/〈[a1]R+[a2]S)〉.

In order to find the first `-ary bit, query different values for m to the oracle until it returns 1.

Continuation of the attack After the first `-ary bit α0 has been recovered, we now continue
to find the whole key α = α0 + α1 · `+ ...+ αn · `n. We will do this iteratively by finding each αi
after recovering a0 to ai−1 for i ∈ {1...n}.

To recover αi, the attacker has to find integers a, b, c, d that will used in a query to the oracle
as follows

(EB , [a]R+ [b]S, [c]R+ [d]S,EAB)

For each part of the key αi, these integers have to satisfy four conditions that prevent the
attack from being discovered and recover the bit α1.

1. if αi = m then 〈[a+ αc]R+ [b+ αd]S〉 = 〈R+ [α]S〉

2. if αi 6= m then 〈[a+ αc]R+ [b+ αd]S〉 6= 〈R+ [α]S〉

3. [a]R+ [b]S and [c]R+ d[S] both have order `n.

4. The Weil pairing e`n(φB(PA), φB(QA)) = e`n(PA, QA)deg φB = e`n(PA, QA)p+1.

The first two conditions help to distinguish the bit ai, the third condition prevents the attack
from being detected via order checking, and the fourth condition prevents the attack from being
detected via Weil pairing validation checks. Taking into account these conditions, these are the
proposed values for the integers ai, bi, ci and di, to recover a key bit αi:

72

ai = 1, bi = −x · `n−i−1 (7.1)

ci = 0, di = 1 + `n−i−1. (7.2)

Here x = Ki+m for an m ∈ {0, ..., `−1}. Now we will verify that these integers indeed satisfy
all four conditions as stated above.

First we check the first and second condition. We have that with the integers as described in
Equation 7.1 we get for the subgroup computation

〈R− [x · `n−i−1]S + [α][1 + `n−i−1]S〉
= 〈R+ [α]S + [`n−i−1][α− x]S〉

= 〈R+ [α]S + [`n−i−1][Ki + `i · αi + `i+1 · α′ − (Ki +m)]S〉
= 〈R+ [α]S + [`n−1(αi −m)]S〉.

This is equal to 〈R+ [α]S〉 if and only if

(`n−i−1)(αi −m) ≡ 0 mod `n. (7.3)

So we would need at most `− 1 queries to recover αi, where we change m ∈ 〈0, ..., `− 1〉 until
Equation 7.3 is satisfied.

For the satisfaction of the third condition, we note that

[a]R+ [b]S = ord(R+ [x · `n−i−1]S) = `n,

since R and S are linearly independent.Since 1 + `n−i−1 is coprime to `n we also have

ord([c]R+ [d]S) = ord([1 + `n−i−1]S) = `n.

To make sure the fourth condition is also met, we make a slight adaptation. When we compute
the Weil pairings of the two points, we get

e`n(R′, S′) = e`n(R− [x`n−i−1]S, [1 + `n−i−1]S)

= e`n(R, [1 + `n−i−1]S) · e`n(R, [x`n−i−1]S) = e`n(R,S)1+`n−i−1

,

which is not the correct value. So we need to choose a θ such that

e`n(θR′, θS′) = e`n(R,S)θ
2(1+`n−i−1) = e`n(R,S) = e`n(PA, QA)p+1

Note that
〈[θ]R′ + [α][θ]S′〉 = 〈[θ](R′ + [α]S′〉 = 〈R′ + [α]S′〉

as long as θ is coprime to the order `n. This means that θ has to be the square root of the inverse
of 1 + `n−i−1 modulo `n,

θ =
√

(1 + `n−i−1)−1 mod `n.

Does such a square root exist for all primes `?
The following lemmas proof that this is indeed the case. The lemmas are stated here without

proof as they are basic number theoretic results.

Lemma 7.2.1. A number x is a quadratic residue modulo pm for a prime p > 2 if and only if x
is a quadratic residue modulo p

Lemma 7.2.2. If x ≡ 1 mod n, then x−1 ≡ 1 mod n.

73

For 1 + `n−i−1 modulo `n we now have that

1 + `n−i−1 ≡ 1 mod ` if n− i− 1 ≥ 1,

so
(`n−i−1)−1 ≡ 1 mod `

by lemma 7.2.2. And 1 is always a quadratic residue modulo `, so (`n−i−1)−1 is a quadratic residue
modulo `, and therefore a quadratic residue modulo `n. This concludes that there does indeed
exist a θ such that

θ =
√

1 + `n−1−i mod `n,

and therefore an attacker can create a key that disguises as Alice’s key, and will not be noticed
under Weil pairing verification.

To execute such an attack would require on average n `−1
2 queries and is bounded by n(`− 1)

queries. This grows rapidly when ` grows in size.

7.2.2 Attack with unhashed key

In this section we will give the attack as given in Appendix B of [30], corresponding to having
access to Oracle 1. In the case of the encryption protocol, this would give us access to an unhashed
version of the secret key. This attack is more powerful especially when ` is large, but is also easy to
detect. We again have Alices secret key α we are trying to recover. We assume we have recovered
the first i `-ary bits of α, so we know

α = Ki + `iαi + `i+1α′,

with Ki known and ai, a
′ unknown. The attacker computes EB , R = φB(PA) and φB(QA), and

also the final curve EAB . He then queries the oracle on (EB , R, [`
n−1−i]S). The oracle computes

the j-invariant of the elliptic curve

EB/〈R+ [α][`n−i−1]S〉 = EB/〈R+ [Ki + `i + `i+ 1α′][`n−i−1]S〉 (7.4)

= EB/〈R+ [`n−i−1][Ki]S + [`n−1αi]S〉. (7.5)

Since we know Ki, we can compute R+ [`n−i−1][Ki]S. By trying all `− 1 different options for ai
the attacker can recover ai. Since the attacker knows j(EAB), he only needs to query the oracle
once for each αi, as he can then compute

j(EB/〈R+ [Ki]S + [x]S〉 (7.6)

for all x in {0, .., `− 1. The moment the j-invariant of 7.6 matches the j-invariant of 7.4, we know
αi. This attack then only uses n queries to the oracle in total, independent of the size of `. This
is especially an improvement for large `.

7.3 Generalisation to arbitrary numbers

In this section we will generalise the attack to any number n =
∏
pkii , with pi prime. This gives the

attack that can be used for attacking the B-SIDH protocol, and has to the best of our knowledge
not been published before.

Take any integer

tA =

m∏
i=1

pkii .

In this section we will describe the active attack on the torsion group E(tA). Similarly to the
previous section, we need integers a, b, c, d such that we can query the oracle with

(EB , [a]R+ [b]S, [c]R+ [d]S,EAB) (7.7)

74

and retrieving the secret key of Alice. For this, equation 7.7 must satisfy the same four conditions
as in the previous section. The difference here is that we are working over a random number tA
that is not prime. For this, we split the process into different prime divisors pk of tA.

ak,i = 1, bk,i = −x · pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j

ck,i = 0, dk,i = 1 + pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j .

Alice’s secret key α is defined modulo
∏m
j=1 p

nj

j . We can find αj mod p
nj

j for all primes pj as will
be described below, and since the pj are all coprime, we can use the Chinese remainder theorem
to find

α mod
m∏
j=1

p
nj

j .

We will check the same conditions (1) to (4) as given in Section 7.2.1. The first two conditions
remain the same, and they still hold in the general case:

〈R− [x · pnk−i−1
k ·

m∏
j=1,j 6=i

p
nj

j]S + [α][1 + pnk−i−1
k ·

∏
j

= imp
nj

j]S〉

= 〈R+ [α]S − [x− α][pnk−i−1
k ·

m∏
j=1,j 6=i

p
nj

j]S〉

We have

〈R+ [α]S − [x− α][pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j]S〉 = 〈R+ [α]s〉

when

(x− α)(pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j) = 0 mod

m∏
j=1

p
nj

j .

Rewriting this gives
(x− α)(pnk−i−1

k) = 0 mod pnk

k . (7.8)

Using the same tactics and notation as in Section 7.3, if we write α as

α = Ki + αi · pnk

k + α′

x = Ki +m,

then Equation 7.8 only holds if αk,i = m. Applying this method , we can find

αk = α mod pnk

k for all pk.

To find out α after retrieving all αk, we use the Chinese remainder theorem as described in
Theorem 2.5: For simplicity assume we have two primes p1 and p2, with associated keys α1 and
α2. In the general case, repeat the process with each extra prime number. Then the key α can be
recovered as follows

α ≡ αp1 mod pn1
1

α ≡ αp2 mod pn2
2 .

75

There exist integers m1 and m2 such that m1n1 + m2n2 = 1, which can be found by the
Euclidean algorithm. A solution for α is then given by

α = αp1m2n2 + αp2m1n1.

The third condition is satisfied, as we have for the order of the subgroups:

ord([a]R+ b[S]) = ord([c]R+ [d]S) =

m∏
j=1

p
nj

j .

This equality holds since

ord([a]R+ b[S]) = ord(R− [x · pnk−i−1
k]S)

as S and R are linearly independent, and

ord([c]R+ [d]S) = ord(1 + pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j)

since

(1 + pnk−i−1
k) ·

m∏
j=1,j 6=k

p
nj

j

is linearly independent to
m∏
j=1

p
nj

j .

For the fourth condition we need to find, just like in the previous section, a θ such that for

D =

m∏
j=1

p
nj

j

we have
eD(θR′, θS′) = eD(R,S)θ

2(1+D·pnk−i−1

k) = eD(R,S)

Taking into account that

〈[θ]R′ + [α][θ]S′〉 = 〈[θ](R′ + [α]S′〉 = 〈R′ + [α]S′〉

as long as θ is coprime to the order
∏m
j=1 p

nj

j . So, we need θ to be

θ =

√√√√(1 + pnk−i−1
k ·

m∏
j=i

p
nj

j)−1 mod

m∏
j=1

p
nj

j

To find this θ, we again need a lemma from number theory:

Lemma 7.3.1. For a composite number

N =

m∏
j=1

p
nj

j ,

x is a square modulo N if and only if N is a square modulo all p
nj

j .

76

Now we can apply this lemma together with lemmas 7.2.1 and 7.2.2 to get that such a θ exists,
in the case all prime numbers are odd. First, it is clear that

1 + pnk−i−1
k ·

m∏
j=1,j 6=n

p
nj

j mod

m∏
j=1

p
nj

j ≡ 1 mod p
nj

j for all j 6= k.

Using lemma 7.2.1 we can show that this is also in the case j = k. Then using lemma 7.2.2 we
now get that

(1 + pnk−i−1 ·
m∏

j=1,j 6=i

p
nj

j)−1 mod p
nj

j ≡ 1 mod p
nj

j ,

thus the inverse is square for all prime numbers. and then using lemma 7.3.1 it can be shown that

(1 + pnk−i−1 ·
m∏

j=1,j 6=i

p
nj

j)−1

is a square number modulo
∏m
j=1 p

nj

j , thus proving such a θ exists.
In conclusion, the four conditions given in section 7.2.1 hold in the general case over all num-

bers N , not just powers of prime numbers.

The algorithm for computing the keyα for arbitrary N is given below, with

D =

m∏
j=1

p
nj

j .

Note that this protocol works for all p ≥ 3. For p = 2, as described in [30], θ does not always exist
if n− i− 1 ≤ 3. This means that the last 2 bits of α2 can only be found using brute force. This
means for finding the key α, first

α′ = α mod

m∏
j=1,pj 6=2

p
nj

j

has to be found using the Chinese Remainder Theorem as described above, and the final key α has
to be found by computing all possible values for α2 and applying the CRT to α′ and all possible
values of α2.

77

Algorithm 14 Adaptive attack on BSIDH

Data: D,PA, QA, PB , QB , φA(QB), φA(PB)
Result: Alice’s secret key α
Set α = 0.
for k = 1 to m do

Set αk = 0
for i = 0 to n do

Set αk,i = 0
Choose random (b1, b2)
Set GB = 〈[b1]PB + [b2]QB〉
Set φB : E → EB = E/GB
Set (R,S) = (φB(PA), φB(QA))
Set EAB = EA/〈[b1]φA(PB) + [b2]φA(QB)〉
Set θ =

√
(1 + pnk−i−1 ·

∏
j = imp

nj

j)−1 mod
∏m
j=1 p

nj

j

for x = 1 to pk − 1 do
Query the oracle on (E, [θ](R− [Kk,ix.]S), [θ][1 + .]S,EAB)
If Response is true, αk,i = x

end
Set αk = Kk,i + pik + αk,i

end
Set α = CRT(α, αk)

end
return α

7.3.1 Costs of active attack

As remarked already in [30], an adversary needs to query a lot more to the oracle when the prime
numbers get larger. In Algorithm 14, the number of queries to the oracle #Q is at maximum

#Q ≤
m∑
j=1

nj · (pj − 1) (7.9)

if the order of the torsion group is
∏m
j=1 p

nj

j . For SIDH, a torsion group of Alice would be around

the size 2250, which would give the same security as using the prime pPTE as given in Chapter 5.
For the SIDH case, an attacker would need 250 queries to retrieve α. In the case of B-SIDH, there
is not one simple calculation. We give an example of the costs with prime pPTE that is used in
the last chapter, and calculate the costs for Alice’s torsion group of order N , where N equals

N = 32 · 232 · 412 · 712 · 832 · 9192 · 11172 · 11632 · 12372 · 65712 · 119272 · 186372 · 320292. (7.10)

We for now assume the attacker wants to find out the whole key a by using queries, and does
not at some point switch to using brute force. As the maximum amount of queries Q is given by

Q =
∑

(pi − 1) · ei,

where the pi are the primes in equation 7.10, each occuring ei times. This yields a total of 147616
maximum queries to find a, and an expected value of 73808 queries to find a. When we compare
the results for SIDH and our example of B-SIDH, we see that it would take around an expected
300 times more queries to retrieve the B-SIDH key then the SIDH key.

But there is a large caveat here. There is a trade-off between queries and computing the key by
brute force. For in the case of SIDH, when an attacker has made half of its queries, around 150, he
would still need to try an expected 2124 solutions before he finds the complete key. For B-SIDH,
this is not the case. He could first query to the oracle to find the keys ai modulo the smallest

78

prime factors pi. Then, using the Euclidian algorithm, brute force the key. So in our example with
pPTE , the attacker could for instance decide not to query to find the keys ai modulo 32029 and
18637. When we assume the maximum amount of queries needed, this saves the attacker 101328
out of 147616 queries. He computes a′, the key modulo all primes except 32029 and 18637, and
then tables all possible values x of 320292 ∗ 186372, around 1018 values, and computes with the
Euclidean algorithm the 1018 possible values for the key a. This way we can reduce the amount
of queries needed by around 66%. Another note that is to be made is that when B-SIDH primes
get smoother, the amount of queries required will decrease significantly. But then this caveat will
also be less exploitable.

Practically, what does this increased costs of the attack mean? While on paper, it looks like a
400 time increase in queries is quite significant. This could imply that in some cases we would not
need to apply the costly countermeasures as described in Section 7.4, where for SIDH we would
need them. If we only use the key once, both SIDH and B-SIDH would not need extra security
measures. If we want to use our keys more than once, this is where we might find an application
where SIDH would need extra protective measures, but B-SIDH does not. As described in Section
1.1.2, for many instances we use static keys - secret keys are hardcoded into the application, so one
cannot change the secret key after a certain amount of queries have been made. But against side
channel attacks, it may have some applications. Also, there are some instances where we could
use ephemeral private keys, for instance with website security certificates, where private keys are
reestablished after a certain amount of time or uses. An example of this would be Microsofts
SChannel TLS, which used for some time a private key that was reset after one hour [10]. If
for instance we would reuse a private key 250 times, an attacker can know a complete SIDH
key, but for a B-SIDH key there would still be around 2220 options for the key left - so it would
still be infeasible for the attacker to retrieve the key. We expect that in most cases where one
would take extra measures to protect an SIDH key against this active attack, one would also
take those measures for a B-SIDH key. These measures are described in Section 7.4. However, we
highly encourage more research into this topic, as both for academic reasons and possible practical
reasons, it is interesting to further investigate this difference between the two protocols.

For completeness we will now give the attack with unhashed key for general numbers.

7.3.2 Attack with unhashed key

In this section we modify the attack given in Appendix B of [30] to an attack on the BSIDH
protocol. For this attack we use Oracle 1 as given in this chapter.

Assume again Alice has a public key α, and Alice works in E[
∏m
j=1 p

nj

j]. For any given pk, we
can write α as follows,

α = (Ki + pikαk,i + pi+1α′k + β).

Here Ki is the part of the key modulo pnk

k that is already known, αk,i ∈ {0, ..., pk − 1} unknown,
α′k unknown and β the part of the key that is 0 mod pnk

k .
As in the previous attack, the adversary computes EB , R = φB(PA), S = φB(QA) and he

queries the oracle on

(EB , R, p
nk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j).

This elliptic curve that the oracle returns is

79

EB/〈R+ [α][pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j]S〉

= EB/〈R+ [pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j][(Ki + pikαk,i + pi+1α′k + β]S〉

= EB/〈E + [pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j][Ki]S + [pnk−1
k ·

m∏
j=1,j 6=k

p
nj

j]S〉.

The part

R+ [pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j][Ki]S

is known, so the attacker can recover αk,i by trying all pk different values for αk,i. This means that
to recover one pk-ary bit, we only need to query to the oracle once. We can repeat this process
for all primes pk. The total amount of queries needed would be maximum

m∑
j=1

dlogpj (nj)e (7.11)

It is clear that this attack can easily be detected using some countermeasures. In the next
section we describe the countermeasures against both this attack and the attack using Oracle 2.

7.4 Possible countermeasures against the attacks

To secure the SIDH protocol, there are some validation steps Alice can take to detect an malin-
tendant adversary. Suggestions to this are made in [18], [30] and [35]. First we will discuss the less
costly validation steps and show that they protect against the attack given in Section 7.3.2, but
not against the attack of Section 7.3. Lastly, we give the Fujisaki-Okamoto protocol for BSIDH
and demonstrate that this does in fact protect BSIDH from both attacks.

The first, and most easy protection measure is to hash the j-invariant
This action is the difference between Oracle 1 and Oracle 2. As can be seen in the section

above, an oracle that returns a non-hashed j-invariant is vulnerable for simple attacks that retrieve
the secret key in a logarithmic scale amount of queries.

A second method is checking if the points have the required order. The order of the points is
D =

∏m
j=1 p

nj

j , and one can verify that R and S have the correct order by calculating[
pnk−1
k ·

m∏
j=1,j 6=k

p
nj

j

]
R

for all pk. But, in the first attack, the points are specifically designed to have the correct order,
and will bypass this validation check.

A third method is computing the Weil pairing of the points R and S. As described in Section
3.7.5, two points are generating the torsion subgroup if and only if the order of the weil pairing is
the same as the order of the torsion. But even more than that, one can check, proven in Section
3.7.7, that the points φB(PA), φB(QA) are indeed consistent with being images of the correct
points under an isogeny of the correct degree. The attack as given in Algorithm 14 bypasses this
validation by multiplying the constructed points with a θ such that the points generate the correct
order for the Weil pairing.

80

The Kirkwood et al. Validation Method The methods described above all fail to protect
from the attack of Section 7.3, as the points are specifically constructed to bypass these checks. A
more rigorous protection measure is to apply the Fujisaki-Okamoto transform [28] in the context
of supersingular isogenies. This was first proposed by Kirkwood et al. in [35], although a specific
algorithm was not given. A formal analysis of this protocol is given by [30].

The Fujisaki-Okamoto protocol for BSIDH is identical to the one for SIDH, and is recited
below. Bob first picks a random seed rB and using a pseudo random function he computes
(b1, b2) = PRF (rB). He receives the public keys (EA, φA(PB), φA(QB)) from Alice. He computes
his public keys (EB , φB(PA), φB(QA)), with EB = E0/〈[b1]PB + [b2]QB〉. He then calculates the
shared curve EAB = EA〈[b1](φA(PB))+[b2]φA(QB)〉. Using a key derivation function he computes
the session key and the validation key: SK|V K = KDF (j(EAB)). Bob then sends his public keys
to Alice, together with the encoded secret random seed cB = EncV K(rB ⊕ SK). Alice on her
turn computes E′AB from the public keys of Bob, and computes SK ′|V K ′ = KDF (j(E′AB)). She
tries to retrieve Bob’s random seed r′B = DECV K′(cB) ⊕ SK ′. To test if she got the correct
random seed, she computes (b′1, b

′
2) = PRF (r′B), and recalculates Bob’s public keys. If these keys

correspond to the ones she received from Bob, she will use SK = SK ′ for future communication.
Else, she rejects SK and the protocol terminates.

Proposition 7.4.1. The Kirkwood validation method secures the BSIDH protocol against the
attack with hashed key.

Proof. Assume Bob sends a query to the oracle, together with the encoded random seed cB , as
follows (

EB , [θ]

(
R−

[
x · pnk−i−1

k ·
m∏

j=1,j 6=k

p
nj

j

]
S

)
, [θ]

[
1 + pnk−i−1

k ·
m∏

j=1,j 6=k

p
nj

j

]
S,EAB

)

Alice first computes E′AB , using the public keys. This may match EAB as described in Section
7.3. Now she obtains the correct random seed r′B = rB . She computes (b1, b2) = PRF (rB). She
then calculates EB , R = φB(PA) and S = φB(QA). But the points Bob sent her are not R,S, but
instead

R− [x · pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j]

and

[θ][1 + pnk−i−1
k ·

m∏
j=1,j 6=k

p
nj

j]S.

So Alice knows Bob sent the wrong public keys to her, and terminates the communication.

In summary we can see that the active attacks as described in [30] also work on B-SIDH, be
it in a much less effective way. The same countermeasures against the attack that work for SIDH
also work to protect B-SIDH.

81

Bibliography

[1] Gora Adj, Omran Ahmadi Darvishvand, and Alfred Menezes. “On isogeny graphs of super-
singular elliptic curves over finite fields”. In: Finite Fields and Their Applications 55 (Jan.
2019), pp. 268–283. doi: 10.1016/j.ffa.2018.10.002.

[2] Gora Adj, Jesús-Javier Chi-Domınguez, and Francisco Rodrıguez-Henrıquez. “On the velu’s
formulae and its applications to CSIDH and B-SIDH constant-time implementations”. In:
(2020).

[3] Elaine Barker et al. Recommendation for Pair-WiseKey-Establishment Schemes Using Dis-
crete Logarithm Cryptography. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-56Ar3.pdf. 2018.

[4] Jao et al. SIKE: supersingular isogeny key encapsulation. url: sike.org.

[5] Frank Arute et al. “Quantum supremacy using a programmable superconducting processor”.
In: Nature 574.7779 (2019), pp. 505–510.

[6] Michael Francis Atiyah and Ian Grant Macdonald. Introduction to commutative algebra.
CRC Press, 2018.

[7] Daniel J Bernstein et al. “Twisted edwards curves”. In: International Conference on Cryp-
tology in Africa. Springer. 2008, pp. 389–405.

[8] Daniel Bernstein et al. “Faster computation of isogenies of large prime degree”. In: arXiv
preprint arXiv:2003.10118 (2020).

[9] Xavier Bonnetain and André Schrottenloher. “Quantum security analysis of CSIDH”. In: An-
nual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2020, pp. 493–522.

[10] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for authentication and key
establishment. Vol. 1. Springer, 2003.

[11] G Bruno. Finding B-smooth primes. https://github.com/GiacomoBruno/BSmooth. 2021.

[12] Wouter Castryck et al. “CSIDH: an efficient post-quantum commutative group action”.
In: International Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2018, pp. 395–427.

[13] Jesús-Javier Chi-Domınguez and Francisco Rodrıguez-Henrıquez. “Optimal strategies for
CSIDH”. In: Advances in Mathematics of Communications (2020).

[14] Andrew Childs, David Jao, and Vladimir Soukharev. “Constructing elliptic curve isogenies
in quantum subexponential time”. In: Journal of Mathematical Cryptology 8.1 (2014), pp. 1–
29.

[15] J. B. Conrey, M. A. Holmstrom, and T. L. McLaughlin. “Smooth Neighbors”. In: Exper-
imental Mathematics 22.2 (2013), pp. 195–202. doi: 10.1080/10586458.2013.768483.
eprint: https://doi.org/10.1080/10586458.2013.768483. url: https://doi.org/10.
1080/10586458.2013.768483.

[16] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion. Cryp-
tology ePrint Archive, Report 2019/1145. https://eprint.iacr.org/2019/1145. 2019.

82

https://doi.org/10.1016/j.ffa.2018.10.002
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
sike.org
https://github.com/GiacomoBruno/BSmooth
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1080/10586458.2013.768483
https://doi.org/10.1080/10586458.2013.768483
https://eprint.iacr.org/2019/1145

[17] Craig Costello and Huseyin Hisil. “A simple and compact algorithm for SIDH with arbitrary
degree isogenies”. In: International Conference on the Theory and Application of Cryptology
and Information Security. Springer. 2017, pp. 303–329.

[18] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient algorithms for supersingular
isogeny Diffie-Hellman”. In: Annual International Cryptology Conference. Springer. 2016,
pp. 572–601.

[19] Craig Costello, Michael Meyer, and Michael Naehrig. “Sieving for twin smooth integers with
solutions to the Prouhet-Tarry-Escott problem”. In: ().

[20] Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic”. In: Journal
of Cryptographic Engineering 8.3 (2018), pp. 227–240.

[21] Craig Costello et al. “Improved classical cryptanalysis of SIKE in practice”. In: IACR In-
ternational Conference on Public-Key Cryptography. Springer. 2020, pp. 505–534.

[22] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291.
https://eprint.iacr.org/2006/291. 2006.

[23] Richard Crandall and Carl B Pomerance. Prime numbers: a computational perspective.
Vol. 182. Springer Science & Business Media, 2006.

[24] Joan Daemen and Vincent Rijmen. “AES proposal: Rijndael”. In: (1999).

[25] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. In: Journal of Mathematical Cryptology 8.3 (2014),
pp. 209–247.

[26] Luca De Feo et al. “SQISign: compact post-quantum signatures from quaternions and iso-
genies”. In: International Conference on the Theory and Application of Cryptology and In-
formation Security. Springer. 2020, pp. 64–93.

[27] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In: IEEE transac-
tions on Information Theory 22.6 (1976), pp. 644–654.

[28] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure integration of asymmetric and symmet-
ric encryption schemes”. In: Annual International Cryptology Conference. Springer. 1999,
pp. 537–554.

[29] Steven D. Galbraith. “Constructing Isogenies between Elliptic Curves Over Finite Fields”.
In: LMS Journal of Computation and Mathematics 2 (1999), pp. 118–138. doi: 10.1112/
S1461157000000097.

[30] Steven D. Galbraith et al. “On the Security of Supersingular Isogeny Cryptosystems”. In:
Advances in Cryptology – ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 63–91.

[31] Francisco Rodŕıguez-Henŕıquez Gora Adj Jesús-Javier Chi-Domı́nguez. SIBC Python library.
https://github.com/JJChiDguez/sibc/. 2021.

[32] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In: Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 212–219.

[33] Robin Hartshorne. Algebraic geometry. Vol. 52. Springer Science & Business Media, 2013.

[34] David Jao, Stephen D Miller, and Ramarathnam Venkatesan. “Expander graphs based on
GRH with an application to elliptic curve cryptography”. In: Journal of Number Theory
129.6 (2009), pp. 1491–1504.

[35] Daniel Kirkwood et al. “Failure is not an option: Standardization issues for post-quantum
key agreement”. In: Workshop on Cybersecurity in a Post-Quantum World. 2015, p. 21.

[36] David Russell Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD thesis.
University of California, Berkeley, 1996.

[37] Hendrik W Lenstra Jr. “Solving the Pell equation”. In: Notices of the AMS 49.2 (2002),
pp. 182–192.

83

https://eprint.iacr.org/2006/291
https://doi.org/10.1112/S1461157000000097
https://doi.org/10.1112/S1461157000000097
https://github.com/JJChiDguez/sibc/

[38] Florian Luca and Filip Najman. “On the largest prime factor of 2-1”. In: Mathematics of
computation 80.273 (2011), pp. 429–435.

[39] Victor S Miller. “Use of elliptic curves in cryptography”. In: Conference on the theory and
application of cryptographic techniques. Springer. 1985, pp. 417–426.

[40] Peter L Montgomery. “Speeding the Pollard and elliptic curve methods of factorization”.
In: Mathematics of computation 48.177 (1987), pp. 243–264.

[41] Arnold K Pizer. “Ramanujan graphs and Hecke operators”. In: Bulletin of the American
Mathematical Society 23.1 (1990), pp. 127–137.

[42] Arnold K Pizer. “Ramanujan graphs and Hecke operators”. In: Bulletin of the American
Mathematical Society 23.1 (1990), pp. 127–137.

[43] Krissie Pladson. German industry could win big with new quantum computer. 2021. url:
https://www.dw.com/en/german- industry- could- win- big- with- new- quantum-

computer/a-57920916 (visited on 06/16/2021).

[44] J. M. Pollard. “Theorems on factorization and primality testing”. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society 76.3 (1974), pp. 521–528. doi: 10.1017/
S0305004100049252.

[45] John Proos and Christof Zalka. “Shor’s discrete logarithm quantum algorithm for elliptic
curves”. In: arXiv preprint quant-ph/0301141 (2003).

[46] Joost Renes. “Computing isogenies between Montgomery curves using the action of (0, 0)”.
In: International Conference on Post-Quantum Cryptography. Springer. 2018, pp. 229–247.

[47] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining digital signa-
tures and public-key cryptosystems”. In: Communications of the ACM 21.2 (1978), pp. 120–
126.

[48] Martin Roetteler et al. “Quantum Resource Estimates for Computing Elliptic Curve Discrete
Logarithms”. In: Lecture Notes in Computer Science (2017), pp. 241–270. issn: 1611-3349.
doi: 10.1007/978-3-319-70697-9_9. url: http://dx.doi.org/10.1007/978-3-319-
70697-9_9.

[49] Alexander Rostovtsev and Anton Stolbunov. PUBLIC-KEY CRYPTOSYSTEM BASED
ON ISOGENIES. Cryptology ePrint Archive, Report 2006/145. https://eprint.iacr.
org/2006/145. 2006.

[50] P. W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”.
In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science. SFCS
’94. USA: IEEE Computer Society, 1994, pp. 124–134. isbn: 0818665807. doi: 10.1109/
SFCS.1994.365700. url: https://doi.org/10.1109/SFCS.1994.365700.

[51] Joseph H Silverman. The arithmetic of elliptic curves. Vol. 106. Springer Science & Business
Media, 2009.

[52] Carl Størmer. “Quelques théorèmes sur l’équation de Pell x2- Dy2=±1 et leurs applications”.
In: Christiania Videnskabens Selskabs Skrifter, Math. Nat. Kl 2 (1897), p. 48.

[53] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: CR Acad. Sci. Paris, Séries A 273
(1971), pp. 305–347.

[54] William C Waterhouse. “Abelian varieties over finite fields”. In: Annales scientifiques de
l’École normale supérieure. Vol. 2. 4. 1969, pp. 521–560.

[55] Noson S. Yanofsky and Mirco A. Mannucci. Quantum Computing for Computer Scientists.
Cambridge University Press, 2008. doi: 10.1017/CBO9780511813887.

[56] Gustavo HM Zanon et al. “Faster key compression for isogeny-based cryptosystems”. In:
IEEE Transactions on Computers 68.5 (2018), pp. 688–701.

84

https://www.dw.com/en/german-industry-could-win-big-with-new-quantum-computer/a-57920916
https://www.dw.com/en/german-industry-could-win-big-with-new-quantum-computer/a-57920916
https://doi.org/10.1017/S0305004100049252
https://doi.org/10.1017/S0305004100049252
https://doi.org/10.1007/978-3-319-70697-9_9
http://dx.doi.org/10.1007/978-3-319-70697-9_9
http://dx.doi.org/10.1007/978-3-319-70697-9_9
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1017/CBO9780511813887

Appendix A

In this appendix we give the histogram plots for the distribution of smooth neighbour pairs and
primes when running the extending neighbours algorithm for different smoothness bounds B.

85

Figure 7.1: Density distribution for smooth neighbour pairs found for different smoothness bounds

86

Figure 7.2: Density distribution for smooth neighbour pairs found for different smoothness bounds

87

	Abstract
	Notation list
	Background information
	Cryptography
	Historical overview
	Modern day cryptography

	Post quantum cryptography
	Quantum computers
	Quantum algorithms
	Quantum computers today

	Elliptic Curves and Isogenies
	Curves
	Elliptic curves
	Isogenies
	The Frobenius morphism
	Miscellaneous

	Supersingular curves
	Supersingular curves
	Ideal class groups

	Twists of curves
	Isogeny graphs
	Isogeny graphs of twisted curves

	Montgomery arithmetic
	Montgomery curves
	The Montgomery ladder

	Velu formulae
	Isogenies between Montgomery curves

	"1270élu formulae
	KPS
	xISOG and xEVAL

	Weil pairing

	Cryptography on Elliptic Curves
	Elliptic Curve Diffie Hellman key exchange protocol
	Supersingular Isogeny Diffie Hellman
	SIDH protocol

	Commutativity
	Computing Isogenies
	Security basis of SIDH
	CSIDH

	Smooth primes
	Prevalence of smooth neighbour pairs
	Use in cryptography
	Lenstra's method
	Continued fraction
	Pell equation
	Costs of Lenstra's method

	PTE-Method
	Extending neighbours method
	Costs of extending neighbours method
	Reducing the amount of computations

	Finding large smooth prime numbers
	Finding new smooth primes
	Conclusion on the extending neighbours method

	B-SIDH
	Background on isogenies on twists of elliptic curves
	Introduction
	Generalised isogenies
	Kummer line
	Isogeny graphs

	B-SIDH protocol
	Protocol
	Proof of correctness

	B-SIDH security analysis
	BSIDH usability
	Optimal strategy for BSIDH
	Order of list of prime numbers

	Costs of computing large degree isogenies
	B-SIDH key exchange algorithm
	B-SIDH costs for specific prime numbers
	B-SIDH algorithm for pEN
	Costs of pEN key exchange
	Key exchanges for p237 and p253

	Analysis of B-SIDH security
	The encryption protocol
	An attack on encryption protocol
	Attack with hashed key
	Attack with unhashed key

	Generalisation to arbitrary numbers
	Costs of active attack
	Attack with unhashed key

	Possible countermeasures against the attacks

	Bibliography
	Appendix A

