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Abstract

The study of elliptic curves and their addition laws is performed in different directions
nowadays due to how useful they are across a wide variety of fields. This has led the
concept of elliptic curve to take the form of various models. Throughout this thesis we
will look closely into three of these models: the Weierstrass form, the Edwards model
and the twisted Edwards model. Our goal is to understand how these models work
and, in order to do so, we study their respective addition laws, aiming to find complete
addition law systems of minimal cardinality for each model. We also learn how are
the models connected to each other and how their addition laws behave through these
relations. Aside from the bibliographical research needed to study these matters, we
implement our findings in Magma and try to obtain our own results using computer
algebra as much as possible. Lastly we offer an overview of other models for which
similar studies could be done. Collecting all this information we hope to shine some
light on how is it that these various models represent the same curves.
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Introduction

Elliptic curves are a family of curves studied and used in several fields like number theory and crypto-
graphy. Their applications vary from key exchange algorithms [[15], §8.1.3] to pseudorandom number
generators [[18],[35]]. And they are also important in integer factorization and primality testing algo-
rithms [Ch. 7, [15]].

Apart from being the main focus of a lot of current studies, elliptic curves do have quite some history
and have shown up many times even before the concept of elliptic curve was established. E. Brown and
A. Rice did a great job collecting the history of how the study of elliptic curves came to be in [36] and
we find there is no better way of introducing the concept of elliptic curve than by providing a summary
of said collection.

It was as early as the 3rd or 4th century CE when Diophantus of Alexandria included in his book
Arithmetica a problem that read “To divide a given number into two numbers such that their product is
a cube minus its side”, which translates to the equation ȳ(a− ȳ) = x̄3 − x̄ where a is the given number.
This was already an elliptic curve in disguise, namely y2 = x3 − x + a2/4, applying the substitution
y = ȳ − a/2, x = −x̄.

Some centuries later, in 1225 Fibonacci published his book Liber quadratorum where he defined a
positive integer n as congruent if u2−n, u2 and u2 +n are all nonzero squares for some rational number
u. But if n is congruent then it follows that there exists a nonzero y such that y2 = u2(u2−n)(u2 +n) =
x3 − n2x, for x = u2. So we find another hidden family of elliptic curves that Fibonacci unknowingly
started studying.

Even Fermat in the 17th century came close to the study of elliptic curves while posing his conjectures
about the only integers satisfying y2 = x3 − 2 being (3,±5) and the only ones for y2 = x3 − 4 being
(2,±2) and (5,±11). Also, in the second half of that century, Newton worked on classifying cubic curves
of the form y2 = ax3 + bx2 + cx + d. He stated the fact that the intersection of said curves with a line
consists of three points and, if the line is tangent to the curve, then two of those three points are the
same. This would eventually lead to the chord and tangent addition that gives the point on an elliptic
curve their group structure.

It all started to get more concrete around the term “elliptic” when Euler came across a differential
equation that he was able to solve without the need of finding a separation of variables for it: the
rectification of the ellipse. That is, the study of calculating the length of an arc of an ellipse between
two given points. He published a paper about it in 1738. A few decades later Legendre would become
fascinated by the study of several non-elementary integrals similar to the one Euler solved, called elliptic
integrals. Later on, Abel and Jacobi picked up the baton of the study of these integrals but they found
the study of their inverses (or elliptic functions) to be more interesting.

Mid-19th century Eisenstein took the approach of starting with the periods of the elliptic functions
to define said functions via infinite series. Ultimately, he proved that all elliptic functions of a certain
form must satisfy differential equations of the form [ȳ′(z)]2 = p(ȳ(z)), where p is a cubic polynomial
with no repeated roots, thus linking the study of elliptic functions to that of equations involving cubic
polynomials. In fact, a curve of the form y2 = p(x ) where p(x ) is a cubic polynomial with no repeated
roots is one of the many definitions for elliptic curves.

Another mathematician that studied elliptic functions was Weierstrass. Many of us have been intro-
duced to the topic of elliptic curves by studying their Weierstrass form. But funny enough, Weierstrass
never talked about elliptic curves in his work. He did, however, come up with the ℘-function as basis of
his theory of elliptic functions. And this function provides a parametrization for a cubic curve such that
(℘′)2 = 4℘3−g2℘−g3, where g2, g3 are constants. Note that this follows Eisenstein result. And applying
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the right substitution of variables, Weierstrass also found an expression for ℘(u + v), thus giving the
cubic curve above an addition formula.

Later on, in 1901 Poincaré published his paper Sur les propriétés arithmétiques des courbes algébriques,
where he collected all these ideas about the study of points on cubic curves and addition formulae and
so he set the basis for a new area of study. And since these curves of genus 1 require elliptic functions
for their parametrization, they became later known as elliptic curves.

Now we have a better idea how the study of elliptic curves came to be, but what does actually define
an elliptic curve? Nowadays in abstract mathematics the formal definition for them is the following:

An elliptic curve is a smooth, projective, algebraic curve of genus one, defined over a field K with a
K-rational point O.

We will start our own study of these curves by introducing some basic concepts and our notation for
them in the preliminaries. Some notes on the coding parts are also included there. Then we’ll move on
to Chapter 1 to learn about the first model that was studied in this topic: the Weierstrass form. We will
show its affine addition law and the geometric interpretation behind it, as well as a complete system of
projective addition laws for it. This will be followed by the computational work we have done in Magma
[8] regarding the addition laws on this model. In Chapter 2 we will look into the Edwards model, its
affine addition and its relation to the Weierstrass model, showing the explicit maps that link them. And
we will see some examples of how these maps work and preserve the addition laws in Magma . For the
twisted Edwards model that is studied in Chapter 3 after we also have a complete system of projective
addition laws, together with several maps that connect this model to the previous two. And of course
the implementations in computer algebra and examples we have worked with regarding all of it.

In Chapter 4 we offer an overview of several other models for elliptic curves, their addition laws and
ideas about how do they relate to at least one other model. Lastly, in the appendix we show all the
functions we mention throughout the thesis.
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Preliminaries

In the following lines we will establish some notations and define several concepts as we will use them in
the coming chapters. Let’s start by pointing out that, in the spirit of emphasizing the generality of the
concept of elliptic curves, we will refer to a given curve always by C. And each curve will be given by a
specific model Eα, with different α for each model.

We will always work over a field K and sometimes there will be certain constraints over the cha-
racteristic of said field, which we will specify when necessary. In some cases said constraints offer some
simplifications on a model, like in the case of the short Weierstrass model, and in some other cases they
are necessary to avoid dealing with certain exceptional cases, as for example the Edwards and twisted
Edwards models don’t define an elliptic curve when char(K) = 2. The notation K̄ denotes the algebraic
closure of the field K.

Depending of what we are doing, we will work with points (x, y) in the affine plane A(K2) or in one of
these two projective spaces: P2 and P1×P1. The equivalence relation for two points P = (X : Y : Z),
Q ∈ P2 is the usual P ∼ Q iff Q = (λX : λY : λZ) = λP , where λ ∈ K\{0}. And in the case of P1 × P1,
the points are of the form ((X : Z), (Y : T )) where (X : Z) and (Y : T ) are two points on the projective
space P1 and the equivalence relation there is P ∼ Q iff Q = λP = (λU : λV ), for P = (U : V ), Q ∈ P1

and λ ∈ K\{0}. We will show the embedding map for this projective space and its relation to P2

in Section 3.1.2.

Every model will have an affine and a projective definition over a field K. The affine one will be
given by a polynomial fα(x, y) and the projective one by the homogeneous version of fα(x, y), namely
the polynomial Fα on three variables X, Y , Z when working on P2 and on four variables X, Y , Z, T in
the case of P1 × P1.

Definition 1. Let C be an elliptic curve defined over a field K given in Eα form, then we define its
K-rational points to be the set Eα(K) = {(X : Y : Z) ∈ P2(K) | Fα(X,Y, Z) = 0}, where Fα is the
homogeneous projective polynomial that defines the model.

Together with an operation we call addition, the set Eα(K) is an abelian group. The addition is
computed in different ways depending on the model, but the most widely used method is the tangent
and chord mentioned in the introduction. The identity of the addition is denoted by O. In most models,
O is the point at infinity (0 : 1 : 0), but we’ll see that this is not always the case. Since Eα(K) is a group,
its points have an order as elements of said group:

Definition 2. Let C be an elliptic curve defined over a field K in Eα form, then we say that a point

P ∈ Eα(K) has order n if n is the least positive integer such that nP = P+
n· · · +P = O.

We define an addition law on the model Eα as follows:

Definition 3. An addition law on a model Eα defined over K is a tuple S = 〈s1, s2, . . . , sk〉 of poly-
nomials over K in 2k variables such that for every pair P1, P2 of K-rational points on Eα it holds that
either si(P1, P2) = 0 for all i or the point P3 defined by s1(P1, P2), s2(P1, P2), . . . , sk(P1, P2) satisfies
P3 = P1 + P2, where + denotes the addition in the abelian group Eα(K).

In A(K2) we have that k = 2, S = 〈x3, y3〉 and p3 =
(
s1(x1, y1, x2, y2), s2(x1, y1, x2, y2)

)
for

p1 = (x1, y1), p2 = (x2, y2) ∈ Eα(K). If we are working on P2 then k = 3, S = 〈 X3, Y3, Z3 〉 and P3 =
(X3(P1, P2) : Y3(P1, P2) : Z3(P1, P2)), whereas on P1 × P1 we have that k = 4, S = 〈 X3, Y3, Z3, T3 〉
and P3 = ((X3(P1, P2) : Z3(P1, P2)), (Y3(P1, P2) : T3(P1, P2))).

Definition 4. A pair of points P1, P2 ∈ Eα(K̄) is called exceptional for a given addition law S = {si} if
all its polynomials vanish when evaluated in these points, i.e, if si(P1, P2) = 0 for all i.
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The exceptional pairs can have different forms. For example, several models have an addition law
such that P1 = P2 is the exceptional case, that is, it can’t be used for point doubling. All addition laws
have exceptional points over the algebraic closure of the field K, but with some conditions one can have
a complete addition law:

Definition 5. A complete addition law over K for Eα is an addition law on Eα such that no pair of
points P1, P2 ∈ Eα(K) is exceptional for that addition law.

A similar, but slightly different property of an addition law is:

Definition 6. A unified addition law for Eα over K is an addition law on Eα such that it can be used
both for point doubling and for adding two distinct points in Eα(K).

Note that a unified addition law might not be complete, since it can still have exceptional cases other
than point doubling even over K. If one wants to be able to add any pair of L-rational points on an
elliptic curve, where L is any algebraic extension field of K, then one needs a complete system of addition
laws:

Definition 7. A complete system of addition laws for Eα is a collection of addition laws on Eα such that
no pair of points P1, P2 ∈ Eα(K̄) is exceptional for all addition laws in the collection.

Note that we use the algebraic closure of the field in the above definition, meaning a complete system
of addition laws can be used to add any two K̄-rational points on the curve.

Last but not least, when talking about the relations between models, the following concepts regarding
maps between models will come up:

Definition 8. Let Eα and Eβ be two models for elliptic curves over a field K and
(
Eα(K),+α

)
,(

Eβ(K),+β

)
their respective sets of K-rational points with their addition laws. One says that Eα and

Eβ are isomorphic iff there exists a group isomorphism from Eα(K) to Eβ(K), i.e., a bijective map
φ : Eα(K)→ Eβ(K) such that φ(P +α Q) = φ(P ) +β φ(Q) for all P,Q ∈ Eα(K).

Note that the existence of a group isomorphism φ : Eα(K) → Eβ(K) implies that there exists another
map φ−1 : Eβ(K) → Eα(K), known as its inverse, which is also a group isomorphism.

It will be rarely possible to connect two models using an isomorphism, in which case we can hope for
them to be almost isomorphic or what is the same, birationally equivalent:

Definition 9. Let Eα and Eβ be two models for elliptic curves over a field K and Eα(K), Eβ(K) their
respective sets of K-rational points. Then a rational map ψ : Eα(K) → Eβ(K) is said to be a birational
isomorphism or a birational mapping iff there exist dense open sets Uα ⊂ Eα(K) and Uβ ⊂ Eβ(K) such
that ψ is defined on Uα and the restriction of ψ to Uα, namely ψ|Uα : Uα → Uβ , is an isomorphism.

By rational map we mean a map defined by a rational function, i.e., a function that can be expressed
as an algebraic fraction where both the numerator and the denominator are polynomials.

Definition 10. Let Eα and Eβ be two models for elliptic curves over a field K and Eα(K), Eβ(K) their
respective sets of K-rational points. We have that Eα and Eβ are birationally equivalent or birationally
isomorphic iff there exists a birational isomorphism ψ : Eα(K)→ Eβ(K).

A way of generalizing a given model for elliptic curves that is studied in several cases is applying a
twist to said model. Depending on the degree of the twist there are quadratic, cubic and quartic twists.
We will work with the first one:

Definition 11. Let Eα be a model for elliptic curves over a field K. Then there exists another model E ′α,
not necessarily isomorphic to Eα over K, that is isomorphic to Eα over a quadratic field extension of K.
E ′α is the quadratic twist of Eα.

Another type of map we will work with is the isogeny:

Definition 12. Let Eα and Eβ be two models for elliptic curves over a field K and Oα, Oβ the neutral
elements of their respective addition laws. Then an isogeny is a homomorphism ϕ : Eα(K) → Eβ(K)
with coefficients in K such that ϕ(Oα) = Oβ .

To define the degree of an isogeny we need to know what is the function field associated to a model
Eα defined by fα over K. Firstly, given the polynomial ring K[x, y] and the ideal 〈fα〉 generated by fα,
we have that the ring of functions of Eα is:

K[Eα] = K[x, y]/〈fα〉

And the field of fractions of K[Eα], denoted as K(Eα), is the field of (rational) functions of Eα.
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With this notation we have that the degree of an isogeny is defined as degϕ = [K(Eα) : ϕ∗
(
K(Eβ)

)
],

where ϕ∗ : K(Eα) → K(Eβ) is an injection of function fields induced by ϕ such that ϕ∗(f) = f ◦ ϕ. An
isogeny of degree m is called an m-isogeny. Furthermore, the existence of an m-isogeny ϕ : Eα → Eβ does
imply the existence of a unique isogeny ϕ̂ : Eβ → Eα such that:

ϕ ◦ ϕ̂ = [m]β and ϕ̂ ◦ ϕ = [m]α

And this ϕ̂ is called the dual isogeny of ϕ. Here [m]α and [m]β denote the multiplication by m maps
for each model, i.e.:

given P ∈ Eα(K), [m]αP = mP = P +α
m· · · +α P

given Q ∈ Eβ(K), [m]βQ = mQ = Q +β
m· · · +β Q

For more information about isogenies, one can refer to [[37], § 4], [[37], § 6] and [[13], § 13.1].

Notes on the Magma scripts:

In the coming chapters, whenever we talk about the computational work we have done, we will include
some lines of code to illustrate some specifics. When we display some parts of code that include an
output we will use “>” to indicate the input we give to Magma and the lines without this symbol will
be the output. As we can see for example here:

> printf "Hello world. \nWelcome to my master thesis!";

Hello world.

Welcome to my master thesis!

Also every “homemade” function we will mention is in the appendix at the end. But for the complete
scripts with all the examples and explanatory outputs we have decided to have an online repository for it:
MPS TFMscripts. All “.m” files are ready to be run in Magma and, in most cases, their computational
time also allows to run them in the online Magma calculator. For the script where the computational
time is too long the the output is available online.

For those interested in running some of the scripts in the online calculator, be aware that you will
most likely need to fetch some functions from the functions.m file. So at the beginning of each file
substitute these lines with the functions they mention:

load "../../functions.m";

//load Ead_AddL, Ead_AddL_evals, ProjCoord, AffCoord

5

https://github.com/MPS93/MPS_TFMscripts/
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Chapter 1

Weierstrass model

The first model we will be looking into is the Weierstrass one. It owes its name to the famous 18th
century analyst, who came up with the ℘-function as basis of his theory of elliptic functions. And this
function provides a parametrization for a cubic curve in the following way, where g2, g3 are constants:

(℘′)2 = 4℘3 − g2℘− g3

And, applying the right substitution of variables, Weierstrass also found an expression for ℘(u+ v),
thus giving the cubic curve above an addition formula:

℘ (u+ v) =
1

4

(
℘′ (u)− ℘′ (v)

℘ (u)− ℘ (v)

)2

− ℘ (u)− ℘ (v)

Naturally with time the notation for these and the way of studying cubic curves in general changed
quite a bit. Nowadays we define the Weierstrass equation in full generality to be:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Here the ai are elements of some field K and the coefficients of the equation. There is the convention
of numbering them in this way, where a5 is missing. This is due to the fact that the coefficients are
actually numbered following the degrees of the Z coordinate when the above equation is embedded in P2

and expressed in Jacobian coordinates. That is, applying the map (x, y)→ (X/Z2, Y/Z3), which yields
the following:

Y 2 + a1XY Z + a3Y Z
3 = X3 + a2X

2Z2 + a4XZ
4 + a6Z

6

In spite of following this notation convention, when we refer to the projective Weierstrass equation
here it will be with the usual projection map (x, y) → (X/Z, Y/Z). And so the projective Weierstrass
equation we will work with is:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

In this form, the Weierstrass equation has the point at infinity O = (0 : 1 : 0). Even when we use the
affine equation, we must keep this point in mind. Note that any other projective point (X : Y : Z) that
follows this equation will be such that Z 6= 0, i.e., in the equivalence class of (X/Z : Y/Z : 1) = (x : y : 1).

Let us remark as well the fact that not all curves defined by the Weierstrass equation are elliptic
curves. For a curve defined by a Weierstrass equation to be considered elliptic with origin point O it
needs to be smooth and cubic [[37],ch. III, 3.1]. A handy way to check this is through the value ∆, called
the discriminant of the Weierstrass equation and usually defined via some other values:

b2 = a21 + 4a2; b4 = 2a4 + a1a3; b6 = a23 + 4a6; b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

Note that the all the bi depend on the ai parameters so ∆ is also fully determined by them. And if
∆ 6= 0 then the curve defined by the Weierstrass equation is smooth and cubic, therefore:

7



Definition 13. Let K be a field and C an elliptic curve over K, then its complete Weierstrass form is
Ew : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6, where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0.

One might wonder if, given an elliptic curve C, to what extent is a Weierstrass equation able to define
it uniquely. Silverman gives in [[37], pg. 49] an extensive answer to this, but the bottom line is that it is
unique up to isomorphism. And there is an invariant associated with each isomorphism class of curves,
the j-invariant, defined as follows:

j = (b22 − 24b4)3/∆

The model shown above, and which we will work with the most, is known as the complete Weierstrass
model. But it is also very common to work with a shortened version of it where a1 = a2 = a3 = 0, a4 = a,
a6 = b and ∆ = 4a3 + 27b2. So in that case the short Weierstrass equation looks like this:

y2 = x3 + ax+ b

Note that this equation corresponds to Weierstrass’ parametrization shown above, with the following
relations: ℘ = x; ℘′ = 2y; a = −g2/4; b = −g3/4.

If K is a field such that char(K) 6= 2, then the complete Weierstrass model can be simplified so that
the terms xy and y disappear. Furthermore, if char(K) 6= 2, 3, then the complete curve equation of Ew
can be affinely transformed into a short Weierstrass equation using the following maps:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 −→ ȳ2 = x̄3 + ax̄+ b

a1, a2, a3, a4, a6  a = −b22/48 + b4/2, b = b32/864 − (b2b4)/24 + b6/4

(x, y) 7−→ (x̄, ȳ) =

(
x+

b2
12
, y +

a1x+ a3
2

)

Now, without further ado, let us present the addition law for the complete Weierstrass model, its geo-
metric interpretation and a complete system of addition laws. Afterwards, we’ll show the computational
implementations in Magma we have done of this.

1.1 Addition law

The formulae of the traditional addition law for the Weierstrass model are derived from the chord and
tangent addition with O = (0 : 1 : 0) as the identity element. To begin with, we will present said
formulae:

Let K be a field, C an elliptic curve over K and P1 = (x1 , y1 ), P2 = (x2 , y2 ) two points on C.
Fix a1 , a2 , a3 , a4 , a6 to be such that a1 , a2 , a3 , a4 , a6 ∈ K and ∆ 6= 0 . Then the addition law of C on

its Weierstrass form Ew is as follows:

if P2 = O, then:

P1 + P2 = P1 +O = P1

if P2 = −P1 = (x1 ,−y1 − a1 x1 − a3 ), then:

P1 + P2 = O
otherwise:

P1 + P2 = (x3 , y3 ) =
(
λ2 + a1λ− a2 − x1 − x2 ,−(λ+ a1 )x3 − ν − a3

)
where:

λ =
3x2

1 + 2a2 x1 + a4 − a1y1
2y1 + a1 x1 + a3

, ν =
−x3

1 + a4 x1 + 2a6 − a3y1
2y1 + a1 x1 + a3

, if P1 = P2

λ =
y2 − y1
x2 − x1

, ν =
y1 x2 − y2 x1

x2 − x1
, if P1 6= ±P2
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As mentioned above, the neutral element for this addition law is the projective point at infinity
O = (0 : 1 : 0) and the inverse of an affine point P = (x, y) is −P = (x,−y − a1x− a3). It will become
clear that (x3, y3) ∈ Ew(K) after taking a look at the geometric interpretation behind these formulae
(see bellow). And that interpretation shows that indeed these formulae define an addition law.

Note that if we look at the addition law for the case P1 6= ±P2 and for a curve given by a short
Weierstrass equation then the x-coordinate of the addition law corresponds to the expression for ℘(u+v),
where ℘(u) = x1, ℘(v) = x2, ℘

′(u) = 2y1 and ℘′(v) = 2y2:

℘ (u+ v) =
1

4

(
℘′ (u)− ℘′ (v)

℘ (u)− ℘ (v)

)2

− ℘ (u)− ℘ (v)  x3 =

(
y1 − y2
x1 − x2

)2

− x1 − x2

1.1.1 Geometric interpretation

The addition formulae presented above appear when looking at the points in the intersection of an elliptic
curve C and a certain line. In this section we’ll take a look at how to define said line, thus providing
the geometric interpretation behind the formulae. The method we will describe here defines an addition
with O as neutral element [prop. 2.2, [37]] and it is known as the chord and tangent addition.

Let C be an elliptic curve given by a projective Weierstrass equation over a field K and let O =
(0 : 1 : 0) be its point at infinity. Since said equation has degree 3, any line will intersect C in exactly
three points over K̄ - counting multiplicities, i.e., said points are not necessarily distinct.

Thus if we have two points on the curve P , Q ∈ Ew(K) and we define the line L ⊂ P2 passing through
them, it will intersect C at a third K-rational point R. Note that in the case P = Q the line L is the
tangent to C in P . Let’s consider now the line L′ passing through R and O. This line will also have a
third intersection point in C over K, namely R′ = P +Q.

A bit more explicitly, the line L is either XZP −XPZ = 0, if Q = O, or Y = λX + νZ otherwise.
Here λ and ν are the same as defined for the addition law above but in projective coordinates, which
look like this:

λ =
3X2

P + 2a2XPZP + a4Z
2
P − a1YPZP

2YPZP + a1XPZP + a3Z2
P

; ν =
−X3

P + a4XPZ
2
P + 2a6Z

3
P − a3YPZ2

P

2YPZ2
P + a1XPZ2

P + a3Z3
P

, if P = Q

λ =
ZPYQ − YPZQ
XQZP −XPZQ

; ν =
YPXQ − YQXP

XQZP −XPZQ
, if P 6= ±Q

And the second line we need will be L′ : XZR −XRZ = 0 in any case. For further details on how to
actually derive the explicit addition law formulae, please refer to [[37], Ch. III, §2].

Now let us illustrate how this works with a few examples. In the plots below we work with a curve C
given by a short Weierstrass equation with parameters a4 = −36 and a6 = 0. In Figure (a) we compute
the addition of the points P = (−144/25,−504/125) and Q = (−2,−8). Note that the line L′ only
intersects C in two points in the plot, since the third point of intersection is the point at infinity O. The
plot in Figure (b) shows how point doubling works with P = (−4,

√
80) and here both lines L, tangent

in this case, and L′ also intersect C in O so it doesn’t appear in the plot. Figure (c) illustrates also a
point doubling, but in this case the point has order 2, so L = L′ and the three points of intersection
are P , with multiplicity 2, and O. Lastly, in Figure (d) we can see P ≈ (7.811, 14) and its opposite
−P ≈ (7.811,−14), with L = L′ having its third point of intersection in O.
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(a) P + Q ≈ (8.87, 19.47)

-25 -20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-5

0

5

10

15

20

25

(b) 2P ≈ (8.45,−17.29)
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(c) 2P = O
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(d) P − P = O
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1.1.2 Complete system of addition laws

The addition formulae presented above are definitely not the simplest of formulae to work with, especially
due to the several case distinctions. And since they were published there has been of course quite some
research done to improve on them. Like the work of W. Bosma and H. W. Lenstra in [9], where they
study the minimal cardinality for a complete system of addition laws and how to obtain such a system.
In this section we will show some of their results.

To begin with, let’s consider an elliptic curve C over a field K given by the complete Weierstrass
equation in projective form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

Given two positive integers α and β, an addition law of bidegree (α, β) on C consists of an addition

law S = {pX3
, pY3

, pZ3
}, where the three polynomials pX3

, pY3
, pZ3

∈ K[X1, Y1, Z1, X2, Y2, Z2] are biho-

mogeneous of bidegree (α, β), i.e., all three polynomials are homogeneous of degree α in the variables

X1, Y1, Z1 and homogeneous of degree β in the variables X2, Y2, Z2.

Following this definition, for any given value of the tuple (a, b, c) ∈ K ×K ×K, these polynomials

form an addition law of bidegree (2, 2) on C:

pX3
= fpZ3

, pY3
= gpZ3

, pZ3
= (as∗(X/Z) + bs∗(Y/Z) + c)Z0

where:

f = λ2 + a1λ−
X1Z2 +X2Z1

Z1Z2
− a2; g = −(λ+ a1)f − ν − a3; Z0 =

(X1Z2 − Z1X2)3

Z1Z2

s∗(X/Z) = κ2 + a1κ−
X1Z2 +X2Z1

Z1Z2
− a2; s∗(Y/Z) = −(κ− a1)s∗(X/Z)− µ− a3

for:

λ =
Y1Z2 − Y2Z1

X1Z2 −X2Z1
; ν = − Y1X2 − Y2X1

X1Z2 −X2Z1

κ =
Y1Z2 + Y2Z1 + a1X2Z1 + a3Z1Z2

X1Z2 −X2Z1
; µ = −Y1X2 + Y2X1 + a1X1X2 + a3X1Z2

X1Z2 −X2Z1

Bosma and Lenstra prove that the smallest complete system of addition laws on C needs at least 2
addition laws and, if two addition laws form a complete system, then each of them has bidegree (2,2)
[Thm. 1, [9]]. They of course also give a complete system of addition laws. In fact, they provide a way to
generate complete systems of addition laws for elliptic curves given in Weierstrass form using the family
of addition laws shown above and their way of studying the exceptional points of each of said addition
laws [Thm. 2, [9]].

Based on the results shown in [[9],§5], we can say for example that the two addition laws given by
the tuples (0, 0, 1) and (0, 1, 0) form a complete system of addition laws. And this is what we state next,
using the superscript notation to indicate what (a, b, c) tuple defines each polynomial:

Let K be a field, C an elliptic curve over K and P1 = (X1 : Y1 : Z1 ), P2 = (X2 : Y2 : Z2 ) two points
on C. Fix a1 , a2 , a3 , a4 , a6 to be such that a1 , a2 , a3 , a4 , a6 ∈ K and ∆ 6= 0 . Then the following define

a complete set of addition laws on C, when computed to be polynomials of bidegree (2,2):

P1 + P2 =

P3 = (X3 : Y3 : Z3) =
(
p
(0,0,1)
X3

(P1, P2) : p
(0,0,1)
Y3

(P1, P2) : p
(0,0,1)
Z3

(P1, P2)
)

P ′3 = (X ′3 : Y ′3 : Z ′3) =
(
p
(0,1,0)
X3

(P1, P2) : p
(0,1,0)
Y3

(P1, P2) : p
(0,1,0)
Z3

(P1, P2)
) =
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=


(
fZ0 : gZ0 : Z0

)
, if P1 6= P2(

fs∗(Y/Z)Z0 : gs∗(Y/Z)Z0 : s∗(Y/Z)Z0

)
, if YP1−P2

6= 0

This system is indeed complete since, if P1 = P2 then P1 − P2 = P1 − P1 = O = (0 : 1 : 0). Thus it
will never happen simultaneously that P1 = P2 and YP1−P2 = 0, i.e., no pair of points P1, P2 ∈ Ew(K̄) is
exceptional for both addition laws in the system.

1.2 Implementations in Magma

The time to see the facts introduced above in action has arrived. In this section some Magma code will
be shown to present our implementations about the addition law for the Weierstrass model. We have
programmed the chord and tangent addition as well as the complete system of addition laws.

For the geometric interpretation we will show some numerical examples. And for the system of
addition laws we will write about how to get addition laws of bidegree (2, 2) and how have we used this
to create our own addition function for points on curves in Weierstrass form.

1.2.1 Geometric interpretation

Before we have explained how the chord and tangent method works when adding points on an elliptic
curve given by a Weierstrass equation. And here we will lay out a walk-through in Magma of said
method following a numerical example.

In the few lines of code below we do the following: as we will have to do for almost all the computations
throughout this thesis, we start by defining a few algebraic structures and some variables. The first one
we need is a base field BF, which in our case will be the finite field F7, and on top of that we define a
FunctionField for the ai coefficients. Having unknown projective variables X, Y and Z will also come
in handy so we define them to be elements of a projective space of dimension 2, i.e., P2. Then we give
values to the ai so they determine the curve we want to work with, which in this case is given by a1 = 2,
a2 = a3 = 0, a4 = 4 and a6 = 5. And then said curve is defined and stored in C. We also define a pair of
points P and Q and we can easily check that they are indeed on the curve.

> BF := FiniteField(7);

> R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

> R2<X,Y,Z> := ProjectiveSpace(R1,2);

> a1 := 2; a2 := 0; a3 := 0; a4 := 4; a6 := 5;

> C := Curve(R2, (Y^2)*Z + a1*X*Y*Z + a3*Y*Z^2 - X^3-a2*(X^2)*Z-a4*X*Z^2

- a6*Z^3);

> P := [ 1, 4, 1 ]; Q := [ 3, 2, 1 ];

> C; P in C; Q in C;

Curve over Multivariate rational function field

of rank 5 over GF(7) defined by

6*X^3 + 2*X*Y*Z + Y^2*Z + 3*X*Z^2 + 2*Z^3

true (1 : 4 : 1)

true (3 : 2 : 1)

So now we have all the elements we need to add P and Q using the chord and tangent method. And
we start by computing the values l, n i.e., λ and ν respectively, so we can define the line L. And then
we look at the points in the intersection of L and C:

> Xp := P[1]; Yp := P[2]; Zp := P[3];

> Xq := Q[1]; Yq := Q[2]; Zq := Q[3];

> l := BF!((Zp*Yq - Yp*Zq)/(Xq*Zp-Xp*Zq));

> n := BF!((Yp*Xq - Yq*Xp)/(Xq*Zp-Xp*Zq));

11



> L := Curve(R2,Y - l*X - n*Z);

> Points(Intersection(C,L));

{@ (3 : 2 : 1), (2 : 3 : 1), (1 : 4 : 1) @}

Here we see that the third point of intersection is R = (2 : 3 : 1), so the next step is to define the
line Lp passing through R and O and check the intersection with the curve to find P+Q:

> R := [2, 3, 1]; Xr := R[1]; Zr := R[3];

> Lp := Curve(R2,X*Zr - Xr*Z);

> Points(Intersection(C,Lp));

{@ (2 : 0 : 1), (2 : 3 : 1), (0 : 1 : 0) @}

As we can see, we have that P + Q = (2 : 0 : 1).

Like we showed in 1.1.1, with different λ and ν this method can also be used for some special cases
like point doubling. In that case, the procedure looks like this:

> l := (3*Xp^2+2*a2*Xp*Zp+a4*Zp^2-a1*Yp*Zp)/(2*Yp*Zp+a1*Xp*Zp+a3*Zp^2);

> n := (-Xp^3+a4*Xp*Zp^2+2*a6*Zp^3-a3*Yp*Zp^2)/(2*Yp*Zp^2+a1*

Xp*Zp^2+a3*Zp^3);

> L := Curve(R2,Y - l*X - n*Z);

> Points(Intersection(C,L));

{@ (6 : 0 : 1), (1 : 4 : 1) @}

> R := [6, 0, 1]; Xr := R[1]; Zr := R[3];

> Lp := Curve(R2,X*Zr - Xr*Z);

> Points(Intersection(C,Lp));

{@ (6 : 0 : 1), (6 : 2 : 1), (0 : 1 : 0) @}

From the second intersection we can see that 2P = (6 : 2 : 1). Note as well that in the first
intersection there are only two points. That is because, since we are computing the double of P, that
point actually has multiplicity 2 in this case, as can be seen below:

> pts := Points(Intersection(C,L));

> [ <p, IntersectionNumber(C,L,p)> : p in pts];

[ <(6 : 0 : 1), 1>, <(1 : 4 : 1), 2> ]

All these computations can be put into a function so it computes the addition of any two points
on a given elliptic curve in Weierstrass form. And this is precisely what our function Ew_AddL_geom

does, so by providing a base field BF to work on (must be a finite field or the rationals), a list lst with
the coefficients of the curve and two points P, Q we can obtain P+Q as computed using this method.
This function can be found in the appendix [§A.2, Fn.4] and two more examples are available in the file
WC AdL geom.m from the online repository: one example over the field Q of characteristic 0 and another
over a finite field of large characteristic.

1.2.2 Addition laws of bidegree (2,2)

Explicit formulae for three different addition laws are provided in the last pages of [9] but the X and Y
coordinates of the addition law corresponding to a = 0, b = 1, c = 0 are wrong so we need to find a way
to generate the formulae ourselves.

Aside from that error, if one were to directly use the system of equations as we have presented it in
section 1.1.2 they would observe that said system works for the most part except when it comes to point
doubling. Thus if we want it to work for any case we need the formulae to be polynomials of bidegree
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(2, 2). In order to compute them in such a way we have created the function Ew_AddL_b2calc, which
uses a base field BF, the list of ai parameters lst and the list abc_lst of values a, b, c to compute
the corresponding addition law with bidegree (2, 2). And as output it not only gives the addition law
[X3,Y3,Z3], but also the lists of coefficients of the three polynomials, namely [X3_ci,Y3_ci,Z3_ci],
and the list of monomials monF. We have arranged it this way since it makes it easier to use the output
in other different settings.

As to what computations does Ew_AddL_b2calc actually do, it depends on which coordinate of the
addition law it is computing. At first pZ3

is a rational expression but as soon as the polynomial division
is computed and the condition that (X1 : Y1 : Z1) and (X2 : Y2 : Z2) represent points on the curve is
applied, it becomes a polynomial of bidegree (2, 2). And in the case of pX3 and pY3 , Ew_AddL_b2calc
needs to solve a system of 88 equations of the form

∑
(
∏
ai)αβ,γ = 0, where the ai are the parameters of

the Weierstrass equation and the αβ,γ are the unknowns, coefficients of a generic polynomial of bidegree
(2, 2).

The idea behind how we build such a system starts with defining a generic polynomial of bidegree
(2, 2):

F =
∑

βi≥0,
∑
βi=2

γi≥0,
∑
γi=2

αβ1,β2,β3,γ1,γ2,γ3X
β1

1 Y β2

1 Zβ3

1 Xγ1
2 Y γ22 Zγ32 =

∑
βi≥0,

∑
βi=2

γi≥0,
∑
γi=2

αβ,γX
β1

1 Y β2

1 Zβ3

1 Xγ1
2 Y γ22 Zγ32

Then, taking into account that pX3
is a rational expression of the form pX3

= nX3
/dX3

, we state that
we want pX3 to be expressed as F :

pX3
= F ⇒ nX3

= dX3
F ⇒ nX3

− dX3
F = 0

Now we have the polynomial p = nX3
−dX3

F with coefficients of the form
∑

(
∏
ai)αβ,γ and monomials

that are products of X1, Y1, Z1, X2, Y2, Z2. And, after applying the condition that (X1 : Y1 : Z1) and
(X2 : Y2 : Z2) are points on the curve, p has 88 terms, although it is not of bidegree (2, 2). But one way
to solve the equation p = 0 is making sure that all coefficients of p are 0, that is, solving the 88 equations
of the form

∑
(
∏
ai)αβ,γ = 0. By doing so, we will get values for the αβ,γ coefficients such that pX3

= F
will hold.

An analogous process happens for pY3 . To see how to do all this in Magma , feel free to take a look
at the source code of Ew_AddL_b2calc in [§A.1, Fn.1].

We will use some outputs from Ew_AddL_b2calc in our addition function in the next section since we
need the coordinates of P3 and P ′3 to be polynomials of bidegree (2, 2). Because calling Ew_AddL_b2calc

every time we want to add two points involves a lot of computations, we have run it once for
BF := Rationals(), lst := [a1,a2,a3,a4,a6] and abc_lst := [0,0,1] to obtain P3 and again with
abc_lst := [0,1,0] to get P ′3, this time getting the correct formulae without the mistake from [9]. And
then we simply have taken the outputs to work directly with them in the two functions we have deve-
loped: Ew_AddL, to check general facts about the system of addition laws, and Ew_AddL_eval, to actually
compute point addition. We will look into these functions in the next section.

1.2.3 Complete system of addition laws

We have shown above how to compute the addition of two points on an elliptic curve in Magma using
the geometric approach. Now we will do the same but using the explicit formulae with bidegree (2, 2)
that we just computed. So here we will present the function we have created to compute the addition of
points on curves given by the Weierstrass equation using the complete system addition laws of bidegree
(2, 2) discussed in Section 1.1.2.

Let’s take a look at Ew_AddL first. This function takes as input a base field BF (must be ratio-
nal or finite field) and the list lst of the ai parameters and outputs [[X3_001,Y3_001,Z3_001],

[X3_010,Y3_010,Z3_010]], i.e., the system of addition laws. The list of parameters can have either
two elements for the short Weierstrass equation or five, for the complete one. Since we want our fact
checks to be as general as possible, we will be working with all five parameters so we start by defining
the pertinent algebraic structures and obtaining the output from Ew_AddL:

> BF := Rationals();

> R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);
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> R2<X1,Y1,Z1, X2,Y2,Z2> := PolynomialRing(R1,6);

> Ew1 := Y1^2*Z1+a1*X1*Y1*Z1+a3*Y1*Z1^2-X1^3-a2*X1^2*Z1-a4*X1*Z1^2-a6*Z1^3;

> Ew2 := Y2^2*Z2+a1*X2*Y2*Z2+a3*Y2*Z2^2-X2^3-a2*X2^2*Z2-a4*X2*Z2^2-a6*Z2^3;

> I := ideal< R2 | Ew1, Ew2>;

> QQ<x1,y1,z1,x2,y2,z2> := quo<R2 | I>;

> X3_001 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[1][1]);

> Y3_001 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[1][2]);

> Z3_001 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[1][3]);

> X3_010 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[2][1]);

> Y3_010 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[2][2]);

> Z3_010 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[2][3]);

Note that we also define the ideal generated by the Weierstrass equation evaluated in (X1 : Y1 : Z1)
and in (X2 : Y2 : Z2). And then we create the quotient ring with the equivalence relation induced by
said ideal. Having this quotient ring will allow us to easily apply the condition that (X1 : Y1 : Z1) and
(X2 : Y2 : Z2) are points on the curve when needed.

We will need to use this quotient ring for example to check that the output of both addition laws is a
point on the curve. So we evaluate the curve equation in P3 and P ′3, coerce the result into the quotient
ring and see that the result is 0, as it should be:

> QQ ! Evaluate(Ew1,[X3_001,Y3_001,Z3_001,1,1,1]);

0

> QQ ! Evaluate(Ew1,[X3_010,Y3_010,Z3_010,1,1,1]);

0

Another condition for the system of addition laws to be well defined is that both addition laws give
the same output when the pairs of points being added are not exceptional for either of them. We check
that this holds in these lines:

> f_XZ := X3_001*Z3_010; g_XZ := Z3_001*X3_010;

> printf "\nX3*Z’3 = X’3*Z3 ? \n "; (QQ ! f_XZ) eq (QQ ! g_XZ);

X3*Z’3 = X’3*Z3 ?

true

> f_YZ := Y3_001* Z3_010; g_YZ := Z3_001*Y3_010;

> printf "\nY3*Z’3 = Y’3*Z3 ? \n "; (QQ ! f_YZ) eq (QQ ! g_YZ);

Y3*Z’3 = Y’3*Z3 ?

true

Lastly, some checks about the exceptional pairs of points should be done, as we will next.

Exceptional points

From the theory we know the conditions on the exceptional pairs for both addition laws, namely that
P1, P2 are exceptional for P3 iff P1 = P2 and they are exceptional for P ′3 iff YP1−P2 = 0. Proving this
with Magma would mean to prove the following points:

1. P1 = P2 ⇒ P3(P1, P2) = (0 : 0 : 0)

2. YP1−P2
= 0 ⇒ P ′3 = (0 : 0 : 0)
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3. P ′3 (P1, P1) 6= (0 : 0 : 0) for any P1 ∈ E(K)

4. P3(P1, P2) 6= (0 : 0 : 0) for any P1, P2 ∈ E(K) such that YP1−P2
6= 0

Ideally we would do all this symbolically and in as general terms as possible. But the large formulae
don’t allow us to do this in a practical way. In general terms we have checked that the case P1 = P2 is
indeed exceptional for P3, i.e., point 1 in the list above:

> Evaluate(X3_001,[X1,Y1,Z1,X1,Y1,Z1]);

0

> Evaluate(Y3_001,[X1,Y1,Z1,X1,Y1,Z1]);

0

> Evaluate(Z3_001,[X1,Y1,Z1,X1,Y1,Z1]);

0

Next, to give an intuitive example that point 3 holds, we’ll look at the case a1 = a2 = a3 = a4 = 0,
a6 6= 0 and Z1 = 1 over the rationals, i.e., the Weierstrass equation Y2 = X3 + a6. In this case, the P ′3
addition law is the following:

> a1 := 0; a2 := 0; a3 := 0; a4 := 0;

> X3_010 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[2][1]);

> Y3_010 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[2][2]);

> Z3_010 := (R2 ! Ew_AddL(BF,[a1,a2,a3,a4,a6])[2][3]);

> "X3_010 = ", X3_010; "Y3_010 = ", Y3_010;

"Z3_010 = ", Z3_010;

X3_010 = X1*Y1*Y2^2 - 3*a6*X1*Y1*Z2^2 - 6*a6*X1*Z1*Y2*Z2 +

Y1^2*X2*Y2 - 6*a6*Y1*Z1*X2*Z2 - 3*a6*Z1^2*X2*Y2

Y3_010 = 9*a6*X1^2*X2*Z2 + 9*a6*X1*Z1*X2^2 + Y1^2*Y2^2 -

9*a6^2*Z1^2*Z2^2

Z3_010 = 3*X1^2*X2*Y2 + 3*X1*Y1*X2^2 + Y1^2*Y2*Z2 +

Y1*Z1*Y2^2 + 3*a6*Y1*Z1*Z2^2 + 3*a6*Z1^2*Y2*Z2

And when evaluated in the case P1 = P2, this addition law looks like this:

> "X3_010_PP = ", X3_010_PP;

> "Y3_010_PP = ", Y3_010_PP;

> "Z3_010_PP = ", Z3_010_PP;

X3_010_PP = 2*X1*Y1^3 - 18*a6*X1*Y1

Y3_010_PP = 18*a6*X1^3 + Y1^4 - 9*a6^2

Z3_010_PP = 6*X1^3*Y1 + 2*Y1^3 + 6*a6*Y1

Now the idea is to check that X3_010_PP = Y3_010_PP = Z3_010_PP = 0 can’t happen, because if
it does, then P1 = P2 would also be an exceptional case for P ′3. We can start by factorizing X3_010_PP:

> Factorization(X3_010_PP);

[

<Y1, 1>,

<Y1^2 - 9*a6, 1>,

<X1, 1>

]
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Let’s see how making any of these three factors equal to 0 while Y3_010_PP = 0 or Z3_010_PP = 0

leads to a contradiction:

X1 = 0⇒

Z ′3 = 2Y 3
1 + 6a6Y1 = 0 ⇒ Y 2

1 = −3a6

C : Y 2
1 = a6

⇒ a6 = −3a6

Y 2
1 = 9a6 ⇒

Z ′3 = (X3
1 + 4a6)Y1 = 0 ⇒ X3

1 = −4a6

C : 9a6 = X3
1 + a6 ⇒ X3

1 = 8a6
⇒ a6 = −2a6

Y1 = 0⇒

Y ′3 = 18a6X
3
1 − 9a26 = 0 ⇒ X3

1 = a6/2

C : X3
1 + a6 = 0

⇒ a6 = −1/2a6

None of the equalities on the right holds since we are working over the rationals and a6 6= 0. So we
see how in this case P1, P2 such that P1 = P2 is an exceptional pair for P3 but not for P ′3.

Regarding points 2 and 4, there is the added challenge of finding an explicit expression for P1 and P2

such that YP1,P2
= 0, which involves again a large non-linear multivariate system of equations to solve.

For point 4 we have found an alternate work-around and for point 2 we will show a numerical example
later on.

So point 4 is about checking that YP1−P2
is not an exceptional case for P3. A more general statement

that also proves this is that P1 = P2 is indeed the only exceptional case for P3. Note that this sounds
similar but it is completely different from point 1.

The key to our work-around has been to “play” with two ideals in the ring we call R2 in our Magma
code, which is Q(a1, a2, a3, a4, a6) [X1, Y1, Z1, X2, Y2, Z2]:

I = 〈Fw(X1, Y1, Z1), Fw(X2, Y2, Z2), X3, Y3, Z3〉

J = 〈Fw(X1, Y1, Z1), Fw(X2, Y2, Z2), X1Z2 −X2Z1, Y1Z2 − Y2Z1, X1Y2 −X2Y1〉

Here Fw = Y 2Z + a1XY Z + a3Y Z
2 − X3 − a2X2Z − a4XZ2 − a6Z3 is the projective polynomial

that defines the Weierstrass form. We need to include this polynomial evaluated in both points to let
Magma know that the variables X1, Y1, Z1, X2, Y2, Z2 actually define points on the curve.

The ideal I is defined then by the polynomials that define P3 and J is defined by three polynomials
that express the case P1 = P2, since:

P1 = P2 ⇒
X1

Y1
=
X2

Y2
,
X1

Z1
=
X2

Z2
,
Y1
Z1

=
Y2
Z2
⇒ X1Y2 = X2Y1, X1Z2 = X2Z1, Y1Z2 = Y2Z1

The general idea is to prove that I = J , because in that case it would mean that X3, Y3 and Z3

vanish exactly when X1Z2 −X2Z1, Y1Z2 − Y2Z1, X1Y2 −X2Y1 vanish as well. And thus we would have
that point 4 holds.

In order to see that I = J , we check both inclusions: I ⊂ J and J ⊂ I. Magma agrees that I ⊂ J
holds, but when we check J ⊂ I it yields false. There are a number of reasons why this would happen
so we compute the Gröbner basis for J and check one by one if all the elements of said basis are in I.
And once again we find false outputs.

Keeping in mind that we are actually only interested in when do the elements of both of these ideal
vanish, we can still prove point 4 by checking if any of the power of the ideal J is a subset of I. We
define the n-th power of J as follows:

Jn = {α · β | α ∈ J, β ∈ Jn−1}

16



So the plan is to start by computing J2 and see if J2 ⊂ I. If not, try with J3 and so on until we find
an n such that Jn ⊂ I.

We have faced some problems running days-long computations so we haven’t been able to see the
end result of computing this for the complete Weierstrass model. The code to do so and the out-
put showing how far we have been able to run the computation are available online in the input file
WC AdL 001exceptionalpts completeWC.m and in the output file WC AdL 001exceptionalpts complete

WC output.txt, respectively.

We have however completed the calculations for the short Weierstrass case, which is still a pretty
general case since it is isomorphic to the complete Weierstrass form except for the cases of K begin a
field of characteristic 2 or 3. And we have found that J4 ⊂ I. The code to see how it’s done is also
available online in the file WC AdL 001exceptionalpts shortWC.m.

For the symbolic checks we haven’t done we trust [Thm. 2 [9]], which tells us that our system of
addition laws is complete. And so we proceed to see it deal with some numerical examples.

Numerical examples

For this kind of examples we have the function Ew_AddL_eval, which takes as input a base field BF,
the list lst of curve parameters and two points P and Q with projective coordinates. As output of
course it yields P+Q, computed using whichever addition law is suitable in each case. Ew_AddL_eval is
programmed in the spirit of working for cases as general as possible. So, for example, it can take as
input both numerical values and undetermined parameters and/or variables. Furthermore, we want to
work with a PolynomialRing defined over a FunctionField as much as possible, since that allows us to
work with ideals and other algebraic structures when needed. However, FunctionField is not supported
over certain rings, as for example the reals. Thus we include the option to change to a PolynomialRing

defined over another PolynomialRing when needed. This is done by these lines at the beginning of the
function:

if (Type(BF) eq Type(RealField())) or (Type(BF) eq Type(ComplexField())) then

fl := true;

else

fl := false;

end if;

if fl then

R1<a1,a2,a3,a4,a6> := PolynomialRing(BF,5);

else

R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

end if;

R2<X1,Y1,Z1, X2,Y2,Z2> := PolynomialRing(R1,6);

Afterwards the function reads the input data and goes ahead to decide which addition law will it use
by assessing whether it’s dealing with point doubling or something else:

if fl then

if (Abs(BF!(Xp - Xq)) gt 1E-10) and (Abs(BF!(Yp - Yq)) gt 1E-10) and

(Abs(BF!(Zp - Zq)) gt 1E-10) then

//here we use (a,b,c) = (0,1,0)

X3 := R2!(-a1*a2*Xp^2*Xq^2 + ... + a3*a4^2*Zp^2*Zq^2);

Y3 := R2!((-a2^2 + 3*a4)*Xp^2*Xq^2 + ... - 9*a6^2*Zp^2*Zq^2);

Z3 := R2!(3*a1*Xp^2*Xq^2 + ... + (a3^3 + 3*a3*a6)*Zp^2*Zq^2);

else

//here we use (a,b,c) = (0,0,1)

X3 := R2!(-a2*Xp^2*Xq*Zq + ... + 3*a6*Zp^2*Xq*Zq);

Y3 := R2!(-3*Xp^2*Xq*Yq + ... + (-a3^2 - 3*a6)*Zp^2*Yq*Zq);

Z3 := R2!(3*Xp^2*Xq*Zq + ... + a3*Zp^2*Yq*Zq);

end if;

else

if (Xp eq Xq) and (Yp eq Yq) and (Zp eq Zq) then
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//here we use (a,b,c) = (0,1,0)

X3 := R2!(-a1*a2*Xp^2*Xq^2 + ... + a3*a4^2*Zp^2*Zq^2);

Y3 := R2!((-a2^2 + 3*a4)*Xp^2*Xq^2 + ... - 9*a6^2*Zp^2*Zq^2);

Z3 := R2!(3*a1*Xp^2*Xq^2 + ... + (a3^3 + 3*a3*a6)*Zp^2*Zq^2);

else

//here we use (a,b,c) = (0,0,1)

X3 := R2!(-a2*Xp^2*Xq*Zq + ... + 3*a6*Zp^2*Xq*Zq);

Y3 := R2!(-3*Xp^2*Xq*Yq + ... + (-a3^2 - 3*a6)*Zp^2*Yq*Zq);

Z3 := R2!(3*Xp^2*Xq*Zq + ... + a3*Zp^2*Yq*Zq);

end if;

end if;

Recall the fact that we took the addition laws from the output of Ew_AddL_b2calc and due to their
length, they appear shortened above. Also remember that in the case (a,b,c) = (0,1,0) the X3 and
Y3 coordinates are different from the ones shown in the original paper due to the fixed error. Note as
well that here we also separate the case of a rational or finite base field from the rest. This is due to
the fact that, more often than not, computations that should evaluate to 0 don’t yield an exact 0 when
working with float values. So instead of checking if any said variable is not equal to zero, we check that
its value is “far away enough” from zero., i.e., if it’s greater than 10−10.

Let’s take a look now at a couple of examples to take Ew_AddL_eval for test run. First we’ll try
something with some unknowns over a finite field:

> BF := FiniteField(11);

> R1<a1,a2,a3,a4,a6> := PolynomialRing(BF,5);

> R2<X1,Y1,Z1, X2,Y2,Z2> := PolynomialRing(R1,6);

> Ew_AddL_eval(BF,[R1|0, a2, 0, 5, a6],[R2|3/4,Y1,Z1],[R2|0,-7,Z2]);

[

6*Y1*Z2 + 6*a6*Z1*Z2^2 + Z1 + 2*Z2^2,

7*Y1^2*Z2 + 3*a6*Y1*Z1*Z2^2 + 5*Y1*Z1 + Y1*Z2^2 + 10*a6*Z1^2*Z2 +

3*Z1*Z2 + 6*a2*Z2,

10*Y1^2*Z2^2 + 5*Z1^2 + Z1*Z2^2 + 4*a2*Z2^2

]

Now for a curve given by a complete Weierstrass equation over the rationals:

> BF := Rationals();

> R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

> R2<x,y> := AffineSpace(R1,2);

> a1 := 19; a2 := 2; a3 := -13/7; a4 := -5; a6 := -6;

> C := Curve(R2, y^2+a1*x*y+a3*y-x^3-a2*x^2-a4*x-a6);

> P1 := [2, -253/7, 1]; P2 := [-33/49, 4978/343, 1];

> PQ := Ew_AddL_eval(BF,[a1, a2, a3, a4, a6],P1,P2); PQ;

> printf "\n Is P+Q in the curve? %o \n",

R2![R1|PQ[1]/PQ[3],PQ[2]/PQ[3]] in C;

[

9708017/117649,

-5204592/823543,

-2248091/117649

]

Is P+Q in the curve? true

What we couldn’t do before symbolically regarding point 2, we can do know with a numerical case:
check that P1, P2 such that YP1−P2

is an exceptional pair for P ′3. Let’s consider the same curve
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as in the previous example and the points P := [-33/49, 4978/343, 1], Q := [8, 27/7, 1] and
mQ := [8, -154,1], the opposite of Q. Then we can easily check that YP−Q = 0 and that P and Q are
exceptional for P ′3:

> Ew_AddL_eval(BF,lst,P,mQ);

[

-76765625/117649,

0,

76765625/117649

]

> Evaluate(X3_010, P cat Q);

> Evaluate(X3_010, P cat Q);

> Evaluate(X3_010, P cat Q);

0

0

0

But of course Ew_AddL_eval does not fall for exceptional cases and always gives the right output:

> "Point doubling: \n ", Ew_AddL_eval(BF,lst,[-3, 412/7, 1],

[-3, 412/7, 1]);

> "P,Q such that P - Q = [-1 ,0 ,1]: \n", Ew_AddL_eval(BF,lst,

[-33/49, 4978/343, 1],[8, 27/7, 1]);

Point doubling:

[

55997392/343,

-921640/7,

69934528/343

]

P,Q such that P - Q = [-1 ,0 ,1]:

[

-2392016875/117649,

291210705500/823543,

76765625/117649

]

These and more examples can be found in the online file WC AdL eval.m. And the source code for
both Ew_AddL and Ew_AddL_eval can be found in [§A.1, Fn.2] and [§A.3, Fn.6] respectively.
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Chapter 2

Edwards model

Let’s study now the addition law for another form of elliptic curves: the Edwards curves. This model
was introduced by H. Edwards in 2007 in [19] and it has the advantage that it is overall simpler to work
with than the Weierstrass model. We will see why in the coming sections.

A point that might be a bit confusing is that the normal form Edwards introduced is not what most
people use nowadays, instead it was as follows:

The normal form of an elliptic curve C over a number field K is E : x2 + y2 = c2(1 + x2y2),
where c ∈ K is such that c5 6= c.

Note that the condition on c implies that c /∈ {0, 1}. Edwards proved that all elliptic curves can be
represented in this normal form, but in some cases it is necessary to work on an extension of the original
field over which the curve was defined. In order to include a larger class of elliptic curves over the original
field, Bernstein and Lange in [5] expanded the concept of Edwards curves to:

The Edwards form of an elliptic curve C over a number field K is Ecd : x2 + y2 = c2(1 + dx2y2),
where c, d ∈ K\{0, 1} and cd(1− dc4) 6= 0.

And this is the form most authors refer to as “Edwards model” or “Edwards-Bernstein model”.
However, the most used case of this form is the one where c = 1 and we will work mainly in such case.
Thus let us introduce a formal definition for it:

Definition 14. Let K be a field such that char(K) 6= 2 and C an elliptic curve over K, then its Edwards
form is Ed : x2 + y2 = 1 + dx2y2, where d ∈ K\{0, 1}.

In the following sections we’ll study the addition law for this model, which will prove to be simpler
than the addition law introduced in the previous chapter. We will also see how this model relates to the
Weierstrass one, which will give us an idea of all the curves that can be represented in Edwards form.
And we will leave the geometric interpretation for the Edwards addition law for the next chapter, since
it is generalized for the twisted Edwards model.

2.1 Addition law

The addition law for elliptic curves in Edwards form was first stated in [19] for the normal form and in
[[5], § 3] Bernstein and Lange adapted it for the Edwards model and studied it. In this section we will
present the addition law and its main properties as shown in [5].

First, let’s introduce the addition law:

Let K be a field such that char(K) 6= 2, C an elliptic curve over K and (x1, y1), (x2, y2) two points on C.
Fix c, d ∈ K\{0, 1} to be such that cd(1− dc4) 6= 0. Then the addition law of C on its Edwards form

Ecd : x2 + y2 = c2(1 + x2y2) is as follows:

(x1, y1) + (x2, y2) = (x3, y3) =

(
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2
c(1− dx1x2y1y2)

)
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The set of K-rational points Ecd(K) forms an abelian group under this addition law. The neutral
element for this addition law is (0, c) and the inverse of a point P = (x, y) is −P = (−x, y). It holds
that (x3, y3) ∈ Ecd(K) [Thm. 3.1 [5]]. And, if d is a non-square in K, this addition law is complete in K,
i.e., there are no exceptional pairs of points in Ecd(K) for it [Thm. 3.3 [5]].

This fact might seem to contradict Theorem 1 in [9], but it actually just refers to a different situation:
in [9] the authors are working and studying the exceptional points on the algebraic closure of K, while
here the result is over K, so possible exceptional points that are not in Ecd(K) are not taken into account.

Also the output of this addition law corresponds to the output of the standard addition law on a
birationally equivalent elliptic curve on Weierstrass form. The correspondence is the following, as detailed
in [Thm. 3.2, [5]]:

h : Ecd : x2 + y2 = c2(1 + x2y2) −→ E ′ : 1

e
v2 = u3 +

(
4

e
− 2

)
u2 + u, where e = 1− dc4 and

h(x, y) =


∞, if (x, y) = (0, c)

(0, 0), if (x, y) = (0,−c)(
c+y
c−y ,

2c(c+y)
c−y

)
, if x 6= 0

According to [5], if (x1, y1), (x2, y2) ∈ Ecd(K) and (x1, y1) + (x2, y2) = (x3, y3), then h(x1, y1) ⊕
h(x2, y2) = h(x3, y3), where ⊕ is used here to indicate the addition law on the Weierstrass model.

Note that E ′ is a quadratic twist of Ew. In the next section we will study more thoroughly how
Weierstrass and Edwards models relate and so we will explain this further.

2.2 Relation to Weierstrass model

Taking into account that both the Edwards and the Weierstrass forms are models for elliptic curves, the
question that comes naturally is: how do they relate to each other? The key to answer this question is
provided by D.J. Bernstein and T. Lange in [[5], §2]. D. Nguyen has studied this deeper in [32] and it is
also part of the work M.R. Dam did in [16]. And here we are going to show some of their most relevant
results for our research.

The short answer to our question could be “they are birationally equivalent”. But, as most things in
life, this is not so simple. Theorem 2.1 in [5] gives us a more complete insight in the matter, as it states
the following:

Theorem 1. Let K be a field with char(K) 6= 2. Let C be an elliptic curve over K with model Ew such
that the group Ew(K) has an element of order 4. Then:

1. there exists d ∈ K\{0, 1} such that the curve defined by Ed : x2 + y2 = 1 + dx2y2 is birationally
equivalent over K to a quadratic twist of Ew;

2. if Ew(K) has a unique element of order 2 then there is a nonsquare d ∈ K such that the curve
defined by Ed : x2 + y2 = 1 + dx2y2 is birationally equivalent over K to a quadratic twist of C; and

3. if K is finite and Ew(K) has a unique element of order 2 then there is a non-square d ∈ K such
that the curve defined by Ed : x2 + y2 = 1 + dx2y2 is birationally equivalent over K to C.

So, as we can see, curves in Weierstrass and Edwards forms are indeed birationally equivalent, but
when the right conditions apply. Although some of these conditions are not as restrictive as one might
think at first sight. For example, the following hold:

Proposition 1. Let C be an elliptic curve defined over K.

1. If C’s model is Ew, then there exists an extension K ′ of K such that Ew(K ′) has an element of
order 4 and [K ′ : K] ≤ 3.

2. If C is in Ed form, then Ed(K) always has at least one element of order 4.
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Proof. Regarding the first part of the proposition, in [[32], p.6] we have a recipe to find said element of
order 4: the general idea is to find a point P = (up, vp) ∈ Ew(K) with vp 6= 0 such that the tangent
line to C in P intersects C in a point R = (uR, 0), with uR ∈ K. We know that R will have order 2 by
construction and thus P will have order 4 since 2P = −R = R ⇒ 4P = 2R = Ow. To find P , one can
build a system of 2 equations with variables up, vp and a solution in an extension K ′ of K.

Looking more closely at that system of equations, we see that to solve it we have to find a solution
for f(up) = 0, where f is a polynomial of degree 3. And with up we can compute vp. Thus if up ∈ K,
then K ′ = K and otherwise, up ∈ K ′ and [K ′ : K] = 3.

As for the second part of the proposition, we can proof that the points ±P = (±1, 0) always have
order 4: it is obvious that ±P ∈ Ed(K) and, using the addition law from the previous section, we can see
that, for instance: 2P = (0,−1)⇒ 3P = 2P + P = (−1, 0) = −P ⇒ 4P = P + 3P = P − P = Od. •

Therefore, from this proposition we see that all curves either in form Ew or Ed have a point of order 4.
And from the proof of Theorem 1, which can be found in [[5], p.4], we can extract some other interesting
facts, which we compile and elaborate on here:

Remark 1. Notes on Theorem 1:

1. If P = (up, vp) ∈ Ew(K) is the point of order 4, then d = 1 − 4u3p/v
2
p. Note that this d is not

necessarily a non-square. Note also that this only establishes how to go from Ew to Ed but not the
other way around, since we need P .

2. If d is a square, then Ed(K) has at least 2 points of order 2, namely 2P = 2
(
up, vp

)
and

(
up
√
d+1√
d−1 , 0

)
.

Thus if Ed(K) has a unique point of order 2, then d is non-square.

3. The quadractic twist of Ew in the 2nd instance of the theorem is also explicitly shown in the proof
and is the following:

E ′w :
up

1− d
s̄2 = r̄3 + a2r̄

2 + a4r̄

Applying the change of coordinates (r̄, s̄) =
(
ū,
√
1−d√
up
v̄
)

to E ′w yields a curve in form Ew such that

a1 = a3 = a6 = 0.

4. Note that in point 3 of the theorem we state that Ed is birationally equivalent to Ew directly, not
to any quadratic twist of it. That is because if K is finite and d is not a square in K, then Ew is
actually isomorphic over K to either E ′w or to another similar quadratic twist.

Note as well that, if K is finite, then up/(1−d) will be a square if and only if up and 1−d are both
squares or if neither of them is, since the product of two non squares in a finite field is a square.
From this it also follows that, if d and up/(1 − d) are both not squares, then dup/(1 − d) would
also be a square. This gives rise to two cases, assuming d is not a square in K:

(a) If K is finite and
up

(1−d) is a square in K, then Ew is isomorphic to E ′w, and thus birationally

equivalent to x2 + y2 = 1 + dx2y2.

(b) If K is finite and
up

(1−d) is not a square in K, then
dup
1−d is a square and Ew is isomorphic to E ′w

but changing d for 1/d and r̄ for −r̄. This yields the following:

E ′′w :
dup

1− d
s̄2 = r̄3 + a2r̄

2 + a4r̄

Therefore, in this case Ew will be birationally equivalent to x2 + y2 = 1 + (1/d)x2y2 and the

change of coordinates to get to get Ew from E ′′w will be (r̄, s̄) =
(
ū,
√
1−d√
dup

v̄
)

.

While this case distinction is necessary and valuable considering a general unknown d, we will focus
on the cases where d = 1− 4u3p/v

2
p. And in that case, note that up/(1− d) = v2p/(4u

2
p), which is always

a square. So it will suffice for us to focus from here on out on the birational equivalence between Ed and
Ew through the quadratic twist E ′w.

Let’s consider a curve in Ew form such that a1 = a3 = a6 = 0, which we will refer to as Ēw. To
handle the general case for the complete Weierstrass, we have the following relation where u2p is such
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that 2P = 2(up, vp) = (u2p, v2p) for the point P of order 4:

Ew : v2 + a1uv + a3v = u3 + a2u
2 + a4u+ a6 −→ Ēw : v̄2 = ū3 + ā2ū

2 + ā4ū

a1, a2, a3, a4, a6  ā2 = a2 − 3u2p +
a21
4
,

ā4 = a4 + 3u2
2p − 2a2u2p +

a1a3

2
−

a21u2p

2

(u, v) 7−→ (ū, v̄) =

(
u+ u2p, v +

a1u+ a3
2

)
So for d = 1−4u3p/v

2
p, up/(1−d) is always a square and thus Ēw is isomorphic to the quadratic twist

E ′w, which is as well isomorphic to this other curve E ′:

Ēw −→ E ′w −→ E ′ :
1

1− d
s2 = r3 + 2

1 + d

1− d
r2 + r

(r̄, s̄) 7−→ (r, s) =

(
r̄

up
,
s̄

up

)

(ū, v̄) 7−−−−−−−−−→ (r, s) =

(
ū

up
,

2v̄

vp

)
Note that, with some changes in notation, E ′ is equivalent to the quadratic twist of Ew given in the

previous section. The parameters of Ēw can also be written in terms of P as follows:

ā2 =
v2p
u2p
− 2up = 2

1 + d

1− d
up ; ā4 = u2p

Now that we know E ′ and how it related to Ew, we are ready to finally introduce the rational map
provided by Bernstein and Lange in [[5], §2]:

There are a finite number of points such that s(r + 1) = 0 and x(1 − y) = 0, i.e., there are finitely
many exceptional points to these maps. Thus they settle a birational equivalence between E ′ and Ed.

E ′ −→ Ed Ed −→ E ′

(r, s) 7−→ (x, y) =

(
2r

s
,
r − 1

r + 1

)
(x, y) 7−→ (r, s) =

(
1 + y

1− y
,

2(1 + y)

x(1− y)

)

Getting all these maps together, we can explicitly see the relation between Ew and Ed:

Let P = (up, vp) ∈ Ew(K) be a point of order 4 and d = 1− 4u3p/v
2
p. Then the following maps establish

a birational equivalence between Ew and Ed:

φ : Ēw −→ Ed φ−1 : Ed −→ Ēw

(ū, v̄) 7−→ (x, y) =

(
vpū

upv̄
,
ū− up
ū+ up

)
(x, y) 7−→ (ū, v̄) =

(
up(1 + y)

1− y
,
vp(1 + y)

x(1− y)

)

The limitation of these maps is the fact that we need to know the point P . So even though we have
the reverse, it’d be nice to have a map that does not depend on P . Luckily, there is a way to rewrite Ed
to be a quartic curve and then rewrite that one into Ew form, as it is done in [[16], §4.3]. This process
produces the following:

Let d ∈ K\{0, 1} and A = 2y − (2dy + d+ 1)x2 + 2. Then the following maps are well-defined:
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ψ : Ēw −→ Ed ψ−1 : Ed −→ Ēw

ā2, ā4  d =
ā2

2
− 1 d ā2 = 2(d + 1), ā4 = (d− 1)2

(ū, v̄) 7−→ (x, y) =

(
−2ū

v̄
,
v̄2 − ā2ū2 − 2ū3

2(ā2 − 2)ū2 − v̄2

)
(x, y) 7−→ (ū, v̄) =

(
A

x2
,
−2A

x3

)

One more interesting fact about these maps is that they share the following property with the φ, φ−1

maps: given the point (1, 0) ∈ Ed(K), ψ−1(1, 0) ∈ Ew(K) will always be a point of order 4. And, since
ψ−1 doesn’t depend on any point of order 4, it can actually be used to find a point of order 4 in any
given Weierstrass curve as long as we know the parameter d for its birational equivalent Edwards curve.
Furthermore, for such d we know now that a point of order 4 is of the form (up, vp) = (−d+ 1, 2d− 2).

2.3 Implementations in Magma

Our work in Magma regarding the Edwards model is the implementation of both of the birational
equivalences between this model and the Weierstrass one. We also have taken some examples to show
that the addition is preserved through these maps. However, we haven’t implemented the Edwards
addition law since we have its generalization for the twisted Edwards model (see 3.1.2 and 3.3.2).

So let us start by showing what can be done with the maps we have for the Bernstein - Lange birational
equivalence, i.e., the φ maps. There are two functions for each map for the birational equivalence:
Ew2Ed_P4_symb and Ed2Ew_P4_symb yield the maps symbolically so general checks can be done while
Ew2Ed_P4_eval and Ed2Ew_P4_eval deal with the numerical cases. These maps are a bit more general
than the φ explicitly shown above since they have the change from complete Weierstrass to Ēw also
implemented in them so they can be used more widely.

Ew2Ed_P4_symb [Fn. 10] takes as input the base field BF, the list lst of curve parameters ai and the
point P4 of order 4. And as a parameter we have the double of said point PP4, set as a default to [0,0].
But we might need to change it if our input is in complete Weierstrass form to adjust the coordinates to
the (−3, 6), which is the input our map is actually defined for. This is done by these lines of code in the
function:

u2p := R ! PP4[1]; v2p := R ! PP4[2];

up +:= u2p; vp +:= (a1*up + a3)/2;

u +:= u2p; v +:= (a1*u + a3)/2;

On the other hand, we have Ed2Ew_P4_symb [Fn. 11] which works in a similar way but in the other
direction. In this case, the input lst is for the curve parameter d. And as parameters, aside from
PP4 := [0,0] we also have aa1 := 0 and aa3 := 0. The following snip of code shows the adjustments
made in the function to the output [*[a1,a2,a3,a4,a6],[c_u,c_v]*]. Note that unless one of the
function parameters is non-zero, the output will be in Ēw form:

c_u -:= u2p; c_v -:= (a1*(c_u-u2p)+a3)/2;

a2 -:= -3*u2p + (a1^2)/4;

a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

With these two functions we can retrieve the φ maps to use whenever needed. Or, for example, we
can check if the maps are inverse of each other as follows:

> BF := Rationals();

> R<a1,a2,a3,a4,a6,up,vp,d> := FunctionField(BF,8);

> Rw_var<u,v> := FunctionField(R,2);

> Rd_var<x,y> := FunctionField(R,2);

These first lines above establish the fields we will need and define the names of the variables we will
be using. The notation is the same we have used so far: (u, v) ∈ Ew(K) and (x, y) ∈ Ed(K).

Next we get φ(u, v) using Ew2Ed_P4_symb, for which we will use the notation [xx,yy]:
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> xx := Evaluate(Ew2Ed_P4_symb(BF,[0,a2,0,a4,a6],[up,vp])[2][1],[u,v]);

> yy := Evaluate(Ew2Ed_P4_symb(BF,[0,a2,0,a4,a6],[up,vp])[2][2],[u,v]);

> [xx,yy];

[

vp/up*u/v,

(u - up)/(u + up)

]

Similarly, Ed2Ew_P4_symb provides us with φ−1(x, y):

> uu := Evaluate(Ed2Ew_P4_symb(BF,[d],[up,vp])[2][1],[x,y]);

> vv := Evaluate(Ed2Ew_P4_symb(BF,[d],[up,vp])[2][2],[x,y]);

> [uu,vv];

[

(-up*y - up)/(y - 1),

(-vp*y - vp)/(x*y - x)

]

And now all is left is to see if (u, v) = φ−1(φ(u, v)) and if (x, y) = φ(φ−1(x, y)):

> [u,v] eq [Evaluate(uu,[xx,yy]), Evaluate(vv,[xx,yy])];

true

> [x,y] eq [Evaluate(xx,[uu,vv]), Evaluate(yy,[uu,vv])];

true

Next, let’s take a peak at the inner workings of Ew2Ed_P4_eval and Ed2Ew_P4_eval. The input for
these functions is the same as for their symbolic counterparts, adding only one more necessary piece
of data: the point p on which we want to apply the birational equivalence. And their outputs are
[*[d],[c_x,c_y]*] and [*[a1,a2,a3,a4,a6],[c_u,c_v]*] respectively, i.e., the parameters of the
birationally equivalent curve in each case and, naturally, the coordinates of the corresponding point.

Both functions read their input and, of course, do the necessary calculations to yield their correspon-
ding output, being careful not to do any divisions by zero, That is the reason why some if statements are
in place, ready to return an error if that were to happen. For example, this is the core of Ed2Ew_P4_eval:

denom_x := (1-y); denom_y := x*(1-y);

if denom_x eq 0 then

return "Error: birat.eq. not def. for this point since (denom_x eq 0).";

elif denom_y eq 0 then

return "Error: birat.eq. not def. for this point since (denom_y eq 0).";

else

a2 := 2*(1+d)/(1-d)*up; a4 := up^2; a6 := 0;

c_u := up*(1+y)/denom_x; c_v:= vp*(1+y)/denom_y;

c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

a2 -:= -3*u2p + (a1^2)/4;

a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

return [*[a1,a2,a3,a4,a6],[c_u,c_v]*];

end if;

Let’s take a look at a couple of numerical examples now. The first example we will show starts with
a curve in Ēw form with parameters a2 = 10, a4 = 9 and (−3,±6) ∈ Ew(Q). Both this points are of order
4, so we will use one of them as P4 and another one as p. So here we step up the data for the example:
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> BF := Rationals();

> R<a1,a2,a3,a4,a6,up,vp,d> := FunctionField(BF,8);

> Rw_var<u,v> := AffineSpace(R,2);

> Rd_var<x,y> := AffineSpace(R,2);

> a1 := 0; a2 := 10; a3 := 0; a4 := 9; a6 := 0;

> C := Curve(Rw_var, v^2 - u^3 - a2*u^2 - a4*u - a6);

> lst := [a1,a2,a3,a4,a6];

> P4 := [-3, -6]; p:= [-3, 6];

With this data we can run Ew2Ed_P4_eval and check if the resulting point is in the resulting curve
in Edwards form:

> ch := Ew2Ed_P4_eval(BF,lst,P4,p);

> d := ch[1][1];

> C := Curve(Rd_var, 1 + d*x^2*y^2 - x^2 - y^2); C;

> p_ad := Rd_var![ch[2][1],ch[2][2]]; "\n p_ad := ", p_ad;

> tf,pt := p_ad in C; "\n Is p_ad in the EdC? \n\t", tf;

Curve over Multivariate rational function field of rank 8 over Rational

Field defined by

4*x^2*y^2 - x^2 - y^2 + 1

p_ad := (-1, 0)

Is p_ad in the EdC?

true

So far so good! Now we can take this curve in Ed form and bring it back to the Ew model, with
the twist of the fact that we will go for a complete Weierstrass model this time. So we need a different
point P4 of order 4, its double PP4 and values for a1 and a3. We do not have to specify a6 since it will
be computed from the other parameters. With some reverse-engineering calculations, we have all the
necessary data for this case:

> lst := [d];

> C := Curve(Rd_var, 1 + d*x^2*y^2 - x^2 - y^2); C;

> p := p_ad;

> P4 := [-3, -4545/2]; PP4 := [0,0]; a1 := 724; a3 := 6705;

So running now Ed2Ew_P4_eval we have the following:

> ch := Ed2Ew_P4_eval(BF,lst,P4,p : PP4 := [0,0], a1 := a1, a3 := a3);

> a1 := ch[1][1]; a2 := ch[1][2]; a3 := ch[1][3];

a4 := ch[1][4]; a6 := ch[1][5];

> C := Curve(Rw_var, v^2 + a1*u*v + a3*v - u^3 - a2*u^2 - a4*u - a6); C;

> p_w := Rw_var![ch[2][1],ch[2][2]]; "\n p_w := ", p_w;

> tf,pt := p_w in C; "\n Is p_w in Ew? \n\t", tf;

Curve over Multivariate rational function field of rank 8 over Rational

Field defined by

-u^3 + 131034*u^2 + 724*u*v + 2427201*u + v^2 + 6705*v + 44957025/4

p_w := (-3, -4521/2)

Is p_w in Ew?

true
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As we can see, the output curve is in complete Weierstrass form. If we compare the point (−3, 6)
we started with, given in Ēw form, and p_w, only the y coordinate has been affected by the change to
complete Weierstrass since in this case u2p happened to be 0.

All these examples shown here are over the rationals, but these functions also work over finite fields.
The function Ew2Ed_P4_eval can also take a curve in complete Weierstrass form as an input, provided
one has a point P of order 4. The full code for these two functions is at §B.1, functions 14 and 15, and
more examples of their applications can be found in the online file WC EdC birat eq BL.m.

Since we are working with birational equivalences, addition should be preserved through them as long
as we work within the function’s domain. So we can give it a try and see what happens. For the addition
in the Weierstrass model, we will use the built-in Magma addition. As for the one in the Edwards model
we will use our own function, Ead_AddL_eval, which we will properly introduce in the next chapter since
it can also be used for curves in twisted Edwards form. To use Ead_AddL_eval we also need ProjCoord

and AffCoord, which are the functions to change the point coordinates from projective to affine and vice
versa.

To show that addition is preserved in the Ed → Ew direction we will take Curve1174 from the
SafeCurves collection, which is a curve over a prime order finite field. The two points p_d, q_d are on
the curve and pq_d = p_d + q_d. Also we need a point P4 of order 4 over the birationally equivalent
curve in Weierstrass form. All this data is collected here:

> BF := FiniteField(2^251 - 9);

> R<a1,a2,a3,a4,a6,up,vp,d> := FunctionField(BF,8);

> Rd_var<x,y> := AffineSpace(R,2);

> Rw_var<u,v> := AffineSpace(R,2);

> Rw<X1,Y1,Z1,T1, X2,Y2,Z2,T2> := PolynomialRing(BF,8);

> d := -1174; lst := [d];

> P4 := [1175, 36185027886661311069865932815214971204146870208012676\

26233049500247285298889];

> p_d := [15826190977259115419545470064537397633810913888463948334922\

96309729998839514, 303753801360415450476411572865143764651951353430\

5223422754827055689195992590];

> q_d := [254975036405593820865895952239148421965258993093177003579716\

2350828388088291, 2097462682886494044667251025919501637418960806205\

09071752107886722442588196];

> PQ_d := Ead_AddL_eval(BF,[1,d], ProjCoord(Rw,p_d), ProjCoord(Rw,q_d));

> pq_d := AffCoord(BF,PQ_d); pq_d;

[ 21891505637633942422961588113811859011504113453541054350763343072387\

10824582, 182455829226590571956323535356460719149593890008546391998306\

08845290933594 ]

Now we have all we need to apply Ed2Ew_P4_eval to p_d, q_d and pq_d. This way we will get the
list lst_w of parameters for a curve in Weierstrass form and the points p_w, q_w and pq_w. We can check
whether these points are on the output curve:

> p_w := Ed2Ew_P4_eval(BF,lst,P4,p_d);

> q_w := Ed2Ew_P4_eval(BF,lst,P4,q_d)[2]; q_w := [BF|q_w[1],q_w[2]];

> pq_w := Ed2Ew_P4_eval(BF,lst,P4,pq_d)[2];pq_w := [BF|pq_w[1],pq_w[2]];

> lst_w := p_w[1]; p_w := [BF|p_w[2][1],p_w[2][2]];

> a1 := BF!lst_w[1]; a2 := BF!lst_w[2]; a3 := BF!lst_w[3];

> a4 := BF!lst_w[4]; a6 := BF!lst_w[5];

> Cw := EllipticCurve([BF|a1,a2,a3,a4,a6]);

> printf "\n lst_w = %o \n p_w = (%o,%o) \n q_w = (%o, %o) \n

pq_w = (%o, %o)\n", lst_w, p_w[1], p_w[2], q_w[1], q_w[2],

pq_w[1], pq_w[2];
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lst_w = [ 0, 36185027886661311069865932815214971204146870208012676\

26233049500247285298893, 0, 1380625, 0 ]

p_w = (34745638966469546211163154470295892346059316855318560549903\

73443390481758897,77534652829123326267423017815958764318697652120\

602145925269451186650843913)

q_w = (24687119919297300286254622219213650992904559945118412892428\

07254924434774776, 70115884773787536539653718399941008884662634857\

3115671280216981418998774240)

pq_w = (2771255071899630413426872264531172423568852737223330713015\

445193725267498742, 158473857938251174099257896485291011415131130\

9796167758782449574578983451467)

> printf "Are they really on the output curve? \n\t p_w -> %o, q_w -> %o,

pq_w -> %o \n", p_w in Cw, q_w in Cw, pq_w in Cw;

Are they really on the output curve?

p_w -> true, q_w -> true, pq_w -> true

So the last thing to test is if computing r_w = p_w + q_w using the Weierstrass addition law will
yield pq_w:

> r_w := Cw!p_w + Cw!q_w;

> printf " r_w = (%o, %o) \n", r_w[1], r_w[2];

r_w = (277125507189963041342687226453117242356885273722333071301544519372\

5267498742, 15847385793825117409925789648529101141513113097961677587824\

49574578983451467)

And yes it does: pq_w = r_w! So the addition is preserved in this case.

Of course we also have examples on the other direction Ew → Ed, as this one from a complete
Weierstrass to Edwards over Q:

> BF := Rationals();

> R<a1,a2,a3,a4,a6,up,vp,d> := FunctionField(BF,8);

> Rd_var<x,y> := AffineSpace(R,2);

> Rw_var<u,v> := AffineSpace(R,2);

> Rw<X1,Y1,Z1,T1, X2,Y2,Z2,T2> := PolynomialRing(BF,8);

> lst := [BF| 27, -23321/132, 98, -1440071/1089, -2401 ]; u2p := 0;

> Cw := EllipticCurve(lst);

> lst := [a1,a2,a3,a4,a6]; P4 := [ -26/33, -1214/33 ];

> p_w := [ 144/25,-201087/1375 ];

> q_w := [ 30688841142001/43970426240400,

-16489454909765872019419/291568775808617208000];

> pq_w := (Cw!p_w)+(Cw!q_w); pq_w := [pq_w[1], pq_w[2]]; pq_w;

[ 144/25, -147503/1375 ]

Applying the birational equivalence we obtain the curve parameter d and the points p_d, q_d and
pq_d, which are supposedly on the curve. And so we can compute r_d = p_d + q_d and check if it
holds that pq_d = r_d:

> p_d := Ew2Ed_P4_eval(BF,lst,P4,p_w); p_d := [p_d[2][1],p_d[2][2]];

> q_d := Ew2Ed_P4_eval(BF,lst,P4,q_w); q_d := [q_d[2][1],q_d[2][2]];

> pq_d := Ew2Ed_P4_eval(BF,lst,P4,pq_w); pq_d := [pq_d[2][1],pq_d[2][2]];

> d := p_d[1][1]; lst_d := [BF!1,d];

> Cd := Curve(Rd_var, x^2 + y^2 - 1 - d*(x^2)*(y^2));
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> printf "\n lst_d = [%o] \n p_d = (%o,%o) \n q_d = (%o, %o) \n pq_d =

(%o, %o)\n", d, p_d[1], p_d[2], q_d[1], q_d[2], pq_d[1], pq_d[2];

lst_d = [59/33]

p_d = (1980/3349,2701/2051)

q_d = (-73468399352040/98315324391601, -65332207270801/3954524986799)

pq_d = (-1980/3349, 2701/2051)

> printf "Are they really on the output curve? \n\t p_d -> %o, q_d -> %o,

pq_d -> %o \n", p_d in Cd, q_d in Cd, pq_d in Cd;

Are they really on the output curve?

p_d -> true, q_d -> true, pq_d -> true

> r_d := Ead_AddL_eval(BF,lst_d, ProjCoord(Rw,p_d), ProjCoord(Rw,q_d));

> r_d := AffCoord(BF,r_d);

> printf " r_d = (%o, %o) \n", r_d[1], r_d[2];

r_d = (-1980/3349, 2701/2051);

As it can be seen, pq_d is indeed equal to r_d and so in this case the addition is also preserved
through the birational equivalence.

As well as these maps work, the requirement of a point of order 4 on the curve in Weierstrass form
to make it all work does make things more complicated, since then we have to find a way of finding said
point. The proof of proposition 1 in previous section does give us a way to do so if we already know the
Weierstrass model parameters. Another option would be to compute the rational points of the curve in
Weierstrass form and hope that we come across at least one with order 4. But what if we only have the
parameters of a curve on Edwards form and we need a birationally equivalent curve in Weierstrass form?

Here is where the maps provided by Dam in [16] come into play, i.e., the ψ maps. We have implemented
these maps in the functions Ew2Ed_eval and Ed2Ew_eval, included in the appendix at §B.1, functions
16 and 17 resp.. And we have done analogous work to the one just shown here for the φ maps but with
these functions that don’t need P4 as input. Needless to say that the output of both maps match in all
the examples we have tried.

Furthermore, we have used Ed2Ew_eval to help us with examples like the Curve1174 one shown
before, where we needed a P4 to do anything. The way that works is applying Ed2Ew_eval for any given
d for and the point (1, 0) and as output one gets the parameters of the birationally equivalent curve in
Ēw form (unless specified otherwise) and a point of order 4 in said curve:

> d := -1174; lst := [d];

> ch := Ed2Ew_eval(BF,lst,[1,0]);

> lst_w := [BF!ch[1][i] : i in [1..5]]; "lst = ", lst_w;

> P4 := [BF| ch[2][1], ch[2][2]]; "P4 = ", P4;

lst = [ 0, 36185027886661311069865932815214971204146870208012676262\

33049500247285298893, 0, 1380625, 0 ]

P4 = [ 1175, 3618502788666131106986593281521497120414687020801267626\

233049500247285298889 ]

> Cw := EllipticCurve(lst_w);

> "4*P4 = ", 4*Cw!P4;

4*P4 = (0 : 1 : 0)
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Chapter 3

Twisted Edwards model

Building on top of what we have showed in the previous chapter, we will introduce now the twisted
Edwards model for elliptic curves. This model comes as a further generalization of Edward’s normal
form, as it includes more curves over finite fields as compared to the Edwards model presented in the
previous section.

The twisted Edwards model for elliptic curves is first presented in [3] and it is defined as follows:

Definition 15. Let K be a field such that char(K) 6= 2 and C an elliptic curve over K, then its twisted
Edwards form is Ea,d : ax2 + y2 = 1 + dx2y2, where a, d ∈ K\{0}, a 6= d.

Note that in the case a = 1 this model is the same as the Edwards model.

In this chapter we will study the addition law for this form of elliptic curves, including its geometric
interpretation and its exceptional points. We will also dedicate a section to show its relation to the
Edwards and the Weierstrass models. In [3], the correspondence between the twisted Edwards and the
Montgomery models is also thoroughly studied, but this will not be included here.

3.1 Addition law

As it is to be expected, the addition law for elliptic curves on twisted Edwards form looks quite similar
to the one for the Edwards model. More specifically, the addition law in this case is the following:

Let K be a field such that char(K ) 6= 2 , C an elliptic curve over K and (x1 , y1 ), (x2 , y2 ) two points on
C. Fix a, d to be such that a, d ∈ K\{0}, a 6= d. Then the addition law of C on its twisted Edwards

form Ea,d is as follows:

(x1 , y1 ) + (x2 , y2 ) = (x3 , y3 ) =

(
x1y2 + y1 x2

1 + dx1 x2y1y2
,

y1y2 − ax1 x2
1 − dx1 x2y1y2

)
The neutral element for this addition law is (0, 1) and the inverse of a point P = (x, y) is−P = (−x, y).

As it is explained in [[3],§6], the correctness of this addition law is given by the fact that it coincides
with the Edwards addition law for Ed : x̄2 + y2 = 1 + (d/a)x̄2y2 with parameter d̄ = d/a amd variables
(x̄, y) = (

√
ax, y). This relation with the Edwards addition law also tells us that this is a complete

addition law if a is a square in K and d/a is a non-square in K, i.e., this addition law is complete if a is
a square in K and d is not a square in K.

3.1.1 Geometric interpretation

Unlike in the case of Weierstrass curves, the geometric interpretation of the addition law of both the
Edwards curve and the twisted Edwards curve is not a very well known fact. But there are still some
papers that study the topic. T. Hales explains it in [22] as a generalization of the hyperbolic addition
on the circle to the hyperbolic addition on the curve defined by Ea,d. A different motivation for this
addition law can be found in [1], where they build a conic that intersects Ea,d to find the sum of two
points. This approach is the one we will go into some detail here.

For starters, let’s consider the embedding into P2 of the curve defined over the field K by Ea,d via
the usual projection map (x, y) → (X/Z, Y/Z), which is E :

(
aX2 + Y 2

)
Z2 = Z4 + dX2Y 2. Then the
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neutral element of the addition law is O = (0 : 1 : 1). Let’s also consider the point O′ = (0 : −1 : 1)
and let P1, P2 ∈ Ea,d(K) be two points on E. Last but not least, we have the two points at infinity
Ω1 = (1 : 0 : 0), Ω2 = (0 : 1 : 0).

We can now define the conic C as the conic passing through Ω1,Ω2,O′, P1 and P2. By [Thm.1, [1]],
we know that this conic has the following form, where α, β, γ ∈ P2(K) are uniquely determined up to
scalars:

C : α
(
Z2 + Y Z

)
+ βXY + γXZ = 0

The coefficients α, β, γ are different depending on P1 and P2. The explicit formulae can be found in
[1] and in our Magma implementation, which will be presented in Section 3.3.1.

Bezóut’s theorem tells us that the intersection of C and E has 8 points in K, counting multiplicities.
Note that Ω1,Ω2,O′ ∈ Ea,d(K) and also that Ω1 and Ω2 are singular points of multiplicity 2. So the
intersection of C and E is the set

{
P1, P2,Ω1,Ω2,O′, Q

}
, where Q is the eighth intersection point. From

the proof of Theorem 2 in [1] we know that, if P3 = P1 + P2, then Q = −P3. Note that Q ∈ C and
Q,P3 ∈ Ea,d but P3 /∈ C.

To sum up, the sum of two points P1, P2 ∈ Ea,d(K) is the inverse of the eighth intersection point of
E and the conic C going through Ω1,Ω2,O′, P1 and P2.

In order to help visualize this geometric interpretation, we include some plots below. The curve used
has parameters a = 8, d = 5 and we have P = P1 = (5/2, 14/11) as our base point. An interesting thing
to be observed here is how P3 = −Q is not on the conic unless P3 = −P3 or P3 = P1. Also we can see
that there is a different conic for each pair of points to be added, and in some cases it turns out to be
a degenerate conic as it happens here in Figure (c) and Figure (d). Figure (a) shows the doubling of a
point and Figure (b) is the addition of two different points. Figure (c) illustrates that O is indeed the
neutral element of the addition law. And Figure (d) shows how O′ is of order 2.
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(a) 2P ≈ (0.12, 0.97)
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(b) P1 + P2 ≈ (0.89, 1.34)
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(c) P +O = P
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(d) 2O′ = O

3.1.2 Complete system of addition laws

The addition law explained here is indeed complete but only over the field K and under the condition of
a being a square and d being non-square in K. Since our aim is to be able to work in the most general
case possible, we will present here a complete system of addition laws for twisted Edwards curves that
Bernstein and Lange introduce in [6]. These formulae will be presented for the twisted Edwards curve
model but they can naturally be used for Edwards curves as well by setting a = 1.

The system of addition laws consists of the addition law shown at the beginning of this section
(referred to as “original addition law” in [6]) and the addition law shown in [24] by Hisin et al. (or “dual
addition law”). This dual addition law is obtained by rewriting the original addition law so it does not
depend on d and the result is the following:

(x1, y1) + (x2, y2) = (x3, y3) =

(
x1y1 + x2y2
y1y2 + ax1x2

,
x1y1 − x2y2
x1y2 − y1x2

)
The outputs of this addition law are the same as the ones from the original law but this dual addition

law has different exceptional cases. Said exceptional cases are stated in Theorem 2.2 of [24]. We will
also study the exceptional cases for both addition laws below.

The complete system of addition laws is presented for the projective closure of the curve C defined
by Ea,d in P1 × P1, which is:
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Ē =
{

((X : Z), (Y : T )) ∈ P1 × P1 | aX2T 2 + Y 2Z2 = Z2T 2 + dX2Y 2}

The embedding map is (x, y) 7→ ((x : 1), (y : 1)) and the points at infinity are those such that

(X : Z) = (1 : 0) or (Y : T ) = (1 : 0). With this setup, the curve has 4 points at infinity:

((X : Z), (Y : T )) = ((1 : 0), (±
√
a/d : 1)), minimally defined over K(

√
a/d), and ((X : Z), (Y : T )) =

((1 : ±
√
d), (1 : 0)), defined at least over K(

√
d).

While explaining the geometric interpretation of the original addition law, we have also shown the

embedding E of C into P2. The rational map ((X : Z), (Y : T )) 7→ (XT : Y Z : TZ) from P1 × P1 to P2

maps Ē onto E, both points ((1 : 0), (±
√
a/d : 1)) to Ω1 and both points ((±

√
d : 1), (1 : 0)) to Ω2.

Finally, the complete system of addition laws is:

Let K be a field such that char6= 2 and fix a, d to be such that d ∈ K\{0}, a 6= d. Let C be an elliptic
curve over K defined by Ea,d and Ē its projective closure in P1 × P1 . Also let

P1 = ((X1 : Z1 ), (Y1 : T1 )), P2 = ((X2 : Z2 ), (Y2 : T2 )) be two points on the curve. Then the
complete set of addition laws of C is:

P1 + P2 =

{
P3 = ((X3 : Z3), (Y3 : T3))

P ′3 = ((X ′3 : Z ′3), (Y ′3 : T ′3))
=

=


((X1Y2Z2T1 +X2Y1Z1T2 : Z1Z2T1T2 + dX1X2Y1Y2),

(Y1Y2Z1Z2 − aX1X2T1T2 : Z1Z2T1T2 − dX1X2Y1Y2)), if defined

((X1Y1Z2T2 +X2Y2Z1T1 : aX1X2T1T2 + Y1Y2Z1Z2),
(X1Y1Z2T2 −X2Y2Z1T1 : X1Y2Z2T1 −X2Y1Z1T2)), if defined

Theorem 6.1 in [6] states that this system is indeed complete since in all cases at least one of these
holds:

. (X3, Z3) 6= (0, 0) and (Y3, T3) 6= (0, 0).

. (X ′3, Z
′
3) 6= (0, 0) and (Y ′3 , T

′
3) 6= (0, 0).

Moreover, in case both addition laws do produce a non-zero output, then the outputs are the same
since X3Z

′
3 = X ′3Z3 and Y3T

′
3 = Y ′3T3. The fact that P3 and P ′3 are also in the curve is proven in

Theorem 6.2 of the same paper.

Exceptional points

Each addition law in the system shown above has its exceptional points. Some of these are shown in
[24] for the affine coordinates. In Section 8 of [6] one can also find an explanation on how to find these
points and Theorem 8.1 in that same section gives their explicit projective coordinates. Nonetheless, we
have also studied these exceptional points using a different approach to find them. And so we’ll show it
here.

Firstly, let’s recall what a pair of exceptional points is: a pair of points P1 = ((X1 : Z1), (Y1 : T1)) and
P2 = ((X2 : Z2), (Y2 : T2)) is considered exceptional for an addition law if the result of adding them with
said addition law is a set of coordinates that is not valid. Since we are dealing with points in P1 × P1,
the kind of coordinates that can’t happen are those where X = Z = 0 and/or Y = T = 0.

With this in mind, we are going to build systems of polynomials for each pair (X3, Z3), (Y3, T3),
(X ′3, Z

′
3) and (Y ′3 , T

′
3) such that their solutions give us all the exceptional points. The most direct way to

do is to just equal to zero the corresponding polynomials of each pair. The resulting systems of equations
will be clearly underdetermined. But taking into account some considerations, we can still make it work:

1) We are actually working with projective coordinates, so assuming none of the variables is
zero we can rewrite the system as follows: αi = Xi/Zi, βi = Yi/Ti, i ∈ {1, 2}. The cases of
one or more variables being zero can be studied apart.
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2) Solutions where there are some zero variables can only be such that only 1 coordinate of
each point is zero. Otherwise the point would either not be on the curve or not have valid
coordinates.

3) We don’t need explicit solutions for each variable: finding relations between P1 and P2 will
already be enough for us to see what the exceptional points are.

Let’s see how the process goes for (X3, Z3). The system of equations to solve will be the following:{
X1Y2Z2T1 +X2Y1Z1T2 = 0

Z1Z2T1T2 + dX1X2Y1Y2 = 0

Let’s assume all the variables are non-zero. Then using the change of variables given in point 1 above,
the system looks like this: {

α1β2 = −α2β1

dα1α2β1β2 = −1

As explained in point 3, we are looking for a relation between P1 and P2 so let’s assume we know P1

and try to solve the system for P2. Thus we have a system of 2 equations and 2 unknowns - α2 and β2 -
which is a fully determined system with solutions:

α2 =
1

±
√
dβ1

, β2 =
1

∓
√
dα1

⇒ X2

Z2
= ± T1√

dY1
,
Y2
T2

= ∓ Z1√
dX1

⇒ P2 =
((
T1 : ±

√
dY1
)
,
(
Z1 : ∓

√
dX1

))
Now let’s study the cases where one or more variables are zero:

By point 2 above, we know that at most only one coordinate of each point can be zero. And by
looking at the addition law polynomials, we see that if one variable is zero in any polynomial, then the
polynomial turns into a monomial and it can only be zero if yet another variable is zero. Thus we can
conclude that all the solutions we will find in this case will be of the form ui = vj = 0 such that i 6= j.

So evaluating the polynomials at X1 = 0, . . . , T1 = 0 we find the rest of the solutions:

Xi = Tj = 0, Yi = Zj = 0 such that i, j ∈ {1, 2}, i 6= j

But let’s see, for example, how a pair of points such that Y1 = Z2 = 0 looks like. We know that both
P1 and P2 are points on the curve so:

Y1 = 0 ⇒ aX2
1T

2
1 = Z2

1T
2
1 ⇒ Z1 = ±

√
aX1 ⇒ P1 =

((
1 : ±

√
a
)
,
(
0 : 1

))
Z2 = 0 ⇒ aX2

2T
2
2 = dX2

2Y
2
2 ⇒ Y2 = ±

√
a/dT2 ⇒ P2 =

((
1 : 0

)
,
(
±
√
a : ∓

√
d
))

From this we can see that this is just a specific case of the solution to the system shown above. The
same happens to the rest of these extra solutions.

Thus we have all the exceptional points for the pair
(
X3, Z3

)
. And applying a similar process to the

other three pairs, we get the exceptional points for each pair:

Let K be a field such that char6= 2 . Let C be an elliptic curve over K defined by Ea,d and Ē its

projective closure in P1 × P1 . Also let P1 = ((X1 : Z1 ), (Y1 : T1 )), P2 = ((X2 : Z2 ), (Y2 : T2 )) be two

points on the curve and P3 = ((X3 : Z3 ), (Y3 : T3 )), P ′3 = ((X ′3 : Z ′3 ), (Y ′3 : T ′3 )) be as defined above by

the addition law system. The exceptional points for said system are the following:

↪→ (X3 ,Z3 ) = (0 , 0 ) ⇐⇒ P2 =
((

T1 : ±
√

dY1

)
,
(
Z1 : ∓

√
dX1

))
.

↪→ (Y3 ,T3 ) = (0 , 0 ) ⇐⇒ P2 =
((

Z1 : ±
√

adX1

)
,
(
±
√

aT1 :
√

dY1

))
.

↪→ (X ′3 ,Z
′
3 ) = (0 , 0 ) ⇐⇒ P2 =

((
Y1 : ±

√
aT1

)
,
(
∓
√

aX1 : Z1

))
.
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↪→ (Y ′3 ,T
′
3 ) = (0 , 0 ) ⇐⇒ P2 =

((
±X1 : Z1

)
,
(
±Y1 : T1

))
.

Note that for the original law, the exceptional pairs of points either include some square of d or they
include an infinity point. Thus it holds that the original addition law in its affine form is complete if d
is not a square in K.

Do these exceptional points also match the others shown in our references? Theorem 2.2 in [24] shows
the exceptional points for the dual addition law with affine coordinates. Using the embedding map onto
P1 × P1, we see that two of these exceptional points correspond to ours and the other two are infinity
points, so they are not exceptional in the projective closure we work with.

And in the case of [6], we can see that our results also match theirs. They do provide us with an
interesting way of relating P1 and P2, given P1 = ((X1 : Z1), (Y1 : T1)):

↪→ P2 =
((
T1 : ±

√
dY1
)
,
(
Z1 : ∓

√
dX1

))
⇐⇒ P2 − P1 =

((
±
√
d : 1

)
,
(
1 : 0

))
.

↪→ P2 =
((
Z1 : ±

√
adX1

)
,
(
±
√
aT1 :

√
dY1
))
⇐⇒ P2 − P1 =

((
1 : 0

)
,
(
±
√
a/d : 1

))
.

↪→ P2 =
((
Y1 : ±

√
aT1
)
,
(
∓
√
aX1 : Z1

))
⇐⇒ P2 − P1 =

((
1 : ±

√
a
)
,
(
0 : 1

))
.

↪→ P2 =
((
±X1 : Z1

)
,
(
± Y1 : T1

))
⇐⇒ P2 − P1 =

((
0 : 1

)
,
(
± 1 : 1

))
.

Now, looking at all these results, one could wonder if there is any overlap between the exceptional
points of each pair, i.e., if it is possible that the four coordinates of either the original or the dual addition
law are zero. Among the several ways one could check that, we have chosen to work with Gröbner bases.

This means that for each point P = ((X : Z), (Y : T )) ∈ {((X3 : Z3), (Y3 : T3)), ((X ′3 : Z ′3), (Y ′3 : T ′3))}
we are going to define the ideal I generated by the polynomials that define X, Y , Z and T . Then we are
going to compute the Gröbner basis GB = {g1, . . . , gn} of said ideal so we have that I = 〈g1, . . . , gn〉 and
solve the system g1 = 0, . . . , gn = 0. By construction we know that any point Q ∈ P1 × P1 will be a
solution to the system if and only if X(Q) = Y (Q) = Z(Q) = T (Q) = 0. So we can find the exceptional
points this way.

For example, let’s consider the original addition law. The Gröbner basis of the ideal generated by
X3, Z3, Y3 and T3 is a set of 15 polynomials and the solutions to the system defined by them are the
following sets of variables, when they are zero:

{X1, Z1}, {Y1, T1}, {X2, Z2}, {Y2, T2}, {X1, Y1, Z2}, {X1, Y1, T2}, {X1, Z2, T2}, {Y1, Z2, T2}

But point 2 above tells us that none of these can happen so we can conclude that there are no pairs
of exceptional points for the whole original addition law. After doing similar checks for the dual addition
law and the whole system of addition laws, we have also found no solutions. Thus here we have another
way of checking that the system of addition laws is indeed complete.

3.2 Relation to other models

We have previously introduced the Weierstrass model and the Edwards model for elliptic curves. And
in this section we are going to study how do they relate to the twisted Edwards model.

3.2.1 Relation to Edwards model

One way of looking at the twisted Edwards model is as a generalization of the Edwards model. In this
sense, any curve in Ed form is also in Ea,d form for a = 1. And any curve in form Ea,d can also be
rewritten following the Edwards model Ed with parameter d̄ = d/a.

But, as its name suggests, an elliptic curve in twisted Edwards form can also be seen as a quadratic
twist of another elliptic curve in Edwards form. The map between Ed and Ea,d is an isomorphism over
K(
√
a). Note that if a is a square in K, then K(

√
a) = K and in that case Ed is isomorphic to Ea,d over

K. The map is the following:
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Ed −→ Ea,d Ea,d −→ Ed

d̄ a, d = ad̄ a, d d̄ =
d

a

(x̄, ȳ) 7−→ (x, y) =

(
x̄√
a
, ȳ

)
(x, y) 7−→ (x̄, ȳ) =

(√
ax, y

)
3.2.2 Relation to Weierstrass model: birational equivalence

In the previous chapter about the Edwards model we have studied the relation between the Edwards
and the Weierstrass models. Knowing that the curves in twisted Edwards form are quadratic twists of
the ones in Edwards form gives us a very obvious way to connect the twisted Edwards model to the
Weierstrass one.

And said connection is the following: since Ea,d is isomorphic over K(
√
a) to Ed and Ew is birationally

equivalent to Ea,d, then we know that Ea,d is birationally equivalent to Ew over K(
√
a).

Keeping in mind that we have two birational equivalences from the previous chapter, the φ and the ψ
maps, then we also have two in this case: Φ and Ψ, respectively. Following the same notation as before
for Ēw to be a curve in Weierstrass form such that a1 = a3 = a6 = 0. we have the following:

Let P = (up, vp) ∈ Ew(K) be a point of order 4 and d = a
(
1− 4u3p/v

2
p

)
. Then the following maps

establish a birational equivalence between Ew and Ea,d:

Φ: Ēw −→ Ea,d Φ−1 : Ea,d −→ Ēw

ā2, ā4, P  d = a

(
1 −

4u3
p

v2p

)
a, d ā2 = 2up

a + d

a− d
, ā4 = u2

p

(ū, v̄) 7−→ (x, y) =

(
vpū√
aupv̄

,
ū− up
ū+ up

)
(x, y) 7−→ (ū, v̄) =

(
up(1 + y)

1− y
,
vp(1 + y)√
ax(1− y)

)

Let d ∈ K\{0, 1} and A = 2y − (2(d/a)y + (d/a) + 1)
√
ax2 + 2. Then the following maps are

well-defined:

Ψ: Ēw −→ Ea,d Ψ−1 : Ea,d −→ Ēw

ā2, ā4  a, d = a

(
ā2

2
− 1

)
a, d ā2 = 2

(
d

a
+ 1

)
, ā4 =

(
d

a
− 1

)2

(ū, v̄) 7−→ (x, y) =

(
−2ū√
av̄
,
v̄2 − ā2ū2 − 2ū3

2(ā2 − 2)ū2 − v̄2

)
(x, y) 7−→ (ū, v̄) =

(
A

ax2
,
−2A

a
√
ax3

)

In the computational section below we’ll show a few examples of the fact that these birational equiv-
alences do preserve addition between the models.

3.2.3 Relation to Weierstrass model: 2-isogeny

There is of course more than one way two models can relate. And so, in spite of already having shown a
birational equivalence between the Weierstrass and the twisted Edwards models, in this section we are
going to explore how are they isogenous.

For such purpose we will show the work of Bernstein et al in [3]. They choose to study the relation
between the twisted Edwards model and the Weierstrass model using the connection of these models to
the elliptic curves in Montgomery form. And the result is an isogeny between the models, as it is stated
in [Thm. 5.1, [3]] and here:

Theorem 2. Let K be a field such that char(K ) 6= 2 . Then every elliptic curve over K in Ew form and
with three K-rational points of order 2 is 2-isogenous over K to an elliptic curve in Ea,d form.
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If the curve in Ew form does not have 3 rational points of order 2 in K, we can find an extension of
the field where it does have such points.

The proof of this theorem gives us the recipe to build the isogenies of degree 2 between both mod-
els, which we will do here next. Part of the process includes the Montgomery model that we haven’t
introduced so far. There is however an overview of it in the next chapter, Section 4.1.

Firstly, let’s consider the curve C with model Ew : v2 = u′3 + a2u
′2 + a4u

′+ a6 and let (u′0, 0), (u′1, 0),
(u′2, 0) be its three K-rational points of order 2. Note that this means that u′0, u′1 and u′2 are the three
roots of the polynomial u′3 + a2u

′2 + a4u
′+ a6, so it factors as (u′− u′0)(u′− u′1)(u′− u′2). Consider now

the change of coordinates u′ = u + u′0. Then the polynomial looks like this: u(u − u1)(u − u2), where
u1 = u′1 − u′0 and u2 = u′2 − u′0. Thus we can rewrite the model of the curve as follows:

E : v2 = u3 − (u1 + u2)u2 + (u1u2)u

And there is a 2-isogeny from this form to the following one:

Ē : v̄2 = ū3 + 2(u1 + u2)ū2 + (u1 − u2)2ū

Said isogeny and its dual are given by:

E −→ Ē Ē −→ E

(u, v) 7−→ (ū, v̄) =

(
v2

u2
,
v(u1u2 − u2)

u2

)
(ū, v̄) 7−→ (u, v) =

(
v̄2

4ū2
,
v̄((u1 − u2)2 − ū2)

8ū2

)

Next is the isomophism that exists between Ē and the Montgomery model EM,A,B : Bȳ2 = x̄3 +
Ax̄2 + x̄:

Ē −→ EM,A,B EM,A,B −→ Ē

u1, u2  A =
2(u1 + u2)

u1 − u2
, B =

1

u1 − u2
A,B  u1 =

A + 2

4B
, u2 =

A− 2

4B

(ū, v̄) 7−→ (x̄, ȳ) = (ūB, v̄B) =

(
ū

u1 − u2
,

v̄

u1 − u2

)
(x̄, ȳ) 7−→ (ū, v̄) =

(
x̄

B
,
ȳ

B

)
= (x̄(u1 − u2), ȳ(u1 − u2))

And the last step is the birational equivalence between EM,A,B and the curve in twisted Edwards
form Ea,d : ax2 + y2 = 1 + dx2y2:

EM,A,B −→ Ea,d Ea,d −→ EM,A,B

A,B  a =
A + 2

B
, B =

A− 2

B
a, d A =

2(a + d)

a− d
, B =

4

a− d

(x̄, ȳ) 7−→ (x, y) =

(
x̄

ȳ
,
x̄− 1

x̄+ 1

)
(x, y) 7−→ (x̄, ȳ) =

(
1 + y

1− y
,

1 + y

x(1− y)

)

Now, putting all of this together we get the 2-isogenies between E and Ea,d:
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ϕ : E −→ Ea,d ϕ̂ : Ea,d −→ E

u1, u2  a = 4u1, d = 4u2 a, d u1 =
a

4
, u2 =

d

4

(u, v) 7−→ (x, y) =

(
v

u1u2 − u2
,
v2 − (u1 − u2)u2

v2 + (u1 − u2)u2

)
(x, y) 7−→ (u, v) =

(
1

4x2
,

(a− d)y

8x(y2 − 1)

)

Note that ϕ−1 6= ϕ̂ and, since they are 2-isogenies, it holds that ϕ
(
ϕ̂
(
p
))

= 2p and ϕ̂
(
ϕ
(
q
))

= 2q

for any p ∈ Ea,d
(
K
)
, q ∈ Ew

(
K
)
.

Note as well that, if u0 = 0, then both models E and Ew are the same, so the maps shown above
would suffice. In case we are working with a curve in Weiertrass form such that a6 6= 0, then we will need
to put it in E form, which can be easily done with the change of coordinates provided before, namely
(u′, v) 7→ (u, v) = (u′ − u′0, v). Regarding the coefficients, they are related as follows:

u1 = u′1 − u′0; u2 = u′2 − u′0

a2 = −(u′0 + u′1 + u′2); a4 = u′0u
′
1 + u′0u

′
2 + u′1u

′
2; a6 = −u′0u′1u′2

3.3 Implementations in Magma

Given all of this information about twisted Edwards curves, it is time to see some of it in practice. We
will start by checking some facts about the geometric interpretation of the original addition law and then
see how it works with some specific curves. Afterwards we’ll do the same with the complete addition law
system. We will also work with the exceptional points of each addition law.

Later on we’ll see how the maps between the other models and this one work, illustrated as well with
some numerical examples.

3.3.1 Geometric interpretation

Our objective when we thought of implementing the geometric interpretation in Magma was to manage
to generate the addition law formulae. But computing the symbolic intersection of Ea,d and the conic C has
proven to be rather challenging. Instead we have checked that all the points P1, P2,Ω1,Ω2,O′, Q = −P3

are indeed in both the curve and the conic.
To do so, we have started by defining a few algebraic structures, as shown below. The basis field we

will be using is the rationals as defined by BF, but it could also be any finite field. The computations
we will do afterwards, however, won’t work over the real or complex fields. The variables X1,Y1,Z1 are
the coordinates of P1 and, similarly, X2,Y2,Z2 are the ones for P2. And X,Y,Z are reserved for general
unknowns.

> BF := Rationals();

> R1<a,d> := FunctionField(BF,2);

> R2<X1,Y1,Z1,X2,Y2,Z2> := PolynomialRing(R1,6);

> R3<X,Y,Z> := PolynomialRing(R2,3);

In order to define P1 and P2 as points on the elliptic curve, we need to find a way of algebraically
expressing the conditions that make P1 and P2 points on the curve: the curve polynomial evaluates to
zero in both points. And so we create an ideal I_crv generated by the twisted Edwards model equation
evaluated at both points. Then we can build the quotient ring of R2 modulo I_crv and so, to apply the
fact that P1 and P2 are points on the curve, it will suffice to coerce results into said quotient ring.

> f_crv1 := (a*(X1^2) + (Y1^2))*Z1^2 - Z1^4 - d*(X1^2)*(Y1^2);

> f_crv2 := (a*(X2^2) + (Y2^2))*Z2^2 - Z2^4 - d*(X2^2)*(Y2^2);
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> I_crv := ideal<R2|f_crv1,f_crv2>;

> QI_crv := R2/I_crv;

We also need the result of the addition, i.e., P3. Section 6 of [3] provides us with several parametriza-
tions of the addition law in P2 and we will use one of them here:

> A := Z1*Z2; B := A^2; C := X1*X2; D := Y1*Y2;

> E := d*C*D; F := B-E; G := B+E;

> X3 := A*F*((X1+Y1)*(X2+Y2)-C-D); "X3 =", X3;

> Y3 := A*G*(D-a*C); Y3; "Y3 =", Y3;

> Z3 := F*G; Z3; "Z3 =", Z3;

X3 = -d*X1^2*Y1*Z1*X2*Y2^2*Z2 - d*X1*Y1^2*Z1*X2^2*Y2*Z2 +

X1*Z1^3*Y2*Z2^3 + Y1*Z1^3*X2*Z2^3

Y3 = -a*d*X1^2*Y1*Z1*X2^2*Y2*Z2 + d*X1*Y1^2*Z1*X2*Y2^2*Z2 -

a*X1*Z1^3*X2*Z2^3 + Y1*Z1^3*Y2*Z2^3

Z3 = -d^2*X1^2*Y1^2*X2^2*Y2^2 + Z1^4*Z2^4

The next step is to define the elliptic curve and the conic. The conic has 3 different sets of coefficients
depending on P1 and P2. So we actually need to define three conics and we will use different suffixes to
differentiate them: "_PP" is for the point doubling case, "_POp" is for adding to O′ and "_PQ" for the
rest.

> f_crv := (a*(X^2) + (Y^2))*Z^2 - Z^4 - d*(X^2)*(Y^2);

> cz_PP := X1*Z1*(Z1-Y1);

> cxy_PP := d*(X1^2)*Y1-Z1^3;

> cxz_PP := Z1*(Z1*Y1 - a*X1^2);

> f_cnc_PP := cz_PP*(Z^2 + Y*Z)+cxy_PP*X*Y+cxz_PP*X*Z;

> cz_POp := -X1; cxy_POp := Z1; cxz_POp := Z1;

> f_cnc_POp := cz_POp*(Z^2 + Y*Z)+cxy_POp*X*Y+cxz_POp*X*Z;

> cz_PQ := X1*X2*(Y1*Z2-Y2*Z1);

> cxy_PQ := Z1*Z2*(X1*Z2-X2*Z1 + X1*Y2 - X2*Y1);

> cxz_PQ := X2*Y2*(Z1^2)-X1*Y1*(Z2^2)+Y1*Y2*(X2*Z1-X1*Z2);

> f_cnc_PQ := cz_PQ*(Z^2 + Y*Z)+cxy_PQ*X*Y+cxz_PQ*X*Z;

Now we are all set up to check whether the intersection of the curve and the conic has all the points
is supposed to have or not. By definition, we know that P1 and P2 are on the curve. Also it is trivial
that O′, Ω1 and Ω2 are on the curve as well. But we can easily check that with Magma as well by
evaluating the curve polynomial and checking if it is indeed 0. Similarly, we can check that P3 and −P3

are also on the curve:

> printf "Op: %o; O1: %o; O2: %o; \n", Evaluate(f_crv,[0,-1,1]),

Evaluate(f_crv,[1,0,0]), Evaluate(f_crv,[0,1,0]);

> printf "P3: %o; -P3: %o; \n", QI_crv!Evaluate(f_crv,[X3,Y3,Z3]),

QI_crv!Evaluate(f_crv,[-X3,Y3,Z3]);

Op: 0; O1: 0; O2: 0;

P3: 0; -P3: 0;

Note that we coerce some evaluations into QI_crv when needed, that is, when they are not 0 straight
away so we need to apply the fact that P1 and P2 are on the curve.

Now for the conic we can start by checking the case of adding to O′ with the script below. Here
X3_POp, Y3_POp and Z3_POp denote the result of the addition of P1 and O′:

> printf "Op: %o; O1: %o; O2: %o; \n", Evaluate(f_cnc_POp,[0,-1,1]),

Evaluate(f_cnc_POp,[1,0,0]), Evaluate(f_cnc_POp,[0,1,0]);
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> printf "P1: %o; -P3: %o; \n", QI_crv!Evaluate(f_cnc_POp,[X1,Y1,Z1]),

Evaluate(f_cnc_POp,[-X3_POp,Y3_POp,Z3_POp]);

> printf "P3: %o; \n",QI_crv!Evaluate(f_cnc_POp,[X3_POp,Y3_POp,Z3_POp]);

Op: 0; O1: 0; O2: 0;

P1: 0; -P3: 0;

P3: 2*X1*Y1*Z1^7 - 2*X1*Z1^8;

Since the conic polynomial evaluates to 0 in O′, Ω1, Ω2, P1 and −P3 we know that these points are
on the conic as well as on the curve. Thus in this case we can see that the geometric interpretation holds.
Note as well that, zero cases aside, the conic is not zero in P3 so we see that in general P3 is not on the
conic.

In the general case these checks look like this:

> printf "Op: %o; O1: %o; O2: %o; \n", Evaluate(f_cnc_PQ,[0,-1,1]),

Evaluate(f_cnc_PQ,[1,0,0]), Evaluate(f_cnc_PQ,[0,1,0]);

> printf "P1: %o; P2: %o; -P3: %o; \n", Evaluate(f_cnc_PQ,[X1,Y1,Z1]),

Evaluate(f_cnc_PQ,[X2,Y2,Z2]), QI_crv!Evaluate(f_cnc_PQ,[-X3,Y3,Z3]);

Op: 0; O1: 0; O2: 0;

P1: 0; P2: 0; -P3: 0;

Since all evaluations yield 0, we know that in the general case all these six points are on the conic.
Note that here we do evaluate the conic both in P1 and P2. Previously we didn’t need to do this because
P2 in that case was O′.

The checks for the point doubling case yield analogous results but we will not show them here although
the online script TwEdC AdL geom.m does include them as well.

So now we have all the calculations that prove that O′, Ω1, Ω2, P1, P2 and −P3 are indeed in
the intersection of Ea,d and the conic. And, in spite of not being able to compute the intersection itself
symbolically, once we start working with specific examples we can indeed compute the intersection points
and their multiplicities. Let’s take for example the curve C given in Ea,d form for a = 17 and d = 82:

> a := 17; d := 82;

> Crv := Curve(R2, (a*(X^2) + (Y^2))*Z^2 - Z^4 - d*(X^2)*(Y^2)); Crv;

Curve over Multivariate rational function field of rank 2 over Rational

Field defined by -82*X^2*Y^2 + 17*X^2*Z^2 + Y^2*Z^2 - Z^4

We also have the points on the curve P1 = (1 : 4/9 : 1) and P2 = (−72/1393 : −1361/1231 : 1).
With this data, we can define in Magma the conic passing through P1, P2, Ω1, Ω2 and O′ with the
corresponding coefficients:

> cz := X1*X2*(Y1*Z2-Y2*Z1);

> cxy := Z1*Z2*(X1*Z2-X2*Z1 + X1*Y2 - X2*Y1);

> cxz := X2*Y2*(Z1^2)-X1*Y1*(Z2^2)+Y1*Y2*(X2*Z1-X1*Z2);

> Cnc := Conic(R2,cz*(Z^2 + Y*Z)+cxy*X*Y+cxz*X*Z); Cnc;

Conic over Multivariate rational function field of rank 2 over Rational

Field defined by -53066/1714783*X*Y + 1998256/15433047*X*Z -

137384/1714783*Y*Z - 137384/1714783*Z^2

So now we can ask Magma to give us the points of the intersection of Crv and Cnc. We can also
check the multiplicity of said points:

> pts := Points(Intersection(Crv,Cnc));

> pts_mult := [IntersectionNumber(Crv,Cnc,p) : p in pts];

> pts; pts_mult;
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{@ (0 : -1 : 1), (-72/1393 : -1361/1231 : 1), (1 : 4/9 : 1),

(1935265/5286047 : -5977204/16708329 : 1), (0 : 1 : 0), (1 : 0 : 0) @}

[ 1, 1, 1, 1, 2, 2 ]

So here we can see that in the intersection we have indeedO′, P2, P1 with multiplicity 1 and the infinity
points with multiplicity 2. Besides there is a sixth pointQ = (1935265/5286047 : −5977204/16708329 : 1)
with multiplicity 1, which is supposed to be −P3.

Using the parametrization of the addition law shown in the symbolic computations, we can compute
the addition of P1 and P2 and check that Q is indeed −P3:

> x3 := Evaluate(X3,[X1,Y1,Z1,X2,Y2,Z2]);

> y3 := Evaluate(Y3,[X1,Y1,Z1,X2,Y2,Z2]);

> z3 := Evaluate(Z3,[X1,Y1,Z1,X2,Y2,Z2]);

> P3 := R2 ! [x3/z3, y3/z3, 1]; P3;

(-1935265/5286047 : -5977204/16708329 : 1)

An interesting fact to check is what happens with the multiplicities of the points in the intersection
when there are less than 6 points in said intersection. This happens in the following scenarios:

↪→ Adding a point to O′: when O′ is part of the addition, then its multiplicity doubles, as we
can see in this example of the intersection points of C with the conic defined by the addition
P2 +O′:

{@ (-72/1393 : -1361/1231 : 1), (0 : -1 : 1) , (-72/1393 : 1361/1231 : 1),

(0 : 1 : 0), (1 : 0 : 0) @}

[ 1, 2 , 1, 2, 2 ]

↪→ Point doubling: if the point to be doubled is not O′, then we get 5 points in the intersection
and the point to be doubled has multiplicity 2. As for example the following situation,
where we compute the conic defined by the addition P2 + P2:

{@ (0 : -1 : 1), (-336070031472/3727880166337 : 3460788697921/2153081307841 :

1), (-72/1393 : -1361/1231 : 1) , (0 : 1 : 0), (1 : 0 : 0) @}

[ 1, 1, 2 , 2, 2 ]

And if what we are computing is 2O′, then we get an intersection with only 4 points, where
O′ has multiplicity 3:

{@ (0 : -1 : 1) , (0 : 1 : 1), (0 : 1 : 0), (1 : 0 : 0) @}

[ 3 , 1, 2, 2 ]

↪→ Q = −P3 happens to be equal to either P1, P2 or O′: looking at the other cases, one can
already expect what will happen here: whichever point Q equals to will have its multiplicity
raised by 1. And so it happens, as we can see in these two examples:

Intersection points of C with the conic defined by the addition of P2 = (x2 : y2 : z2) and
(x2 : y2 : z2), where the solution is O:

{@ (-72/1393 : -1361/1231 : 1), (0 : -1 : 1) , (-72/1393 : 1361/1231 : 1),

(0 : 1 : 0), (1 : 0 : 0) @}

[ 1, 2 , 1, 2, 2 ]

Intersection points of C with the conic defined by the addition P2 + (−2P2):
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{@ (0 : -1 : 1), (-336070031472/3727880166337 : 3460788697921/2153081307841 :

1), (-72/1393 : -1361/1231 : 1) , (0 : 1 : 0), (1 : 0 : 0) @}

[ 1, 1, 2 , 2, 2 ]

↪→ Infinity points are involved in the addition: the geometric interpretation we are studying
here is for an addition law that has the infinity points as exceptional points. So as expected
it doesn’t work for any addition involving Ω2. But surprisingly enough, it works for a
specific case involving Ω1, the one about the addition O′ + Ω1:

{@ (0 : -1 : 1) , (0 : 1 : 0), (1 : 0 : 0) @}

[ 2 , 2, 4 ]

Taking all of this into account, we have written a function Ead_AddL_geom that computes the addi-
tion of two points on a twisted Edwards elliptic curve in the projective space P2 using the geometric
interpretation instead of the addition law formulae. The function can be found in the appendix section
A.2, function 5. Naturally it has the limitations of this addition law and the ones derived from the fact
that most of the Magma commands used in it only work over the rationals or a finite field. However, in
the following section we present a function that can be more widely used.

3.3.2 Complete system of addition laws

The computational work we have done related to the system of addition laws begins with seeing how
some theoretical facts actually hold. And afterwards, we developed a function to actually compute the
addition of two points on a curve in twisted Edwards form.

We start by creating a function Ead_AddL that takes as input a list with the curve parameters a, d
and outputs both addition laws for the given curve. So this way we can access the addition laws whenever
we need them. This is function 3 in §A.1 and the checks we will show now can be found online in the
file TwEdC AdL.m.

Let’s begin by checking that the outputs of both addition laws are the same, provided no exceptional
points happen. In the same way as what we did in the previous section, we need to define the quotient
ring with an equivalence relation such that α ∼ 0 ⇐⇒ α ∈ (Ea,d):

> R1<a,d> := FunctionField(BF,2);

> R2<X1,Y1,Z1,T1, X2,Y2,Z2,T2> := PolynomialRing(R1,8);

> P := [[X1,Z1],[Y1,T1]]; Q := [[X2,Z2],[Y2,T2]];

> Ead1 := Z1^2*T1^2 + d*X1^2*Y1^2 - a*X1^2*T1^2 - Y1^2*Z1^2;

> Ead2 := Z2^2*T2^2 + d*X2^2*Y2^2 - a*X2^2*T2^2 - Y2^2*Z2^2;

> I := ideal< R2 | Ead1, Ead2>;

> QQ<X1,Y1,Z1,T1,X2,Y2,Z2,T2> := quo<R2 | I>;

Then we get the original addition laws from Ead_AddL:

> X3_o := (R2 ! Ead_AddL([a,d])[1][1][1]);

> Y3_o := (R2 ! Ead_AddL([a,d])[1][2][1]);

> Z3_o := (R2 ! Ead_AddL([a,d])[1][1][2]);

> T3_o := (R2 ! Ead_AddL([a,d])[1][2][2]);

Similarly we store the dual addition law, but using the suffix "_d". And so now it’s easy to check
that the outputs of both addition laws are the same:

> (QQ ! (X3_o*Z3_d)) eq (QQ ! (Z3_o*X3_d));

true
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> (QQ ! (Y3_o*T3_d)) eq (QQ ! (T3_o*Y3_d));

true

Next we can check that the output of both addition laws is actually on the curve by evaluating the
curve equation on the corresponding outputs and embedding the result in QQ. If the result is zero, then
the output is on the curve:

> QQ ! Evaluate(Ead1,[X3_o,Y3_o,Z3_o,T3_o,1,1,1,1]);

0

> QQ ! Evaluate(Ead1,[X3_d,Y3_d,Z3_d,T3_d,1,1,1,1]);

0

The last check we want to do is if the system is indeed complete. That is done in the online script
TwEdC AdL completeness.m, where we use Gröbner basis as explained at the end of Section 3.1.2.

So we study the original addition law, the dual addition law and then the whole system. The process
is the same in all three cases so here we will only go through the first case: the original addition law.
The first thing to do is generate the Gröbner basis of the ideal generated by the formulate of the addition
law:

> II_o := ideal<R2 | X3_o,Y3_o,Z3_o,T3_o>;

> GB_o := GroebnerBasis(II_o); GB_o;

[

X1*Y1*Z1*Y2^3*Z2^2,

X1*Y1*X2*Y2,

X1*T1*X2*T2 - 1/a*Y1*Z1*Y2*Z2,

X1*T1*Y2*Z2 + Y1*Z1*X2*T2,

Y1^3*Z1^2*X2*Y2*Z2,

Y1^3*Z1^2*X2*Y2*T2,

Y1^2*Z1^3*X2*Z2*T2,

Y1^2*Z1^3*Y2*Z2*T2,

Y1^2*Z1*X2^2*T2,

Y1^2*Z1*Y2^2*Z2,

Y1*Z1^2*X2*T2^2,

Y1*Z1^2*Y2*Z2^2,

Y1*Z1*T1*Y2^2*Z2^3,

Y1*Z1*X2^2*T2^2 + 1/a*Y1*Z1*Y2^2*Z2^2,

Z1*T1*Z2*T2

]

By looking at this basis, we can see that the homogeneous system built from it will not be linear.
And so we can’t apply a Magma command to solve it. Instead, we have developed the function bfz

that outputs the list of all solutions of the form U = V = · · · = 0, computed by brute force. And the
solutions we obtain are the following:

> bfz(GB_o);

[ X1, Z1 ]

[ Y1, T1 ]

[ X2, Z2 ]

[ Y2, T2 ]

[ X1, Y1, Z2 ]

[ X1, Y1, T2 ]

[ X1, Z2, T2 ]

[ Y1, Z2, T2 ]
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[ Z1, T1, X2 ]

[ Z1, T1, Y2 ]

[ Z1, X2, Y2 ]

[ T1, X2, Y2 ]

The first four solutions imply a projective point of the kind ((0 : 0), (Y : T )) or ((X : Z), (0 : 0)),
which are not points that can happen, so they are not valid solutions. And all the tuples of 3 elements,
in different ways, end up implying also a situation like X = Z = 0 or Y = T = 0 as well. For example,
the first of these kind of solutions for the original law is [ X1, Y1, Z2 ]. Looking at the projective
equation of the curve, if X1 = Y1 = 0, then for the point to be on the curve we also need Z1 = 0 or
T1 = 0. But that can’t happen. So none of the solutions on the list is a valid solution.

The question now is if there are any other solutions that are not included in this list. Suppose there
is an extra solution that is not listed above, which had been compiled by looking for what variables equal
zero are solutions. So this solution would have to include some variables equal to something other than
zero for it not to be on the list.

At the same time, this new solution should make all the elements of the Gröbner basis equal zero,
including the monomial ones. Then at least one of the variables should be equal to zero. Let’s assume such
variable is V and so we set V = 0. Let’s consider now the basis element X1*T1*X2*T2 - 1/a*Y1*Z1*Y2*Z2.
Evaluating it for V = 0 gives us one of the following equations to solve: 1/a*Y1*Z1*Y2*Z2 = 0 or
X1*T1*X2*T2 = 0. But in either case, we have again the case of a monomial equal to zero so the solution
for it is another variable equal to zero. Thus the solution is already included in the list above.

The choice of variable for this example does not matter since the polynomial X1*T1*X2*T2 -

1/a*Y1*Z1*Y2*Z2 actually has all variables we are working with. So we conclude that there are no
other solutions aside from the ones already found. And since none of the found solutions is actually a
valid one, then we know that the original addition law never evaluates to ((0 : 0), (0 : 0)).

For the other two cases, namely the dual addition law and the whole system, we get an analogous
situation. Thus we can conclude two more things: the dual addition law never evaluates to ((0 : 0), (0 : 0))
either and there are no two points P1, P2 such that the eight polynomials of the whole addition law system
evaluate to zero simultaneously. Therefore the system of addition laws is indeed complete.

Now that we have seen how the system is indeed complete and well-defined, we will build a function to
compute the addition of any two given points on an elliptic curve following the twisted Edwards model.
Because the function Ead_AddL is useful when we want to see how both addition laws for a given curve
look like. But if what we want to do is to compute the addition of two points, we need a function that
does a few more things. And that’s why we have Ead_AddL_eval [§A.3,Fn.7], a function that takes as
input a basis field BF, a list lst with the curve parameters a and d and two points P, Q on the curve over
P1 × P1.

Similarly to its counterpart for the Weierstrass model, this function is also written to be used as
widely as possible. So once again we need to include these lines of code in case FunctionField is not
supported over our input base field:

if (Type(BF) eq Type(RealField())) or (Type(BF) eq Type(ComplexField())) then

fl := true;

else

fl := false;

end if;

if fl then

R1<a,d> := PolynomialRing(BF,2);

else

R1<a,d> := FunctionField(BF,2);

end if;

R2<X1,Y1,Z1,T1, X2,Y2,Z2,T2> := PolynomialRing(R1,8);

The function then goes on to define local variables for the input data and to compute both addition
laws. Then the question arises: which addition law should be the one returned as output? We will go
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into more detail about why we do it like this at the end of the next section. For now it suffices to say
that the function decides this by checking if certain cases of zero coordinates happen:

if fl then

if (Abs(BF!X_o) gt 1E-10 or Abs(BF!Z_o) gt 1E-10) and

(Abs(BF!Y_o) gt 1E-10 or Abs(BF!T_o) gt 1E-10) then

X := X_o; Y := Y_o; Z := Z_o; T := T_o;

elif (Abs(BF!X_d) gt 1E-10 or Abs(BF!Z_d) gt 1E-10) and

(Abs(BF!Y_d) gt 1E-10 or Abs(BF!T_d) gt 1E-10) then

X := X_d; Y := Y_d; Z := Z_d; T := T_d;

else

return "Error: all are zero";

end if;

else

if (X_o ne 0 or Z_o ne 0) and (Y_o ne 0 or T_o ne 0) then

X := X_o; Y := Y_o; Z := Z_o; T := T_o;

elif (X_d ne 0 or Z_d ne 0) and (Y_d ne 0 or T_d ne 0) then

X := X_d; Y := Y_d; Z := Z_d; T := T_d;

else

return "Error: all are zero";

end if;

end if;

Here we have again case separation between a rational or finite base field and the rest because of those
possibly inaccurate near-zero computations in the case of non-exact fields. If no errors have happened
along the way, the function then returns the value of the addition law. The whole function is build in
a way that this output can be numerical, if the input are two specific points, or symbolic, if the input
contains at least one unknown coordinate.

To illustrate how the function works, here we have a couple of examples:

> Ead_AddL_eval(Rationals(),[82,17],[[1,1],[9/4,1]],[[PR|X2,Z2],

[PR|Y2,0]]);

[

[

Y2*Z2,

153/4*X2*Y2

],

[

9/4*Y2*Z2,

-153/4*X2*Y2

]

]

> Ead_AddL_eval(RealField(),[82,17],[[1,1],[9/4,1]],[[1,Sqrt(17*82)],

[Sqrt(82),Sqrt(17)*9/4]]);

[

[

788.384468589088835051082173537,

1521.42597585291674288410023685

],

[

770.273698312814001797934557204,

317.221439070958758551884720794

]

]
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The other two functions left in Section A.3 are ProjCoord [8], which takes an affine point and embeds
it onto P1 × P1, and AffCoord [9], which does the opposite as long as the point is not one at infinity.
They come in handy when we want to work with affine coordinates but we want to use the complete
system of addition laws.

3.3.3 Exceptional points

While studying the completeness of the system of addition laws in the previous section, we have seen that
neither the original addition law nor the dual one have exceptional points such that either law outputs
((0 : 0), (0 : 0)). But that doesn’t mean that they don’t have exceptional points. Note that a point
((X : Z), (Y : T )) doesn’t have valid coordinates as well if X = Z = 0 or Y = T = 0. So, following the
steps we used in the Exceptional points subsection 3.1.2, we will now show the computations to study
when does this happen. We will do the process for (X3 : Z3), but the complete code can be found in the
online file TwEdC AdL exceptionalpts.m.

We start with the same set up as before: a PolynomialRing defined over a FunctionField, the
original addition law formulae stored in X3_o,Y3_o,Z3_o,T3_o and the dual ones in X3_d,Y3_d,Z3_d and
T3_d. Our first step is to do the variable change. Here sd is the square root of d and, regarding the
notation from Section 3.1.2, the unknowns are x = α2, y = β2 and, since we assume P1 is known, m = α1,
n = β1 are considered coefficients:

> RR2<x1,y1,z1,t1, x2,y2,z2,t2> := FunctionField(R1,8);

> RR3<m,n,x,y> := FunctionField(R1,4);

> h := hom<RR3->RR2|x1/z1,y1/t1,x2/z2,y2/t2>;

> hinv := hom<RR2->RR3| Numerator(m),Numerator(n),Denominator(m),

Denominator(n), Numerator(x),Numerator(y),Denominator(x),Denominator(y)>;

> hX3_o := hinv(RR2!X3_o); hZ3_o := hinv(RR2!Z3_o);

> printf "%o \t= %o \t\t= 0 \n%o \t= %o \t= 0 \n",X3_o,hX3_o,Z3_o,hZ3_o;

X1*T1*Y2*Z2 + Y1*Z1*X2*T2 = m*y + n*x = 0

sd^2*X1*Y1*X2*Y2 + Z1*T1*Z2*T2 = sd^2*m*n*x*y + 1 = 0

We solve the system for x and y. Since it’s not linear, we can’t solve it in Magma but for example
Matlab can solve it with these lines:

>> syms x y m n sa sd

>> [solx,soly] = solve(m*y + n*x == 0,sd^2*m*n*x*y + 1 == 0)

solx =

-1/(n*sd)

1/(n*sd)

soly =

1/(m*sd)

-1/(m*sd)

Now we have to undo the variable change and so we get our solutions. Here we divide the solutions
by certain coefficients purely to obtain an output consistent with how we wrote the exceptional points
previously:

> solx := [-1/(n*sd),1/(n*sd)]; soly := [1/(m*sd),-1/(m*sd)];

> solxz := [h(s) : s in solx]; solyt := [h(s) : s in soly];

> solx2 := [Numerator(s) : s in solxz];

> solz2 := [Denominator(s) : s in solxz];

> soly2 := [Numerator(s) : s in solyt];

> solt2 := [Denominator(s) : s in solyt];

> solP2 := [[[R2|solx2[i]/Coefficients(solx2[i])[1],

solz2[i]/Coefficients(solx2[i])[1]],

[soly2[i]/Coefficients(soly2[i])[1],solt2[i]/Coefficients(soly2[i])[1]]]
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: i in [1..#solx2]];

> P2_o1 := solP2_o1[2]; mP2_o1 := solP2_o1[1]; P2_o1; mP2_o1;

[ [ T1, sd*Y1 ], [ Z1, -sd*X1 ] ]

[ [ T1, -sd*Y1 ], [ Z1, sd*X1 ] ]

Now that we have the solutions to the system, we can do a couple of checks. First: are the solutions
points on the curve? Using the quotient ring to define P1 and P2 as points on the curve, we can evaluate
the curve equation on the solution points and if the output is zero, then the points are indeed on the
curve:

> I := ideal<R2|Ead1,Ead2>; QI := R2/I;

> QI!Evaluate(Ead1,[T1,Z1,sd*Y1,-sd*X1,1,1,1,1]);

> QI!Evaluate(Ead1,[T1,Z1,-sd*Y1,sd*X1,1,1,1,1]);

0

0

Another check we can do is to see that the solution points are indeed exceptional, i.e., they make
(X3 : Z3) evaluate to (0 : 0). And if we evaluate any other pair of law formulae on these exceptional
points, we can see that they are indeed only exceptional for (X3 : Z3).

> QI!Evaluate(X3_o,[X1,Y1,Z1,T1,P2_o1[1][1],

P2_o1[2][1],P2_o1[1][2],P2_o1[2][2]]);

> QI!Evaluate(X3_o,[X1,Y1,Z1,T1,P2_o1[1][1],

P2_o1[2][1],P2_o1[1][2],P2_o1[2][2]]);

0

0

> QI!Evaluate(Y3_d,[X1,Y1,Z1,T1,P2_o1[1][1],

P2_o1[2][1],P2_o1[1][2],P2_o1[2][2]]);

> QI!Evaluate(T3_d,[X1,Y1,Z1,T1,P2_o1[1][1],

P2_o1[2][1],P2_o1[1][2],P2_o1[2][2]]);

-sa^2*X1^2*T1^2 - Y1^2*Z1^2

2*sd*X1*Y1*Z1*T1

Note that most of the exceptional points include some square root of a and/or d. This means that
depending on the basis field we are working on and the curve parameters, some of these exceptional
points can’t happen. When that is the case, the addition law can be complete over said basis field.
The only pair of exceptional points for which this doesn’t apply is the one of the dual addition law pair
(Y ′3 , T

′
3). So we know that the dual addition law always has exceptional points.

For example we have the case of the Edwards curve E-222 over the finite field K = GF(2222 − 117)
defined by a = 1 and d = 160102. Here a is a square over K but d isn’t. So the original addition law is
complete over K. But the dual addition law still has exceptional cases, as for example point doubling:

> a := 1; d := 160102;

> P1 = [[270569107988268109038958900125196295444617736754171147450\

2428610129, 1],[28, 1]];

> Evaluate(Y3_d, [P1[1][1],P1[2][1],P1[1][2],P1[2][2],

P1[1][1],P1[2][1],P1[1][2],P1[2][2]]);

> Evaluate(T3_d, [P1[1][1],P1[2][1],P1[1][2],P1[2][2],

P1[1][1],P1[2][1],P1[1][2],P1[2][2]]);

0

0
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On the other hand, if we work for example over the reals and a and d are greater than 0, then
all exceptional cases can happen so none of the addition laws is complete and then having a complete
system of addition laws comes in really handy. An issue that arises when working over fields whose
elements have decimal parts, as the reals, is precision. Let’s take for example the curve over K = R with
parameters a = 82, d = 17. The point P1 = ((1 : 1), (9/4 : 1)) is a point on the curve and together with
P2 = ((Z1 :

√
adX1), (

√
aT1 :

√
dY1)) = ((1 : 37.33630941), (9.055385138 : 9.276987658)), they are an

exceptional case for the pair (Y3, T3) of the original addition law:

> a := 82; d := 17; sa := Sqrt(82); sd := Sqrt(17);

> P1 := [[1,1],[9/4, 1]]; P2 := [[1,sa*sd*1],[sa*1,sd*(9/4)]];

> Evaluate(Y3_o, [P1[1][1],P1[2][1],P1[1][2],P1[2][2],

P2[1][1],P2[2][1],P2[1][2],P2[2][2]]);

> Evaluate(T3_o, [P1[1][1],P1[2][1],P1[1][2],P1[2][2],

P2[1][1],P2[2][1],P2[1][2],P2[2][2]]);

-5.960464478E-8

2.980232239E-8

However, note that the result is not a sharp (0 : 0). This is the reason why in our function
Ead_Addl_eval these cases need to be treated separately.

Now that we have the exceptional points for each pair of addition law formulae, we could use them to
further improve our Ead_Addl_eval function. We would do this by checking if any given pair of points
to be added is an exceptional pair for either addition law and then only computing the addition law that
we need. But implementing these conditions for the exceptional cases involves a considerable amount of
lines of code to check each case. We have not studied if that might result in some faster computation of
the addition but in many cases it would definitely involve more computations than they are done in the
function as it is defined now. Thus we have decided to keep the computation of both addition laws within
the function and instead check only when do each addition law yield a point with valid coordinates to
decide which output to give.

3.3.4 Relation to Edwards model

The maps between the Edwards model and the twisted Edwards one are rather trivial. We have never-
theless made a script for them in Magma as well, for the sake of completeness.

Here we will use b to denote the parameter of the Edwards curve since we can’t use d in two places at
the same time. The variables sa,sd,sb denote the square roots of a,d and b respectively. We also include
in the list of coefficients two points we will assume to be known. In the case of the twisted Edwards
model, these points will be (x1,y1), (x2,y2) and for the Edwards case we will use (u1,v1), (u2,v2).

With all this information, we define the corresponding algebraic structures where we will be working:

> BF := Rationals();

> // For the twisted Edwards model

> AD<a,d,sa,sd,x1,y1,x2,y2> := FunctionField(BF,8);

> Rxy<x,y> := PolynomialRing(AD,2);

> // For the Edwards model

> B<b,sb,u1,v1,u2,v2> := FunctionField(BF,6);

> Ruv<u,v> := PolynomialRing(B,2);

Since the only fractions are in the maps of the parameters, we can use Magma ’s homomorphisms
to build the maps. Starting with the direction Edwards model to twisted Edwards, we define two maps:
one for the parameters, hb, and another one for the unknowns, h:

> hb := hom<B -> AD | d/a,sd/sa,sa*x1,y1,sa*x2,y2>;

> h := hom<Ruv -> Rxy | hb,sa*x,y>;

To go from the twisted Edwards model to the Edwards one, the identity map would suffice, taking
into account the parameter change b = d/a. But in order to illustrate the inverse of h, we have written
a bit of a different map:
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> gad := hom<AD -> C | Denominator(b),Numerator(b),Denominator(sb),

Numerator(sb),u1/Denominator(sb),v1,u2/Denominator(sb),v2>;

> g := hom<Rxy -> Ruv | gad, u/Denominator(sb),v>;

Applying these maps to one of the curve equations yields the other one in any case. Another
point we can check is if addition laws are preserved. To do this we define (x3,y3) as the addition of
(x1,y1) + (x2,y2) with the twisted Edwards curve addition law. Then we check that (h(x1),h(y1)) +

(h(x2),h(y2)) = (h(x3), h(y3)), using the Edwards addition this time . And do the analogous pro-
cess for the other direction:

> x3 := (x1*y2 + x2*y1)/(1 + d*x1*x2*y1*y2);

y3 := (y1*y2 - a*x1*x2)/(1 - d*x1*x2*y1*y2);

> u3 := (u1*v2 + u2*v1)/(1 + b*u1*u2*v1*v2);

v3 := (v1*v2 - u1*u2)/(1 - b*u1*u2*v1*v2);

> Evaluate(x3, [1,hb(b),1,hb(sb),h(u1),h(v1),h(u2),h(v2)]) eq h(u3);

> Evaluate(y3, [1,hb(b),1,hb(sb),h(u1),h(v1),h(u2),h(v2)]) eq h(v3);

true

true

> Evaluate(u3, [g(d)/g(a),g(sd)/g(sa),g(x1),g(y1),g(x2),g(y2)]) eq g(x3);

> Evaluate(v3, [g(d)/g(a),g(sd)/g(sa),g(x1),g(y1),g(x2),g(y2)]) eq g(y3);

true

true

The online script corresponding to what has been shown in this section is EdC TwEdC coord change.m.

3.3.5 Relation to Weierstrass model: birational equivalence

We have expanded the numerical functions presented in the previous chapter to implement the birational
equivalence maps from the twisted Edwards model to the Weierstrass one. Thus we have Ew2Ead_P4_eval
[Fn.18] and Ead2Ew_P4_eval [Fn. 19] for the Φ maps and Ew2Ead_eval [Fn.20] and Ead2Ew_eval [Fn.21]
for the Ψ maps. They all work in a pretty similar way to the ones from the previous chapter, except for
a few details.

For example the fact that Ew2Ead_P4_eval and Ew2Ead_eval take as extra paramenter a := 1, in
case we want a curve in twisted Edwards form with a 6= 1 as output. Additionally, for the Edwards to
twisted Edwards isomorphism part to always work, our functions need a little bit extra, i.e., they need
to have the chance to work over K(

√
a) if necessary. For that purpose, these lines are added to the

beginning of all four functions:

tf, sqrt_a := IsSquare(BF!a);

if not tf then

BF := AlgebraicClosure(BF);

tf, sqrt_a := IsSquare(BF!a);

end if;

This means that the output of the function might be over a new basis field: the algebraic closure
of the input basis field. In case that happens, in order to be able to do further computations with the
obtained numerical results, the output of these functions also includes BF.

Of course we have tested our functions and the birational equivalence properties with a few examples.
And next here we will show how addition is preserved through Ψ with an example over a finite field. But
for more one can check the online scripts in the /Maps between models/WC TwEdC directory.

Let’s consider the curve in Weierstrass form with parameters a2 = 12, a4 = 16 over F23. Two points
on the curve are p_w := [1, 12] and q_w := [15, 17], which adds to:

> pq_w := (Cw!p_w)+(Cw!q_w); pq_w := [pq_w[1], pq_w[2]]; pq_w;

[ 22, 15 ]
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We are going to apply the Ψ map to these points for which we will use he function Ew2Ead_eval.
And we aim at a curve in twisted Edwards form with a = 11. These are the results:

> p_ad := Ew2Ead_iso_eval(BF,lst_w,p_w: a := 11);

> q_ad := Ew2Ead_eval(BF,lst_w,q_w: a := 11)[3];

> pq_ad := Ew2Ead_eval(BF,lst_w,pq_w: a := 11)[3];

> printf "a = %o, d = %o", p_ad[2][1], p_ad[2][2];

> printf "p_ad = [%o, %o] \n", p_ad[3][1], p_ad[3][2];

> printf "q_ad = [%o, %o] \n", q_ad[1], q_ad[2];

> printf "pq_ad = [%o, %o] \n", pq_ad[1], pq_ad[2];

a = 11, d = 9

p_ad = [8*r1, 6]

q_ad = [13*r1, 8]

pq_ad = [12*r1, 4]

Note that these output points all contain a product by r1. This is because 11 is not a square in F23

and so Ew2Ead_eval had to work over F̄23 and it assigned the value of
√

11 to r1.

Defining Cad to be the curve with parameters a = 11, d = 9, we can easily check that p_ad, q_ad and
pq_ad are indeed on the output curve:

> printf "p_ad -> %o, q_ad -> %o, pq_ad -> %o \n",

p_ad in Cad, q_ad in Cad, pq_ad in Cad;

p_ad -> true, q_ad -> true, pq_ad -> true

Lastly, we can use the addition law for the twisted Edwards model to add p_ad, q_ad and so we’ll
see if the result matches pq_ad:

> r_ad := Ead_AddL_eval(BF,lst_ad, ProjCoord(BF,p_ad), ProjCoord(BF,q_ad));

> r_ad := AffCoord(BF,r_ad);

> printf "r_ad = [%o, %o] \n", r_ad[1], r_ad[2];

r_ad = [12*r1, 4]

And thus we have that in this example the Ψ birational equivalence has preserved the addition over
F̄23.

3.3.6 Relation to Weierstrass model: 2-isogeny

Regarding the isogenous relation between the twisted Edwards and the Weierstrass models, we have
implemented the isogenies into two functions to work numerically with them. Afterwards we move on to
check that the image of each isogeny is indeed a point in the codomain curve and we show as well the
addition preservation and the doubling property of the isogenies.

We can start by taking a look at the function Ew2Ead_iso_eval [Fn. 22], which takes as input the
base field BF, the list lst of the five parameters of an elliptic curve in Ew form and a point p on the
curve with affine coordinates. Additionally, we can specify a couple of parameters: a point PP4 that is
the double of a point of order 4 from Ew(K) and the ui as the parameter u_lst on the function. The
default value for PP4 is [0,0] and we might need to change this if the input is in complete Weierstrass
form. If no u_lst is provided then the default value is [0,0,0] and we obtain the ui by solving the
corresponding polynomial, as can be seen in the snipped of the function’s code below. Note that we
check if the polynomial has 3 different solutions in K and, if it doesn’t, we move on to work on K̄:

if u_lst eq [0,0,0] then

PR<s> := PolynomialRing(BF);

if a1 ne 0 or a3 ne 0 then

a6 := 0;

end if;
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rts := Roots(s^3 + a2*s^2 + a4*s + a6);

if #rts lt 3 then

BF := AlgebraicClosure(BF);

PR<s> := PolynomialRing(BF);

rts := Roots(s^3 + BF!a2*s^2 + BF!a4*s + BF!a6);

end if;

rts_abs := [Abs(rts[i][1]): i in [1..3]];

ParallelSort(~rts_abs,~rts);

u0 := rts[1][1]; u1 := rts[2][1] - u0; u2 := rts[3][1] - u0;

else

u0 := BF!u_lst[1]; u1 := BF!u_lst[2]; u2 := BF!u_lst[3];

end if;

While all possible outputs are valid and isogenous to the input curve, sometimes we’d like to work
with a specific curve. And that’s the use of specifying u_lst: make sure the three possible values for the
ui are assigned in the correct order when one has a specific curve in mind, since different order means
different output curve.

Note that we define u1 and u2 already substracting u0 from them, as a way to implicitly implement
the change of coordinates (u′, v)→ (u, v) for the ui. This needs to be done as well for the coordinates of
the input point, together with any possible adjustments for the cases where a1 6= 0 6= a3:

u := BF!p[1] + u2p - u0; v := BF!p[2] + (a1*u + a3)/2;

The only thing left to do now is doing the computations to actually apply the isogeny. This is done
in two parts to avoid trying to compute divisions by zero: first the denominators are computed and if
either of them happens to be zero, an error is returned. Otherwise the function moves on to do the last
computations:

denom_x := u1*u2 - u^2; denom_y := v^2 + (u1-u2)*u^2;

if denom_x eq 0 then

return "Error: isogeny not defined for this point since (denom_x eq 0).";

elif denom_y eq 0 then

return "Error: isogeny not defined for this point since (denom_y eq 0).";

else

a := 4*u1; d := 4*u2;

c_x := v/denom_x; c_y := (v^2 - (u1-u2)*u^2)/denom_y;

return [* BF, [a,d],[c_x,c_y], u0 *];

end if;

As it can be seen above, the output of the function consists of a basis field (in case the function
operated over K̄), the parameters for an isogenous curve in Ea,d form, the corresponding isogenous point
to p and the value of u0, since it will be needed if one wishes to retrieve the exact original input curve
later.

In a similar way we have the dual isogeny implemented in the function Ead2Ew_iso_eval [Fn. 23].
The input for this one consists of the base field BF, the list lst consisting of the two parameters of an
elliptic curve in Ea,d form and a point p on the curve with affine coordinates. The general isogenous
curve in Ew form will always be one such that u0 = 0, i.e., a6 = 0. On account of the possibility that one
wants a different output, u0 can be provided as a function parameter. And in case we want a curve in
complete Weierstrass form as an output, the function also counts with parameters for a1, a3 and PP4.

With all this input information, the dual isogeny is computed in the same way as before, checking
the denominators first:

denom_u := 4*x^2; denom_v := 32*x*(1+y)*(1-y);

if denom_u eq 0 then

return "Error: isogeny not defined for this point since (denom_u eq 0).";

elif denom_v eq 0 then

return "Error: isogeny not defined for this point since (denom_v eq 0).";
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else

u1 := a/4 + u0; u2 := d/4 + u0;

a2 := -(u0+u1+u2); a4 := u0*u1 + u0*u2 + u1*u2; a6 := -u0*u1*u2;

c_u := 1/denom_u +u0; c_v := (a-d)*((1-y)^2-(1+y)^2)/denom_v;

c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

a2 -:= -3*u2p + (a1^2)/4;

a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

return [*[a1,a2,a3,a4,a6],[u0,u1,u2],[c_u,c_v]*];

end if;

Note that here the formulae might not exactly match the ones in the theory since here we don’t
assume u0 to be 0 so some adjustments were needed. Plus some extra computations are carried out for
the complete Weierstrass case. And so we get the output, which in this case consists of the ai parameters
of the isogenous curve in Ew form, the corresponding ui and the isogenous point to p.

With these functions in hand, we can try some examples and see the addition preservation and the dou-
bling property of the isogenies. Here we will show some examples over the rationals, but the functions also
work over other base fields. Some examples for finite fields can be found online in WC TwEdC iso num.m.

First we can consider a curve with Weierstrass form Cw : y2 = x3 − (5347/4)x2 − (13770055/8)x+
+2301120900. Two points on this curve are pw = (0, 47970), qw = (253223267168/246395809,
55479853577957508/3867675013873). And so we can add these points and, applying Ew2Ead_iso_eval

to these three points, we have the following:

> BF := Rationals(); R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

> R2<u,v> := AffineSpace(R1,2); R3<x,y> := AffineSpace(R1,2);

> a1 := 0; a2 := -5347/4; a3 := 0; a4 := -13770055/8; a6 := 2301120900;

> Cw := EllipticCurve([a1,a2,a3,a4,a6]);

> p_w := [0,47970];

> q_w := [253223267168/246395809, 55479853577957508/3867675013873];

> pq_w := (Cw!p_w)+(Cw!q_w); pq_w := [pq_w[1], pq_w[2]];

> out_p_ad := Ew2Ead_iso_eval(BF,[a1,a2,a3,a4,a6],p_w); out_p_ad;

[*

Rational Field,

[ 10513, 10578 ],

[ 144/15697, 5329/5201 ],

-1312

*]

> out_q_ad := Ew2Ead_iso_eval(BF,[a1,a2,a3,a4,a6],q_w);

> out_pq_ad := Ew2Ead_iso_eval(BF,[a1,a2,a3,a4,a6],pq_w);

> Cad := Curve(R3, 1 + 10578*x^2*y^2 - 10513*x^2 - y^2);

> p_ad := R3!out_p_ad[3]; p_ad in Cad;

> q_ad := R3!out_q_ad[3]; q_ad in Cad;

> pq_ad := R3!out_pq_ad[3]; pq_ad in Cad;

true (144/15697, 5329/5201)

true (125297302150944/12894129196796737, 1100285933947201/436081679542081)

true (2921750933782650912192440698288560/30342784411173763014660804928735\

9441, -48196275389508609779308584030224209/42047593363740412523602033206\

854959)
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As we have seen, p_ad, q_ad and pq_ad are indeed on the isogenous Ea,d curve. Now let’s add p_ad

and q_ad using the addition law for Ea,d to see if the result matches pq_ad:

> r_ad := Ead_AddL_eval(BF,lst_ad, ProjCoord(R1,p_ad), ProjCoord(R1,q_ad));

> r_ad := AffCoord(BF,r_ad); r_ad;

[ 2921750933782650912192440698288560/303427844111737630146608049287359441,

-48196275389508609779308584030224209/42047593363740412523602033206854959 ]

As we can see, pq_ad = r_ad and so we have an example of how the isogeny preserves the addition
law. Note that if now we wanted to use Ead2Ew_iso_eval on p_ad without specifying a u0, we would
also get an isogenous curve and a valid point, just not the curve we started with:

> out_p_w := Ead2Ew_iso_eval(BF,[10513,10578],p_ad); out_p_w;

[*

[ 0, -21091/4, 0, 55603257/8, 0 ],

[ 0, 10513/4, 5289/2 ],

[ 246395809/82944, -435060076913/23887872 ]

*]

> "Cw eq Cw2?", [a1,a2,a3,a4,a6] eq out_p_w[1];

> Cw2 := EllipticCurve(out_p_w[1]); p_w2 := out_p_w[3];

> "p_w2 in Cw?", p_w2 in Cw; "p_w2 in Cw2?", p_w2 in Cw2;

Cw eq Cw2? false

p_w2 in Cw? false

p_w2 in Cw2? true (246395809/82944 : -435060076913/23887872 : 1)

Last but not least, we have an example starting with the Ea,d model: the curve Ca,d : 82x2 + y2 =
1 + 17x2y2. A point on this curve is ptw = (1, 9/4) and so we apply both isogenies to it:

> a := 82; d := 17; p_ad := [1, 9/4];

> out_w := Ead2Ew_iso_eval(BF,[a,d],p_ad); out_w;

[*

[ 0, -99/4, 0, 697/8, 0 ],

[ 0, 41/2, 17/4 ],

[ 1/4, 9/2 ]

*]

> out_ad := Ew2Ead_iso_eval(BF,out_w[1],out_w[3]); out_ad;

[*

Rational Field,

[ 17, 82 ],

[ 72/1393, 1361/1231 ],

0

*]

> "Cad eq Cad1?", [a,d] eq out_ad[2];

> Cad1 := Curve(R3, 1 + out_ad[2][2]*x^2*y^2 - out_ad[2][1]*x^2 - y^2);

> "q_ad in Cad1?", out_ad[3] in Cad1;

Cad eq Cad1? false

q_ad in Cad1? true (72/1393, 1361/1231)
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Although everything computes, there seems to have been a problem since after applying both
Ead2Ew_iso_eval and Ew2Ead_iso_eval, the output curve is not Ca,d. This is due to the fact that
Ew2Ead_iso_eval has computed the correct ui but obtained them in a different order. So specifying the
u_lst fixes this and allows us to see how ptw is doubled through the isogenies:

> out_ad2 := Ew2Ead_iso_eval(BF,out_w[1],out_w[3]: u_lst := out_w[2]);

> out_ad2;

[*

Rational Field,

[ 82, 17 ],

[ 72/1393, 1231/1361 ],

0

*]

> "Cad eq Cad2?", [a,d] eq out_ad2[2];

> Cad2 := Curve(R3, 1 + out_ad2[2][2]*x^2*y^2 - out_ad2[2][1]*x^2 - y^2);

> q_ad2 := out_ad2[3]; "q_ad2 in Cad2?", q_ad2 in Cad2;

> p_ad_db := AffCoord(BF,Ead_AddL_eval(BF,[a,d],

[[p_ad[1],1],[p_ad[2],1]],[[p_ad[1],1],[p_ad[2],1]]));

> "q_ad2 = 2p_ad?", q_ad2 eq p_ad_db;

Cad eq Cad2? true

q_ad2 in Cad2? true (72/1393, 1231/1361)

q_ad2 = 2p_ad? true
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Chapter 4

Other models

In the previous chapters we have studied in depth the Weierstrass, the Edwards and the twisted Edwards
models, their respective addition laws and how they are all related. We have shown how far we have
got studying all that using Magma so further research could be done finding ways to fully prove all the
results using only computer algebra. But of course another possible direction for follow up work would
be to look into the many other elliptic curve models out there. For completeness’ sake, but without going
into too much detail, we will present in this chapter some more models as a way of indeed pointing a
direction into the future work that could be done to keep understanding how all different elliptic curve
models are connected.

If one were to simply compile a list of names for all the models out there that define elliptic curves, they
would soon find themselves submerged in an ocean of new and old models with several generalizations,
twists and modifications to improve different computational specifics. Such is the case for example of
the doubling-oriented and the tripling-oriented Doche–Icart–Kohel forms: they are particular cases of
the Weierstrass model of special interest thanks to their faster multiplication methods [17]. In order to
avoid getting lost in too many specifics for the models to come, here we will focus on just trying to paint
an overview of how several other families of elliptic curves look like in as general terms as possible.

In that spirit, we will start by talking about the Montgomery and Hessian models, followed by the
Jacobi intersections and the Jacobi quartic. At the end we will also mention the family of Huff models.
For each model an addition law will be provided and a projective form, together with a general idea of
how do they relate to at least one other model.

4.1 Montgomery model

In 1987 P. L. Montgomery published his paper Speeding the Pollard and elliptic curve methods of fac-
torization [31], where he studied ways of speeding up said factorization methods. In that paper he
introduced a different parametrization of elliptic curves, later known as the Montgomery curves, and the
Montgomery ladder, a new method of computing the n-th addition of a point P to itself, i.e., nP . As it
happens, the computation of the x coordinate of nP is at the heart of the ECM factorization method, as
well as the Diffie-Hellman key exchange in the context of elliptic curve cryptography. And Montgomery’s
ladder offers an efficient way to compute said coordinate when working with an elliptic curve given in
Montgomery’s form.

In [14] C. Costello and B. Smith elaborate on these topics, referring as well to their cryptographic
applications. From their paper we have the following definitions:

Definition 16. Let K be a field and C an elliptic curve over K, then its Montgomery form is
EA,B : By2 = x3 +Ax2 + x, where A,B ∈ K are such that B(A2 − 4) 6= 0.

Let K be a field, C an elliptic curve over K and (x1 , y1 ), (x2 , y2 ) two points on C. Fix A,B to be such
that A,B ∈ K , B(A2 − 4 ) 6= 0 . Then the addition law of C on its Montgomery form EA,B is as follows:

if P1 = −P2 = (x2 ,−y2 ), then:

P1 + P2 = P1 − P1 = O
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otherwise:

P1 + P2 = (x3 , y3 ) =
(
Bλ2 − (x1 + x2 )−A, λ(x1 − x3 )− y1

)
where:

λ =


y2 − y1
x2 − x1

, if P1 6= ±P2

3x21 + 2Ax1 + 1

2By1
, if P1 = P2

The zero of this addition law is O = (0 : 1 : 0) and the opposite of a point P = (x, y) is −P = (x,−y).
The geometric interpretation of the addition law is the same chord and tangent method used for the
Weierstrass’ model addition law.

We get the following projective formulations from [28], where they also present a complete system of
addition laws for this model. The projective curve equation for (X : Y : Z) ∈ P2 is:

BY 2Z = X3 +AX2Z +XZ2

And the addition law, given two points on the curve P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) ∈ P2,
is:

P1 + P2 = P3 = (X3 : Y3 : Z3) =
(
Bu2vZ1Z2 − (AZ1Z2 +X1Z2 +X2Z1)v3 :

−Bu3Z1Z2 + (AZ1Z2 + 2X1Z2 +X2Z1)uv2 − Y1Z2v
3 : v3Z1Z2

)
where:

(u, v) =

(Y2Z1 − Y1Z2, X2Z1 −X1Z2), if P1 6= P2

(3X2
1 + 2AX1Z1 + Z2

1 , 2BY1Z1), if P1 = P2

Regarding the connection of the Montgomery form to other models, as mentioned before in Section
3.2.3, it is isomorphic to the Weierstrass model and birationally equivalent to the twisted Edwards one.
In [§3, [3]] and in [§2, [14]] one can find more details about said relations.

4.2 Hessian model

The speed of arithmetic calculations on any given model for elliptic curves is a very relevant quality.
Elliptic curves given in different Hessian forms are highly valued thanks to their fast addition formulae.
Already in 1986 D. V. Chudnovsky and G. V. Chudnovsky studied the efficient performance of the Hessian
model addition in [12], corroborated by N.P. Smart in [38] and later by M. Joye and J.-J. Quisquater
in [26], where they also mention its superior speed in elliptic curve scalar multiplication as well as its
memory usage efficiency. Other versions of this model are the generalized Hessian form [20] and the
twisted Hessian model [4], which also stand out for their cost efficient arithmetics.

We will start by presenting the Hessian model. Looking at different articles, one might find two
slightly different ways to define this model. This is due to the fact that it is derived from the Weierstrass
form, as shown in [38], and depending how the parameter D is defined in said derivation, the model can
be defined by the equation x3 + y3 + 1 = 3Dxy with the condition that D3 6= 1, or be defined as follows:

Definition 17. Let K be a field and C an elliptic curve over K, then its Hessian form is ED : x3+y3+1 =
Dxy, where D ∈ K is such that D3 6= 27.

The derivation from the Weierstrass model mentioned above shows that this model is birationally
equivalent to the Weierstrass one. In projective form, given by the usual projective map x = X/Z,
y = Y/Z, the curve equation is the following:

ĒD : X3 + Y 3 + Z3 = DXY Z
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And the addition law in projective coordinates, derived from the chord and tangent method, is given
by this system [38]:

Let K be a field and fix D ∈ K to be such that D3 6= 27 . Let C be an elliptic curve over K defined by
ĒD in P2 . Also let P1 = (X1 : Y1 : Z1 ), P2 = (X2 : Y2 : Z2 ) be two points on the curve. Then the

complete set of addition laws of C is:

P1 + P2 =

{
P3 = (X3 : Y3 : Z3 )

P ′3 = (X ′3 : Y ′3 : Z ′3 )
=

=


(
Y 2

1 X2Z2 −Y 2
2 X1Z1 : X 2

1 Y2Z2 −X 2
2 Y1Z1 : Z 2

1 Y2X2 − Z 2
2 Y1X1

)
, if P1 6= P2(

Y1 (Z 3
1 −X 3

1 ) : X1 (Y 3
1 − Z 3

1 ) : Z1 (X 3
1 −Y 3

1 )
)
, if P1 = P2

The neutral element for this addition law is (1 : −1 : 0) and the opposite of a point P = (X : Y : Z)
is −P = (Y : X : Z). Note that this addition law does not depend on the curve parameter.

Let’s move on to take a quick glance at the generalized and the twisted modifications of this model,
both of which include more isomorphism classes of elliptic curves.

4.2.1 Generalized Hessian model

R. R. Farashahi and M. Joye introduce this model for elliptic curve in [20] and they study different
addition laws for it. The generalized Hessian form for elliptic curves is defined as follows:

Definition 18. Let K be a field and C an elliptic curve over K, then its projective generalized Hessian
form in P2 is ĒC,D : X3 + Y 3 + CZ3 = DXY Z, where C,D ∈ K such that C(27C −D3) 6= 0.

This model doesn’t have a unique point at infinity. Instead, it has the points (1 : −ω : 0) such that
ω3 = 1 at infinity. Based on the addition laws from the Hessian model, the following are the addition
laws for this generalized form:

Let K be a field and fix C ,D ∈ K to be such that C (27C −D3 ) 6= 0 . Let C be an elliptic curve over K
defined by ĒC,D in P2 . Also let P1 = (X1 : Y1 : Z1 ), P2 = (X2 : Y2 : Z2 ) be two points on the curve.

Then the complete set of addition laws of C is:

P1 + P2 =

{
P3 = (X3 : Y3 : Z3 )

P ′3 = (X ′3 : Y ′3 : Z ′3 )
=

=


(
Y 2

1 X2Z2 −Y 2
2 X1Z1 : X 2

1 Y2Z2 −X 2
2 Y1Z1 : Z 2

1 Y2X2 − Z 2
2 Y1X1

)
, if P1 6= P2(

Y1 (CZ 3
1 −X 3

1 ) : X1 (Y 3
1 − CZ 3

1 ) : Z1 (X 3
1 −Y 3

1 )
)
, if P1 = P2

Here the zero of the addition is also (1 : −1 : 0) and given a point P = (X : Y : Z), −P is (Y : X : Z).

In [20] they further work on other addition law options, striving to find a unified addition law. And
so they present the following to be a complete addition law for any elliptic curve in generalized Hessian
form, as long as C is not a cube in K:

P1 +P2 = P3 = (X3 : Y3 : Z3) =
(
CY2Z2Z

2
1 −X1Y1X

2
2 : X2Y2Y

2
1 −CX1Z1Z

2
2 : X2Z2X

2
1 −Y1Z1Y

2
2

)
Note that the condition for completeness for this addition law implies that this addition is not

complete over arbitrary extensions of K, in particular K̄.

They also study the relation to the Weierstrass model, determining that every elliptic curve in Ew
form over a field K with a point of order 3 in E(K) is isomorphic over K̄ to a curve in generalized Hessian
form.
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4.2.2 Twisted Hessian model

D. J. Bernstein, T. Lange et al. present in [4] a twist over the Hessian model so it looks like this:

Definition 19. Let K be a field and C an elliptic curve over K, then its projective twisted Hessian form
in P2 is ĒA,D : AX3 + Y 3 + Z3 = DXY Z, where A,D ∈ K such that A(27A−D3) 6= 0.

The point at infinity for this model is (0 : −1 : 1) and, as it can be easily seen, it is similar to the
generalized Hessian model, up to the order of the coordinates. In spite of their similarities, both models
present different advantages as for example: the generalized Hessian is fully symmetric on X and Y and
the twisted Hessian has a finite point as neutral element.

The system of addition laws for this model is the following:

Let K be a field and fix A,D ∈ K to be such that A(27A−D3 ) 6= 0 and A is not a cube in K . Let C be
an elliptic curve over K defined by ĒA,D in P2 . Also let P1 = (X1 : Y1 : Z1 ), P2 = (X2 : Y2 : Z2 ) be

two points on the curve. Then the complete set of addition laws of C is:

P1 + P2 =

{
P3 = (X3 : Y3 : Z3 )

P ′3 = (X ′3 : Y ′3 : Z ′3 )
=

=


(
X 2

1 Y2Z2 −X 2
2 Y1Z1 : Z 2

1 X2Y2 − Z 2
2 X1Y1 : Y 2

1 X2Z2 −Y 2
2 X1Z1

)
, if defined(

Z 2
2 X1Z1 −Y 2

1 X2Y2 : Y 2
2 Y1Z1 −AX 2

1 X2Z2 : AX 2
2 X1Y1 − Z 2

1 Y2Z2

)
, if defined

Furthermore, it holds that:

(X3 : Y3 : Z3) = (0 : 0 : 0)⇔ P2 = (ω2X1 : ωY1 : Z1) for some ω ∈ K such that w3 = 1

(X ′3 : Y ′3 : Z ′3) = (0 : 0 : 0)⇔ P2 = (Z1 : γ2X1 : γY1) for some γ ∈ K such that γ3 = a

In [Thm. 4.5, [4]] they prove that (X3 : Y3 : Z3) = (0 : 0 : 0) = (X ′3 : Y ′3 : Z ′3) never happens as long as
A is not a cube in K. So in that case, the formulae above define a complete system of addition laws. The
neutral element for this addition law system is (0 : −1 : 1) and the opposite of a point P = (X : Y : Z) is
−P = (X : Z : Y ). The twisted Hessian and the Weierstrass models are both isomorphic and isogenous
as it is shown in [§5, [4]].

4.3 Jacobi quadric intersections

Aside from speed, another relevant aspect of an addition law of an elliptic curve is if it is unified, i.e., if
the same formulae can be used for point doubling and for adding two different points. That is due to
the fact that using addition laws that are not unified for elliptic curve systems in cryptography makes
said systems susceptible to certain side-channel attacks [30]. As it turns out, the Jacobi models have a
unified addition law so these models became of great interest in the early 2000s. Here we will show the
model consisting of a quadric intersection and in the next section the Jacobi quartic will be explained.

One way to embed an elliptic curve given by a short Weierstrass equation into the projective space
P3 is by the following intersection of quadrics:{

X2 − TZ = 0

Y 2 − aXZ − bZ2 − TX = 0

The embedding is given by the map (x, y) 7→ (X : Y : Z : T ) = (x : y : 1 : x2). In [30] P.-Y. Liardet
and N.P. Smart give a unified addition law for this model, but they already point out that the formulae
are too complicated to be of use in any real life implementation. And so they move on to give another
intersection of quadrics with simpler yet still unified addition formulae:{

X2 + Y 2 = T 2

kX2 + Z2 = T 2
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The curve defined by this intersection is parametrized by a Jacobi elliptic function [pg. 413, [12]] and
that is where this model gets its name. Furthermore, said curve corresponds to an elliptic curve in short
Weierstrass form with three points of order two. More specifically, it corresponds to an elliptic curve
given by the following equation via the map (x, y) 7→ (−2y, x2 − λ, x2 + 2xλ + λ, x2 + 2x + λ), where
λ = 1− k:

y2 = x(x+ 1)(x+ λ)

This special case of the Weierstrass model is known as the Legendre form. As it is explained in [§3,
[30]], any curve with three points of order 2 given by a short Weierstrass equation can be written in
Legendre form. Note that we have also worked with this special case of the Weierstrass model when
deriving the isogeny between this model and the twisted Edwards one in Section 3.2.3.

Now that we know where it comes from, let us give the formal definition for the Jacobi model:

Definition 20. Let K be a field such that char(K) 6= 2, 3 and C an elliptic curve over K, then its
projective Jacobi form Ēk is given by the intersection of X2 + Y 2 − T 2 = 0 and kX2 + Z2 − T 2 = 0,
where k ∈ K\{0,±1}.

The unified addition law for this model is the following [§3, [30]], [§2, [7]]:

Let K be a field such that char(K) 6= 2, 3 and fix k ∈ K to be such that k 6= 0,±1. Let C be an elliptic
curve over K defined by Ēk in P3 . Also let P1 = (X1 : Y1 : Z1 : T1 ), P2 = (X2 : Y2 : Z2 : T2 ) be two

points on the curve. Then the addition law of C is:

P1 + P2 = P3 = (X3 : Y3 : Z3 : T3 ) =

=
(
T1Y2X1Z2 + Z1X2Y1T2 : T1Y2Y1T2 − Z1X2X1Z2 :

T1Z1T2Z2 − k2X1Y1X2Y2 : (T1Y2 )2 + (Z1X2 )2
)

The neutral element of this addition law is (0 : 1 : 1 : 1) and the inverse of a point P = (X : Y : Z : T )
is −P = (−X : Y : Z : T ). And the three points of order 2 are (0 : −1 : 1 : 1), (0 : 1 : −1 : 1) and
(0 : 1 : 1 : −1).

There is a twisted version of this model by R. Feng, M. Nie and H. Wu given in [21]. In their paper
they introduce the twisted Jacobian intersections, which have the model defined above as a special case.
Furthermore, they provide a new addition law independent of the curve parameters and with faster
performance.

4.4 Extended Jacobi quartic

In the spirit of finding faster and more memory efficient arithmetics on the Jacobi form studied by [30],
O. Bille and M. Joye propose in [7] to work with a quartic instead of an intersection of quadrics. This
allows to work in the projective space P2 instead of P3, which reduces the number of variables and
therefore makes the addition computations more efficient.

One of the quartics Jacobi studied is the following, where k 6= 0,±1:

y2 = (1− x2)(1− k2x2)

This elliptic curve can be parametrized by the same elliptic functions that the Jacobi intersection
from the previous section. From its parametrization, an addition law can also be derived as it is shown
in [§2, [7]]. However, in said paper they propose to work with a more general equation, which defines
the extended Jacobi quartic model:

Definition 21. Let K be a field such that char(K) 6= 2, 3 and C an elliptic curve over K, then its
projective extended Jacobi quartic form is Ēε,δ : Y 2 = εX4 − 2δX2Z2 + Z4, where ε, δ ∈ K such that
ε 6= 0, 1 and δ 6= 1/2, 1.

Note that the Jacobi quartic shown before is included in this extended version as the special case
when ε = k2, δ = (1 + k2)/2. The addition law for this extended model is as follows:

Let K be a field such that char(K) 6= 2, 3 and fix ε, δ ∈ K to be such that ε 6= 0, 1 and δ 6= 1/2, 1. Let C
be an elliptic curve over K defined by Ēε,δ in P2 . Also let P1 = (X1 : Y1 : Z1 ), P2 = (X2 : Y2 : Z2 ) be

two points on the curve. Then the addition law of C is:
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P1 + P2 = P3 = (X3 : Y3 : Z3 ) =

=
(

X1Z1Y2 + Y1X2Z2 :
(
(Z1Z2 )2 + ε(X1X2 )2

)(
Y1Y2 − 2 δX1X2Z1Z2

)
+

+ 2 εX1X2Z1Z2 (X 2
1 Z 2

2 + Z 2
1 X 2

2 ) : (Z1Z2 )2 − ε(X1X2 )2
)

This addition law is unified, as the one for the Jacobi intersection model. Its neutral element is
(0 : 1 : 1) and the opposite of a point P = (X : Y : Z) is −P = (−X : Y : Z). In [§3, [7]] they
show the relation between this quartic model and the Jacobi form from the previous section. They also
explain how any elliptic curve in short Weierstrass form with a point of order 2 can be expressed in Ēε,δ
form, where the point of order 2 is (0 : −1 : 1). Furthermore, we can find a detailed study of how the
Weierstrass model and the extended Jacobi one are connected in [39].

H. Hisil, K. Wong, et al. study this model further in [23], where they work with the homogeneous
version of the Jacobi and the extended Jacobi quartics. They also show the pertinent arithmetics for
them and study how much faster they are, as compared to other models like the Weierstrass and the
Edwards ones.

4.5 Huff model

G. B. Huff published in 1948 an article where, in order to study a diophantine problem, he introduced
a model for elliptic curves [25]. But it wouldn’t be until 2010 that this model would be studied as such
by M. Joye, M. Tibouchi and D. Vergnaud [27]. They begin their paper by presenting the Huff model
for elliptic curves and a unified addition law for it, both of which we show here:

Definition 22. Let K be a field such that char(K) 6= 2 and C an elliptic curve over K, then its projective
Huff form in P2 is Ēa,b : aX(Y 2 − Z2) = bY (X2 − Z2), where a, b ∈ K\{0} such that a2 6= b2.

Let K be a field such that char(K ) 6= 2 , C an elliptic curve over K and (X1 : Y1 : Z1 ), (X2 : Y2 : Z2 )
two points on C. Fix a, b to be such that a, b ∈ K\{0}, a2 6= b2 . Then the addition law of C on its

Huff form Ea,b is as follows:

(X1 : Y1 : Z1 ) + (X2 : Y2 : Z2 ) = (X3 : Y3 : Z3 ) =

=
(
(X1Z2 + X2Z1 )(Y1Y2 + Z1Z2 )2 (Z1Z2 −X1X2 ) :

(Y1Z2 + Y2Z1 )(X1X2 + Z1Z2 )2 (Z1Z2 −Y1Y2 ) :

(Z 2
1 Z 2

2 −X 2
1 X 2

2 )(Z 2
1 Z 2

2 −Y 2
1 Y 2

2 )
)

This addition law is also derived via the chord and tangent method explained for the Weierstrass
model, but using the point (0 : 0 : 1) instead of the infinity point as neutral element. So the zero of this
addition law is (0 : 0 : 1), and the inverse of a point P = (X : Y : Z) is −P = (X : Y : −Z). Two points
P1, P2 on the curve form an exceptional pair iff X1X2 = ±Z1Z2 or Y1Y2 = ±Z1Z2. Note that, as in the
Hessian model case, this addition law does not depend on the curve parameters. In [Thm. 2, [27]] they
study the relation of the Huff model to other elliptic curves.

The paper also includes different generalizations and extensions on this model, for which they also
provide addition laws. Furthermore, they also include formulae on how to compute Tate pairings using
this model. This paper is also the starting point of the study of this model and its variants. As examples
of follow-up work that has been done in this matter there are the generalization studied by H. Wu and R.
Feng [40] that extends the number of isomorphism curve classes covered by the model and the follow-up
work in [33] by N. G. Orhon and H. Hisil to speed up several arithmetics on the model to make it
competitive with respect to other models. There are also different studies on the binary case and the
elliptic curve cryptography architectures related to it, like [11] and [34].
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Appendix: functions in Magma

A Addition laws

A.1 Functions for symbolic checks

1 Ew_AddL_b2calc := function(BF,lst,abc_lst)

2

3 //abc_lst --> case 1: [0,0,1]; case 2: [0,1,0]; case 3: [1,0,0];

4

5 AAA<a1,a2,a3,a4,a6, A200200, A200110, A200101, A200011, A200020,

6 A200002, A110200, A110110, A110101, A110011, A110020, A110002, A101200, A101110, A101101, A101011,

A101020, A101002, A011200, A011110,

7 A011101, A011011, A011020, A011002, A020200, A020110, A020101, A020011, A020020, A020002, A002200,

A002110, A002101, A002011, A002020,

8 A002002 > := FunctionField(BF, 41);

9

10 if #lst eq 2 then

11 a1 := AAA ! 0; a2 := AAA ! 0; a3 := AAA ! 0;

12 a4 := AAA ! lst[1]; a6 := AAA ! lst[2];

13 elif #lst eq 5 then

14 a1 := AAA ! lst[1]; a2 := AAA ! lst[2]; a3 := AAA ! lst[3];

15 a4 := AAA ! lst[4]; a6 := AAA ! lst[5];

16 else

17 return "Error: wrong number of coeffs";

18 end if;

19

20 RRR<X1,Y1,Z1, X2,Y2,Z2> := PolynomialRing(AAA,6);

21 I := ideal< RRR |

22 Y1^2*Z1+a1*X1*Y1*Z1+a3*Y1*Z1^2-X1^3-a2*X1^2*Z1-a4*X1*Z1^2-a6*Z1^3,

23 Y2^2*Z2+a1*X2*Y2*Z2+a3*Y2*Z2^2-X2^3-a2*X2^2*Z2-a4*X2*Z2^2-a6*Z2^3 >;

24 Q<x1,y1,z1,x2,y2,z2> := quo<RRR | I>;

25

26 F := A200200*X1^2*X2^2 + A200110*X1^2*X2*Y2 + A200101*X1^2*X2*Z2 + A200011*X1^2*Y2*Z2 + A200020*X1^2*Y2

^2 + A200002*X1^2*Z2^2 + A110200*X1*Y1*X2^2 + A110110*X1*Y1*X2*Y2 + A110101*X1*Y1*X2*Z2 + A110011*X1*

Y1*Y2*Z2 + A110020*X1*Y1*Y2^2 + A110002*X1*Y1*Z2^2 + A101200*X1*Z1*X2^2 + A101110*X1*Z1*X2*Y2 +

A101101*X1*Z1*X2*Z2 + A101011*X1*Z1*Y2*Z2 + A101020*X1*Z1*Y2^2 + A101002*X1*Z1*Z2^2 + A011200*Y1*Z1*

X2^2 + A011110*Y1*Z1*X2*Y2 + A011101*Y1*Z1*X2*Z2 + A011011*Y1*Z1*Y2*Z2 + A011020*Y1*Z1*Y2^2 + A011002

*Y1*Z1*Z2^2 + A020200*Y1^2*X2^2 + A020110*Y1^2*X2*Y2 + A020101*Y1^2*X2*Z2 + A020011*Y1^2*Y2*Z2 +

A020020*Y1^2*Y2^2 + A020002*Y1^2*Z2^2 + A002200*Z1^2*X2^2 + A002110*Z1^2*X2*Y2 + A002101*Z1^2*X2*Z2 +

A002011*Z1^2*Y2*Z2 + A002020*Z1^2*Y2^2 + A002002*Z1^2*Z2^2;

27

28 monF := Monomials(F);

29

30 B<b1,b2,b3,b4,b6> := FunctionField(BF,5);

31 HHH<

32 H200200, H200110, H200101, H200011, H200020, H200002,

33 H110200, H110110, H110101, H110011, H110020, H110002,

34 H101200, H101110, H101101, H101011, H101020, H101002,

35 H011200, H011110, H011101, H011011, H011020, H011002,

36 H020200, H020110, H020101, H020011, H020020, H020002,

37 H002200, H002110, H002101, H002011, H002020, H002002> := PolynomialRing(B, 36);

38

39 h := hom< AAA->HHH | b1,b2,b3,b4,b6,

40 H200200, H200110, H200101, H200011, H200020, H200002,

41 H110200, H110110, H110101, H110011, H110020, H110002,

42 H101200, H101110, H101101, H101011, H101020, H101002,

43 H011200, H011110, H011101, H011011, H011020, H011002,

44 H020200, H020110, H020101, H020011, H020020, H020002,

45 H002200, H002110, H002101, H002011, H002020, H002002 >;
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46

47 binv := hom<B->AAA |a1,a2,a3,a4,a6>;

48 hinv := hom< HHH->RRR | binv,

49 X1^2*X2^2, X1^2*X2*Y2, X1^2*X2*Z2, X1^2*Y2*Z2, X1^2*Y2^2, X1^2*Z2^2, X1*Y1*X2^2, X1*Y1*X2*Y2, X1*Y1*X2*

Z2, X1*Y1*Y2*Z2, X1*Y1*Y2^2, X1*Y1*Z2^2, X1*Z1*X2^2, X1*Z1*X2*Y2, X1*Z1*X2*Z2, X1*Z1*Y2*Z2, X1*Z1*Y2

^2, X1*Z1*Z2^2, Y1*Z1*X2^2, Y1*Z1*X2*Y2, Y1*Z1*X2*Z2, Y1*Z1*Y2*Z2, Y1*Z1*Y2^2, Y1*Z1*Z2^2, Y1^2*X2^2,

Y1^2*X2*Y2, Y1^2*X2*Z2, Y1^2*Y2*Z2, Y1^2*Y2^2, Y1^2*Z2^2, Z1^2*X2^2, Z1^2*X2*Y2, Z1^2*X2*Z2, Z1^2*Y2

*Z2, Z1^2*Y2^2, Z1^2*Z2^2>;

50

51 V := VectorSpace(B, 36);

52

53 kappa := (Y1*Z2+Y2*Z1+a1*X2*Z1+a3*Z1*Z2)/(X1*Z2-X2*Z1);

54 mu := -(Y1*X2+Y2*X1+a1*X1*X2+a3*X1*Z2)/(X1*Z2-X2*Z1);

55 sXZ := kappa^2+a1*kappa-(X1*Z2+X2*Z1)/(Z1*Z2)-a2;

56 sYZ := -(kappa+a1)*sXZ-mu-a3;

57 lambda := (Y1*Z2-Y2*Z1)/(X1*Z2-X2*Z1);

58 nu := -(Y1*X2-Y2*X1)/(X1*Z2-X2*Z1);

59 f := lambda^2+a1*lambda-(X1*Z2+X2*Z1)/(Z1*Z2)-a2;

60 g := -(lambda+a1)*f-nu-a3;

61 Z0 := (X1*Z2-Z1*X2)^3/(Z1*Z2);

62 a := RRR!abc_lst[1]; b := RRR!abc_lst[2]; c := RRR!abc_lst[3];

63

64 ABC := ( RRR ! Q ! (RRR ! (a*Numerator(sXZ*Z0) + b*Numerator(sYZ*Z0) + c*Z1*Z2*Numerator(Z0))) div (Z1

^2*Z2^2));

65 Z3 := -ABC;

66

67 coefZ3 := Coefficients(Z3);

68 monZ3 := Monomials(Z3);

69 Z3_ci := [<coefZ3[i],Index(monF,monZ3[i])>:i in [1..#coefZ3]];

70

71 Nx3 := (RRR ! Q ! (Numerator(f)*ABC)) div (Z1*Z2);

72 Fx3 := F*(X1*Z2-Z1*X2)^2 + Nx3;

73 Qx3 := Q ! Fx3;

74 Cx3 := Coefficients(Qx3);

75 Ex3 := [ [B | Coefficient(h(Cx3[i]),j,1) :j in [1..36]] : i in [1..88] ];

76 Mx3 := Matrix(B,88,36, Ex3);

77

78 Wx3 := [ h(Cx3[i])-&+[Ex3[i][j]*HHH.j : j in [1..36]] : i in [1..88]];

79 Vx3 := Vector(B, 88, Wx3);

80

81 Sx3, Kx3 := Solution(Transpose(Mx3), Vx3);

82 X3 := -hinv(&+[ Sx3[i]*HHH.i : i in [1..36]]);

83

84 coefX3 := Coefficients(X3);

85 monX3 := Monomials(X3);

86 X3_ci := [<coefX3[i],Index(monF,monX3[i])>:i in [1..#coefX3]];

87

88 Ny3 := RRR ! Q ! (Numerator(g)*ABC) div (Z1*Z2);

89 Fy3 := F*(X1*Z2-Z1*X2)^3 + Ny3;

90 Qy3 := Q ! Fy3;

91 Cy3 := Coefficients(Qy3);

92

93 Ey3 := [ [B | Coefficient(h(Cy3[i]),j,1) :j in [1..36]] : i in [1..88] ];

94 My3 := Matrix(B,88,36, Ey3);

95

96 Wy3 := [ h(Cy3[i])-&+[Ey3[i][j]*HHH.j : j in [1..36]] : i in [1..88]];

97 Vy3 := Vector(B, 88, Wy3);

98

99 Sy3, Ky3 := Solution(Transpose(My3), Vy3);

100 Y3 := -hinv(&+[ Sy3[i]*HHH.i : i in [1..36]]);

101

102 coefY3 := Coefficients(Y3);

103 monY3 := Monomials(Y3);

104 Y3_ci := [<coefY3[i],Index(monF,monY3[i])>:i in [1..#coefY3]];

105

106 return [*[X3,Y3,Z3],[X3_ci,Y3_ci,Z3_ci], monF*];

107 end function;

Function 1: Ew AddL b2calc, discussed in 1.2.2

1 Ew_AddL := function(BF,lst)

2 R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

3 R2<X1,Y1,Z1, X2,Y2,Z2> := PolynomialRing(R1,6);
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4

5 if #lst eq 2 then

6 a1 := R1 ! 0; a2 := R1 ! 0; a3 := R1 ! 0;

7 a4 := R1 ! lst[1]; a6 := R1 ! lst[2];

8 elif #lst eq 5 then

9 a1 := R1 ! lst[1]; a2 := R1 ! lst[2]; a3 := R1 ! lst[3];

10 a4 := R1 ! lst[4]; a6 := R1 ! lst[5];

11 else

12 return "Error: wrong number of coeffs";

13 end if;

14

15 X3_001 := R2!(-a2*X1^2*X2*Z2 + a1*X1^2*Y2*Z2 - a4*X1^2*Z2^2 + 2*X1*Y1*Y2*Z2 + a3*X1*Y1*Z2^2 + a2*X1*Z1*

X2^2 + X1*Z1*Y2^2 + 2*a3*X1*Z1*Y2*Z2 - 3*a6*X1*Z1*Z2^2 - Y1^2*X2*Z2 - a1*Y1*Z1*X2^2 - 2*Y1*Z1*X2*Y2 -

2*a3*Y1*Z1*X2*Z2 + a4*Z1^2*X2^2 - a3*Z1^2*X2*Y2 + 3*a6*Z1^2*X2*Z2);

16

17 Y3_001 := R2!(-3*X1^2*X2*Y2 + (a1*a2 - 3*a3)*X1^2*X2*Z2 + (-a1^2 - a2)*X1^2*Y2*Z2 + (a1*a4 - a2*a3)*X1

^2*Z2^2 + 3*X1*Y1*X2^2 + 2*a2*X1*Y1*X2*Z2 - 2*a1*X1*Y1*Y2*Z2 + a4*X1*Y1*Z2^2 + (-a1*a2 + 3*a3)*X1*Z1*

X2^2 - 2*a2*X1*Z1*X2*Y2 + (-2*a1*a3 - 2*a4)*X1*Z1*Y2*Z2 + (3*a1*a6 - a3*a4)*X1*Z1*Z2^2 - Y1^2*Y2*Z2 +

(a1^2 + a2)*Y1*Z1*X2^2 + 2*a1*Y1*Z1*X2*Y2 + (2*a1*a3 + 2*a4)*Y1*Z1*X2*Z2 + Y1*Z1*Y2^2 + (a3^2 + 3*a6

)*Y1*Z1*Z2^2 + (-a1*a4 + a2*a3)*Z1^2*X2^2 - a4*Z1^2*X2*Y2 + (-3*a1*a6 + a3*a4)*Z1^2*X2*Z2 + (-a3^2 -

3*a6)*Z1^2*Y2*Z2);

18

19 Z3_001 := R2!(3*X1^2*X2*Z2 + a2*X1^2*Z2^2 - a1*X1*Y1*Z2^2 - 3*X1*Z1*X2^2 + a4*X1*Z1*Z2^2 - Y1^2*Z2^2 -

a3*Y1*Z1*Z2^2 - a2*Z1^2*X2^2 + a1*Z1^2*X2*Y2 - a4*Z1^2*X2*Z2 + Z1^2*Y2^2 + a3*Z1^2*Y2*Z2);

20

21

22 X3_010 := R2!(-a1*a2*X1^2*X2^2 - a2*X1^2*X2*Y2 + (-a1^2*a3 - 2*a1*a4)*X1^2*X2*Z2 + (-a1*a3 - a4)*X1^2*Y2

*Z2 + (-a1*a3^2 - 3*a1*a6)*X1^2*Z2^2 + (a1^2 - a2)*X1*Y1*X2^2 + 2*a1*X1*Y1*X2*Y2 - 2*a4*X1*Y1*X2*Z2 +

X1*Y1*Y2^2 + (-a3^2 - 3*a6)*X1*Y1*Z2^2 + (-a1*a4 - a2*a3)*X1*Z1*X2^2 - 2*a4*X1*Z1*X2*Y2 + (-2*a1*a3

^2 - 6*a1*a6 - 2*a3*a4)*X1*Z1*X2*Z2 + (-2*a3^2 - 6*a6)*X1*Z1*Y2*Z2 + (-a1^3*a6 + a1^2*a3*a4 - a1*a2*

a3^2 - 4*a1*a2*a6 + a1*a4^2 - a3^3 - 3*a3*a6)*X1*Z1*Z2^2 + a1*Y1^2*X2^2 + Y1^2*X2*Y2 + a3*Y1^2*X2*Z2

+ (a1*a3 - a4)*Y1*Z1*X2^2 + 2*a3*Y1*Z1*X2*Y2 - 6*a6*Y1*Z1*X2*Z2 + (-a1^2*a6 + a1*a3*a4 - a2*a3^2 - 4*

a2*a6 + a4^2)*Y1*Z1*Z2^2 - a3*a4*Z1^2*X2^2 - 3*a6*Z1^2*X2*Y2 + (-a3^3 - 6*a3*a6)*Z1^2*X2*Z2 + (-a1^2*

a6 + a1*a3*a4 - a2*a3^2 - 4*a2*a6 + a4^2)*Z1^2*Y2*Z2 + (-a1^2*a3*a6 + a1*a3^2*a4 - a2*a3^3 - 4*a2*a3*

a6 + a3*a4^2)*Z1^2*Z2^2);

23

24 Y3_010 := R2!((-a2^2 + 3*a4)*X1^2*X2^2 + (a1^2*a4 - 2*a1*a2*a3 - a2*a4 + 3*a3^2 + 9*a6)*X1^2*X2*Z2 + (3*

a1^2*a6 - 2*a1*a3*a4 + a2*a3^2 + 3*a2*a6 - a4^2)*X1^2*Z2^2 + (a1*a2 - 3*a3)*X1*Y1*X2^2 + (2*a1*a4 -

2*a2*a3)*X1*Y1*X2*Z2 + (3*a1*a6 - a3*a4)*X1*Y1*Z2^2 + (-a2*a4 + 9*a6)*X1*Z1*X2^2 + (6*a1^2*a6 - 4*a1*

a3*a4 + 2*a2*a3^2 + 12*a2*a6 - 4*a4^2)*X1*Z1*X2*Z2 + (a1^4*a6 - a1^3*a3*a4 + a1^2*a2*a3^2 + 5*a1^2*a2

*a6 - a1^2*a4^2 - a1*a2*a3*a4 - a1*a3^3 - 3*a1*a3*a6 + a2^2*a3^2 + 4*a2^2*a6 - a2*a4^2 - a3^2*a4 - 3*

a4*a6)*X1*Z1*Z2^2 + a1*Y1^2*X2*Y2 + Y1^2*Y2^2 + a3*Y1^2*Y2*Z2 + (a1*a4 - a2*a3)*Y1*Z1*X2^2 + (6*a1*a6

- 2*a3*a4)*Y1*Z1*X2*Z2 + (a1^3*a6 - a1^2*a3*a4 + a1*a2*a3^2 + 4*a1*a2*a6 - a1*a4^2 - a3^3 - 3*a3*a6)

*Y1*Z1*Z2^2 + (3*a2*a6 - a4^2)*Z1^2*X2^2 + (a1^2*a2*a6 - a1*a2*a3*a4 + 3*a1*a3*a6 + a2^2*a3^2 + 4*a2

^2*a6 - a2*a4^2 - 2*a3^2*a4 - 3*a4*a6)*Z1^2*X2*Z2 + (a1^3*a3*a6 - a1^2*a3^2*a4 + a1^2*a4*a6 + a1*a2*

a3^3 + 4*a1*a2*a3*a6 - 2*a1*a3*a4^2 + a2*a3^2*a4 + 4*a2*a4*a6 - a3^4 - 6*a3^2*a6 - a4^3 - 9*a6^2)*Z1

^2*Z2^2);

25

26 Z3_010 := R2!(3*a1*X1^2*X2^2 + 3*X1^2*X2*Y2 + (a1^3 + 2*a1*a2)*X1^2*X2*Z2 + (a1^2 + a2)*X1^2*Y2*Z2 + (a1

^2*a3 + a1*a4)*X1^2*Z2^2 + 3*X1*Y1*X2^2 + (2*a1^2 + 2*a2)*X1*Y1*X2*Z2 + 2*a1*X1*Y1*Y2*Z2 + (2*a1*a3 +

a4)*X1*Y1*Z2^2 + (a1*a2 + 3*a3)*X1*Z1*X2^2 + 2*a2*X1*Z1*X2*Y2 + (2*a1^2*a3 + 2*a1*a4 + 2*a2*a3)*X1*

Z1*X2*Z2 + (2*a1*a3 + 2*a4)*X1*Z1*Y2*Z2 + (2*a1*a3^2 + 3*a1*a6 + a3*a4)*X1*Z1*Z2^2 + a1*Y1^2*X2*Z2 +

Y1^2*Y2*Z2 + a3*Y1^2*Z2^2 + a2*Y1*Z1*X2^2 + (2*a1*a3 + 2*a4)*Y1*Z1*X2*Z2 + Y1*Z1*Y2^2 + 2*a3*Y1*Z1*

Y2*Z2 + (2*a3^2 + 3*a6)*Y1*Z1*Z2^2 + a2*a3*Z1^2*X2^2 + a4*Z1^2*X2*Y2 + (a1*a3^2 + 2*a3*a4)*Z1^2*X2*Z2

+ (a3^2 + 3*a6)*Z1^2*Y2*Z2 + (a3^3 + 3*a3*a6)*Z1^2*Z2^2);

27

28 return [[X3_001,Y3_001,Z3_001],[X3_010,Y3_010,Z3_010]];

29 end function;

Function 2: Ew AddL, discussed in §1.2.3

1 Ead_AddL := function(BF,lst : except := false)

2

3 if except then

4 R1<a,d,sa,sd> := FunctionField(BF,4);

5 else

6 R1<a,d> := FunctionField(BF,2);

7 end if;

8

9 R2<X1,Y1,Z1,T1, X2,Y2,Z2,T2> := PolynomialRing(R1,8);

10 if #lst eq 2 then

11 a := R1 ! lst[1]; d := R1 ! lst[2];

12 else
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13 return "Error: wrong number of coeffs";

14 end if;

15

16 X3_o := R2 ! X1*Y2*Z2*T1 + X2*Y1*Z1*T2;

17 Z3_o := R2 ! Z1*Z2*T1*T2 + d*X1*X2*Y1*Y2;

18 Y3_o := R2 ! Y1*Y2*Z1*Z2 - a*X1*X2*T1*T2;

19 T3_o := R2 ! Z1*Z2*T1*T2 - d*X1*X2*Y1*Y2;

20

21 X3_d := R2 ! X1*Y1*Z2*T2 + X2*Y2*Z1*T1;

22 Z3_d := R2 ! a*X1*X2*T1*T2 + Y1*Y2*Z1*Z2;

23 Y3_d := R2 ! X1*Y1*Z2*T2 - X2*Y2*Z1*T1;

24 T3_d := R2 ! X1*Y2*Z2*T1 - X2*Y1*Z1*T2;

25

26 return [[[X3_o, Z3_o], [Y3_o, T3_o]],[[X3_d, Z3_d], [Y3_d, T3_d]]];

27 end function;

Function 3: Ead AddL, discussed in 3.3.2

A.2 Functions for point addition: based on geometric interpretation

1 Ew_AddL_geom := function(BF,lst,P,Q)

2

3 R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

4 R2<X,Y,Z> := ProjectiveSpace(R1,2);

5 O := R2![0,1,0];

6

7 //Get the coeffs

8 if #lst eq 2 then

9 a1 := R1 ! 0; a2 := R1 ! 0; a3 := R1 ! 0;

10 a4 := R1 ! lst[1]; a6 := R1 ! lst[2];

11 elif #lst eq 5 then

12 a1 := R1 ! lst[1]; a2 := R1 ! lst[2]; a3 := R1 ! lst[3];

13 a4 := R1 ! lst[4]; a6 := R1 ! lst[5];

14 else

15 return "Error: wrong number of coeffs";

16 end if;

17

18 // Get the coordinates

19 Xp := R1 ! P[1]; Yp := R1 ! P[2]; Zp := R1 ! P[3]; P := R2![Xp,Yp,Zp];

20 Xq := R1 ! Q[1]; Yq := R1 ! Q[2]; Zq := R1 ! Q[3]; Q := R2![Xq,Yq,Zq];

21

22 // Define the Ew

23 C := Curve(R2, (Y^2)*Z + a1*X*Y*Z + a3*Y*Z^2 - X^3-a2*(X^2)*Z-a4*X*Z^2 - a6*Z^3);

24

25 // Compute the coeffs of the line and define it

26 // We define the line as a curve because it makes the intersection easier

27 if (P eq Q) and (Type(Rationals()) eq Type(BF)) and (a1 eq 0) and (a3 eq 0) then

28

29 L := Curve(R2,X*Zp - Xp*Z);

30

31 elif P eq Q then

32

33 l := (3*Xp^2+2*a2*Xp*Zp+a4*Zp^2-a1*Yp*Zp)/(2*Yp*Zp+a1*Xp*Zp+a3*Zp^2);

34 n := (-Xp^3+a4*Xp*Zp^2+2*a6*Zp^3-a3*Yp*Zp^2)/(2*Yp*Zp^2+a1*Xp*Zp^2+a3*Zp^3);

35 L := Curve(R2,Y - l*X - n*Z);

36

37 elif (Xp eq Xq) and (Zp eq Zq) and ((Yp eq - Yq-a1*Xq-a3*Zq) or (Yq eq - Yp-a1*Xp-a3*Zp)) then

38

39 L := Curve(R2,X*Zp - Xp*Z);

40

41 elif P eq O then

42

43 L := Curve(R2,X*Zq - Xq*Z);

44

45 elif Q eq O then

46

47 L := Curve(R2,X*Zp - Xp*Z);

48

49 else

50 l := (Zp*Yq - Yp*Zq)/(Xq*Zp-Xp*Zq); n := (Yp*Xq - Yq*Xp)/(Xq*Zp-Xp*Zq);

51 L := Curve(R2,Y - l*X - n*Z);

52 end if;

53
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54 // Get the points in the intersection

55 pts := Points(Intersection(C,L));

56

57 // This should only contain R

58 if P eq Q then

59 R_lst := pts diff Seqset([P,Q,O]);

60 else

61 R_lst := pts diff Seqset([P,Q]);

62 end if;

63

64 // In case we have a special situation, we need this.

65 if #R_lst ne 1 then

66 nmrs := [IntersectionNumber(L,C,pts[i]) : i in [1..#pts]];

67 i := Index(nmrs,2);

68 if i ne 0 then

69 R := pts[i];

70 else

71 return "Error: something went wrong in the intersection.";

72 end if;

73 else

74 R := R_lst[1];

75 end if;

76

77 if R eq O then

78 return R;

79 else

80 Xr := R[1]; Zr := R[3];

81 Lp := Curve(R2,X*Zr - Xr*Z);

82 pts := Points(Intersection(C,Lp));

83 Rp_lst := pts diff Seqset([R,O]);

84 if #Rp_lst ne 1 then

85 nmrs := [IntersectionNumber(Lp,C,pts[i]) : i in [1..#pts]];

86 i := Index(nmrs,2);

87 if i ne 0 then

88 Rp := pts[i];

89 else

90 return "Error: something went wrong in the intersection.";

91 end if;

92 else

93 Rp := Rp_lst[1];

94 end if;

95 end if;

96

97 return Rp;

98

99 end function;

Function 4: Ew AddL geom, mentioned in §1.2.1

1 Ead_AddL_geom := function(BF,lst,P,Q)

2

3 R1<a,d> := FunctionField(BF,2);

4 R2<X,Y,Z> := ProjectiveSpace(R1,2);

5 Op := R2 ! [0,-1,1]; O1 := R2![1,0,0]; O2 := R2![0,1,0];

6

7 // Get the coeffs

8 if #lst eq 2 then

9 a := R1!lst[1]; d := R1!lst[2];

10 else

11 return "Error: wrong number of coeffs";

12 end if;

13

14 // Get the coordinates

15 Xp := R1 ! P[1]; Yp := R1 ! P[2]; Zp := R1 ! P[3]; P := R2![Xp,Yp,Zp];

16 Xq := R1 ! Q[1]; Yq := R1 ! Q[2]; Zq := R1 ! Q[3]; Q := R2![Xq,Yq,Zq];

17

18 // Define the Ead curve

19 Crv := Curve(R2, (a*(X^2) + (Y^2))*Z^2 - Z^4 - d*(X^2)*(Y^2));

20

21 // Compute the coeffs of the conic and define it

22 // We define the conic as a curve because in some cases its polynomial has a degree too low for the

magma command Conic to work

23 if P eq Op then
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24 cz := -Xq; cxy := Zq; cxz := Zq;

25 Cnc := Curve(R2,cz*(Z^2 + Y*Z)+cxy*X*Y+cxz*X*Z);

26

27 elif Q eq Op then

28 cz := -Xp; cxy := Zp; cxz := Zp;

29 Cnc := Curve(R2,cz*(Z^2 + Y*Z)+cxy*X*Y+cxz*X*Z);

30

31 elif P eq Q then

32 cz := Xp*Zp*(Zp-Yp);

33 cxy := d*(Xp^2)*Yp-Zp^3;

34 cxz := Zp*(Zp*Yp - a*Xp^2);

35 Cnc := Curve(R2,cz*(Z^2 + Y*Z)+cxy*X*Y+cxz*X*Z);

36

37 else

38 cz := Xp*Xq*(Yp*Zq-Yq*Zp);

39 cxy := Zp*Zq*(Xp*Zq-Xq*Zp + Xp*Yq - Xq*Yp);

40 cxz := Xq*Yq*(Zp^2)-Xp*Yp*(Zq^2)+Yp*Yq*(Xq*Zp-Xp*Zq);

41 Cnc := Curve(R2,cz*(Z^2 + Y*Z)+cxy*X*Y+cxz*X*Z);

42

43 end if;

44

45 // Get the points in the intersection

46 pts := Points(Intersection(Crv,Cnc));

47

48 // This should only contain -P3

49 P3_lst := pts diff Seqset([P,Q,Op,O1,O2]);

50

51 // In case we have a special situation, we need this.

52 if #P3_lst ne 1 then

53 og_pts := [P,Q,Op,O1,O2]; nmrs := [1,1,1,2,2];

54 if #pts eq #Seqset(og_pts) then

55 if P eq Op then nmrs[3] +:= 1; end if;

56 if Q eq Op then nmrs[3] +:= 1; end if;

57 for i in [1..2] do

58 if IntersectionNumber(Cnc,Crv,og_pts[i]) gt nmrs[i] then

59 return [-og_pts[i][1],og_pts[i][2],og_pts[i][3]];

60 end if;

61 end for;

62 for i in [3..5] do

63 if IntersectionNumber(Cnc,Crv,og_pts[i]) gt nmrs[i] then

64 return og_pts[i];

65 end if;

66 end for;

67 return "Error: something went wrong in the intersection.";

68 end if;

69 end if;

70

71 // Note that the output is the opposite of the 8th intersection point.

72 P3 := [-P3_lst[1][1], P3_lst[1][2], P3_lst[1][3]];

73

74 return P3;

75

76 end function;

Function 5: Ead AddL geom, mentioned in §3.3.1

A.3 Functions for point addition: from explicit formulae

1 Ew_AddL_eval := function(BF,lst,P,Q)

2

3 // Things are a bit different for decimal numbers, so we need a flag

4 if (Type(BF) eq Type(RealField())) or (Type(BF) eq Type(ComplexField())) then

5 fl := true;

6 else

7 fl := false;

8 end if;

9

10 if fl then

11 R1<a1,a2,a3,a4,a6> := PolynomialRing(BF,5);

12 else

13 R1<a1,a2,a3,a4,a6> := FunctionField(BF,5);

14 end if;

15 R2<X1,Y1,Z1, X2,Y2,Z2> := PolynomialRing(R1,6);
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16

17 //Get the coeffs

18 if #lst eq 2 then

19 a1 := R1 ! 0; a2 := R1 ! 0; a3 := R1 ! 0;

20 a4 := R1 ! lst[1]; a6 := R1 ! lst[2];

21 elif #lst eq 5 then

22 a1 := R1 ! lst[1]; a2 := R1 ! lst[2]; a3 := R1 ! lst[3];

23 a4 := R1 ! lst[4]; a6 := R1 ! lst[5];

24 else

25 return "Error: wrong number of coeffs";

26 end if;

27

28 // Get the points

29 Xp := R2!P[1]; Yp := R2!P[2]; Zp := R2!P[3];

30 Xq := R2!Q[1]; Yq := R2!Q[2]; Zq := R2!Q[3];

31

32

33 // Choose which to use

34 if fl then

35 if (Abs(BF!(Xp - Xq)) gt 1E-10) and (Abs(BF!(Yp - Yq)) gt 1E-10) and (Abs(BF!(Zp - Zq)) gt 1E-10) then

36 //here we use (a,b,c) = (0,1,0)

37

38 X3 := R2!(-a1*a2*Xp^2*Xq^2 - a2*Xp^2*Xq*Yq + (-a1^2*a3 - 2*a1*a4)*Xp^2*Xq*Zq + (-a1*a3 - a4)*Xp^2*

Yq*Zq + (-a1*a3^2 - 3*a1*a6)*Xp^2*Zq^2 + (a1^2 - a2)*Xp*Yp*Xq^2 + 2*a1*Xp*Yp*Xq*Yq - 2*a4*Xp*Yp*Xq*Zq

+ Xp*Yp*Yq^2 + (-a3^2 - 3*a6)*Xp*Yp*Zq^2 + (-a1*a4 - a2*a3)*Xp*Zp*Xq^2 - 2*a4*Xp*Zp*Xq*Yq + (-2*a1*

a3^2 - 6*a1*a6 - 2*a3*a4)*Xp*Zp*Xq*Zq + (-2*a3^2 - 6*a6)*Xp*Zp*Yq*Zq + (-a1^3*a6 + a1^2*a3*a4 - a1*a2

*a3^2 - 4*a1*a2*a6 + a1*a4^2 - a3^3 - 3*a3*a6)*Xp*Zp*Zq^2 + a1*Yp^2*Xq^2 + Yp^2*Xq*Yq + a3*Yp^2*Xq*Zq

+ (a1*a3 - a4)*Yp*Zp*Xq^2 + 2*a3*Yp*Zp*Xq*Yq - 6*a6*Yp*Zp*Xq*Zq + (-a1^2*a6 + a1*a3*a4 - a2*a3^2 -

4*a2*a6 + a4^2)*Yp*Zp*Zq^2 - a3*a4*Zp^2*Xq^2 - 3*a6*Zp^2*Xq*Yq + (-a3^3 - 6*a3*a6)*Zp^2*Xq*Zq + (-a1

^2*a6 + a1*a3*a4 - a2*a3^2 - 4*a2*a6 + a4^2)*Zp^2*Yq*Zq + (-a1^2*a3*a6 + a1*a3^2*a4 - a2*a3^3 - 4*a2*

a3*a6 + a3*a4^2)*Zp^2*Zq^2);

39

40 Y3 := R2!((-a2^2 + 3*a4)*Xp^2*Xq^2 + (a1^2*a4 - 2*a1*a2*a3 - a2*a4 + 3*a3^2 + 9*a6)*Xp^2*Xq*Zq +

(3*a1^2*a6 - 2*a1*a3*a4 + a2*a3^2 + 3*a2*a6 - a4^2)*Xp^2*Zq^2 + (a1*a2 - 3*a3)*Xp*Yp*Xq^2 + (2*a1*a4

- 2*a2*a3)*Xp*Yp*Xq*Zq + (3*a1*a6 - a3*a4)*Xp*Yp*Zq^2 + (-a2*a4 + 9*a6)*Xp*Zp*Xq^2 + (6*a1^2*a6 - 4*

a1*a3*a4 + 2*a2*a3^2 + 12*a2*a6 - 4*a4^2)*Xp*Zp*Xq*Zq + (a1^4*a6 - a1^3*a3*a4 + a1^2*a2*a3^2 + 5*a1

^2*a2*a6 - a1^2*a4^2 - a1*a2*a3*a4 - a1*a3^3 - 3*a1*a3*a6 + a2^2*a3^2 + 4*a2^2*a6 - a2*a4^2 - a3^2*a4

- 3*a4*a6)*Xp*Zp*Zq^2 + a1*Yp^2*Xq*Yq + Yp^2*Yq^2 + a3*Yp^2*Yq*Zq + (a1*a4 - a2*a3)*Yp*Zp*Xq^2 + (6*

a1*a6 - 2*a3*a4)*Yp*Zp*Xq*Zq + (a1^3*a6 - a1^2*a3*a4 + a1*a2*a3^2 + 4*a1*a2*a6 - a1*a4^2 - a3^3 - 3*

a3*a6)*Yp*Zp*Zq^2 + (3*a2*a6 - a4^2)*Zp^2*Xq^2 + (a1^2*a2*a6 - a1*a2*a3*a4 + 3*a1*a3*a6 + a2^2*a3^2 +

4*a2^2*a6 - a2*a4^2 - 2*a3^2*a4 - 3*a4*a6)*Zp^2*Xq*Zq + (a1^3*a3*a6 - a1^2*a3^2*a4 + a1^2*a4*a6 + a1

*a2*a3^3 + 4*a1*a2*a3*a6 - 2*a1*a3*a4^2 + a2*a3^2*a4 + 4*a2*a4*a6 - a3^4 - 6*a3^2*a6 - a4^3 - 9*a6^2)

*Zp^2*Zq^2);

41

42 Z3 := R2!(3*a1*Xp^2*Xq^2 + 3*Xp^2*Xq*Yq + (a1^3 + 2*a1*a2)*Xp^2*Xq*Zq + (a1^2 + a2)*Xp^2*Yq*Zq + (

a1^2*a3 + a1*a4)*Xp^2*Zq^2 + 3*Xp*Yp*Xq^2 + (2*a1^2 + 2*a2)*Xp*Yp*Xq*Zq + 2*a1*Xp*Yp*Yq*Zq + (2*a1*a3

+ a4)*Xp*Yp*Zq^2 + (a1*a2 + 3*a3)*Xp*Zp*Xq^2 + 2*a2*Xp*Zp*Xq*Yq + (2*a1^2*a3 + 2*a1*a4 + 2*a2*a3)*Xp

*Zp*Xq*Zq + (2*a1*a3 + 2*a4)*Xp*Zp*Yq*Zq + (2*a1*a3^2 + 3*a1*a6 + a3*a4)*Xp*Zp*Zq^2 + a1*Yp^2*Xq*Zq +

Yp^2*Yq*Zq + a3*Yp^2*Zq^2 + a2*Yp*Zp*Xq^2 + (2*a1*a3 + 2*a4)*Yp*Zp*Xq*Zq + Yp*Zp*Yq^2 + 2*a3*Yp*Zp*

Yq*Zq + (2*a3^2 + 3*a6)*Yp*Zp*Zq^2 + a2*a3*Zp^2*Xq^2 + a4*Zp^2*Xq*Yq + (a1*a3^2 + 2*a3*a4)*Zp^2*Xq*Zq

+ (a3^2 + 3*a6)*Zp^2*Yq*Zq + (a3^3 + 3*a3*a6)*Zp^2*Zq^2);

43

44 else

45 //here we use (a,b,c) = (0,0,1)

46 X3 := R2!(-a2*Xp^2*Xq*Zq + a1*Xp^2*Yq*Zq - a4*Xp^2*Zq^2 + 2*Xp*Yp*Yq*Zq + a3*Xp*Yp*Zq^2 + a2*Xp*Zp

*Xq^2 + Xp*Zp*Yq^2 + 2*a3*Xp*Zp*Yq*Zq - 3*a6*Xp*Zp*Zq^2 - Yp^2*Xq*Zq - a1*Yp*Zp*Xq^2 - 2*Yp*Zp*Xq*Yq

- 2*a3*Yp*Zp*Xq*Zq + a4*Zp^2*Xq^2 - a3*Zp^2*Xq*Yq + 3*a6*Zp^2*Xq*Zq);

47

48 Y3 := R2!(-3*Xp^2*Xq*Yq + (a1*a2 - 3*a3)*Xp^2*Xq*Zq + (-a1^2 - a2)*Xp^2*Yq*Zq + (a1*a4 - a2*a3)*Xp

^2*Zq^2 + 3*Xp*Yp*Xq^2 + 2*a2*Xp*Yp*Xq*Zq - 2*a1*Xp*Yp*Yq*Zq + a4*Xp*Yp*Zq^2 + (-a1*a2 + 3*a3)*Xp*Zp*

Xq^2 - 2*a2*Xp*Zp*Xq*Yq + (-2*a1*a3 - 2*a4)*Xp*Zp*Yq*Zq + (3*a1*a6 - a3*a4)*Xp*Zp*Zq^2 - Yp^2*Yq*Zq +

(a1^2 + a2)*Yp*Zp*Xq^2 + 2*a1*Yp*Zp*Xq*Yq + (2*a1*a3 + 2*a4)*Yp*Zp*Xq*Zq + Yp*Zp*Yq^2 + (a3^2 + 3*a6

)*Yp*Zp*Zq^2 + (-a1*a4 + a2*a3)*Zp^2*Xq^2 - a4*Zp^2*Xq*Yq + (-3*a1*a6 + a3*a4)*Zp^2*Xq*Zq + (-a3^2 -

3*a6)*Zp^2*Yq*Zq);

49

50 Z3 := R2!(3*Xp^2*Xq*Zq + a2*Xp^2*Zq^2 - a1*Xp*Yp*Zq^2 - 3*Xp*Zp*Xq^2 + a4*Xp*Zp*Zq^2 - Yp^2*Zq^2 -

a3*Yp*Zp*Zq^2 - a2*Zp^2*Xq^2 + a1*Zp^2*Xq*Yq - a4*Zp^2*Xq*Zq + Zp^2*Yq^2 + a3*Zp^2*Yq*Zq);

51

52 end if;

53 else

54 if (Xp eq Xq) and (Yp eq Yq) and (Zp eq Zq) then

55 //here we use (a,b,c) = (0,1,0)

56
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57 X3 := R2!(-a1*a2*Xp^2*Xq^2 - a2*Xp^2*Xq*Yq + (-a1^2*a3 - 2*a1*a4)*Xp^2*Xq*Zq + (-a1*a3 - a4)*Xp^2*Yq

*Zq + (-a1*a3^2 - 3*a1*a6)*Xp^2*Zq^2 + (a1^2 - a2)*Xp*Yp*Xq^2 + 2*a1*Xp*Yp*Xq*Yq - 2*a4*Xp*Yp*Xq*Zq +

Xp*Yp*Yq^2 + (-a3^2 - 3*a6)*Xp*Yp*Zq^2 + (-a1*a4 - a2*a3)*Xp*Zp*Xq^2 - 2*a4*Xp*Zp*Xq*Yq + (-2*a1*a3

^2 - 6*a1*a6 - 2*a3*a4)*Xp*Zp*Xq*Zq + (-2*a3^2 - 6*a6)*Xp*Zp*Yq*Zq + (-a1^3*a6 + a1^2*a3*a4 - a1*a2*

a3^2 - 4*a1*a2*a6 + a1*a4^2 - a3^3 - 3*a3*a6)*Xp*Zp*Zq^2 + a1*Yp^2*Xq^2 + Yp^2*Xq*Yq + a3*Yp^2*Xq*Zq

+ (a1*a3 - a4)*Yp*Zp*Xq^2 + 2*a3*Yp*Zp*Xq*Yq - 6*a6*Yp*Zp*Xq*Zq + (-a1^2*a6 + a1*a3*a4 - a2*a3^2 - 4*

a2*a6 + a4^2)*Yp*Zp*Zq^2 - a3*a4*Zp^2*Xq^2 - 3*a6*Zp^2*Xq*Yq + (-a3^3 - 6*a3*a6)*Zp^2*Xq*Zq + (-a1^2*

a6 + a1*a3*a4 - a2*a3^2 - 4*a2*a6 + a4^2)*Zp^2*Yq*Zq + (-a1^2*a3*a6 + a1*a3^2*a4 - a2*a3^3 - 4*a2*a3*

a6 + a3*a4^2)*Zp^2*Zq^2);

58

59 Y3 := R2!((-a2^2 + 3*a4)*Xp^2*Xq^2 + (a1^2*a4 - 2*a1*a2*a3 - a2*a4 + 3*a3^2 + 9*a6)*Xp^2*Xq*Zq + (3*

a1^2*a6 - 2*a1*a3*a4 + a2*a3^2 + 3*a2*a6 - a4^2)*Xp^2*Zq^2 + (a1*a2 - 3*a3)*Xp*Yp*Xq^2 + (2*a1*a4 -

2*a2*a3)*Xp*Yp*Xq*Zq + (3*a1*a6 - a3*a4)*Xp*Yp*Zq^2 + (-a2*a4 + 9*a6)*Xp*Zp*Xq^2 + (6*a1^2*a6 - 4*a1*

a3*a4 + 2*a2*a3^2 + 12*a2*a6 - 4*a4^2)*Xp*Zp*Xq*Zq + (a1^4*a6 - a1^3*a3*a4 + a1^2*a2*a3^2 + 5*a1^2*a2

*a6 - a1^2*a4^2 - a1*a2*a3*a4 - a1*a3^3 - 3*a1*a3*a6 + a2^2*a3^2 + 4*a2^2*a6 - a2*a4^2 - a3^2*a4 - 3*

a4*a6)*Xp*Zp*Zq^2 + a1*Yp^2*Xq*Yq + Yp^2*Yq^2 + a3*Yp^2*Yq*Zq + (a1*a4 - a2*a3)*Yp*Zp*Xq^2 + (6*a1*a6

- 2*a3*a4)*Yp*Zp*Xq*Zq + (a1^3*a6 - a1^2*a3*a4 + a1*a2*a3^2 + 4*a1*a2*a6 - a1*a4^2 - a3^3 - 3*a3*a6)

*Yp*Zp*Zq^2 + (3*a2*a6 - a4^2)*Zp^2*Xq^2 + (a1^2*a2*a6 - a1*a2*a3*a4 + 3*a1*a3*a6 + a2^2*a3^2 + 4*a2

^2*a6 - a2*a4^2 - 2*a3^2*a4 - 3*a4*a6)*Zp^2*Xq*Zq + (a1^3*a3*a6 - a1^2*a3^2*a4 + a1^2*a4*a6 + a1*a2*

a3^3 + 4*a1*a2*a3*a6 - 2*a1*a3*a4^2 + a2*a3^2*a4 + 4*a2*a4*a6 - a3^4 - 6*a3^2*a6 - a4^3 - 9*a6^2)*Zp

^2*Zq^2);

60

61 Z3 := R2!(3*a1*Xp^2*Xq^2 + 3*Xp^2*Xq*Yq + (a1^3 + 2*a1*a2)*Xp^2*Xq*Zq + (a1^2 + a2)*Xp^2*Yq*Zq + (a1

^2*a3 + a1*a4)*Xp^2*Zq^2 + 3*Xp*Yp*Xq^2 + (2*a1^2 + 2*a2)*Xp*Yp*Xq*Zq + 2*a1*Xp*Yp*Yq*Zq + (2*a1*a3 +

a4)*Xp*Yp*Zq^2 + (a1*a2 + 3*a3)*Xp*Zp*Xq^2 + 2*a2*Xp*Zp*Xq*Yq + (2*a1^2*a3 + 2*a1*a4 + 2*a2*a3)*Xp*

Zp*Xq*Zq + (2*a1*a3 + 2*a4)*Xp*Zp*Yq*Zq + (2*a1*a3^2 + 3*a1*a6 + a3*a4)*Xp*Zp*Zq^2 + a1*Yp^2*Xq*Zq +

Yp^2*Yq*Zq + a3*Yp^2*Zq^2 + a2*Yp*Zp*Xq^2 + (2*a1*a3 + 2*a4)*Yp*Zp*Xq*Zq + Yp*Zp*Yq^2 + 2*a3*Yp*Zp*Yq

*Zq + (2*a3^2 + 3*a6)*Yp*Zp*Zq^2 + a2*a3*Zp^2*Xq^2 + a4*Zp^2*Xq*Yq + (a1*a3^2 + 2*a3*a4)*Zp^2*Xq*Zq +

(a3^2 + 3*a6)*Zp^2*Yq*Zq + (a3^3 + 3*a3*a6)*Zp^2*Zq^2);

62 else

63 //here we use (a,b,c) = (0,0,1)

64

65 X3 := R2!(-a2*Xp^2*Xq*Zq + a1*Xp^2*Yq*Zq - a4*Xp^2*Zq^2 + 2*Xp*Yp*Yq*Zq + a3*Xp*Yp*Zq^2 + a2*Xp*Zp

*Xq^2 + Xp*Zp*Yq^2 + 2*a3*Xp*Zp*Yq*Zq - 3*a6*Xp*Zp*Zq^2 - Yp^2*Xq*Zq - a1*Yp*Zp*Xq^2 - 2*Yp*Zp*Xq*Yq

- 2*a3*Yp*Zp*Xq*Zq + a4*Zp^2*Xq^2 - a3*Zp^2*Xq*Yq + 3*a6*Zp^2*Xq*Zq);

66

67 Y3 := R2!(-3*Xp^2*Xq*Yq + (a1*a2 - 3*a3)*Xp^2*Xq*Zq + (-a1^2 - a2)*Xp^2*Yq*Zq + (a1*a4 - a2*a3)*Xp

^2*Zq^2 + 3*Xp*Yp*Xq^2 + 2*a2*Xp*Yp*Xq*Zq - 2*a1*Xp*Yp*Yq*Zq + a4*Xp*Yp*Zq^2 + (-a1*a2 + 3*a3)*Xp*Zp*

Xq^2 - 2*a2*Xp*Zp*Xq*Yq + (-2*a1*a3 - 2*a4)*Xp*Zp*Yq*Zq + (3*a1*a6 - a3*a4)*Xp*Zp*Zq^2 - Yp^2*Yq*Zq +

(a1^2 + a2)*Yp*Zp*Xq^2 + 2*a1*Yp*Zp*Xq*Yq + (2*a1*a3 + 2*a4)*Yp*Zp*Xq*Zq + Yp*Zp*Yq^2 + (a3^2 + 3*a6

)*Yp*Zp*Zq^2 + (-a1*a4 + a2*a3)*Zp^2*Xq^2 - a4*Zp^2*Xq*Yq + (-3*a1*a6 + a3*a4)*Zp^2*Xq*Zq + (-a3^2 -

3*a6)*Zp^2*Yq*Zq);

68

69 Z3 := R2!(3*Xp^2*Xq*Zq + a2*Xp^2*Zq^2 - a1*Xp*Yp*Zq^2 - 3*Xp*Zp*Xq^2 + a4*Xp*Zp*Zq^2 - Yp^2*Zq^2 -

a3*Yp*Zp*Zq^2 - a2*Zp^2*Xq^2 + a1*Zp^2*Xq*Yq - a4*Zp^2*Xq*Zq + Zp^2*Yq^2 + a3*Zp^2*Yq*Zq);

70

71 end if;

72 end if;

73

74 return [X3,Y3,Z3];

75 end function;

Function 6: Ew AddL eval, discussed in §1.2.3

1 Ead_AddL_eval := function(BF,lst,P,Q)

2

3 // Things are a bit different for decimal numbers, so we need a flag for it

4 if (Type(BF) eq Type(RealField())) or (Type(BF) eq Type(ComplexField())) then

5 fl := true;

6 else

7 fl := false;

8 end if;

9

10 if fl then

11 R1<a,d> := PolynomialRing(BF,2);

12 else

13 R1<a,d> := FunctionField(BF,2);

14 end if;

15 R2<X1,Y1,Z1,T1, X2,Y2,Z2,T2> := PolynomialRing(R1,8);

16

17 // Get the coeffs

18 if #lst eq 2 then

19 a := R2!lst[1]; d := R2!lst[2];
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20 else

21 return "Error: wrong number of coeffs";

22 end if;

23

24 // Get the points

25 Xp := R2 ! P[1][1]; Zp := R2 ! P[1][2]; Yp := R2 ! P[2][1]; Tp := R2 ! P[2][2];

26 Xq := R2 ! Q[1][1]; Zq := R2 ! Q[1][2]; Yq := R2 ! Q[2][1]; Tq := R2 ! Q[2][2];

27

28 // Compute the sums

29 X_o := Evaluate(R2 ! X1*Y2*Z2*T1+X2*Y1*Z1*T2,[Xp,Yp,Zp,Tp,Xq,Yq,Zq,Tq]);

30 Z_o := Evaluate(R2 ! Z1*Z2*T1*T2+d*X1*X2*Y1*Y2,[Xp,Yp,Zp,Tp,Xq,Yq,Zq,Tq]);

31 Y_o := Evaluate(R2 ! Y1*Y2*Z1*Z2-a*X1*X2*T1*T2,[Xp,Yp,Zp,Tp,Xq,Yq,Zq,Tq]);

32 T_o := Evaluate(R2 ! Z1*Z2*T1*T2-d*X1*X2*Y1*Y2,[Xp,Yp,Zp,Tp,Xq,Yq,Zq,Tq]);

33

34 X_d := Evaluate(R2 ! X1*Y1*Z2*T2+X2*Y2*Z1*T1,[Xp,Yp,Zp,Tp, Xq,Yq,Zq,Tq]);

35 Z_d := Evaluate(R2 ! a*X1*X2*T1*T2+Y1*Y2*Z1*Z2,[Xp,Yp,Zp,Tp, Xq,Yq,Zq,Tq]);

36 Y_d := Evaluate(R2 ! X1*Y1*Z2*T2-X2*Y2*Z1*T1,[Xp,Yp,Zp,Tp, Xq,Yq,Zq,Tq]);

37 T_d := Evaluate(R2 ! X1*Y2*Z2*T1-X2*Y1*Z1*T2,[Xp,Yp,Zp,Tp, Xq,Yq,Zq,Tq]);

38

39 // Choose which to use

40 if fl then

41 if (Abs(BF!X_o) gt 1E-10 or Abs(BF!Z_o) gt 1E-10) and (Abs(BF!Y_o) gt 1E-10 or Abs(BF!T_o) gt 1E-10)

then

42 X := X_o; Y := Y_o; Z := Z_o; T := T_o;

43 elif (Abs(BF!X_d) gt 1E-10 or Abs(BF!Z_d) gt 1E-10) and (Abs(BF!Y_d) gt 1E-10 or Abs(BF!T_d) gt 1E

-10) then

44 X := X_d; Y := Y_d; Z := Z_d; T := T_d;

45 else

46 return "Error: all are zero";

47 end if;

48 else

49 if (X_o ne 0 or Z_o ne 0) and (Y_o ne 0 or T_o ne 0) then

50 X := X_o; Y := Y_o; Z := Z_o; T := T_o;

51 elif (X_d ne 0 or Z_d ne 0) and (Y_d ne 0 or T_d ne 0) then

52 X := X_d; Y := Y_d; Z := Z_d; T := T_d;

53 else

54 return "Error: all are zero";

55 end if;

56 end if;

57

58 return [[X,Z],[Y,T]];

59 end function;

Function 7: Ead AddL eval, discussed in §3.3.2

1 ProjCoord := function(PR, p)

2 return [[PR ! p[1], PR ! 1],[PR ! p[2],PR ! 1]];

3 end function;

Function 8: ProjCoord, mentioned in 3.3.2

1 AffCoord := function(BF,P)

2 if (P[1][2] eq 0) or (P[2][2] eq 0) then

3 return "Error: point at infinity";

4 else

5 return [BF ! (P[1][1] div P[1][2]), BF ! (P[2][1]div P[2][2])];

6 end if;

7 end function;

Function 9: AffCoord, mentioned in 3.3.2

B Maps between models

B.1 Edwards - Weierstrass birational equivalences

1 Ew2Ed_P4_symb := function(BF,lst,P4 : PP4 := [0,0])

2 // lst := [a1,a2,a3,a4,a6] can be numerical coeffs or letters

3

4 R<a1,a2,a3,a4,a6,up,vp,d> := FunctionField(BF,8);

5 Rw_var<u,v> := FunctionField(R,2);

6

7 a1 := R ! lst[1]; a2 := (R ! lst[2]); a3 := (R ! lst[3]); a4 := (R ! lst[4]); a6 := (R ! lst[5]);
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8 up := (R ! P4[1]); vp := (R ! P4[2]);

9

10 u2p := R ! PP4[1]; v2p := R ! PP4[2];

11

12 up +:= u2p; vp +:= (a1*up + a3)/2;

13 u +:= u2p; v +:= (a1*u + a3)/2;

14

15 a4 +:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

16 a2 +:= -3*u2p + (a1^2)/4;

17

18 d := 1-4*(up^3)/(vp^2);

19 c_x := (vp*u)/(up*v); c_y := (u-up)/(u+up);

20

21 return [*[d],[c_x,c_y]*];

22

23 end function;

Function 10: Ew2Ed P4 symb, discussed in §2.3

1 Ed2Ew_P4_symb := function(BF,lst,P4 : PP4 := [0,0], aa1 := 0, aa3 := 0)

2 //lst := [d] can be numerical coeff or letter

3

4 R<a1,a2,a3,a4,a6,up,vp,d> := FunctionField(BF,8);

5 Rd_var<x,y> := FunctionField(R,2);

6

7 d := R ! lst[1];

8 up := R ! P4[1]; vp := R ! P4[2];

9 u2p := R ! PP4[1]; v2p := R ! PP4[2];

10

11 a1 := R ! aa1; a2 := 2*(1+d)/(1-d)*up; a3 := R ! aa3; a4 := up^2; a6 := 0;

12 c_u := up*(1+y)/(1-y); c_v := vp*(1+y)/(x*(1-y));

13

14 c_u -:= u2p; c_v -:= (a1*(c_u-u2p)+a3)/2;

15 a2 -:= -3*u2p + (a1^2)/4;

16 a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

17 a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

18

19 return [*[a1,a2,a3,a4,a6],[c_u,c_v]*];

20

21 end function;

Function 11: Ed2Ew P4 symb, discussed in §2.3

1 Ew2Ed_symb := function(BF,lst)

2 // lst := [a1,a2,a3,a4,a6] can be numerical coeffs or letters

3

4 R<a1,a2,a3,a4,a6,d> := FunctionField(BF,6);

5 Rw_var<u,v> := FunctionField(R,2);

6

7 a1 := R ! lst[1]; a2 := (R ! lst[2]);a3 := (R ! lst[3]);a4 := (R ! lst[4]);a6 := (R ! lst[5]);

8

9 d := (a2/2)-1;

10 c_x := -2*u/v; c_y := (v^2-(2+2*d)*u^2 - 2*u^3)/(4*d*u^2-v^2);

11

12 return [*[d],[c_x,c_y]*];

13

14 end function;

Function 12: Ew2Ed symb, discussed in §2.3

1 Ed2Ew_symb := function(BF,lst)

2 //lst := [d] can be numerical coeff or letter

3

4 R<a1,a2,a3,a4,a6,d> := FunctionField(BF,6);

5 Rd_var<x,y> := FunctionField(R,2);

6

7 d := R ! lst[1];

8

9 a1 := 0; a2 := 2*(d+1); a3 := 0; a4 := (d-1)^2; a6 := 0;

10

11 A := 2*y - (2*d*y + d +1)*x^2 + 2;

12 c_u := A/(x^2); c_v := -2*A/(x^3);

13
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14 return [*[a1,a2,a3,a4,a6],[c_u,c_v]*];

15

16 end function;

Function 13: Ed2Ew symb, discussed in §2.3

1 Ew2Ed_P4_eval := function(BF,lst,P4,p : PP4 := [0,0])

2

3 if #lst eq 5 then

4 a1 := BF!lst[1]; a2 := BF!lst[2]; a3 := BF!lst[3]; a4 := BF!lst[4]; a6 := BF!lst[5];

5 elif #lst eq 2 then

6 a1 := BF!0; a2 := BF!0; a3 := BF!0; a4 := BF!lst[1]; a6 := BF!lst[2];

7 else

8 return "Error: wrong number of coeffs";

9 end if;

10 u2p := BF ! PP4[1];

11 up := (BF ! P4[1]) + u2p; vp := (BF ! P4[2]) + (a1*up + a3)/2;

12 u := BF!p[1] + u2p; v := BF!p[2] + (a1*u + a3)/2;

13 a4 +:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - (a1^2)*u2p/2; a2 +:= - 3*u2p + (a1^2)/4;

14

15 denom_x := up*v; denom_y := (u+up); denom_d := vp^2;

16 if denom_x eq 0 then

17 return "Error: birat. eq. not defined for this point since (denom_x eq 0).";

18 elif denom_y eq 0 then

19 return "Error: birat. eq. not defined for this point since (denom_y eq 0).";

20 elif denom_y eq 0 then

21 return "Error: birat. eq. not defined for this point since (denom_d eq 0).";

22 else

23 d := 1-4*(up^3)/(vp^2);

24 c_x := vp*u/denom_x; c_y := (u-up)/denom_y;

25

26 return [*[BF|d],[BF|c_x,c_y]*];

27 end if;

28 end function;

Function 14: Ew2Ed P4 eval, discussed in §2.3

1 Ed2Ew_P4_eval := function(BF,lst,P4,p : PP4 := [0,0], a1 := 0, a3 := 0)

2

3 up := (BF ! P4[1]) + BF!PP4[1]; vp := (BF ! P4[2]) + (a1*up + a3)/2;

4 u2p := BF ! PP4[1]; v2p := BF ! PP4[2];

5 d := BF!lst[1]; x := BF!p[1]; y := BF!p[2];

6

7 denom_x := (1-y); denom_y := x*(1-y);

8 if denom_x eq 0 then

9 return "Error: birat. eq. not defined for this point since (denom_x eq 0).";

10 elif denom_y eq 0 then

11 return "Error: birat. eq. not defined for this point since (denom_y eq 0).";

12 else

13 a2 := 2*(1+d)/(1-d)*up; a4 := up^2; a6 := 0;

14 c_u := up*(1+y)/denom_x; c_v:= vp*(1+y)/denom_y;

15

16 c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

17

18 a2 -:= -3*u2p + (a1^2)/4;

19 a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

20 a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

21

22 return [*[a1,a2,a3,a4,a6],[c_u,c_v]*];

23 end if;

24

25 end function;

Function 15: Ed2Ew P4 eval, discussed in §2.3

1 Ew2Ed_eval := function(BF,lst,p: PP4 := [0,0])

2

3 if #lst eq 5 then

4 a1 := BF!lst[1]; a2 := BF!lst[2]; a3 := BF!lst[3]; a4 := BF!lst[4]; a6 := BF!lst[5];

5 elif #lst eq 2 then

6 a1 := BF!0; a2 := BF!0; a3 := BF!0; a4 := BF!lst[1]; a6 := BF!lst[2];

7 else

8 return "Error: wrong number of coeffs";
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9 end if;

10 u := BF!p[1]; v := BF!p[2];

11

12 u2p := BF ! PP4[1];

13 u := BF!p[1] + u2p; v := BF!p[2] + (a1*u + a3)/2;

14 a4 +:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - (a1^2)*u2p/2; a2 +:= - 3*u2p + (a1^2)/4;

15

16 if a2 ne 0 then

17 d := (a2/2)-1;

18 elif (a2 eq 0) and (IsSquare(BF!(a4))) then

19 d := Sqrt(a4) + 1;

20 else

21 return "Error: d is a not a square over the basis field";

22 end if;

23

24 denom_x := v; denom_y := 2*(a2-2)*u^2-v^2;

25 if denom_x eq 0 then

26 return "Error: map not defined for this point since (denom_x eq 0).";

27 elif denom_y eq 0 then

28 return "Error: map not defined for this point since (denom_y eq 0).";

29 else

30 c_x := -2*u/denom_x; c_y := (v^2-a2*u^2 - 2*u^3)/denom_y;

31

32 return [*[d],[c_x,c_y]*];

33 end if;

34

35 end function;

Function 16: Ew2Ed eval, discussed in §2.3

1 Ed2Ew_eval := function(BF,lst,p: PP4 := [0,0], a1 := 0, a3 := 0)

2

3 d := BF!lst[1]; x := BF!p[1]; y := BF!p[2]; u2p := BF!PP4[1];

4

5 denom_x := x^2; denom_y := x^3;

6 if denom_x eq 0 then

7 return "Error: birat. eq. not defined for this point since (denom_x eq 0).";

8 elif denom_y eq 0 then

9 return "Error: birat. eq. not defined for this point since (denom_y eq 0).";

10 else

11 a2 := 2*(d+1); a4 := (d-1)^2; a6 := 0;

12 A := 2*y - (2*d*y + d +1)*x^2 + 2;

13 c_u := A/(x^2); c_v:= -2*A/(x^3);

14

15 c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

16

17 a2 -:= -3*u2p + (a1^2)/4;

18 a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

19 a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

20

21

22 return [*[a1,a2,a3,a4,a6],[c_u,c_v]*];

23 end if;

24

25 end function;

Function 17: Ed2Ew eval, discussed in §2.3

B.2 Twisted Edwards - Weierstrass birational equivalences

1 Ew2Ead_P4_eval := function(BF,lst,P4,p : PP4 := [0,0], a := 1)

2

3 // If ’a’ is not a square on BF, then we need to work on an extension field

4 tf, sqrt_a := IsSquare(BF!a);

5 if not tf then

6 // QF_int := Integers()!(Numerator(a)*Denominator(a));

7 // BF<sqrt_a> := QuadraticField(QF_int);

8 BF := AlgebraicClosure(BF);

9 tf, sqrt_a := IsSquare(BF!a);

10 // set a flag that we changed base field?;

11 end if;

12

13 a := BF!a;
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14 if #lst eq 5 then

15 a1 := BF!lst[1]; a2 := BF!lst[2]; a3 := BF!lst[3]; a4 := BF!lst[4]; a6 := BF!lst[5];

16 elif #lst eq 2 then

17 a1 := BF!0; a2 := BF!0; a3 := BF!0; a4 := BF!lst[1]; a6 := BF!lst[2];

18 else

19 return "Error: wrong number of coeffs";

20 end if;

21 u2p := BF ! PP4[1];

22 up := (BF ! P4[1]) + u2p; vp := (BF ! P4[2]) + (a1*up + a3)/2;

23 u := BF!p[1] + u2p; v := BF!p[2] + (a1*u + a3)/2;

24 a4 +:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - (a1^2)*u2p/2; a2 +:= - 3*u2p + (a1^2)/4;

25

26 denom_x := up*v; denom_y := (u+up); denom_d := vp^2;

27 if denom_x eq 0 then

28 return "Error: birat. eq. not defined for this point since (denom_x eq 0).";

29 elif denom_y eq 0 then

30 return "Error: birat. eq. not defined for this point since (denom_y eq 0).";

31 elif denom_y eq 0 then

32 return "Error: birat. eq. not defined for this point since (denom_d eq 0).";

33 else

34 d := (1-4*(up^3)/(vp^2))*a; //<---- is this right?

35 c_x := vp*u/(denom_x*sqrt_a); c_y := (u-up)/denom_y; //<---- is this right?

36

37 return [*BF,[BF|a,d],[BF|c_x,c_y]*];

38 end if;

39

40 end function;

Function 18: Ew2Ead P4 eval, mentioned in §3.3.5

1 Ead2Ew_P4_eval := function(BF,lst,P4,p : PP4 := [0,0], a1 := 0, a3 := 0)

2

3 a := BF!lst[1];

4

5 // If ’a’ is not a square on BF, then we need to work on an extension field

6 tf, sqrt_a := IsSquare(BF!a);

7 if not tf then

8 // QF_int := Integers()!(Numerator(a)*Denominator(a));

9 // BF<sqrt_a> := QuadraticField(QF_int);

10 BF := AlgebraicClosure(BF);

11 tf, sqrt_a := IsSquare(BF!a);

12 // set a flag that we changed base field?;

13 end if;

14

15 up := (BF ! P4[1]) + BF!PP4[1]; vp := (BF ! P4[2]) + (a1*up + a3)/2;

16 u2p := BF ! PP4[1]; v2p := BF ! PP4[2];

17 a := BF!a; d := (BF!lst[2])/a; x := (BF!p[1])*sqrt_a; y := BF!p[2]; //<---- is this right?

18

19 denom_x := (1-y); denom_y := x*(1-y);

20 if denom_x eq 0 then

21 return "Error: birat. eq. not defined for this point since (denom_x eq 0).";

22 elif denom_y eq 0 then

23 return "Error: birat. eq. not defined for this point since (denom_y eq 0).";

24 else

25 a2 := 2*(1+d)/(1-d)*up; a4 := up^2;

26 c_u := up*(1+y)/denom_x; c_v:= vp*(1+y)/denom_y;

27

28 c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

29

30 a2 -:= -3*u2p + (a1^2)/4;

31 a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

32 a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

33

34 return [*BF,[a1,a2,a3,a4,a6],[c_u,c_v]*];

35 end if;

36

37 end function;

Function 19: Ead2Ew P4 eval, mentioned in §3.3.5

1 Ew2Ead_eval := function(BF,lst,p: PP4 := [0,0], a := 1)

2

3 // If ’a’ is not a square on BF, then we need to work on the algebraic closure of BF
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4 tf, sqrt_a := IsSquare(BF!a);

5 if not tf then

6 //QF_int := Integers()!(Numerator(a)*Denominator(a));

7 //BF<sqrt_a> := QuadraticField(QF_int);

8 BF := AlgebraicClosure(BF);

9 tf, sqrt_a := IsSquare(BF!a);

10 // set a flag that we changed base field?;

11 end if;

12

13 a := BF!a;

14 if #lst eq 5 then

15 a1 := BF!lst[1]; a2 := BF!lst[2]; a3 := BF!lst[3]; a4 := BF!lst[4]; a6 := BF!lst[5];

16 elif #lst eq 2 then

17 a1 := BF!0; a2 := BF!0; a3 := BF!0; a4 := BF!lst[1]; a6 := BF!lst[2];

18 else

19 return "Error: wrong number of coeffs";

20 end if;

21 u := BF!p[1]; v := BF!p[2];

22

23 u2p := BF ! PP4[1];

24 u := BF!p[1] + u2p; v := BF!p[2] + (a1*u + a3)/2;

25 a4 +:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - (a1^2)*u2p/2; a2 +:= - 3*u2p + (a1^2)/4;

26

27 if a2 ne 0 then

28 d := (a2/2)-1;

29 elif (a2 eq 0) and (IsSquare(BF!(a4))) then

30 d := Sqrt(a4) + 1;

31 else

32 return "Error: d is a not a square over the basis field";

33 end if;

34 d *:= a; //<---- is this right?

35

36

37 denom_x := v; denom_y := 2*(a2-2)*u^2-v^2;

38 if denom_x eq 0 then

39 return "Error: map not defined for this point since (denom_x eq 0).";

40 elif denom_y eq 0 then

41 return "Error: map not defined for this point since (denom_y eq 0).";

42 else

43 c_x := -2*u/(denom_x*sqrt_a); c_y := (v^2-a2*u^2 - 2*u^3)/denom_y; //<---- is this right?

44

45 return [*BF,[a,d],[c_x,c_y]*];

46 end if;

47

48 end function;

Function 20: Ew2Ead eval, mentioned in §3.3.5

1 Ead2Ew_eval := function(BF,lst,p: PP4 := [0,0], a1 := 0, a3 := 0)

2

3 a := BF!lst[1];

4 // If ’a’ is not a square on BF, then we need to work on the algebraic closure of BF

5 tf, sqrt_a := IsSquare(BF!a);

6 if not tf then

7 BF := AlgebraicClosure(BF);

8 tf, sqrt_a := IsSquare(BF!a);

9 end if;

10

11 a := BF!a; d := (BF!lst[2])/a; x := (BF!p[1])*sqrt_a; y := BF!p[2]; u2p := BF!PP4[1];

12

13 denom_x := x^2; denom_y := x^3;

14 if denom_x eq 0 then

15 return "Error: birat. eq. not defined for this point since (denom_x eq 0).";

16 elif denom_y eq 0 then

17 return "Error: birat. eq. not defined for this point since (denom_y eq 0).";

18 else

19 a2 := 2*(d+1); a4 := (d-1)^2;

20 A := 2*y - (2*d*y + d +1)*x^2 + 2;

21 c_u := A/(x^2); c_v:= -2*A/(x^3);

22

23 c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

24

25 a2 -:= -3*u2p + (a1^2)/4;
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26 a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

27 a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

28

29

30 return [*BF,[a1,a2,a3,a4,a6],[c_u,c_v]*];

31 end if;

32

33 end function;

Function 21: Ead2Ew eval, mentioned in §3.3.5

B.3 Twisted Edwards - Weierstrass 2-isogenies

1 Ew2Ead_iso_eval := function(BF,lst,p : PP4 := [0,0], u_lst := [0,0,0])

2

3 if #lst eq 5 then

4 a1 := BF!lst[1]; a2 := BF!lst[2]; a3 := BF!lst[3]; a4 := BF!lst[4]; a6 := BF!lst[5];

5 elif #lst eq 2 then

6 a1 := BF!0; a2 := BF!0; a3 := BF!0; a4 := BF!lst[1]; a6 := BF!lst[2];

7 else

8 return "Error: wrong number of coeffs";

9 end if;

10 u2p := BF ! PP4[1];

11 a4 +:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - (a1^2)*u2p/2; a2 +:= - 3*u2p + (a1^2)/4;

12

13 if u_lst eq [0,0,0] then

14 PR<s> := PolynomialRing(BF);

15 if a1 ne 0 or a3 ne 0 then

16 a6 := 0;

17 end if;

18 rts := Roots(s^3 + a2*s^2 + a4*s + a6);

19 if #rts lt 3 then

20 BF := AlgebraicClosure(BF);

21 PR<s> := PolynomialRing(BF);

22 rts := Roots(s^3 + BF!a2*s^2 + BF!a4*s + BF!a6);

23 end if;

24 rts_abs := [Abs(rts[i][1]): i in [1..3]];

25 ParallelSort(~rts_abs,~rts);

26 u0 := rts[1][1]; u1 := rts[2][1] - u0; u2 := rts[3][1] - u0;

27 else

28 u0 := BF!u_lst[1]; u1 := BF!u_lst[2]; u2 := BF!u_lst[3];

29 end if;

30 u := BF!p[1] + u2p - u0; v := BF!p[2] + (a1*u + a3)/2;

31

32 denom_x := u1*u2 - u^2; denom_y := v^2 + (u1-u2)*u^2;

33 if denom_x eq 0 then

34 return "Error: isogeny not defined for this point since (denom_x eq 0).";

35 elif denom_y eq 0 then

36 return "Error: isogeny not defined for this point since (denom_y eq 0).";

37 else

38 a := 4*u1; d := 4*u2;

39 c_x := v/denom_x; c_y := (v^2 - (u1-u2)*u^2)/denom_y;

40

41 return [* BF,[a,d],[c_x,c_y], u0 *];

42 end if;

43

44 end function;

Function 22: Ew2Ead iso eval, discussed in §3.3.6

1 Ead2Ew_iso_eval := function(BF,lst,p : PP4 := [0,0], a1 := 0, a3 := 0, u0 := 0)

2

3 u2p := PP4[1];

4 if (u2p ne 0 or a1 ne 0 or a3 ne 0) and u0 ne 0 then

5 return "Error: either specify u2p,a1,a3 != 0 or u0 != 0";

6 end if;

7

8 a := BF!lst[1]; d := BF!lst[2]; x := BF!p[1]; y := BF!p[2];

9

10 denom_u := 4*x^2; denom_v := 32*x*(1+y)*(1-y);

11 if denom_u eq 0 then

12 return "Error: isogeny not defined for this point since (denom_u eq 0).";

13 elif denom_v eq 0 then
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14 return "Error: isogeny not defined for this point since (denom_v eq 0).";

15 else

16 u1 := a/4 + u0; u2 := d/4 + u0;

17 a2 := -(u0+u1+u2); a4 := u0*u1 + u0*u2 + u1*u2; a6 := -u0*u1*u2;

18 c_u := 1/denom_u +u0; c_v := (a-d)*((1-y)^2-(1+y)^2)/denom_v;

19

20 c_u -:= u2p; c_v -:= (a1*c_u+a3)/2;

21 a2 -:= -3*u2p + (a1^2)/4;

22 a4 -:= 3*u2p^2 - 2*a2*u2p + (a1*a3)/2 - ((a1^2)*u2p)/2;

23 a6 := - u2p^3 - a2*u2p^2 + a4*u2p - (a1*u2p - a3)^2/4;

24

25 return [*[a1,a2,a3,a4,a6],[u0,u1,u2],[c_u,c_v]*];

26 end if;

27

28 end function;

Function 23: Ead2Ew iso eval, discussed in §3.3.6
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