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Abstract

Providing accurate information regarding the arrival times of trains is valuable for costumer satisfac-
tion. Passengers want to be kept up to date on their travels, and eventual changes in arrival time are
important. Therefore it is important to have a good model that predicts the delay of trains. There
have been previous projects at the Nederlandse Spoorwegen regarding this problem, where one intern,
Leonieke van den Bulk, created a model using machine learning techniques.

During the internship a global pandemic occurred. As only essential workers were allowed to travel
by trains, the Nederlandse Spoorwegen drastically changed their operating schedule. This new sched-
ule is called the basis schedule and it is a reduced version of the regular schedule. Because the operating
schedules had never been changed this much before, this led to a unique experiment. Two methods
for creating a model predicting the delay of trains were used. The first method used Neural Networks
to train the data, which was copied from Leonieke van den Bulk’s thesis. The second method used
the frequencies of situations to calculate conditional probabilities. For every combination of features
the best performing model was chosen. For both schedules the best combination was to only look at
the delay 20 minutes ago.

For every method and schedule a model was created. So in total there were four different models.
The models were tested on both the test set from the basis schedule and the test set from the regular
schedule. This to answer the question whether there is a difference in predicting the delay of trains for
the regular schedule and the basis schedule. The models trained on the regular schedule were better at
predicting the test set from the regular schedule than the models trained on the basis schedule and vice
versa. This is logical as the models were trained on the respective schedule, but the difference between
the performances was smaller than expected. This showed that for a small difference in schedule it is
not needed to train the models all over again, because for a large difference in schedule the models
did not significantly outperform the other.

Also the performance of each of the two methods was compared against the other to see which
method outperforms the other. The performances were very similar, but the conditional probabilities
method had the best performance score overall. Furthermore, this method is intuitive and satisfies the
wishes of the Nederlandse Spoorwegen more. Therefore the advice of this thesis is to stop researching
Neural Networks for the prediction of delay.
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1 Introduction

1.1 Problem

The Nederlandse Spoorwegen (called NS from here) is the main operator of passenger trains in the
Netherlands. In 2019 it coordinated around 6000 trains every day, making sure more than 1.3 million
passengers arrived at their desired location. In that year 62% of the population of the Netherlands
made use of the services provided by the NS. The Dutch rail network is the busiest and densest in
Europe and most of the trains on this network are passenger trains. Because of the tightness of the
operating schedule, a small delay of a single train can cause delay to a large group of other trains.

For the NS it is important to provide accurate information on the arrival time of trains. Traffic
control uses this information so that future stations can take precautions when there is a delay.
Moreover, the expected arrival times are displayed on the information boards on stations, the website
and the NS mobile application, so passengers know what to expect regarding their travels. This is
why real-time data on the performance of trains regarding the schedule is collected. This data can be
used to create models for predicting delay.

To predict delay, you need to think about different features and methods. Examples of features
are the hour the train is moving or the delay of the train ahead. The NS has tried several methods for
predicting delay, but the one currently in operation is the model that predicts that the future delay
will be the same as the current delay. It is a simple but fair method since more than 90% of trains
arrive on time. Previous theses by Leonieke van den Bulk and Eva Lehkà have aimed to improve on
this method by creating a prediction model using machine learning techniques. The results seemed
promising, as they slightly outperformed the current method.

However, there were some setbacks with the new models. When the results were shown to other de-
partments within NS, the reactions were less enthusiastic. The new model has fewer wrong predictions
in general, but false positive results (falsely predicting an increase in delay) occur. By construction,
the current method has no false positive results. Customer satisfaction will decrease when these situ-
ations arise. For example, passengers could see the predicted delay, go to the store at the station to
get a cup of coffee and then miss their train. They would have been on time if there was no predicted
delay. Therefore, the departments preferred the current method. Furthermore, the new models have
been tested on live data to see how they perform. The results were not as promising as the results in
the theses.

All these setbacks cast doubt on the believe that when predicting the delay of trains a model
created using machine learning techniques is the best method. One of the goals of this thesis is to find
out whether these models are good methods for predicting delay and whether there is a more intuitive
method that performs better.

1.2 Situation

This research took place during an abnormal situation: the COVID-19 pandemic. The government
of the Netherlands issued a lockdown, which meant everyone had to stay inside and only essential
workers were allowed to use public transport. Passengers were obliged to wear facial masks in trains
and because everyone had to keep distance, less than half of the seats were available. This resulted in
a large decrease of passengers for the NS, so a different schedule was created, called the basis schedule.
This schedule is a reduced version of the regular schedule. For example, in the basis schedule all the
intercity’s, trains that only stop at important stations, were removed, shortened or scheduled to stop
at every station. As there are a lot fewer trains riding in the basis schedule, one would expect the
impact of a delay of a train on other trains to be less.

These two different schedules provided for a unique experiment regarding predicting the delays
of trains. For each type of method two different models will be created, one trained by the data set
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containing the basis schedule and the other the regular schedule. Then these models will be tested on
how they perform on trains from their own schedule, but also on trains from the other schedule. One
of the goals of this thesis is to test if a model based on the basis schedule is significantly different from
the regular schedule.

1.3 Research Questions

Combining the two goals described above, the main research question this thesis aims to answer be-
comes

What is the best method for predicting the delay of trains for different operating schedules?

Other research questions have been formulated:

• Is there a significant difference between creating a model for predicting delay for the basis
schedule and for the regular schedule?

• Do Neural Networks outperform a model based on classic statistical methods?

To answer these questions, this thesis will look at two types of models that predict 20 minutes
into the future. One model uses Neural Networks and is based on a model described in the thesis
of Leonieke van den Bulk. The other model will be created using conditional probabilities. The two
different schedules and the two types of models will be looked at and compared. The thesis will follow
Figure 1.

Figure 1: Overview of thesis

1.4 Scope

This research focuses on short term train delay prediction, because of the use of the model described
in Leonieke van den Bulk’s thesis. This model predicts the delay of trains twenty minutes into the
future. To better compare the methods of creating models, all the models that will be researched in
this project predict the delay twenty minutes into the future.
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2 Methods and data

In this section, background information is given on predicting the delay of trains at the NS. First, we
are going to look at how the NS currently predicts the delay of trains. Then we take a closer look at
the data that is used to predict the delay currently, and is used in the models created in Sections 3
and 4. Because it is important to see that the basis schedule and the regular schedule are significantly
different for the experiment, the content of the data sets of the two schedules are compared to each
other. At the end of this section, the method for calculating the performance of the predictors is
presented.

2.1 Current method for predicting delay

The NS has the system InfoPlus that processes logistics information and provides travel information
for the passengers. InfoPlus consists of three subsystems HARM, CRIS and PUB. In HARM different
information is harmonized such that it is usable input for CRIS. This information consists of, for ex-
ample, the annual planning, the day planning and the data from the train tracking system at ProRail.
The latter is the data that is used to create the models in Sections 3 and 4, and is explained in Section
2.2. CRIS then transforms this harmonized information into current travel information, including the
predictions of the arrival times of trains. So in subsystem CRIS the method for predicting delay is
built. Next, PUB publishes this travel information to the information boards on the stations and
other media.

The method that currently predicts the delay of trains at the NS is seen in Figure 2. When there
is no delay the prediction will be that the same holds for the future stations. When there is a delay,
the method predicts that the train can catch up a fixed percentage of the travel time between stations.
Also, when a train has scheduled for a stop of longer than two minutes at a station, the stop is reduced
to two minutes. The delay is then reduced by the extra time.

Station A

Delay > 0

Station B

If waiting time ≥ 2

Then −waiting time +2

Station C
−% of

travel time

−% of

travel time

Figure 2: Current method for predicting delay.

This method works fairly well, as the travel schedule is created in a similar way. Between every
station, they add the same fixed percentage to the actual travel time. So when there is a delay the
train can make up for lost time. But on the other hand, at some stations there is necessary extra time
planned. For example, when the train changes direction and the train driver has to move to the other
side of the train or when a trainset is added to the train. Then the reduction of the extra time from
the delay is inaccurate.

In practice, this method predicts that when there is a delay the train will catch up one minute of
delay in twenty minutes. The current method will be referred to as this, because the models created
in this thesis will predict the delay twenty minutes into the future.
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2.2 Content of the data sets

As seen in the section above, ProRail provides data for InfoPlus of the current situation on the Dutch
rail network. For this research we are taking a look at two data sets resembling the two schedules.
The first data set contains all the trains that travelled between 16-12-2019 and 23-02-2020, when the
NS ran the regular operating schedule. The second data set concerns the ones between 23-03-2020 and
28-04-2020, when there was the basis operating schedule. The data is created by measuring points on
the railway. When a train passes such a point, it will create a new data point. All of the stations are
measuring points, but there are also a few in between. Two examples of data points twenty minutes
apart are given below.

Travel Date Series Characteristic Number Location Activity
2019-12-16 5400E SPR 5462 Zvt V
2019-12-16 5400E SPR 5462 Hwzb K V

Planned time Realisation Delay
2019-12-16 19:34:00 2019-12-16 19:34:49 0
2019-12-16 19:54:36 2019-12-16 19:57:41 3

Original plan Delay Jump Cause
2019-12-16 19:34:00 0 -
2019-12-16 19:54:00 2 Other train

Features

All the data points give information on the different features. ‘Travel Date’ is different from a normal
date, as it doesn’t start at 00:00 but at around 5:00 in the morning and ends at around 03:00 the
next day. This is because a train can start their route before midnight and end it after midnight. A
‘Series’ describes all the trains riding the same route, with the letter E or O at the end to indicate the
direction. The ‘Characteristic’ describes what type of train it is, as for example an Intercity (IC) only
stops at the important stations it passes and a Sprinter (SPR) at every station. The ‘Number’ of a
train indicates a specific train ride of that day. It indicates the series, direction and order in departing
time of trains travelling the same route. The ‘Location’ indicates the place the train has passed a
measuring point. ‘Activity’ describes what the train did at the measuring point. For example, V
stands for leaving the station after a stop. ‘Planned time’ and ‘Original plan’ are often the same, as
they both stand for the time the train is planned to arrive at the measuring point. But sometimes a
short-term alteration of the plan can be made. ‘Realisation’ indicates the time the train passes the
measuring point. ‘Delay’ is the difference between ‘Realisation’ and ‘Planned time’ in minutes. ‘Delay
Jump’ is the difference in delay in comparison to the previous measuring point. When there is a jump
in delay, most of the time a cause of this delay has been given which is indicated by ‘Cause’.

Change of plan

So sometimes the plan is changed by traffic control. For instance, a train has a delay and when the
planned arrival time is altered to be later, it causes the barrier at a railroad crossing to drop later.
Ohterwise, the cars should wait until the train has arrived. As the delay of the train is based on
the difference between realisation and planned time, this could cause weird effects in the data. For
example, a train has thirteen minutes delay at a data point and it takes six minutes to arrive at the
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next data point. Then when traffic control changes the schedule, the delay at the next data point
could for instance now be one minute based on the new plan. But the train would never be able to
catch up twelve minutes of delay in a time span of six minutes. From a passenger point of view, the
delay has not been changed. But from a plan point of view, the delay has. Basing the delay on the
difference between the original plan and realisation also causes weird effects in the data, because the
train driver will now drive according to the new schedule. He or she will not try to catch up with the
original plan. So there is not one good method to base this delay on, but it is important to know the
faults of both.

Train series

As explained before, a train series describes all the trains travelling the same route. There are more
than 90 train series currently active on the tracks. As the progression of delay is different for each
train series, the models are trained for each train series separately. Training 90 models is a lot of work,
therefore the choice has been made to look at four train series: 3000, 4000, 4400 and 4900. The 3000
series is the same series as tested in the thesis from Leonieke van den Bulk. It is the intercity from
Nijmegen to Den Helder, it stops at the main stations. In the basis schedule, it stops at every passing
station. The rest of the series are all Sprinters, which means they always stop at every passing station.
The 4000 series starts in Uitgeest and ends in Rotterdam Centraal, the 4400 starts in ’s Hertogenbosch
and ends in Deurne and the 4900 starts in Almere Centrum and ends in Utrecht Centraal.

Splitting the data sets

Both the data sets are divided into three separate sets: a training set, a validation set and a test set.
The training set is used to set the right parameters of the models so they fit the training set. The
validation set makes sure the models are not overfitted on the training set. Overfitting means that a
model is too good at predicting a certain data set, but does not perform well on future data points.
The performance of the models is checked on the validation set and then the parameters or features
that best fit the validation set are chosen. In the end, the performance of the models is tested on the
test set. For the basis schedule, the training set contains the train rides that occurred between but
not including 22-03-2020 and 23-04-2020, the test set on 23-04-2020 and the validation set between
but not including 23-04-2020 and 29-04-2020. For the regular schedule, the training set consists of
the train rides between but not including 15-12-2019 and 05-03-2020, as the test set the train rides
on 05-03-2020 and as the validation set the train rides between but not including 05-03-2020 and
23-03-2020. The day that is chosen to be the test day is Thursday for both schedules. In Table 1 the
number of data points per data set can be found.

Schedule Series Training set Validation set Test set

Regular 3000 404606 91237 5324
Basis 3000 144175 23954 4512

Regular 4000 383692 84127 5027
Basis 4000 151723 24806 5106

Regular 4400 139605 30387 1910
Basis 4400 50824 8674 1921

Regular 4900 88245 20258 1342
Basis 4900 38773 5395 1400

Table 1: Number of data points per data set.
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2.3 Difference between the schedules

In this subsection we explain the use of the two distinct data sets, as we have one containing data
points during the basis schedule and on during the regular schedule. It hardly ever occurs that such
a drastic new schedule is created to operate the trains for more than a month’s time. This means
that in this thesis there is going to be a unique experiment on the two different schedules. For each
method of creating a model, two models are created. One is trained on training data from the ba-
sis schedule and the other on the regular schedule. So we have a basis model and a regular model
per method. For each of the schedules a portion of their data set is taken to create a test set, so
a basis test set and a regular test set. Then for each model the performance on both test sets is
calculated. This will answer the first research question: “Is there a significant difference in creating a
model for predicting delay for the basis schedule and the regular schedule”? One would expect that
a model trained on the basis schedule is better at predicting the basis test set than a model trained
on the regular schedule. For this experiment to go well, the schedules have to be significantly different.

In Figure 3 you can see the distributions of the number of minutes delay per schedule. For both
schedules between 75% and 90% of the data points have zero minutes delay, so zero minutes delay
occurs most often. This means that the largest part of the data sets is one value, which makes it hard
to predict the other values. Predicting that a train never has any delay therefore is already a good
predictor.

Figure 3: Distribution of basis schedule and regular schedule.

In Figure 4 you can see the statistics of the two different schedules compared to each other. The
statistics include the average µ, the standard deviation, the variance σ2 and the number of large
increases per train ride. The average delays both are between zero and one, but the average delay for
the regular schedule is twice as big as the average delay for the basis schedule. The variance is the
measurement for the spread of the numbers in the data set. The formula for calculating the variance
is given in Equation 1, where n is the total number of data points and xi the delay of a data point.

σ2 =
1

n

n−1∑
i=0

(xi − µ)2 (1)
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The variance looks at how far each data point is from the average µ, so when the variance is large it
means that the values are more spread out. Looking at Figure 4, this means that the data points in
the regular schedule are more often further away from it’s average than the data points in the basis
schedule. The standard deviation is computed by taking the square root of the variance, so it also
is a measurement for the spread of the data. Large differences between data points and the average
result in a higher standard deviation. In this case, it is larger for the regular schedule than for the
basis schedule. The number of large increases per train ride calculates the times a train made a jump
of three minutes in delay in comparison to the previous data point and divides it by the number of
train rides. This is also twice as large for the regular schedule as for the basis schedule. This could be
caused by the higher number of trains on the tracks in the regular schedule. When it is busier and a
train has a delay, the probability of causing delay to another train is higher.

Figure 4: Statistics of the basis and regular schedule.

These statistics show that the schedules have significantly different distributions.

2.4 Performance score

In this thesis four models are created by using two different methods and two different data sets.
All these models predict a numerical value, so they have a ‘Regression’ label. The performance is
calculated in the same way as in the thesis of Leonieke van den Bulk [1], using the root mean squared
error (RMSE). Van den Bulk also created models using other labels, but those will not be considered
in this thesis. In Chapter 3.2 it is explained why. The root mean squared error is given in Equation
2 where D is the number of data points, x̂d is the prediction of data point d and xd is the true value.

RMSE =

√∑D
d=1(x̂d − xd)2

D
(2)

This scoring function implies that the lower the score, the better the performance. It punishes large
differences between the prediction and the true label harder than small differences. For example,
when a model predicts perfectly 99 times but one time it predicts with a difference of twelve minutes
from the true label, it results in a higher score than predicting hundred times with a difference of
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one minute. The root mean squared error meets the wishes of NS, as large differences in delay are
considered worse than small differences.
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3 Neural Networks

In this section, the creation of the Neural Network model will be discussed and its results on the
different test sets.

3.1 Introduction

First let us look at the idea of a Neural Network. In the theses by Eva Lehkà [2] and Leonieke van
den Bulk [1] Neural Networks were used to create a model that predicts the delay of trains. A Neural
Network is inspired by the human central nervous system. It takes a large set of data as training
samples and develops a system that learns from these training samples. A Neural Network consists of
layers: an input layer, hidden layers and an output layer. This is seen in Figure 5. The input layer
x consists of input nodes that correspond to the features of the data. Examples of those features for
our model are the day the train was travelling on or the number of minutes delay 20 minutes ago.
The output layer y consists of output nodes, which correspond to the labels the data will be predicted
to. The labels for our model are the numbers of minutes delay. The hidden layers h1, . . . , hk consist
of neurons. The more hidden layers, the more complicated the Neural Network. Each input node is
connected to each neuron in the first hidden layer by an arrow, each neuron in a hidden layer to each
neuron in the next hidden layer, etc. Finally, each neuron in the last hidden layer to each output node.

Figure 5: Overview of a Neural Network.

In Figure 6 the architecture of a single node can be found. The outputs of all the nodes in the
previous layer become the inputs i1, . . . , ij of the node. Each arrow has a weight w1, . . . , wj , real
numbers expressing the importance of the inputs to the output of the node. The output o is computed
using a series of actions. First, the weighted sum

∑
dwdxd of the inputs is calculated. Then the bias

b is added, which is a measure of how easy it is to activate a neuron. Finally, an activation function ϕ
is used, which differs depending on what types of labels you want to predict. For example, for binary
classification the sigmoid function ϕ(z) = 1

1+e−z is used, which has as input a real number and as
output a number between 0 and 1. The bigger the z, the closer the output is to 1 and the smaller z,
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the closer the output to 0. So the output of a node becomes the following function.

o = ϕ(b+

j∑
d=1

idwd) (3)

The output nodes compute in the same way their output, which represents the probability of that
label being the true label. The computation of the output of the neurons and the output nodes is called
forward propagation. The activation functions all have in common that a small change in weights or

Figure 6: Computation of output of node.

bias results in a small change in output. So a Neural Network can change these weights w and biases
b such that the probabilities of each data point receiving a certain label is highest at the true label.
This is done by minimizing the cost function C, which is defined by:

C(w, b) :=
1

D

∑
x

||y(x)− a(x,w, b)||2

Here w is the vector of all weights, b the vector of all the biases, D the number of training samples, x
an input vector, y(x) the vector representing the true label of x and a(x,w, b) the vector representing
the output of the network with input x. The value C(w, b) is obviously nonnegative and the smaller
C(w, b), the closer the outputs of the Neural Network are to the true labels. The goal of training a
Neural Network is to find w and b that minimize the cost function, given training samples. The weights
are changed using gradient descent, where each weight’s gradient is subtracted from the weight. The
process of changing the weights and biases is called back propagation. A more detailed explanation of
the algorithm is found in Rumelhart et al [6].

3.2 Model of Leonieke van den Bulk

The Neural Network used in this thesis is based on the code and thesis by Leonieke van den Bulk.
In this paragraph, the model and what parts of it are being used in this thesis are explained. For a
detailed explanation of the model, consider the thesis by Leonieke van den Bulk [1]. In Van den Bulk’s
thesis there were multiple models with different features which all performed roughly similar. As the
aim of this thesis is to compare the model of Leonieke with statistical methods, the basic feature set
that the thesis provided is used and no effort was put into optimizing the Neural Network model. The
Neural Network model is recreated in the programming language Python.

The model predicts the delay of a train 20 minutes into the future, given the current delay. It
has three different types of labels. The first is a binary label which represents a jump of five minutes
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or more (Yes/No), the second is a ternary label which represents a change of delay of at least two
minutes (Decrease/Equal/Increase) and the last is a numeric label which represents the actual delay
in minutes. The basic feature set consists of different types of features. The features ‘Current day
of the week’ and ‘Current location’ are categorical variables, ‘Current hour’, ‘Current minutes’ and
‘Previous delay’ are numerical variables and ‘Direction’ and ‘Same train’ are booleans. Because of the
features ‘Previous delay’ and ‘Same train’, two data points are needed: the current data point and the
data point concerning the train twenty minutes before. The two examples from Section 2.2 become
the training sample below.

Day Hour Minutes Direction Location Same train Previous Delay Labels
1 19 54 1 16 1 0 0/2/3

The change in delay between the two data points is 3 minutes. The ‘Jump’ label becomes 0, as the
change is less than 5 minutes. The ‘Change’ label will become 2 indicating ‘Increase’, as the change
is bigger than 1 minute. The ‘Regression’ label is 3 as this is the delay.

Leonieke van den Bulk used rolling stock schedules from the NS in her code to create the model. It
shows at which locations trains had to change their composition. Unfortunately, this is not available
for the basis schedule, as the basis schedule was made in one week in contrast to a year for the regular
schedule. In this thesis all the models will not make use of the rolling stock schedules, because this
will result in a better comparison. Unfortunately, this has an influence on the prediction of delay. Van
den Bulk’s code and data have been used to create a model for predicting delay to calibrate it to the
results of Van den Bulk’s thesis. Also, a model is created without the use of rolling stock schedules,
by tweaking the code a little bit. The results are seen in Table 2. As you can see the model created
without rolling stock for the ’Jump’ label fails to accurately predict a jump in delay. The models using
the ‘Regression’ label and the ‘Change’ label perform similarly to the results of Van den Bulk’s thesis.

Jump Change Regression
Precision Recall F1 Precision Recall F1 RMSE

Leonieke’s thesis 0,077 0,25 0,12 0,30 0,21 0,25 1,38
Code with rolling stock 0,05 0,25 0,083 0,29 0,24 0,26 1,39
Code without rolling stock 0 0 0 0,30 0,21 0,25 1,37

Table 2: Calibration of the code to Leonieke’s thesis.

In this thesis only the ‘Regression’ label is used, because this is the most practical label as it gives
an actual number. Furthermore, the conditional probabilities model this Neural Network model is
compared to only creates a numerical label. So for the other labels there is no other model to compare
it to. Besides, the model with the ‘Jump’ label without rolling stock does not have similar results as
Van den Bulk’s thesis.

3.3 Results

In this paragraph, the Neural Network model trained on the data from the regular schedule (regular
neural model) and the Neural Network model trained on the data from the basis schedule (basis neural
model) are tested on the two test sets. The performance of the models on the different train series
and schedules are given in Table 3. The RMSE (see Equation 2) is used as the scoring function. As
seen in Section 2.4: the lower the score, the better the performance.

The basis test set is easier to predict than the regular test set, as both models have a better
performance score on the basis test set. However, the models perform significantly worse on the basis
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Test set Training set 4900 4400 4000 3000 all series

Basis Basis 1,9741 0,9406 0,6280 0,6796 0,9326
Basis Regular 1,9908 0,8802 0,7189 0,7128 0,9617

Regular Basis 1,1299 1,3973 1,3622 1,3213 1,3301
Regular Regular 1,0347 1,2959 1,2884 1,2697 1,2593

Table 3: Performance of Neural Networks models on different test sets.

test set containing the 4900 series than the regular test set containing the 4900 series even though
both test sets have an average of around 0.52 minutes delay. The first test set has fewer jumps of more
than three minutes delay than the second test set, but the largest delay that occurs is 22 minutes and
6 minutes respectively. Because the RMSE punishes large delays, the performance score is worse on
the basis test set containing the 4900 series.

In almost all cases the models are better at predicting the test set from the schedule they are
trained on, than the other model. Only at the basis test set containing just the 4400 series has the
regular neural model a better score than the basis neural model. This is caused by there being slightly
more jumps in delay on this day than normal. This fits the regular model better and therefore it has
a better performance score on this set.

The difference between the overall performance scores of the models on the basis test set is 0.0291.
The difference in the regular test set is a bit larger, namely 0.0708. These are small differences and so
it is hard to say whether a model trained on a schedule performs better on the test set of that schedule
than the model trained on the other schedule. Therefore there is not a large difference in creating a
model using Neural Networks for the regular schedule and the basis schedule.
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4 Conditional probabilities model

In this section we create two models based on conditional probabilities, one for the basis schedule and
one for the regular schedule. Conditional probabilities are chosen to be the classic statistical method
for creating a model predicting the delay of trains, because it looks at the frequencies of specific
situations occurring. This makes the model created using this method an intuitive model.

4.1 Conditional probabilities

The data sets can be used to approach the probabilities of given events. In this thesis we desire
calculating the probability of a train having a certain number of minutes delay. Let’s say that feature
A represents the number of minutes delay a train has, then A = i is the event that a train has i
minutes delay. This number i is rounded to a whole number. The probability of A = i occurring can
be approached by dividing the number of times a train has i minutes delay by the total number of data
points. The more data points in the data set, the more accurate this probability can be estimated.
The calculation is formulated as the following equation, where Ω stands for the set of all data points
and A(x) the number of minutes delay the train has in data point x.

P (A = i) =
#{x ∈ Ω | A(x) = i}

#Ω
(4)

Now let’s say the binary feature B0 represents whether the train ride was on a weekday or in the
weekend. Then B0 = 0 and B0 = 1 are the events that the train ride did not and did happen on the
weekend, respectively. The conditional probability P (A = i|B0 = 1) represents the probability of a
train having i minutes delay given the information that it’s weekend. This conditional probability is
calculated by dividing the probability of the events A = i and B0 = 1 both occurring divided by the
probability of B0 = 1. This can be simplified as follows.

P (A = i | B0 = 1) =
P ((A = i) ∧ (B0 = 1))

P (B0 = 1)

=

#{x∈Ω|(A(x)=i)∧(B0(x)=1)}
#Ω

#{y∈Ω|(B0(y)=1)}
#Ω

=
#{x ∈ Ω | (A(x) = i) ∧ (B0(x) = 1)}

#{y ∈ Ω | B0(y) = 1}

(5)

Calculating the conditional probability now becomes quite easy. You divide the number of data
points that both have i minutes delay and are in the weekend by the number of data points in the
weekend. Adding k more features Bj and their corresponding events Bj = mj just results in the very
specific event (B0 = m0) ∧ · · · ∧ (Bk = mk). The conditional probability then becomes the following.

P (A = i |
k∧

j=0

(Bj = mj)) =
#{x ∈ Ω | (A(x) = i) ∧ (

∧k
j=0(Bj(x) = mj))}

#{y ∈ Ω |
∧k

j=0(Bj(y) = mj)}
(6)

Given this knowledge of calculating conditional probabilities, conditional probabilities matrices can
be made using frequency matrices. The frequency matrices are created by first taking a zero-matrix
with size depending on which features are included and for A a numerical feature depending on how
many minutes delay is included. For example, we take feature A with a minimum of 0 and a maximum
of nine minutes delay, feature B0 as defined before and feature B1, which we will define as the location
of the train, expressed in Utrecht and ¬Utrecht. So feature A is divided into 10 events, B0 2 and B1 2.
Because A is the feature we want to predict, the columns in the matrix will correspond to the events
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of feature A. The rows will then represent all the possible combinations of events of B0 and B1. So the
matrix will have size 4× 10. Then for every data point, the values for each feature are checked. So for
example, we have a data point that has two minutes delay, is located in Utrecht and is on a weekday.
Then we add a one to the entry in the matrix representing these values. The creation of the frequency
matrix is done when every data point is checked. The conditional probability matrix is then created by
using Equation 6, which means for every entry in the frequency matrix the entry is divided by the sum
of its row. The conditional probability matrix of the basis schedule of our example is shown in Figure 7.

0 1 2 3 4 5 6 7 8 9

Weekday ∧ Utr 0,835 0,074 0,034 0,013 0,009 0,012 0,005 0,003 0,003 0,011
Weekday ∧ ¬Utr 0,791 0,098 0,044 0,022 0,013 0,007 0,003 0,004 0,004 0,015
Weekend ∧ Utr 0,942 0,025 0,010 0,004 0,000 0,009 0,004 0,003 0,003 0,003

Weekend ∧ ¬Utr 0,889 0,061 0,020 0,009 0,005 0,004 0,003 0,002 0,002 0,005

Figure 7: Example of a conditional probability matrix.

This matrix can be used to predict the delay of a train, by calculating the expected value of the
rows. The expected value is the weighted average over the values, in this thesis’s case the number of
minutes delay. The weights are the probabilities of each value, as they all add up to one. The expected
value of the feature A is defined in the equation below.

E(A) =
∑
i

i · P (A = i) (7)

For conditional expectations only the conditional probabilities P (A = i|
∧k

j=0(Bj = mj)) are
considered.

E(A |
k∧

j=0

(Bj = mj)) =
∑
i

i · P (A = i |
k∧

j=0

(Bj = mj)) (8)

So a prediction is made by looking at the features of a test data point and by checking which row
of the conditional probability matrix it belongs to. Then, the expectation of the row is calculated
to predict the delay of the train. For example, for the data point in Utrecht and on a weekday the
prediction will be 0.451. So the matrix above is a model for predicting delay for the basis schedule.
But as every test data point is assigned a row this model only has four possible predictions. Adding
more features and increasing sizes of the possible values for the features will increase the size of the
conditional probability matrix and thus increase the number of possible predictions. However, one
should be careful not to increase the size of the matrix too much as it can lead to overfitting of the
data. Therefore, next chapter different we will compare different features against each other to check
which features create the best model. The code for creating the conditional probabilities model is
written in Python.

4.2 Important features

In this section the performances on predicting delay of the different features are checked. This is done
by training models for all the different combinations of features. Then the models make predictions of
the data in the validation set and the performance score is calculated. The best features are chosen to
be in the final model. The features that are going to be checked are the delay 20 minutes ago (Del),
the time, the activity (A) and the location (L). The first is a numerical feature and the remaining are
categorical. The time is checked in three different ways: what day (Day) it is, which hour (H ) it is
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and whether it is rush hour, low hour or weekend (RH ), as there is no rush hour in the weekend. RH
can not be combined with H and Day, but Day and H can be combined together. The feature the
model aims to predict is the delay at the current moment, which is also numerical.

Maxima of the numerical features

The first thing that needs to be set is the maxima of the numerical features. Every data point with a
value higher than the maximum will get the maximum as value. This is done because high numbers of
minutes delay don’t occur often and if the model is trained too much on these special cases this could
lead to overfitting. The maxima are determined by creating models varying the number of minutes
delay until the performance on the validation set stays about the same. The results for the different
schedules are seen in the Figures 8 and 9.

Figure 8: Performance in RMSE per
maximum number of minutes delay in
the basis schedule.

Figure 9: Performance in RMSE per
maximum number of minutes delay in
the regular schedule.

You can see for the basis schedule that the lines somewhat stop decreasing around 17 minutes
delay and for the regular schedule around 20 minutes delay, so these become the maximums for both
numerical features. Once the maximum for the to be predicted feature is determined, the models for
all the different features can be created. The performances are calculated by taking the root mean
squared error (RMSE) of the predictions and the true labels.

Performance of the features

In Table 4 you can see the performances of the models trained on different features compared against
each other. They are also compared to the baseline, which is the expectation of the amount of minutes
delay as seen in Equation 7 without any conditions. Table 4 only shows the performances of the
models trained on one feature, for the performances of all the combinations of features see Table 10
in the Appendix.

As you can see the results of all the combinations of features without the feature Del are very
similar to that of the results of the baseline. These features have almost no influence on the number of
minutes delay. It could be that they are independent of the number of minutes delay, which is defined
as follows:

A and B are independent if P (A | B) = P (A) (9)

So in order for this to be true for a feature B, for all events B = m and A = i the probabil-
ity P (A = i|B = m) = P (A = i). The best way to check this is to look at the distributions of
P (A|B = m) for every event B = m and compare them to the distribution of P (A). This has been
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Basis schedule Regular schedule
4900 4400 4000 3000 all 4900 4400 4000 3000 all

Baseline 0,673 0,890 1,467 1,783 1,487 1,701 1,406 1,682 1,362 1,526

Delay 0,657 0,855 1,088 1,181 1,066 1,406 1,294 1,251 1,013 1,183
Day 0,668 0,895 1,466 1,788 1,489 1,694 1,404 1,683 1,365 1,526
Hour 0,680 0,893 1,467 1,784 1,488 1,699 1,404 1,684 1,367 1,528
Rush hour 0,673 0,890 1,467 1,785 1,488 1,696 1,405 1,681 1,362 1,525
Activity 0,673 0,890 1,467 1,783 1,487 1,701 1,405 1,683 1,362 1,526
Location 0,672 0,890 1,467 1,782 1,486 1,697 1,406 1,684 1,362 1,526

Table 4: Performance of the different features of the conditional probabilities model by using mean
squared error.

done for the 4000 series for every feature. In Figures 10 and 11 the distributions of the feature Day
are shown per schedule. The pink dotted line is P (A), the distribution of the number of minutes delay
without any conditions. So it is the distribution of all the data together. The other lines represent dif-
ferent events. For example, the orange line represents the distribution of the subset Day = Monday,
where at all the data points the day was Monday. The distributions of the events lie very close to the
distribution of the number of minutes delay (the pink dotted line). For the regular schedule, we see
that the weekend days have a slightly higher prediction of arriving on time than the weekdays. It is
clear that these conditional probabilities are very similar to that of P (A), and thus will have almost
no influence on the number of minutes delay.

Figure 10: Distribution of feature Day in
the basis schedule for 4000 series.

Figure 11: Distribution of feature Day in
the regular schedule for 4000 series.

In the Figures 12 and 13 we see the distributions of the feature Del, the amount of delay 20
minutes before. The distributions of the events are very different from the distribution of the amount
of minutes delay, except for the event that the train 20 minutes ago had zero minutes delay. It is
clear that the features are dependent on each other. When a train 20 minutes ago has twenty minutes
delay, that train will never arrive on time. But when a train 20 minutes ago has four minutes delay, it
could drive faster to decrease the delay and so there is a probability it will arrive with no delay. The
differences between the two schedules are mostly that in the basis schedule the peaks per distribution
are on lower numbers of minutes delay than those of the regular schedule. This means that in the
basis schedule it is easier to decrease the delay than in the regular schedule.

In Figures 14 and 15 you can see the distributions of the feature Hour. The most notable dis-
tributions are the grey line representing 02:00, the yellow line representing the hour 03:00 and the
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Figure 12: Distribution of feature Delay
in the basis schedule for 4000 series.

Figure 13: Distribution of feature Delay
in the regular schedule for 4000 series.

blue straight line representing the hour 04:00. These are interesting as they are hours not included in
the daily schedule, so there aren’t supposed to be travelling any passenger trains at that time. For
the hour 04:00 and in the regular schedule the hour 03:00, there are no data points. So that’s why
the distribution coincides with the x-axis. For the hour 03:00 in the basis schedule, there are data
points. There is one instance of a train having 61 minutes delay at 01:00. The train continued its
route at 03:00 and arrived at the remaining stations on his route with a delay of 1 and 0 minutes.
Traffic control adjusted the schedule, as the train would never be able to arrive on time. In Chapter
3 you can read why this happens. Because in the data set there is just one train ride at 03:00, there
are not enough data points to accurately predict train rides in this hour. For the hour 02:00, the
probability of a train having no delay is almost one. Only on Fridays and Saturdays there is a special
night train from Amsterdam (Asd) to Heerhugowaard (Hwd). The last train of the series 4000 before
this special train has already been scheduled to stop an hour earlier, which shows that this train ride
is an exception to the schedule as there are two train rides per hour for every other hour. Because of
the late hour, there are fewer trains riding and fewer people are travelling by train. This could be the
explanation for the absence of delay. The rest of the hours have distributions similar to that of P (A).

Figure 14: Distribution of feature Hour
in the basis schedule for 4000 series.

Figure 15: Distribution of feature Hour
in the regular schedule for 4000 series.
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In Figures 16 and 17 you can see the distributions of the feature location. As seen before the
schedule switches from day to day. Some days there is a train riding at 02:00 and in the same way
some days there is a train riding to Utrecht. This happened four times in the regular schedule, so for
every location on that route there are only four data points. As these locations are not in the normal
schedule and have too few data points to make an accurate distribution, they should be left out. Then
there are a few locations that are not included in every train ride. The series 4000 with direction E
travels from Rotterdam (Rtd) to Uitgeest (Uitg) and with direction O travels the other way around.
But at the beginning and at the end of the day the 4000 series stops at stations it doesn’t stop at
the rest of the day. This is because at night trains are held at a storage yard. There are a couple of
stations with a storage yard and at night every train in the Netherlands should be held somewhere.
This means that at the beginning of the day a train starts at a storage yard and should travel to its
route and at the end of the day it is driven back to a storage yard. This causes there to be stations
that are only stopped at once or twice a day, and always at the end or the beginning, for example
Alkmaar (Amr) and Heerhugowaard (Hwd). The rest of the distributions are similar to that of the
distribution of the amount of minutes delay.

Figure 16: Distribution of feature Loca-
tion in the basis schedule for 4000 series.

Figure 17: Distribution of feature Loca-
tion in the regular schedule for 4000 se-
ries.

In Figures 22 and 23 in the Appendix you can see the distributions of the feature Activity and in
Figures 24 and 25 the distribution of the feature Rush hour. As you can see these are all very similar
to the distribution of P (A), so they have almost no influence on the amount of delay.

In Table 10 in the Appendix the performances of the combinations of features are checked. The
best combinations are the ones combined with the feature Del. The more features there are in the
condition, the worse the performance of the model. The cause of this can be explained by overfitting.
The more features in the condition, the more unique events there are. For each event there are fewer
data points, which makes it hard to get an accurate prediction for this event. In some cases, there is
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even no data as it has not happened in the data set. Therefore, these models perform well on their
trained data set, but not on other data sets. In the regular schedule the best models are Del, Del
∧ RH, Del ∧ Act and Del ∧ RH ∧ Act. This is because for each of these models for low values of
the feature Del the distributions are the same, which means that, for example, the event one minute
delay twenty minutes ago during rush hour arriving at a station has roughly the same distribution as
the event one minute delay twenty minutes ago during the weekend. As high values of delay occur
less, there are a lot of unique events and some events do not occur in the data set. Therefore the best
model for the regular schedule is the model with the feature Del as a condition. For the basis schedule
the performance of the model with the feature Del is the best, with a larger difference in performance
to the other models than the regular schedule.

Final models for the different series

In Figure 18 the final models for the series 4000 are compared to each other and the current method.
The models follow somewhat the same curve, but the basis schedule predicts lower than the regular
schedule. The current method lays between the two models. The conditional probabilities models
both predict that the delay will decrease, except for a couple of exceptions. Both the models predict
a little increase when the number of minutes delay twenty minutes ago is zero, but the regular model
also predicts an increase at the numbers 12 and 14. The basis model is below the current method
except for two points, which means that it overall predicts a decrease of more than one minute. The
regular model is for a couple of points slightly below the current method and for the other points
above, which means that it overall predicts a decrease of less than one minute. The difference between
the regular model and the basis model increases when the number of minutes delay 20 minutes ago
increases. So at large delays the basis model is better at predicting cases where the delay decreases
and the regular model at cases where the delay stays the same or increases.

Figure 18: Conditional probabilities models for the 4000 series and current method.

The curves of the models for the series 4900 and 3000 are seen in the Appendix in Figures 26 and
27. The 3000 series has a similar basis model and regular model as the 4000 series. In the 4900 series
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the basis model rises above the current method when the delay 20 minutes ago is six to eight minutes
and 15 minutes. The regular model for the 4900 is below the current method more often and lower
than the regular model for the 4000 series.

The models for the 4400 series are drastically different from the models for the other series. This
can be seen in Figure 19. The regular model is below the current method for delay 20 minutes ago
greater than two minutes and keeps a distance of an average of four minutes from the current method.
The basis model is even further from the current method as it is below the regular model and makes
a giant leap from 11 minutes delay to 13 minutes delay. At 11 minutes delay 20 minutes ago the
prediction is around four minutes delay, at 12 there are no data points and at 13 the prediction is 15
minutes delay. After that, the prediction becomes around 5 minutes delay again. So the prediction of
delay is depended on what train series it is.

Figure 19: Conditional probabilities model for series 4400.

The 4900 series and the 4400 series have significantly fewer data points than the other series.
Therefore there is less data on jumps in delay and the chances of creating a wrong prediction become
higher. Therefore an attempt was made to create trend lines in Excel for these models. These lines
made predictions for the validation set and no line was better at predicting the delay than the original
models. So the models were kept the way they are.

4.3 Results

In this paragraph, the conditional probabilities models trained on the regular schedule (regular con-
ditional model) and the conditional probabilities models trained on the data from the basis schedule
(basis conditional model) are tested on the two test sets. The performance of the models on the
different train series and schedules are given in table 5. Again the RMSE (see Equation 2) is used to
determine the performance of the models. As seen in Section 2.4: the lower the performance score,
the better the performance.

In almost all the cases the models are better at predicting the test set of their own schedule than
the other model. Only at the 4900 series is the regular conditional model with a very small difference
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Test set Training set 4900 4400 4000 3000 All series

Basis Basis 1,9783 0,8589 0,5911 0,7064 0,9192
Basis Regular 1,9733 0,9077 0,6480 0,7161 0,9424

Regular Basis 1,0761 1,3757 1,2871 1,2839 1,2796
Regular Regular 1,0470 1,3204 1,2633 1,2804 1,2587

Table 5: Performance of conditional probabilities models on different test sets.

better than the basis conditional model on the basis test set. In fact, the differences between the
performances of the models on the same test set are small for all series, with 0.0569 in RMSE being
the largest difference.

The basis test set is easier to predict, as the performance scores on the basic test set from both
models is lower than the performance scores on the regular test set. Only at the 4900 series is the
performance score a lot higher on the basis test set than the regular test set. This is also seen in the
performances of the Neural Network models and is explained in 3.3.
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5 Comparison of the models

In this section, the different methods of creating models are compared against each other. The
qualitative aspects of each method in respect to NS’s wishes are discussed and a closer look is given
to the differences in performance scores.

5.1 Results

In Section 3.3 we saw the results of the performance score of the models created using Neural Net-
works and in Section 4.3 the results of the performance score of the models created using conditional
probabilities. The combination of these results is seen in Table 6. They are ordered from lowest overall
performance score on the basis test set to highest and similarly ordered for the regular test set.

Model Training set Test set 4900 4400 4000 3000 All series

Conditional probabilities Basis Basis 1,9783 0,8589 0,5911 0,7064 0,9192
Neural Networks Basis Basis 1,9741 0,9406 0,6280 0,6796 0,9326

Conditional probabilities Regular Basis 1,9733 0,9077 0,6480 0,7161 0,9424
Neural Networks Regular Basis 1,9908 0,8802 0,7189 0,7128 0,9617

Conditional probabilities Regular Regular 1,0470 1,3204 1,2633 1,2804 1,2587
Neural Networks Regular Regular 1,0347 1,2959 1,2884 1,2697 1,2593

Conditional probabilities Basis Regular 1,0761 1,3757 1,2871 1,2839 1,2796
Neural Networks Basis Regular 1,1299 1,3973 1,3622 1,3213 1,3301

Table 6: Performance of the models on different test sets.

The model that performs the best on the basis test set is the conditional probabilities model trained
on the basis schedule. For the regular test set the best performance overall is by the conditional prob-
abilities model trained on the regular schedule. The models that score second are the Neural Networks
models trained on the respective schedules. So the models trained on a schedule do outperform the
other models on that schedule’s test set. For some train series the Neural Networks models perform
better than the conditional probabilities models. The differences between the performance score of the
methods are very small, for the regular test set even around 0.0006 in RMSE. Therefore the conditional
probabilities method is not significantly better than the method using Neural Networks.

The difference in performance score for the different training sets is slightly larger. Especially in
the case of the regular schedule is there a larger gap. The difference is still very small, less than 0.1
in RMSE for all the models. In the next paragraph, these differences are better visualised.

5.2 Difference in performance score

In the paragraph above the performances of the models on the different test sets are given using the
RMSE (Equation 2). The results seem very close to each other, but what does a difference of 0.1 in
RMSE mean for these models? For example, this difference could have been caused by one model
having a very bad prediction for one of the data points and the other model predicting that data point
accurately or a lot of close predictions but the other model a little bit closer. In this paragraph, a
visualisation of the differences in RMSE is given.

It is hard to find out what the cause of the difference in RMSE is. We now take a closer look at
what it means in RMSE when two models perform the same on 99% of the test data and for 1% of the
test data one model predicts one minute closer to the true label. Suppose the first model w predicts
accurately for all the test data x and the second model v accurately for 99% and with a difference
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of one minute for 1%. Then the difference in RMSE becomes the following, where wd and vd are the
predictions of the respective models on data point d.

∆ RMSE =

√∑D
d=1(vd − xd)2

D
−

√∑D
d=1(wd − xd)2

D

=

√∑0.01·D
d=1 (1− 0)2 +

∑D
d=0.01·D+1 02

D
−

√∑D
d=1 02

D

=

√
0.01 ·D
D

− 0 = 0.1

(10)

Now suppose the first model predicts accurately for just 1% of the data points, and for 99% with
a difference of two minutes. And suppose the second model predicts for 99% of the test data with
a difference of two minutes and for 1% of the data with a difference of 1 minute. The difference in
RMSE then becomes the following.

∆ RMSE∗ =

√
0.99 ·D · 22 + 0.01 ·D · 12

D
−
√

0.99 ·D · 22

D
=
√

0.99 · 4 + 0.01−
√

0.99 · 2 ≈ 0.002511

(11)
So ∆RMSE is 40 times larger than ∆RMSE∗ . This is caused by the curve of the square root. In
Figure 20 you can see how the square root y =

√
x behaves. When a small change δ is added to the

input x it has a lot more influence on the output y when x is smaller than 1. This is because the
slope of the function gets less steep when x gets larger. This means that when the error of the models
is already high for the 99% of the test data, a difference of 1 minute on 1% of the data has a lower
impact than when the error of the models for the 99% of test data is low.

Figure 20: Curve of square root.

In the same way, you can see that the difference is also dependent on the error of the 1% of data.
In the examples above the errors were 0 for the first model and 1 for the second model, but suppose
they were 1 and 2 respectively. Then when for 99% of the data the models predicted with a difference
of 1 minute from the true label, this difference becomes approximately 0, 014889. And when they are
2 and 3 the difference is approximately 0, 024341.
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Therefore a difference in RMSE cannot be translated to adding 1 minute of difference between
prediction and true label for a single percentage of test data, as it is clear that the RMSE is dependent
on the height of the error of the models on the test data. So for every two models, the difference in
RMSE is different in terms of this percentage. Suppose we have a model w with the performance score

a. Then we can translate this model to the model
∧
w that always predicts a away from the true label,

so |∧wd − xd| = a for all data points d. Then the performance score becomes:

RMSE =

√∑D
d=1 a

2

D
=

√
D · a2

D
= a (12)

So these two models have the same performance score. Now let’s take a look at the model
∧
v that

performs similar for (1− p) ·D data points to
∧
w, so |∧vd−xd| = a, and for p ·D data points it performs

1 minute worse than
∧
w, so |∧vd − xd| = a+ 1. Then the performance score is the following.

RMSE =

√∑pD
d=1(a+ 1)2 +

∑D
d=pD+1 a

2

D

=

√
p ·D · (a+ 1)2 + (1− p) ·D · a2

D

=
√
p · (a+ 1)2 + (1− p) · a2 ≥ a

(13)

If we have the performance score of model v in RMSE, then we can compute the percentage p such

that the model v has the same performance score as the model
∧
v. Then w and v have been translated

to
∧
w and

∧
v, so we can now compare them in terms of percentage of data points where w performs one

minute better than v. Every performance of the models is compared this way in Tables 7 and 8 for
the basis test data and the regular test data.

v
w

Basis Conditional Basis Neural Regular Conditional Regular Neural

Basis Conditional 0%

Basis Neural 0.874% 0%

Regular Conditional 1.522 % 0.641% 0 %

Regular Neural 2.816% 1.924% 1.274% 0%

Table 7: Percentage of data points where model w performs one minute better than model v on the
basis test data.

v
w

Regular Conditional Regular Neural Basis Conditional Basis Neural

Regular Conditional 0%

Regular Neural 0.043% 0%

Basis Conditional 1.508 % 1.465% 0 %

Basis Neural 5.255% 5.210% 3.703% 0%

Table 8: Percentage of data points where model w performs one minute better than model v on the
regular test data.

The conditional probabilities models have the same difference on the basis test set and the regular
test set, only the basis model performs better on the first and the regular model on the second. The
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Neural Networks models have a larger difference on the regular test set than on the basis test set. This
could be explained by the basis schedule being easier to predict. So the models created using Neural
Networks are tailored towards predicting the schedule they are trained on, where the conditional
probabilities models perform well on both schedules.

The percentages between the best performing conditional probabilities model and the best per-
forming Neural Networks model on each test set are very low. Therefore the one method does not
significantly outperform the other method.

5.3 Comparison

We have already seen that the performance scores of the models created using Neural Networks and
the models created using conditional probabilities are very similar. In this section, the qualitative
aspects of the different methods are compared against each other.

An example of a jump in delay and the predictions of these data points from the different models
is seen in Figure 21. The green line shows what actually happened and the other lines show what the
predictions are of the models.

Figure 21: Example of a progression of a jump in delay in the regular test set for the series 3000 and
the predictions of the models.

You can see the predictions of the models increase later than the true label, as they know of this
delay 20 minutes later. The predictions of the conditional probabilities models are only based on the
delay 20 minutes ago, so there are a lot of flat lines. This makes it easy to see why the predictions
are made. The model created using Neural Networks trained on the regular schedule (yellow line)
moves roughly similar to the conditional probabilities models, but has no flat lines as it has a lot more
possible outputs. The model created using Neural Networks trained on the basis schedule (light blue
line) predicts a large increase in delay that did not happen. It is hard to understand why the model
made this decision, as you can not look into the model. This makes it hard to trust the outputs of
the model. The conditional probabilities model is based on the frequencies of situations occurring
and is a function of the delay 20 minutes ago. Therefore the predictions are better to understand and
the accuracy of the conditional probabilities models become more believable than the Neural Network
models.
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Schedule Series Test Predicted jumps Correct jumps Actual number of jumps

Basis 3000 Basis 0 0
Regular 3000 Basis 0 0 199

Basis 3000 Regular 25 2
Regular 3000 Regular 4 0 387

Basis 4000 Basis 0 0
Regular 4000 Basis 28 3 134

Basis 4000 Regular 93 6
Regular 4000 Regular 0 0 491

Table 9: Number of jumps predicted by the Neural Networks models in comparison to the actual
jumps.

As told in the introduction, the NS wishes to have a predictor where the number of wrongfully
predicted increases in delay is low. Consumers find wrongfully predicted increases in delay worse than
wrongfully predicted decreases. Table 9 shows the number of jumps the Neural Networks models
predicted on the test sets, where a jump is an increase of greater of equal to 2 minutes delay. The
conditional probabilities models never predict an increase in delay larger than or equal to two minutes,
except only for the 4400 basis model when the number of minutes delay 20 minutes ago is 12. The
Neural Network models predicted increases in delay more often on the test sets, but not for the series
4400 and 4900. Therefore these two series are not included in the table. The ratio of right predicted
jumps to wrong predicted jumps is less than 1/8 for each of the models. The ratio of right predicted
jumps to actual jumps is even lower, less than 1/44. So when the Neural Network model predicts an
increase in delay it more often predicts wrong than right and it misses almost all the increases.
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6 Discussion

This research focused on predicting the delay of trains twenty minutes into the future for two different
operating schedules. These schedules were the regular schedule and the basis schedule. The latter
took place at the start of the COVID-19 pandemic and is a reduced version of the regular schedule.
Two methods for creating models were studied. The first method was the machine learning technique
Neural Networks and the second the classic statistical technique using conditional probabilities. Both
methods were trained on the two different schedules, resulting in four different models. All the models
were tested on the test set from the basis schedule and the test set from the regular schedule. Results
were compared to each other to see which model performed the best on which test set.

When creating the conditional probabilities model, the importance of the different features was
discussed. All the features did not have much influence on the delay twenty minutes into the future,
except for the current delay. Even when looking at all the possible combinations of features, the best
performing model was the model that only looked at the current delay. This was the case for both the
operating schedules. The final conditional probabilities models only looked at what train series the
train is and what the current delay is.

Results show that the models trained on their respective schedule performed the best on that
schedule’s test set. This is an expected result, as they were trained on that schedule. However, the
differences between the performances of the differently trained models was smaller than expected. A
large difference in schedule did not cause the models to significantly outperform the other models.
This shows that when there is a small difference in operating schedule, it is not necessary to train the
models again on an updated data set.

The method that performed the best overall was the conditional probabilities method, but the
difference with the performance of the models created using Neural Networks was small. It is even
smaller than the differences between the schedules. Therefore, it can not be said that the conditional
probabilities method significantly outperforms the Neural Networks method.

Neural Networks are used to find connections between features that are hard for humans to see.
Therefore a model created using a Neural Network is similar to a ‘black box’. You input data and
predictions come out. The mathematical equations are easily computed, but to understand why the
model created these outputs is difficult. It can suddenly predict a jump in delay, but the reasons for
this decision are unknown. The conditional probabilities method on the other hand is a more intuitive
method. It is based on the frequencies of situations occurring and it is known on what features it
makes its prediction. This makes it easier to trust the model.

The NS wants a model where the chance of a wrongfully predicted increase in delay is low. For
customer satisfaction it is better to wrongfully predict a decrease in delay. Only the Neural Networks
method predicted increases in delay on the test sets and they almost never predicted them correctly.

7 Further research and limitations

The results of this thesis are based on the features of the models. There could be features, that when
added, will result in a better predictor for each of the methods. More research could be done in adding
features. A feature that has not been looked at, for example, is the number of stops between the data
point twenty minutes ago and the current data point. Eva Lehkà attempted to add more infrastructure
to the Neural Network model, but this turned out to be harder than expected. However, the creation
of the features is limited by the data provided. Also the models were only trained and tested on the
data of the train series 4900, 4400, 4000 and 3000. In this thesis we already saw differences between
the models trained on these train series, so there could be interesting results for train series that have
not been looked at.
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This thesis only concerns short term delay prediction, as only the delay twenty minutes ago is
looked at. This is the most influential feature, so the model could be expanded by adding features
concerning the delay earlier and/or later. In practice, the predictions of delay are not based on the
delay twenty minutes ago, but on the delay of the latest known measuring point. Adding the features
concerning delay at different times in the past therefore is more practical. It also could show how
a jump in delay progresses in time. For example, when a jump in delay just happened then the
probability of an increase in delay could be higher than when the previous delays show a decrease in
delay. Researching this could result in a better predictor.

Statistical methods and especially Neural Networks are known to be good at predicting the bulk
of the data. In the regular schedule for almost 80% of the data points the number of minutes delay is
zero. Saying the delay is always zero is already a good predictor, as it is correct around 80% of the
time. So when researching the delays of trains, one tries to predict the other 20% of the data. These
are the outliers and therefore hard to predict. Neural Networks are better at predicting these outliers
than other methods, but it still more often predicts them wrong than right. When taking the wishes
of the Nederlandse Spoorwegen into account, the conditional probabilities method is better. So my
advice is to stop investing time in the research of machine learning techniques when predicting the
delay of trains.

8 Conclusion

The most important feature for predicting the delay of trains is the number of minutes delay the train
had twenty minutes ago. This is true for both the basis and the regular schedule.

The models trained on the training set containing the regular schedule perform better on the test
set of the regular schedule than the models trained on the basis schedule and vice versa. However, the
difference in performance score is only significant for the Neural Network models on the regular test
set. Therefore the difference in creating a model for predicting delay for the basis schedule and the
regular schedule depends on the method.

The conditional probabilities method performs similar to the Neural Network method on the test
sets. But the conditional probabilities method is more intuitive than the Neural Network method.
Moreover, the Neural Network models wrongfully predict increases in delay significantly more than
the conditional probabilities method, which does not comply with the wishes of the NS.

Based on the findings in this thesis, I would suggest the Nederlandse Spoorwegen stops researching
Neural Networks for predicting the delay of passenger trains and propose to take a further look at
classic statistical methods.
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A Appendix

Basis schedule Regular schedule
4900 4400 4000 3000 all 4900 4400 4000 3000 all

Baseline 0,673 0,890 1,467 1,783 1,487 1,701 1,406 1,682 1,362 1,526

Delay 0,657 0,855 1,088 1,181 1,066 1,406 1,294 1,251 1,013 1,183
Day 0,668 0,895 1,466 1,788 1,489 1,694 1,404 1,683 1,365 1,526
Hour 0,680 0,893 1,467 1,784 1,488 1,699 1,404 1,684 1,367 1,528
Rush hour 0,673 0,890 1,467 1,785 1,488 1,696 1,405 1,681 1,362 1,525
Activity 0,673 0,890 1,467 1,783 1,487 1,701 1,405 1,683 1,362 1,526
Location 0,672 0,890 1,467 1,782 1,486 1,697 1,406 1,684 1,362 1,526

Del ∧ Day 0,658 0,886 1,162 1,352 1,173 1,468 1,335 1,263 1019 1,203
Del ∧ H 0,663 0,898 1,190 1,572 1,285 1,472 1,330 1,257 1,063 1,215
Del ∧ RH 0,660 0,931 1,092 1,180 1,076 1,405 1,294 1,253 1,013 1,183
Del ∧ A 0,662 0,866 1,091 1,190 1,073 1,406 1,285 1,252 1,013 1,182
Del ∧ L 0,661 0,872 1,121 1,418 1,186 1,452 1,300 1,265 1,019 1,196
Day ∧ H 0,718 0,914 1,480 1,793 1,500 1,706 1,422 1,702 1,379 1,542
Day ∧ A 0,667 0,895 1,467 1,788 1,489 1,693 1,404 1,683 1,365 1,526
Day ∧ L 0,664 0,897 1,467 1,789 1,490 1,691 1,405 1,685 1,364 1,526
H ∧ A 0,680 0,893 1,467 1,783 1,487 1,699 1,404 1,684 1,368 1,528
H ∧ L 0,686 0,900 1,466 1,784 1,488 1,698 1,404 1,687 1,368 1,529
RH ∧ A 0,673 0,890 1,468 1,785 1,488 1,696 1,406 1,682 1,362 1,525
RH ∧ L 0,674 0,890 1,468 1,784 1,487 1,694 1,406 1,683 1,361 1,525
A ∧ L 0,689 0,882 1,468 1,781 1,486 1,698 1,406 1,685 1,361 1,526

Del ∧ Day ∧ H 0,695 0,919 1,444 1,794 1,486 1,667 1,486 1,498 1,141 1,381
Del ∧ Day ∧ A 0,659 0,900 1,178 1,514 1,253 1,489 1,339 1,274 1,017 1,209
Del ∧ Day ∧ L 0,668 0,901 1,391 1,765 1,450 1,577 1,362 1,441 1,133 1,328
Del ∧ H ∧ A 0,665 0,899 1,250 1,600 1,320 1,569 1,380 1,276 1,075 1,245
Del ∧ H ∧ L 0,665 0,905 1,417 1,792 1,472 1,618 1,413 1,537 1,241 1,416
Del ∧ RH ∧ A 0,660 0,903 1,092 1,242 1,099 1,414 1,286 1,253 1,013 1,183
Del ∧ RH ∧ L 0,656 0,895 1,189 1,621 1,306 1,502 1,305 1,279 1,039 1,215
Del ∧ A ∧ L 0,678 0,869 1,133 1,433 1,197 1,453 1,297 1,272 1,017 1,198
Day ∧ H ∧ A 0,719 0,920 1,481 1,794 1,501 1,708 1,422 1,703 1,382 1,544
Day ∧ H ∧ L 0,742 0,947 1,513 1,807 1,522 1,713 1,423 1,720 1,399 1,558
Day ∧ A ∧ L 0,666 0,897 1,467 1,788 1,499 1,700 1,404 1,685 1,364 1,527
H ∧ A ∧ L 0,700 0,900 1,466 1,784 1,489 1,697 1,403 1,687 1,369 1,529
RH ∧ A ∧ L 0,676 0,890 1,469 1,783 1,488 1,693 1,407 1,682 1,361 1,524

Del ∧ Day ∧ H ∧ A 0,692 0,928 1,466 1,807 1,501 1,703 1,492 1,600 1,209 1,450
Del ∧ Day ∧ H ∧ L 0,712 0,958 1,509 1,823 1,528 1,731 1,500 1,704 1,361 1,549
Del ∧ Day ∧ A ∧ L 0,671 0,901 1,396 1,768 1,453 1,588 1,363 1,446 1,142 1,334
Del ∧ H ∧ A ∧ L 0,680 0,906 1,418 1,792 1,474 1,619 1,416 1,543 1,250 1,422
Del ∧ RH ∧ A ∧ L 0,749 0,866 1,203 1,635 1,322 1,506 1,303 1,285 1,041 1,218
Day ∧ H ∧ A ∧ L 0,745 0,951 1,514 1,806 1,524 1,716 1,424 1,721 1,404 1,560

Del ∧ Day ∧ H ∧ A ∧ L 0,715 0,963 1,510 1,823 1,530 1,734 1,483 1,704 1,368 1,550

Table 10: Performance of different combinations of features of conditional probabilities model by using
mean squared error.
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Figure 22: Distribution of feature Activ-
ity in the basis schedule for 4000 series.

Figure 23: Distribution of feature Activ-
ity in the regular schedule for 4000 series.

Figure 24: Distribution of feature Rush
hour in the basis schedule for 4000 series.

Figure 25: Distribution of feature Rush
hour in the regular schedule for 4000 se-
ries.
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Figure 26: Conditional probabilities model for series 4900.

Figure 27: Conditional probabilities model for series 3000.
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