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Abstract

Alliander maintains the medium voltage grid for a large part of the Netherlands.
This network consists almost entirely of underground cables. Power outages are
often caused by the breakdown of the cable joint connecting two cables in a
circuits. The power outages can be prevented by replacing joints that are likely
to fail. Smart Cable Guard (SCG) system monitors many circuits in the medium
voltage grid. SCG measures, among other variables, partial discharges (PD) and
faults in the circuits. Faults are short-circuit currents, which usually lead to
circuit breakdown. The measurements consist of the timestamp, location and
charge of every partial discharge that was registered by the SCG system.

The data of the faults, PD and weather are analyzed in this thesis. Most
potential faults preceded by PD are prevented because of the warnings that SCG
operators assign based on PD. Most of the faults that still occur take place in the
summer. So there is a relation between the faults and the weather conditions.

The data from the PD is used to predict faults in the network to avoid power
outages. Many faults are preceded by PD, so many faults can be predicted by
analyzing the PD. Many of the PD measurements are noise, for example from
nearby industry. Alliander uses a cluster algorithm to cluster the PD measure-
ments from the same source to roughly filter the noise. Second, a classification
model is used to determine which clusters of PD are likely to be followed by a
fault, and which clusters are noise. This model uses various features of the clus-
ters, such as duration, location, discharge magnitude and type of closest joint,
to classify the clusters. Alliander currently uses 44 features. The model benefits
from many features with predictive power.

In this thesis, we construct 33 new features to add to Alliander’s total set
of features. Many of these features are based on the relation between discharge
magnitude and soil temperature during the discharge. The correlation between
them appears to have a high predictive power. Also, the distribution of the PD
across the seasons contributes to the prediction of the faults. In contrast to the
faults, there is significantly more PD in winter than in summer. The distribution
of the discharge magnitude is also very informative. The shape and scale of
these distributions are two features extensively used by the classification model
to predict faults.

The parameters of the classification model can be adjusted, but the first
results when adding these 33 functions suggest better performance in predicting
faults. This ultimately leads to the prevention of more power outages.
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1 Introduction

We start this thesis by introducing Alliander, Smart Cable Guard and the purpose of the research. Alliander is
the company where I did my internship, and the Smart Cable Guard systems provide the data that we will use
to answer the research questions. An overview is given at the end in which we briefly explain what is discussed in
each chapter.

Alliander

Figure 1: Service area of Alliander
in the Netherlands [1]

Alliander N.V. is a utility company that develops and manages energy net-
works. It takes care of the distribution of energy in a third of the Netherlands.
More than three million Dutch households and companies receive electricity,
gas and heat via its cables and pipelines. Alliander consists of the parts Lian-
der, Qirion and Kenter. During my internship I was part of Qirion. Qirion
focuses on the construction and maintenance of complex energy infrastructures
for customers.

Smart Cable Guard

DNV (Det Norske Veritas which translates to ”The Norwegian Truth”) pro-
vides digital solutions for managing risk and improving safety and asset per-
formance for ships, pipelines, processing plants, offshore structures, electric
grids, smart cities and more [2]. It provides Smart Cable Guard (SCG) to
Alliander to monitor its electricity grid. SCG is a sensor-based digital mon-
itoring platform that puts owners in control of their medium voltage cable
network. Combining patented technology with 24/7 monitoring and support,
it detects and locates faults and weaknesses in underground cables [3]. Allian-
der installs the SCG-systems to monitor their medium voltage network. The
collected data about the network is used to predict power outages.

Research Questions

Cables in the grid are connected by joints. These weak spots of the medium
voltage network are usually the cause of power outages. These defects can be prevented by replacing the right
joints in time. Alliander used the data of SCG to predict the power outages.

SCG registers faults and partial discharges (PD) on the joint and the cables. Power outages are preceded by
faults and faults are often preceded by partial discharges. These data are used to predict the outages, by first
clustering the partial discharges from the same source. Subsequently, features of these clusters are calculated and
fed into a prediction model. Alliander has implemented models for the clustering, calculation of features and
classification of clusters. The prediction model uses the cluster features to classify the clusters, and that leads to
the prediction of faults.

The goal is to improve these models, so that the prediction model is better able to predict which
PD clusters will lead to a fault.

The model classifies clusters that are likely to be followed by a fault, as dangerous. Alliander acts on this by
replacing the relevant joints in the network. Strictly speaking, this model does not predict faults. Using the data
of the PD the model predicts when and where a fault would occur if no maintenance work was carried out on the
network. That said, for the sake of convenience, we still talk about the prediction of faults.

Faults without a warning are often caused by external influences, like damage from excavation activities. These
faults are unpredictable from PD data. However, there are still predictable faults, showing PD activity beforehand,
that occur without warning. Experience has shown that these predictable faults depend on the weather conditions,
so combining the fault data with the weather data and PD can lead to improved prediction of these faults.
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Research question 1.
Can we predict faults from the relation between faults, PD and weather conditions?

We are going to use Alliander’s classification model to predict the faults. So we need to define features based
on weather data that have predictive power to feed to the model.

Research question 2.
How can we compose features of these relations so that they improve the current model performance to predict
faults?

First we will investigate the relation between weather conditions, faults and PD. We will answer the next
questions:

• How many faults occur each year, and per circuit?

• In how many cases is a cluster of PD found beforehand?

• Is this related to the seasons?

Next, we will compose features that allow the model to better predict the faults. Finally, we use the model to test
the contribution of these new features to the prediction of faults.

Many of the used terms are explained in Chapter 2 and the List of terms. You can click on a term to go di-
rectly to its definition. All plots in this thesis are created using the libraries matplotlib.pyplot [4] and plotly.offline
[5].

Chapter overview

We begin in Chapter 2 by explaining in detail what a circuit is and how the SCG-systems are used to collect the
data about the faults and PD from the circuits.

In Chapter 3 we elaborate on three mathematical functions that are used throughout the thesis: Pearson’s
correlation coefficient, percentiles and the Weibull distribution.

In Chapter 4 we explore the fault data and the PD in detail. The effect of the weather conditions on faults
and PD is also investigated.

In Chapter 5 we examine the data about the temperature further to find out to what extend it can be used
to predict faults.

In Chapter 6 we define three methods to composes 25 cluster features that describe the relation between PD and
temperature. Two methods rely on the correlation between PD and temperature, for long and short periods of a
cluster. The third method relies on the distribution of the PD across time to determine certain features.

In Chapter 7 we describe two methods to composes eight cluster features related to the charge of PD. We
look at PD with a high charge and we try to fit a Weibull distribution to the distribution of the charges of the
partial discharges.

In Chapter 8 we briefly explain the prediction model used by Alliander. The 35 features of Chapters 6 and
7 are evaluated by this model. The prediction of the faults using the current features is compared with the pre-
diction of the faults using the current and the new features combined.

We discuss and conclude this thesis in Chapters 9 and 10.

These chapters are followed by the List of features and List of terms which give an overview of all the
features and the important terms, with their definitions.

2



2 Technical background information and explanation of terms

The power grid in the Netherlands can be divided into three parts:

• The High Voltage (HV) network transports the power of > 36 kV over large distances;

• Medium Voltage (MV) network transports the power of 10-20 kV to regions;

• Low Valtage (LV) network transports the power of 400 V to customers in the neighborhood [6].

Figure 2: Secondary substation at De Randweg in Arnhem [Van Osch, 2021]

A station that transforms the power from high voltage to medium voltage is called a substation. A secondary
substation transforms the power from medium voltage to low voltage. Alliander’s medium-voltage network is
designed as rings but operates radially: for each secondary substation there is precisely one way to get power from
the substation [7]. Each secondary substation is equipped with a medium-voltage ring main unit (RMU). A ring
main unit (RMU) is a set of switchgear used at the (secondary) substations of a ring distribution network. The
RMU are nodes in this ring, which explains the term ring main unit. An RMU in a ring structure can be powered
from either side, so if a cable fails on one side, the switchgear of the nearby RMU can be used to restore power
through the other side. This allows the power supply to customers to be restored quickly, as the cable does not
need to be repaired first. The ring structure also allows maintenance work to be carried out without customers
running out of power. [6]. The SCG-systems are placed in the RMUs.

2.1 SCG on circuits

Alliander started to monitor weak cables by placing SCG-systems in nearby RMUs. A SCG-system consists of
two SCG-devices: a master unit that sends pulses and a slave unit that receives the pulses. Figure 3 shows three
RMUs and a SCG-system. The master unit is installed in RMU A and the slave unit is installed in RMU B. A
SCG unit consists of a Controller Unit (CU) and a Sensor/Injector Unit (SIU). The CU controls the data collection
and provides the data communication. The SIU of the master unit injects a pulse to the SIU of the slave unit
every minute, to detect faults and partial discharges on the cables and joints. When there is a defect between the
two SCG-devices, like at X in Figure 3, both RMUs receive pulses from which the location of the defect can be
determined.
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Definition 1. A fault is a short-circuit current. It usually leads to circuit breakdown.

Definition 2. Partial discharges (PD) are small charge displacements in the cavity or layer of the insulation
of a component. PD is a good predictor of faults.

Figure 3: SCG setup to monitor a circuit [7]

Figure 4: The cable configuration of circuit
3107

A circuit is defined by the placements of its SCG-system:

Definition 3. A circuit consists of all cables, joints and RMU’s
between the master and slave unit that of a SCG-system.

Definition 4. The circuitlength is the cumulative length of the
cables of the circuit: the distance between the master and slave
unit.

Circuits have different lengths up to 15 km. Figure 9(a) shows
the distribution length of the circuit lengths of the SCG monitored
circuits in the Alliander network. Figure 4 shows the parts of a
particular circuit. This circuit contains five RMUs from which only
the start and end has got a SCG-device. The cables are made of
different materials and the length of the cables is shown in the
second column of Figure 4. The cables are connected by either
an RMU or a joint. The function of a joint is just to connect the
cables. These joints are usually the weak spots of the circuits,
depending on the material of the joints. The cumulative length
tells the location of the RMUs and joints. The location of the
master unit on the circuit is 0 m and the location of the slave unit
is the length of the circuit.

2.2 Alliander’s use of SCG

Alliander’s entire network in the Netherlands consists of 91,000
km of cables for electricity and 42,000 km of pipelines for gas.
3000 km of cables is monitored by SCG. In June 2021, Alliander is
using 1837 SCG-systems to monitor these cables on 1837 circuits,
and the number of SCG-systems that Alliander uses continues to
increase. There are 19.000 joints on these circuits, so they are
measured simultaneously. In addition to the data from the faults and PD, Alliander receives warnings from DNV.
These warnings tell which locations of the circuits need to be monitored closely. Alliander uses these warnings
combined with the data of faults and PD to decide which joints need to be replaced, to prevent circuit outages.
Alliander works on a model to predict circuit outages without making use of the warnings. This ultimately allows
Alliander to better predict faults in the joints that Alliander uses.
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3 Mathematical background information

3.1 Pearson’s correlation coefficient

Correlation is a statistical relationship between two variables. Correlation coefficient is the measure of the correla-
tion that exists between two variables. The coefficient is a real number between -1 and . A correlation coefficient of
1 indicates a perfect positive correlation. As variable X increases, variable Y increases and as variable X decreases,
variable Y decreases. If the correlation coefficient is greater than 0, it is a positive relationship. Conversely, a
correlation coefficient of -1 indicates a perfect negative correlation. If the coefficient is less than 0, it is a negative
relationship. A value of 0 indicates that there is no relationship between the two variables.

One has to note that correlation is not causation. Correlation does not necessarily mean that one variable
causes the other. For example, palm size is negatively correlated with longevity. This does not mean that the
size of your palm causes you to live or die. In fact, women tend to have smaller palms and live longer. To find
causation, you generally need experimental data, not observational data. In this thesis we only use observational
data.

The most common measures of correlation is the Pearson correlation coefficient, developed by Karl Pearson in
1895 [8]. It is the ratio between the covariance of two variables and the product of their standard deviations; thus
it is essentially a normalised measurement of the covariance, such that the result always has a value between -1
and 1.

Definition 5. Pearson’s correlation coefficient of X and Y : Pearson(X,Y ) = cov(X,Y )
σXσY

.

Here cov(X,Y ) is the covariance between X and Y : E[(X − µX)(Y − µY )];
σX is the standard deviation of X: the square root of the variance of X :

√
E[(X − µX)2].

This thesis only uses the Pearson correlation coefficient to express a correlation between two variables. When
we mention a correlation coefficient, we always mean the Pearson correlation coefficient.

3.1.1 Significance

The correlation coefficient measures the strength of a relationship in samples only. It doesn’t say whether what we
see in the sample is expected to be true for more data. To test whether we have enough data points to conclude
whether there is a correlation between two datasets, the significance test is used.

The correlation coefficient of two variables is indicated with ρ. We test whether ρ is close to 0 or significantly
different from 0. We decide this based on the sample correlation coefficient r and the sample size n. We specify
the null hypothesis H0 and the alternative hypothesis Ha:

H0 : ρ = 0;

Ha : ρ 6= 0.

If we fail to reject the null hypothesis that ρ = 0, we say that the two variables are not significantly correlated.
Then the correlation occurred on account of chance coincidence in the sample. We use the Student’s t-test to find
out if we can reject the null hypothesis. The t-test is one of the most commonly used techniques for testing a
hypothesis on the basis of sample data. The value of the t-test is

t =
r
√
n− 2√

1− r2
.

Here r is the sample correlation coefficient and n is the sample size.

The bigger the t-value, the more likely it is that the correlation is repeatable. To interpret the t-value we need to
find the p-value. A p-value is the probability that the null hypothesis is true. Like in most research, we consider
a p-value ≤ 0.05 significant. A p-value of 0.05 means that there is only 5% chance that results from the sample
occurred due to chance. The p-value can be looked up in a t-table using the t-value and the the number of degrees
of freedom (df = n− 2). A t-table can be found in Table 13 in the Appendix.
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3.1.2 Interpreting the value of the correlation coefficient

A correlation coefficient of 1 is a perfect correlation, 0 indicates no correlation between two variables. Determining
whether a coefficient between 0 and 1 represents a strong correlation is subjectively determined.

The correlation coefficient is used in this thesis to quantify a pattern in the data. These quantifications are
used to compare different datasets. In Figure 5 we see two plots of partial discharges and temperature. We do
not see a clear pattern between the PD and temperature in Figure 5(a). This is why the correlation coefficient is
relative low: 0.18. There is a clear pattern in Figure 5(b). The temperature decreases while the charge of the PD
rises. We see a relative high (absolute) correlation coefficient of -0.84. The opposite trend explains the negative
coefficient. These correlation coefficients are used to predict power outages. Stronger correlations have greater
predictive value.

(a) Partial discharges of cluster 8 of circuit 2719 and the
soil temperature. The correlation coefficient is 0.18.

(b) Partial discharges of cluster 1 of circuit 2719 and the
soil temperature. The correlation coefficient is -0.84.

Figure 5: Data with weak correlation and strong negative correlation
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3.2 Percentile

Percentile is a specific form of the more general concept of quantile. Although the term quantile appeared first in
1940 [9], Fracnis Galton used the term equi-postile to describe the idea of quantile in 1902 [10]. Quantile comes
from the Latin word quantus (how much or how great), and is defined in the Oxford English Dictionary (OED)
as “each of any set of values of a variate which divide a frequency distribution into equal groups, each containing
the same fraction of the total population; also, any one of the groups so produced, e.g. a quartile, decile, or
percentile.”

Already back in 1885 [11] Galton used the term percentile and is defined by the OED as “each of a series of
values obtained by dividing a large number of quantities into a hundred equal groups in order of magnitude; that
value which is not exceeded by the lowest group is the first percentile; that not exceeded by the lowest two, the
second percentile; and so on.”

This definition is not sufficient for this thesis because not all datasets can be divided into a hundred equal
groups. In this thesis we use the pandas function quantile() [12], that calculates the n-th percentile for each
n ∈ [0, 100]. This function is well-defined and can be described by the next method:

If data is the increasing sequence of the data points [data[0], ..., data[N−1]] with length N , then the n-th percentile
Pn (n ∈ [0, 100]) can be found as follows.

Define a list A of length N of easy computable percentiles:

∀i ∈ {0, ..., N − 1} : A[i] =
100i

N − 1
.

Now we have a list A = [0, 100
N−1 ,

200
N−1 , ..., ,

100(N−2)
N−1 , 100] of the same length as data. Next we determine the

percentiles of A that surround n and call their indices m and M :

m is the index for which A[m] = max{a ∈ A|a ≤ n};
M is the index for which A[M ] = min{a ∈ A|a ≥ n}.

m,M ∈ {0, 1, ..., N−1}. Note that M = m+1 if n /∈ A, and M = m otherwise. A[m] ≤ n ≤ A[M ] by construction.
Finally we define the n-th percentile Pn:

Pn = data[m] + (data[M ]− data[m]) ∗ n−A[m]

A[M ]−A[m]
.

Note that Pn = data[m] if n ∈ A.

The next example finds the 83th percentile P83 for data = [3, 5, 8, 9, 13, 20]:
We have n = 83 and N = 6.

A[0] =
100i

N − 1
=

0

5
= 0; A[1] =

100i

N − 1
=

100

5
= 20; A[2] =

100i

N − 1
=

200

5
= 40;

A[3] =
100i

N − 1
=

300

5
= 60; A[4] =

100i

N − 1
=

400

5
= 80; A[5] =

100i

N − 1
=

500

5
= 100.

80 ≤ 83 ≤ 100, so m = 4 and M = 5, and we get:

P83 = data[4] + (data[5]− data[4]) ∗ 83−A[4]

A[5]−A[4]

= 13 + (20− 13) ∗ 83− 80

100− 80

= 13 + 7 ∗ 3

20
= 14.05.
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3.3 Weibull distribution

The Weibull dsitribution is a a continuous probability distribution, named after Swedish mathematician Waloddi
Weibull. He described it in detail in 1951 [13]. The Weibull distribution is widely used in reliability and life data
analysis due to its versatility and relative simplicity. Depending on the values of the parameters, the Weibull
distribution can be used to model a variety of life behaviors. [14]

The Weibull distribution is defined by the two parameters α and β:

W (x;α, β) =

{
β
α( xα)β−1e−(x/α)

β
if x ≥ 0

0 if x < 0.

α > 0 represents the scale of the distribution and β > 0 represents the shape.

The shape parameter, β, is also known as the Weibull slope. This is because the value of β is equal to the
slope of the line in a probability plot. Different values of the shape parameter can have marked effects on the
behavior of the distribution. Figure 6(a) shows the effect of different values of β on the shape of the probability
density function (pdf). One can see that the shape of the pdf can take on a variety of forms based on the value
of β. The skewness depends only on the shape parameter.

For 0 < β < 1, the pdf tends to infinity as x approaches 0 from above and is strictly decreasing. For β = 1,
the pdf tends to 1

α as x approaches 0 from above and is also strictly decreasing. For β > 1, the density function
tends to 0 as x approaches 0 from above, increases until its mode and decreases after it. Also the slope of the pdf
at x = 0 is determined by the shape parameter. The slope is negative if 0 < β ≤ 1, positive if 1 < β ≤ 2 and it is
a null slope at x = 0 if β > 2. In Chapter 7, the Weibull distribution is used to simulate distributions of partial
discharge. The shape parameter, β, of these distributions is always bigger than 1.

Figure 6(b) shows that the Weibull distribution converges to a Dirac delta distribution centered at x = α, as
β goes to infinity. The Direac delta is a hypothetical signal that lasts infinitely short and at the same time is
infinitely high, such that the integral is exactly equal to 1.

(a) For constant α = 1, the shape of the distribution
changes for different β

(b) Centered at α = 10000 and converges to a Dirac delta
as β goes to infinity

Figure 6: Probability density functions for several scale and shape parameters α and β
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Figure 7 shows that the pdf is stretched out if the scale parameter, α, is increased. Since the area under a pdf
curve is a constant value of one, the peak of the pdf curve will also decrease with the increase of α. For large β
the mode is approximately equal to α.

(a) For constant β = 10, the distribution stretches out if
α increases

(b) For constant β = 50, the distribution stretches out if
α increases

Figure 7: Probability density functions for several scale and shape parameters α and β

The Weibull distribution will be used in Chapter 7 to quantify features of clusters. Figure 8 shows the distribution
of the partial discharges of a cluster and the Weibull distribution that fits best.

Figure 8: Distribution of the particles of cluster 1 of circuit 4082. The orange line shows the Weibull distribution
with parameters α = 707.09 and β = 1.11 that fits best.
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4 Data exploration

In this chapter we look at the data we are going to use to gain more insight into it. Alliander uses SCG to retrieve
the data of the faults and partial discharges (PD), and we have access to a weather application programming
interface (API) [15]. Using this weather API we can collect all kinds of weather variables. In 2014, changes were
made to the hardware of the SCG-systems. SCG produced other numbers from then on. Therefore, in this thesis
we focus on the data from December 2014. In Section 3.1 and Section 3.3 we take a close look at the data of
the faults and partial discharges respectively. In Section 3.2 we will explore which weather variables are the most
valuable for our research to predict both faults and PD. Section 3.4 shows the available data of the warnings and
we conclude with the findings of the data exploration in Section 3.5.

4.1 Faults

When there are short-circuit currents in a circuit, SCG registers and classifies them as faults. The faults usually
lead to circuit breakdown. See Chapter 2 for more details on the measurements. The dataset of the faults available
to us looks like Table 1. This table only shows a small fraction of the entire dataset. We have access to five variables
of all 822 faults registered between December 2014 and February 2021.

Table 1: Dataset of the faults. On circuit 1225 occurred a fault with a huge faultcount in 2015.

• Every circuit with an SCG-system, has a unique circuit number which is written as circuitnr. Circuits with
the same circuit number are in fact the same circuits.

• Date/time (UTC) is the time the fault is registered. SCG measures only every minute so we do not have
the exact time of the fault. As we can already see there are circuits with multiple faults in different locations.
See for example circuit 1219 in Table1.

• Location in meters (m) tells the distance to the starting point of the circuit. SCG makes a calculation
to determine the location of the faults, and presents it with five decimals. However the precision of the
localization is approximately 1% of the circuitlength, according to SCG.

• Faultcount is the number of large sparks that occur during the minute of the fault. One fault can consist
of multiple detections. If a short circuit occurs in a cable, multiple blows (sparks) can occur. SCG combines
these per minute. So if there are multiple detections per minute, a fault gets a faultcount of more than 1.
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• Some faults belong to the same faultgroup. Fault grouping is a way of combining multiple faults, based on
location and time. DNV gives faults the same faultgroup if they have the same circuit number and location
is within and including ±2% of the circuitlength and their time is within 180 days.

For example, when a fault occurred on one specific circuit at 2020-10-01 00:00:00, at location 30% and then
another fault, on that circuit, occurred on the 2020-10-05 00:00:00, at location 32%, then those faults will
have a same fault group id.

The precision of the localization of the faults is 1% of the circuitlength, so two faults that are 2% of the
circuitlength apart may have occurred at the same location. This explains DNV’s choice of 2%.

4.1.1 Location

We take a closer look at the data of the population of all Smart Cable Guard circuits. Before we look at the
locations of the faults it is good to know that not all circuits have the same length. In Figure 9(a) we see the
distribution of the lengths of the circuits.

(a) Circuitlengths (b) Locations of the faults

Figure 9: Distribution of the lengths of the circuits and the location of the faults on the circuits

The distribution of the absolute locations of the faults in Figure 9(b) shows a big outlier: there are relatively
many faults at 0 meter. This raises the question if there would also be such an outlier at the end of the circuits.
Because all circuits have different lengths, we look at the relative location of the faults. In Figure 10(a) we see the
faults are divided into 10 bins. Each bin represents 10% of the length of a circuit. A fault is allocated to a bin if
the location of the fault divided by the length of the particular circuit lies in that bin:

location

circuitlength
∗ 100%.

There happen to be 8 faults for which location
circuitlength is larger than 1. This is caused by errors in the data. The

circuitlengths of those circuits have changed in the past and are not up to date. This causes errors in the calculation
of the relative locations because the locations of the faults, on the other hand, are up to date. Previous investigation
showed that this is very incidental, so only for a few circuits the circuitlength is not up to date and we can assume
that the locations are correct.

If the location does not have any influence on the faults, we expect a uniform distribution in Figure 10(a).
However we see three clear outliers: 0-10%, 40-50% and 90-100%. A closer look tells us that a lot of faults are
exactly at 0% and 100%. This has to do with the ring main units (RMU) at the start and end of the circuits.
Some faults that do not occur on a monitored circuit are still registered by a nearby circuit. These faults do not
occur between the two SCG-systems of a circuit but they are registered by them. SCG determines incorrectly
that the location of these faults is the location of the nearest RMU. This is why we see many faults at 0% and
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(a) All faults (b) Faults for which the relative location is between 40-50%

Figure 10: Distribution of the relative location of the faults on the circuits. The relative location is the absolute
location on the circuit divided by the circuitlength.

100%. It also happens sometimes that the maintenance work at the RMU’s cause the SCG-system to register a
fault. Both reasons explain the high bins of Figure 10(a).

For the outlier between 40% and 50% we take a closer look at the data. Circuit 3532 has 15 faults in the exact
same location, so they also have the same relative location: 44.84%. It concerns an exceptional case. Alliander
has reviewed this situation carefully and decided to divert this circuit and connect another circuit to the relevant
customers. This way circuit 3532 is still monitored, but a possible circuit breakdown will not effect any customers.
Alliander wants to see how long it takes for the cable to actually break. This is why there were faults again and
again at this location without Alliander intervening.

These 15 faults still do not explain the huge 40-50%-bin. It turns out that on this specific location there are
two parallel circuits. Because of this exceptional case the faults on one circuit can also be detected by the other
circuit. The circuits at this location appear to have the same length so the relative location is the same and
consequently we see a huge outlier in Figure 10(b).

So not all faults result in a breakdown and circuit outage. A fault can be registered in one circuit although
it occurred in a nearby circuit. In these cases the faults are registered on both circuits: One inside a circuit with a
clear location, and the other outside the circuit that leads to a location of 0% or 100% of the circuitlength. There
are also events which trigger SCG to register a fault while there is no danger to the circuit at all. Lightning and
human activities during the maintenance of the RMU’s are examples of such events.

We also have to note that there occur intermittent faults: ”faults with very short durations (a few millisec-
onds), after which they disappear. Such self-healing faults typically happen in fluid-filled oil and mass-filled joints.
Sometimes this can happen many months before a full breakdown occurs, on which the protection equipment can
operate” [7].

The provider of SCG, DNV, has developed a decision tree to classify faults into true positives (actual faults)
and false positives (wrong observations). Most of the the false positives are filtered by means of this decision tree.
We further assume that all remaining faults are relevant for our analysis.
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4.1.2 Faultgroup

We investigate the column FaultGroup a bit further. The 822 faults are divided into 753 faultgroups. Figure 11
shows two distributions of the faultgroups. In Plot 1 of Figure 11 we see that most faultgroups consist of only
1 fault. Note the logarithmic y-axis. We also see that there are no very big faultgroups. The biggest faultgroup
consists of only 8 faults which occurred roughly on the same time and location.

Figure 11: Distribution of number of faults and faultcount per faultgroup

For Plot 2 of Figure 11 we added up the faultcount of the faults which belong to the same faultgroup. For
each bin in the graph we see how many faultgroups there are for which the faultcount of the faults adds up to
the relevant bin. For example there are 231 faultgroups which consist of faults with a total faultcount of 1. The
faultcount of a fault is an integer ≥ 1, so these faultgroups must consist of precisely 1 fault. This is why we see
those large bins at the left of both plots of Figure 11.

We see that there are not many faultgroups with a large faultcount but there are a few faultgroups with a
faultcount larger than 30. Those faultgroups do not consist of many faults as we can see in Plot 1, so the faults
of these faultgroups have a large faultcount.

4.1.3 Circuit numbers

We investigate the column circuitnr a bit more. The 822 faults occurred in 527 circuits. So 2313 of the 2840
circuits in February 2020 have not experienced a fault. This is why we make a distinction between circuits without
faults and circuits with at least 1 fault. The three left plots (plot 1, 3, 5) of Figure 12 show data of the circuits
with fault(s). In plots 1 and 3 we see that most of the circuits have just 1 fault and a faultcount of 1: their
shapes are very similar to plots 1 and 2 of Figure 11 about the faultgroups. In plots 2 and 4 of Figure 12 the
circuits without any faults have been added. We see that most of the circuits do not have any faults and therefor
their faultcount is 0. There is one circuit that has 15 faults. This corresponds to circuit 3532 that was previously
mentioned in Section 3.1.1. Unlike Plot 1, this can be seen in Plot 2 due to the logarithmic scale.

In Plot 5 we see the unique faultgroups per circuit. Some circuits have ≥ 2 faults. If these faults are not in
the same faultgroup, the circuit has ≥ 2 different faultgroups. We call them unique faultgroups. As before, we
see that in most cases there is one unique faultgroup.. This is due to the fact that most circuits have just 1 fault.
But we also see that there is 1 circuit which has 8 unique faultgroups.

Plot 6 shows the faultcount per fault. Most of the faults have a faultcount of 1. Plot 3 has a very similar shape
as Plot 6, because most circuits with a positive number of faults only have 1 fault (which can be seen in Plot 1).

All plots of Figure 11 and 12 show a logarithmic decline. This is especially clear in Plot 2 and 5 of Figure 11
and Plot 1 of Figure 12 because of the logarithmic scale. Most circuits have no faults and the circuits with a fault,
usually only have one faultgroup with only one fault with a faultcount of one.
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Figure 12: Plots about circuit number
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4.2 Weather

In this section we collect the data using the weather application programming interface (weather API) and relate
it to the data of the faults. We show that the number of faults correlate positively with the temperature.

4.2.1 Application programming interface

Using the Alliander weather API, we can access 57 different weather variables, including temperature at different
elevations, wind speed, and air pressure. The API uses two sources for this data. The Dutch meteorological
institute called Koninklijk Nederlands meteorologisch instituut (KNMI) provide 39 features for each day [16]. 22 of
them are also available for each hour [17]. On top of that The Climate Data Store (CDS) provides [18] the other
19 features including for example the soil temperatures. Also the data from CDS is registered for each hour. All
these 57 variables are shown in Table 14.

The weather variables are measured at 670 weather stations across the Netherlands [19]. Since the weather at
the circuits does not vary significantly, we use (unless stated otherwise) the data measured in De Bilt, the central
gauge of the weather in the Netherlands (52° 06’ N.B. 05° 11’O.L) [20]. See Chapter 5 for more details about the
variation of the temperature across the circuits. At the time of application, only the data of the past 3 years was
available in CDS. However in Section 5.4 we need soil temperatures from many years back. This is why we use an
alternative source of KNMI [21] for this. Unfortunately, these soil temperatures from KNMI are registered only
for each 6 hours. Because the soil temperatures from CDS are registered for each hour, we will always use these
except in Section 5.4.

4.2.2 Day

In the next figures (13, 14, 16) we just use the general air temperature: the temperature measured at a height of
1.5 meters [22]. In Figure 13 we see the temperature and all the faults distributed across the hours of a day. Each

Figure 13: Mean of the air temperature and sum of number of faults per hour of the day for the period December
2014 until February 2021

bin represents the total number of faults registered during a period of the day of 1 hour. So we see 24 bins and
they add up to the total number of faults, which is 740. For example there have been 19 faults between 00:00 and
01:00 over the period December 2014 till November 2020, and 68 faults between 13:00 and 14:00. After 14:00 there
is a sudden decline of the number of faults. Some faults are caused by human activities, for example maintenance
work and excavation damage. It is likely that these activities hardly take place after 2 pm.
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For the same time period (December 2014 till November 2020), we have been looking at the temperature
measured in De Bilt. For each day of this period we have the data of all the hours of the day. In Figure 13 we
see the average of all these days. We see the maximum at the middle of the day and the minimum at night. We
can already see a positive correlation between temperature and faults. The calculations confirm this: there is a
correlation of 0.69 between the temperature and the number of faults distributed over the hours of a day. We use
the Pearson correlation coefficient for this. See Section 3.1 for more details on the correlation and the definition
of the Pearson.

4.2.3 Month

The temperature in summer is higher than in winter. Would the number of faults also be higher in summer? For
this we have looked at the temperature and the number of faults per month for the entire period from December
2014 to February 2021.

Figure 14: Faults and relative number of faults per month compared with the average temperature per month
from December 2014 until February 2021

For the temperature we take the average temperature of all days of each month. This is shown in Figure 14
on the left vertical axis. We immediately see the difference in temperature between the summer months and the
winter months. For each year we see that the maximum temperature is reached approximately in July. The blue
bars indicating the relative number of faults are explained soon. The red bars show the number of faults for each
month. This is shown on the right vertical axis. We see that in 2015 there are several months without faults and
many more faults in 2019 and 2020 than before. The most likely explanation for this is that there are many more
SCG-systems that register the faults. The distribution of the number of active SCG-systems is shown in Figure
15.

The number of active SCG-systems started to increase very rapidly from 2017. Returning to Figure 14, we
see this pattern again in the evolution of the red bars. This makes it difficult to compare months from different
years. Finding a pattern between the weather and the number of faults is more difficult if the number of faults
is also effected by the number of active SCG-systems. That is why we will look at the relative numbers of faults
per month. That is the number of faults per month divided by the number of active SCG-systems that month.
In Figure 14 you see these values represented by the blue bars with the numbers on the left vertical axis. The
relative number of faults is multiplied by 100 such that it can be shown using the left vertical axis of the graph.

The blue bars are much bigger at the start of the period. This suggests that the SCG-systems, which were
active back then, are much more effective. This has probably something to do with the strategy of the placement of
the systems. At first Alliander only placed the SCG-systems on vulnerable circuits. The strategy of the placements
changed in 2017. So it makes sense to look at the relative number of faults from 2017 on.

In Figure 16 we see the same data as in Figure 14 but here from 2017 on. The blue bars show maximums in the
summer months. So it seems there is a relation between relative number of faults and temperature. Calculation
shows us that the correlation in this period is 0.40 which is a significant high correlation.
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Figure 15: Number of SCG-systems in use over time. Note that there are more circuits (2840) than active
SCG-systems (1640) in February 2021 because some circuits stopped being monitored by SCG.

Figure 16: Faults and relative number of faults per month compared with the average temperature per month
from August 2017 until February 2021
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4.2.4 Correlate faults and weather variables

In the previous section we only used air temperature versus faults, which resulted in a correlation of 0.40. However
we can compare many more weather variables with the number of faults. Let’s investigate which variable correlates
best with the faults. We will look both at the absolute and the relative number of faults. We compare these with
three periods: the whole period (December 2014 - February 2021), the period in which the strategy of the placement
of the SCG-systems changed (Augustus 2017 - February 2021) and the period in which we also have access to the
CDS features including the soil temperatures (January 2018 - February 2021). The results are in Table 14 in the
Appendix.

The features are sorted on the last column: Relative Faults in the period January 2018 - February 2021.
Table 2 shows the weather features for which the correlation coefficient between the weather feature and the
relative number of faults from January 2018 is at least 0.35. We see that the weather feature T10N has the
highest correlation. T10N is the minimal temperature measured at a height of 10 cm. The soil temperature is
measured at several depths. soil temperature level 1 is at a depth of 0-7 cm, soil temperature level 2 at 7-28 cm
and soil temperature level 3 at 28-100 cm. We pay more attention to the soil temperatures in Chapter 5. The
meaning of many other features is evident. Detailed explanation can be found on the website of KNMI [23, 21].

The column Relative 12-2014 shows very low correlations. This is due to the fact that the strategy of placement
of the SCG-systems was very thought through. This caused relative many registered faults in December 2014 for
example. The numbers we find in the columns of 2017 are a little bit lower than the correlations in the columns
of 2018. This is caused by the low number of faults in the summer 2018 in comparison to the summers of 2019
and 2020. However both in 2017 and 2018 we see that the columns of the relative faults show higher correlation,
meaning that this is a better indicator for the relevance of the weather features.

Judging on the last column, the relative faults from 2018, we see that all kinds of temperatures appear at the
top of the table, meaning they correlate well with the faults. And thus the weather features about the temperature
are the most relevant to predict faults.

Alliander knows that the cables are 80-100 cm deep in the ground. This is why we are most often going
to use the feature soil temperature level 3, which is the temperature of the soil measured at a depth of 28-100
cm. It is surprising that this feature does not correlate best with the relative number of faults. We have no
clear explanation for this. Although the temperature above the ground fluctuates more which could lead to a
higher correlation coefficient. Also one can argue that the difference between the correlation coefficient between
soil temperature level 3 and the relative number of faults from January 2018 (0.35) and the correlation coefficient
between T10N and the relative number of faults from January 2018 (0.44), is not significant. Moreover, the
temperature is not at all the only factor for the number of faults.

Table 2: Correlation coefficient between absolute/relative number of faults and several weather variables for three
periods: from December 2014 until February 2021, from August 2017 until February 2021 and from January 2018
until February 2021. Some weather features are only known from January 2018. This table only contains the
available weather variables whose correlation coefficient with the relative number of faults from 2018 is at least
0.35. See Table 14 in the Appendix for all weather variables.
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4.3 Partial Discharges

The main functionality of SCG is measuring partial discharges (PD) to predict the faults. A partial discharge is a
small charge displacement in the cavity or layer of the insulation of a component. See Chapter 2 for more details
on the measurements of partial discharges.

SCG measures these discharges every minute using a measurement session of 20 ms. on each circuit and we
get the data as shown in Figure 17(a). Many times there is no discharge measured. That is why we see a lot of
empty cells in the dataframe. In Figure 17(b) are only the observations that happened on a location of 2213.84
meter with an bandwidth of 1% of the circuitlength, which is 2215 meter for this circuit.

(a) Dataframe (b) Scatterplot of measured charge around 2213.84 meters

Figure 17: Charge of circuit 4099

4.3.1 Clusters of Partial Discharges

Many of the observations of SCG are noise instead of PD. In addition to PD, SCG also measures noise signals
from, for example, power electronics or industry. Noise is no predictor of faults at all which is why we would like
to filter this. Alliander has developed models to filter this noise. The cluster algorithm clusters the discharges that
come from the same source. In Figure 18 is an example of circuit 2719. Most of the clusters are noise and we use
a classification model to classify the clusters as noise or dangerous. We pay more attention on the classification
model in Chapter 8. If we do not know yet if an observation is noise or a partial discharge, we call it a particle.
Although it is often not known whether it is PD or noise, particle are hereinafter often referred to as PD for
convenience.

We see all particles measured on circuit 2719 in Figure 18. On the vertical axis is the time from September
2019 until May 2021. On the horizontal axis is the location of the circuit in meters. The dots in the plot are the
particles. The magnitude of the charge is not shown in this plot. However much can be deduced from the density of
the observations. Between September 2019 and November 2019 there were almost no particles registered, probably
because the circuit was in maintenance during this period. The cluster algorithm clusters the PD and each cluster
is given a unique color. The noise is left grey.

4.3.2 Table of clusters and their features

The particles that are not clustered are noise and they are further ignored, because Alliander assumes noise cannot
be used to predict faults. The clusters are used to predict faults but most clusters still consist entirely of noise.
To determine which clusters are noise and which clusters are likely to be followed by a fault, a masterframe is
built.

The masterframe is a table with all clusters of every circuit. Each row represents a single cluster, and each
column represents a feature of the cluster. From the experience of the experts, Alliander has developed a list of
features that is known to be predictive. Examples of the most basic cluster features are the time, location, shape,
and magnitude of charge. Faults most often occur in the joints instead of other parts of the circuit. This is why
the nearest joint type is another important feature of the cluster: the type of joint closest to the median location
of the cluster. In Table 3 we see a small part of the masterframe. The actual masterframe consists of thousands
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Figure 18: Particles of circuit 2719 clustered by the cluster algorithm. Each color represents a separate cluster.
The particles that are not clustered are left grey and considered noise.

of clusters and more than hundred features. The first cluster in the masterframe started in December 2014. For
both the clusters and the faults we have data from the same period.

The masterframe is used to predict faults for the given clusters. An important task is to construct cluster
features that have a high predictive value. In the following chapters, we will look for those features and convert
them into numbers so that they can be used in the masterframe. Chapter 8 explains how the faults are predicted
by the masterframe and shows how well the features contribute.

Table 3: Fraction of the masterframe of clusters and their features. Only a few clusters and features are shown.

4.3.3 Adding faults to the masterframe

Alliander has not analysed the data of the faults yet so as part of the research we add faults as a feature to the
masterframe to gain insight into the masterframe in relation to the faults. As explained in Section 4.1, a location
in meters and a time are also stored when the faults are registered. A cluster of PD has a different location for
each particle, as can be seen in Figure 18. So we have to come up with a definition which will be used to determine
which faults belong to which clusters such that we can add the faults to the masterframe.
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Definition 6. A fault is linked to a cluster if

1. the fault occurred at a location between the 5th percentile and the 95th percentile of the location of the
particles of the cluster;

2. the fault occurred after the first particle of the cluster has been detected.

Note that Definition 6 allows a fault to be linked to multiple clusters. This makes some sense because many faults
occur months after a cluster and some clusters are right after each other in time, so sometimes it is not clear
whether one cluster caused the fault or that multiple clusters contributed to the fault.

By only looking between the 5th percentile and the 95th percentile of the location, we ignore the outliers. That
makes sense because the partial discharges occur close to where the fault will occur in general, so a fault is not
likely to occur close to the sides of a cluster. The 5th and 95th percentiles were chosen to ensure that the correct
faults are linked to the cluster, given that the precision of the localization of both the particles and the faults is
1% of the circuit length.

A fault and a cluster of PD are often caused by degradation of the insulation in a joint or cable. However, the
PD precedes the faults so we interchange the following expressions: faults linked to clusters and faults caused by
clusters.

We add columns to the masterframe that provide information for each cluster about any fault(s) caused.

• fault-count inside/after cluster : Number of faults linked to the cluster;

• Date/time (UTC) of first fault : Time of the first fault linked to the cluster;

• location of first fault : Location of the first fault linked to the cluster;

• locationdelta of first fault : The distance between the location of the first fault and the median location of
the cluster;

• locationdeltarelative of first fault : The distance between the location of the first fault and the median location
of the cluster, divided by the circuitlength.

It is cumbersome and unnecessary to store the data of all faults in this format of the masterframe. This is why
we have chosen to only store the data of the most important fault of the cluster, the one that occurred first. If
fault-count inside/after cluster is 0, then the cells in the other columns are left empty. In Table 4 we see a part of
the masterframe in which the columns related to the faults are added.

Table 4: Fraction of the masterframe with all clusters of circuit 1478 and the features related to the faults.
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4.3.4 Exploration of the clusters in the masterframe

Using the columns about the faults, we can explore the masterframe. There are 2840 unique circuits, of which
1549 occur in the masterframe. So for 1291 circuits there is no cluster of PD. There are 12345 clusters from which
3137 are still active. We call a cluster active if their last particle is measured less than 24 hours ago. Depending
on the density of the cluster, new particles could be added to the active cluster, even if there is a small gap in
time.

Also not all faults can be found in the masterframe: there are 822 faults, of which 190 have a circuit number
that does not occur in the masterframe. So at least this number of faults could not have been predicted using
the masterframe. Multiple faults occur on some circuits, so this means that there may be even more faults that
cannot be found in the masterframe. There were more faults on 214 circuits than the number of clusters they are
linked to. This is possible if the fault is not caused by a cluster, or if the cluster caused multiple faults.

So at least 214 faults are either caused by a cluster causing multiple faults or cannot be predicted by a cluster,
and for at least 190 faults we know for sure that they cannot be predicted by a cluster.

Figure 19: Distributions of the circuits across the number of clusters per circuit and the clusters across the number
of faults per cluster.
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The distribution of the 1549 circuits is shown in Plot 1 of Figure 19. Most circuits have multiple clusters of
PD. A circuit in the masterframe has 7.97 clusters on average and most of the circuits have less than 10 clusters.
In Plot 2 of Figure 19 we see that most circuits only have 1 cluster of PD. Note that also the circuits which do
not occur in the masterframe are taken into account in Plot 2. Also note the logarithmic scale.

Plot 3 and 4 show the number of faults each cluster is linked to, using Definition 6. All faults are caused by
152 clusters and we see in Plot 3 that by far the most clusters cause only 1 fault. There are many more clusters
that do not cause any faults as can been seen in Plot 4, note again the logarithmic scale. However we see that
there is a cluster which has caused 15 faults. This is a cluster with median location 3574.18 on circuit 3532. These
faults were already mentioned in Section 3.1.1.

Figure 20: Distribution of the 822 faults across the num-
ber of clusters they are linked to. Most faults are not
linked to a cluster of the masterframe.

From Plot 4 one cannot say how many clus-
ters have caused faults because multiple faults could
be caused by a single cluster. For this we look
at Figure 20. We see that most clusters do not
cause any faults, 51 faults overlap only one clus-
ter and 5 faults overlap 2 clusters. We can con-
clude that for most of the faults a single clus-
ter can be identified as the causer. However we
cannot deduce from Figure 20 how many clusters
cause faults because a cluster can cause multiple
faults. Plot 4 of Figure 19 and Figure 20 com-
bined tell us that there are 56 faults caused by
152 clusters. So only about 56

822 = 7% of the
faults are caused by the clusters, so by looking
at the masterframe only 7% of the faults could
have been predicted. Note that many faults have
already been prevented by replacing joints pre-
ventively. Also note that although filtering has
taken place, the fault dataset still contains false
positives: events that were incorrectly issued as
faults.

Would a certain type of fault be more predictable by the masterframe? To investigate this we use the fea-
ture nearest joint type. Almost all faults that are predictable using the masterframe, occur in a joint. So we will
categorize the faults by the type of joint closest to the faults. Even if the location of the nearest joint and fault
are not identical we can assume that the fault occurred in this joint because the precision of the measurements is
not perfect. Figure 21 and Table 5 show the results.

For a lot of joints there is no data about the type. Beyond that most faults occur in heat shrink joints (red bars
in Figure 21) despite the fact that more oil joints are monitored (grey). There are also more clusters with at least
one fault in heat shrink joints (yellow) even though there are more clusters around oil joints (blue). Figure 21(a)
also shows that most of the faults do not appear in the masterframe which explains why the red bars are much
higher than the orange bars. The orange bars are higher than the yellow bars because there are more clusters with
multiple faults than faults that appear in multiple clusters.

Only the most common types of cable joints are shown in the bar graphs. For many joints the type is unknown
because many joints were made a long time ago and the historical data is not always complete. Nowadays if a fault
occurs in a joint, the joint is most often replaced by a heat shrink joint. This is why the number of heat shrink
joints is very high. Although not all replacements are registered correctly. The data contains outdated joint types.
After a replacement the joint type usually changes but this is not included in our data for all replacements. So
for some faults we see that it occurred in some type and for other faults we can only see what the current type of
the joint is, and we do not know which joint types are recent and which are outdated. That is why it is hard to
draw conclusions from these data.
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(a) Three measures of faults per joint type (b) Monitored joints and their clusters

Figure 21: Distribution of faults across the joint types in comparison with the number of clusters and monitored
joints

Type of joint Clusters with ≥ 1 faults Faults in masterframe Faults Clusters Monitored

Paper lapped 0 0 0 0 1

Grease 0 0 0 0 11

Premolded 0 0 1 29 83

Taped 0 0 5 19 139

Bitumen 2 2 14 175 1218

Silicone fluid 5 8 16 201 917

Polymer 6 7 33 305 958

Cold shrink 11 13 39 708 2019

Resin 17 33 90 835 3607

Oil 34 37 184 3314 18883

Heat shrink 45 52 218 2848 10404

Unknown 32 45 222 3911 14344

Total 152 197 822 12345 52584

Table 5: Total number of monitored joints per joint type and the number of faults and clusters per joint type
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4.4 Manually assigned warnings

Alliander receives warnings from DNV. These warnings indicate whether a cable or cable joint is likely to cause
a fault in the near future. They concern a circuit, the location on the circuit, the level of the warning and the
start and end time of the warning. The levels of these warnings depend on the seriousness of the danger to cause
a fault, see Figure 22 for a detailed description by DNV.

Figure 22: Warning levels assigned by DNV and their meaning according to DNV

We have access to the warnings from June 2012. However there were only 5 warnings before December 2014, so
this data can be compared well to the faults and clusters. We check for each fault if there has been a warning for
it. For each fault the overlapping warnings are considered. Then only the warning with the most serious level is
linked to the fault.

Definition 7. A warning is linked to a fault if

1. the difference between the locations of the warning and the fault is less than 3% of the circuitlength;

2. the warning start time is before the time of the fault.

If more than one warning is linked to a fault, we always chose the most severe warning to link the fault to.

The precision of the localization of the faults and the warnings should be approximately 1% of the circuitlength.
We have noticed that this could be more in practice. For example the number of faults that overlap with a warning
depends slightly on this bandwidth. When we choose 2%, 3% and 4%, respectively 16, 18 and 20 faults would be
linked to a level 3 warning. The number of level 1 and 2 warnings would be the same in these three cases. Further
investigation is necessary to choose the best bandwidth. For now we choose 3% so that we do not link warnings
to faults incorrectly.

On the one hand we expect that the clusters which have caused a fault have received a warning. On the other
hand the clusters that get a warning are very well inspected by hand and the relevant joint is replaced in time to
prevent a fault.

In Figure 23 we see that 712 of the 822 faults have not received any warning at all. 80 of the remaining 110
faults have had a warning with the level ’noise’. Faults get a noise warning if the particles measured at the fault
location are considered to be noise. So Alliander does not react to these ’warnings’. Only 30 faults are linked to
an actual warning. It happens to be circuit 3532 again that plays a big role here. All 12 warnings with a level 1
warning occurred on this circuit. Also 3 other faults on this circuit got a level 3 warning. This remains 15 other
faults with a level 3 warning that were not prevented.
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Figure 23: Distribution of the 822 faults across the warnings they are linked to

To investigate how the warnings relate to the clusters of the masterframe, they are linked to the overlapping
clusters. If multiple warnings overlap a cluster, only the most serious warning is linked to the cluster.

Definition 8. A warning is linked to a cluster if

1. the location of the warning is between the minimum and maximum location of the particles of the cluster;

2. the time period of the warning overlaps the time period of the cluster.

If more than one warning is linked to a cluster, we always chose the most severe warning to link the cluster to.

Figure 24 shows that there were 863 clusters with a warning (noise warnings excluded) and in only 14 of them
occurred a fault. The main reason for this is that Alliander prevents faults that would have occurred without
maintenance work. So warnings actually lead to prevention of faults. Note that level 3 warnings are no reason for
concern (Figure 22), so even without any replacements of joints, there would be still many more clusters with a
warning than the number of faults. It seems like assigning more warnings leads to more faults being prevented,
because most of the clusters linked to at least one fault are not linked to a warning. Assigning the warnings to
the right clusters is the challenge. Unfortunately we do not have access to data of the replacements of the joints.
We do not know how many false positives there are: replacements of joints which would not cause a breakdown
in short term.

Figure 24(b) shows that there are 14 clusters with at least one fault that are linked to a warning level 1, 2 or
3. However according to Figure 23 there are 30 faults linked to a warning level 1, 2 or 3. To explain this difference
we need to look at the number of faults caused by clusters with a warning in Figure 25. There is only 1 cluster
that is linked to a fault and got a warning level 1. This happens to be the cluster that caused 15 faults (12 of
which are linked to warning level 1 and 3 are linked to warning level 3). We already discussed this cluster (of
circuit 3532) as a consequence of Plot 3 of Figure 19. We also see there are 2 clusters with a level 2 warning.
Further inspection showed that these clusters were on circuit 2719 and 20133 from respectively 2019-11-07 and
2019-10-22 and were still alive in 2021-02-28. The faults occurred respectively on 2020-08-08 and 2020-08-14 while
the level 2 warnings were given on 2021-01-12 and 2020-11-27, so these faults could not have been prevented by
these warnings. However the clusters kept on existing after this so the level 2 warnings were linked to them. The
clusters also received level 3 warnings before the faults (on 2019-11-14 and 2019-10-28 respectively), but Alliander
did not respond to it because there should be no reason for concern (Figure 22). We can conclude that the assigned
warnings should have been level 1 or 2 instead of level 3.
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(a) All clusters (b) Clusters that are linked to at least one fault

Figure 24: Distribution of the clusters across the warnings they are linked to

Figure 25: Distribution of the clusters that are
linked to a warning across the number of faults they
are linked to. The vast majority of clusters linked
to a warning did not cause a fault.

There remain 13 faults with a level 3 warn-
ing and 11 clusters with a fault and a level 3
warning, to be inspected further. These 11 clus-
ters have all been identified as causing only one
fault. Those numbers are not equal for several rea-
sons. Only 7 of these 11 clusters were linked
to a fault while their faults had been linked to a
warning. 2 of those 7 clusters (of circuit 2737)
did overlap in both time and location and conse-
quently both were both linked to the same fault.
The other 4 of these 11 clusters kept on exist-
ing after the fault, which is why there could have
been given the warning for this cluster while it is
not linked to a fault. So this explains 6 faults
with a level 3 warning. For the remaining 7
faults with a level 3 warning there is no cluster
that overlaps the warning. So there were warnings
for the faults, but there were no clusters for these
faults.

In general Alliander reacts well to the warnings because almost all faults occur without a warning. These warn-
ings are manually assigned by DNV. The ultimate goal of Alliander is to be independent of manual work by
automatically assigning warnings using the masterframe.
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4.5 Conclusions of the data exploration

4.5.1 Faults

The available data contains 2840 circuits with 822 faults. Not all these faults actually cause immediate outage of
the circuits in which they are perceived. Some faults are intermittent and will cause a breakdown later on, and
some faults are registered in a circuit while they actually occur in another nearby circuit. Since we cannot easily
distinguish the different cases above in our data, we will assume that all faults in the data are relevant
for our analysis to predict faults.

4.5.2 Weather

There are weather features that correlate with the number of faults. In general the temperature correlates strongly
with partial discharges, and consequently we can use this to predict faults. The most important weather feature is
the temperature of the soil measured at a depth of 28-100 cm. So we will use the data of the soil temperature
in the next chapters.

4.5.3 Partial Discharges

The masterframe is a table of clusters of particles and features of the clusters. We assume that the particles are
clustered well. The goal is to use the masterframe to classify the clusters as either PD or noise, without using the
manually assigned warnings. We can predict the faults better if we introduce new features to the masterframe.
The next chapters search for cluster features that help the classification model to predict the faults
better.

4.5.4 Manually assigned warnings

Only 9% of the clusters are linked to a warning. This suggests that many clusters are noise. 7% of the faults were
linked to a cluster and 4% to a warning. So many faults cannot be predicted by analyzing the PD.

We have access to the data of the faults, clusters and warnings between December 2014 and February 2021,
and the data of the soil temperature from January 2018. This is why we will focus on the period from
January 2018 until February 2021 in our research.
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5 Temperature

Section 3.2.4 showed that temperature is related to the faults, because there were many more faults during the
summers. In Section 3.3 we have seen that the masterframe with its clusters of PD is assumed to have a predictive
power. So it seems that PD are related to the temperature. In this chapter we further examine the available
temperature data to see if and how we can use this to relate to PD.

To what extend can we use the temperature data to relate them to the partial discharges?

5.1 Soil temperature measured at several depths

Most electricity cables and joints in the medium voltage grid lie underground. Therefore it seems reasonable that
the temperature of the soil correlates more strongly than the temperature above the ground. KNMI measures the
soil temperature and categorises the measurements to four levels depending on the depth. See Table 6. We only
have access to the data from 2018.

Level Depth (cm)

1 0-7

2 7-28

3 28-100

4 100-289

Table 6: KNMI measures the soil tempera-
ture and categories the measurements to four
depth levels

The four different levels and the air temperature, used in fig-
ures 14 and 16, are plotted in figures 26 and 27. The measurements
come from the gauge of De Bilt. As can be seen by visual inspec-
tion, the value of soil temperature level 4 has a delay of half a
month on the regular temperature at +150cm. In fact the deeper
the measurement the larger the delay. This also causes the differ-
ence in inconstancy: the deeper the measurements the less erratic
the temperature.

The cables in the ground are located at a depth of 80-100cm,
so we use the soil temperature level 3 for all analysis.

Figure 26: Temperature at +150cm, and depths of 0-7cm, 7-28cm, 28-100cm and 100-289cm in De Bilt
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Figure 27: Temperatures at several depths in August 2020 in De Bilt

5.2 Variation between temperature measurements across the Netherlands

Figure 28: The Netherlands and
the locations of De Bilt, Gronin-
gen and Maastricht

To relate the temperature to PD it is useful to know where the circuits are, such
that the temperature of the specific regions can be used. Due to constraints
in the availability of the data, location of SCG circuits has to be queried
manually. So we cannot do extensive research on the locations of the circuits.
However De Bilt is centrally located in the Netherlands, so it makes sense
to use these measurements for all circuits across the Netherlands. To what
extend can we use the temperature of De Bilt to say something about PD of
other cities? To investigate this we look at the temperatures of De Bilt and
two distant cities: Groningen and Maastricht. See Figure 28.

The variations between the three cities are made visible in Fig-
ure 29. The three curves are pretty similar, especially the slopes.
But after zooming in, we see in Figure 30 that there are days
in which the temperature in one city rises while it drops in an-
other city. To see if we can still use these measurements to
say something about the relation between PD and the soil temper-
ature somewhere else in the country, we are first going to inves-
tigate how the measurements across the country correlate to each
other.
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Figure 29: Soil temperature level 3 in De Bilt, Groningen and Maastricht

Figure 30: Soil temperature level 3 in November 2020 in De Bilt, Groningen and Maastricht
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In all three cities the soil temperature is measured each hour and we use this data over a period of 3 years,
so for each city we have 26304 data points. The mutual correlations of the cities are 0.9969, 0.99856 and 0.99371,
for respectively [De Bilt - Groningen], [De Bilt - Maastricht] and [Groningen - Maastricht]. As expected, the
correlation between Groningen and Maastricht is lowest, because these cities are the furthest apart. Note that the
correlation coefficients are very high. We would like to predict PD on a much smaller window. Do the temperatures
also correlate when we take a time window of a single day?

We have 24 data points for each day and each city. For each day we calculate the three mutual correlations.
Then we have three lists of 1096 numbers, because the three years consist of 1096 days. To get some insight in
these numbers we calculate the minimum, mean, median and some percentiles of the lists. See Table 7. See Section
3.2 for more details on the percentiles.

Cities Mean Median 25% 10% 5% 1% Minimum

De Bilt - Groningen 0.845583 0.989404 0.922305 0.518964 -0.068412 -0.819790 -0.997063

De Bilt - Maastricht 0.888970 0.992834 0.956815 0.708682 0.244546 -0.643664 -0.969608

Groningen - Maastricht 0.780022 0.984655 0.878705 0.115848 -0.525885 -0.929132 -0.997418

Table 7: Mutual correlations between the three cities for which the rolling window consist of 1096 correlation
coefficients. For each day a coefficient is calculated using two lists of 24 data points: temperature of each hour of
the day of two cities.

We see that the fifth percentile is around 0 for all city combinations. This means that for 5% of the time there is
no significant correlation. Also the mean of around 0.85 is not promising. We determine that the temperature for
a circuit far away cannot be used to say something about PD. So when the temperature is rising during part of
the day, we cannot link that to PD of a circuit far away. However if we take a much bigger time window, we may
find a correlation between pd and temperature.

To get rid of the biggest fluctuations we use the mean of the temperature per day. We receive one data point
per 24 hours. The mutual correlations are even higher now: 0.99691, 0.99857 and 0.99374, for respectively [De
Bilt - Groningen], [De Bilt - Maastricht] and [Groningen - Maastricht]. Using the means of the days we calculate
for each day the mutual correlations of the past 20 days. The results are in Table 8.

The correlation coefficients are much higher despite the fact that we use less data points (20 versus 24 before).
There is even a significant correlation for the fifth percentile which means that at least 95% of the time there is a
significant correlation and therefore it is very reasonable to look at the temperature in one city while predicting PD
of another city. We can use the soil temperature level 3 in De Bilt to relate it to PD in Groningen and Maastricht.

Cities Mean Median 25% 10% 5% 1% Minimum

De Bilt - Groningen 0.948948 0.982833 0.953099 0.89732 0.810756 0.302128 -0.436738

De Bilt - Maastricht 0.977815 0.990724 0.977196 0.951936 0.914735 0.801646 0.483294

Groningen - Maastricht 0.909520 0.968878 0.914933 0.787942 0.630983 -0.107660 -0.669359

Table 8: Mutual correlations between the three cities for which the rolling window consist of 1096 correlation
coefficients. For each day a coefficient is calculated using two lists of 20 data points: daily temperature of the past
20 days of two cities.

5.3 Conclusion

The soil temperature differs between cities in the Netherlands. There are cities that for 5% of the days do not
show significant correlation between the hourly temperature of the cities, so one cannot make statements about
the relation between temperature and PD of a single day. However the centrally located De Bilt makes it possible
to relate its temperatures of 20 consecutive days to circuits in other parts of the Netherlands. We will use this
conclusion in Section 6.2 to determine the correlation between the soil temperature and the PD of the circuits.
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6 Relation between partial discharges and temperature

In this chapter we investigate how to create features related to temperature that can be assigned to a PD cluster
in the masterframe. This feature is intended to have a significant contribution to predict faults. This chapter
uses the partial discharges and the temperature to create such a feature. Alliander knows that the cables and
joints are influenced by the temperature. We are going to determine for each cluster the degree of influence of the
temperature on PD. We do this by investigating to what extend they are correlated for each cluster.

There may be some clusters for which the temperature correlates well with PD, some for which there is a
negative correlation and some for which no correlation can be found because, for example, there is insufficient
data. These features are not predictive for the latter type of clusters. For the other clusters, the features could
greatly improve the classification model to predict faults, especially when combined with other types of features,
such as the circuit construction material.

In this Chapter we only use the soil temperature level 3, measured at a depth of 28-100cm, because the cables
are located at a depth of 80-100cm. In Chapter 5 we have seen that we have to be careful how to use the data of
the temperatures, because the temperature in the regions of the circuits differs slightly. Because we do not know
where the clusters are, we use the measurements from De Bilt.

How can we create masterframe features that quantify the relation between the partial discharges
and the temperature?

(a) Charge (b) Temperature

Figure 31: Samples of the charge and temperature series of cluster 1 of circuit 4082

Figure 32: Measured partial discharges and corresponding temperature of cluster 1 of circuit 4082.

The partial discharges are all particles which form the cluster according to the cluster algorithm. For the temper-
ature we use the soil temperature level 3 during the time period of the cluster. Only the soil temperature from
2018 is available. The particles are measured each minute, and the temperature is measured each hour. Figure
31 and 32 show the visualisation of the data of one cluster. We will correlate the temperature with the partial
discharges for each cluster in Section 6.1. Section 6.2 creates feature which identify short periods of the cluster
that correlate well with the temperature. Sections 6.3 and 5.4 improve these features by looking at the fluctuations
of the temperature. Section 6.5 and 5.6 relate the seasons to the partial discharges.
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6.1 Correlation coefficients

To calculate a correlation coefficient for the charge and the temperature, the two series need to be of equal length.
We define variables for the charge and temperature per hour:

qch : The sum of the charge of the measured PD of cluster c during hour h, in picocoulomb (pC);

th : The temperature during hour h, in degrees Celcius;

qc = [qch1 , ..., q
c
hmax ] : The series of summed charges per hour in cluster c;

tc = [th1 , ..., thmax ] : The series of temperatures per hour in cluster c.

h1 is the first hour of the cluster and hmax is the last hour of the cluster, such that qc and tc both have the length
of the number of hours in cluster c. Note that the series tc depends on cluster c, because it depends on the time
period of the cluster. However the hourly temperatures th are independent of c, because for all clusters the same
measurements of De Bilt are used. A cluster does not have holes: hours without PD are still included. So tc is
completely fixed by the first and last hour of cluster c. The superscripts of the charge and temperature series are
omitted if it is clear which cluster is being referred to.

Figure 33: Sample of the series of the hourly
summed charge of cluster 1 of circuit 4082

Figure 33 shows a sample of q: there are many hours without
PD but these data points are included. t is the same as Fig-
ure 31(b), because the raw data of the temperature is already
hourly. q and t are plotted in Figure 34. The corresponding
correlation coefficient is Pearson(q, t) = −0.52. See Section 3.1
for more information about the Pearson correlation coefficient.
We see a lot of short peaks in Figure 34. This is because the
measured PD fluctuates greatly every hour, and there are many
hours without PD. The overall trend of the PD is difficult to see.
We would like to adjust the data so that the trend is clearer.
Subsequently, the PD can be better compared with the temper-
ature.

How can we resample the data so that the relationship between PD and temperature is visible?

Figure 34: Cluster 1 of circuit 4082: The charge of each hour is summed. Correlation coefficient is -0.52.
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6.1.1 Resampling

We can make the curve smoother by resampling the data. By resampling we mean bundling the data of each
period of 10 days, instead of taking 1 data point each hour. Each period pi of 10 days gets two data points:

q′pi =
1

240

240(i+1)∑
j=1+240i

qhj : the mean of the (summed per hour) charge of period pi;

t′pi =
1

240

240(i+1)∑
j=1+240i

thj : the mean of the temperature of period pi;

q′ = [q′p1 , ..., q
′
pI

] : The series of the resampled charges;

t′ = [t′p1 , ..., t
′
pI

] : The series of the resampled temperatures.

A period of 10 days contains 240 hours. qhj is the sum of the charge measured in hour j, as defined at the previous
page. I is the number of periods of 10 days of the relevant cluster.

We could have taken the sum of the hourly partial discharges instead of the mean. This makes no difference to
the correlation, so we have chosen the mean because this makes the comparisons in the plots easier. Figure 35(a)
shows q′ and t′ of cluster 1 of circuit 4082. The corresponding correlation coefficient is Pearson(q′, t′) = −0.88.

(a) Resampling: For each period of 10 days the mean of
that period is taken, for both the temperature and the

charge. This gives a correlation of -0.79.

(b) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the

charge. This gives a correlation of -0.78.

Figure 35: Modifications to both the temperature and the measured partial discharges of cluster 1 of circuit 4082

6.1.2 Smoothing

It was needed to take a period as large as 10 days to get a smooth curve for the partial discharges. The downside
is that the number of data points shrinks very fast. To overcome this problem we introduce the method of
smoothing: Taking the mean of the last 10 days for each hour. Then each hour has a value calculated by the
240 previous original numbers:

q′′hi =
1

240

i∑
j=i−239

qhj : the average of the 240 hourly charge values prior to and including hi;

q′′ = [q′′h240 , ..., q
′′
hmax ] : The series of the smoothed charges.

qhj is only defined for j ≥ 1, so q′′hi is not defined for 1 ≥ i ≥ 239. max is the number of hours in a cluster, so the
series q′′ contains 239 less data points than the series q. Smoothing is similar to resampling in some sense. In both
techniques, we divide the data into smaller chunks and do some kind of aggregation. The difference is that each
data point is used only once in resampling. When we use smoothing, each data point is used 240 times (except
for the first ones). q′′ and t in Figure 35(b) show the effect of smoothing the data of cluster 1 of circuit 4082. The
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corresponding correlation coefficient is Pearson(q′′, t) = −0.78. The relation is very clear: much PD in the winters
and little PD in the summers. This does not mean that this would hold for all clusters so the next question comes
up. Is this a good method to reflect the relation between partial discharges and temperature, for each cluster?

6.1.3 Examples

In Figure 36 we see the plots of cluster 8 of circuit 2719. This cluster lives in a period of 21 months: from January
2019 until September 2020. (a) shows the raw data. There seems to be more charge in the warmer periods,
especially in the summer of 2019. We expect to see a positive correlation. However there is no correlation between
the charge and temperature per hour in (b): the correlation coefficient is 0.03. The plots after using the methods
resampling and smoothing are shown in (c) and (d) of Figure 36. These modified data series should represent the
relation between the PD and temperature better. They do, albeit slightly: the coefficients are respectively 0.20
and 0.18.

(a) Raw data (b) For each hour the measured partial discharges are
summed. Correlation coefficient is 0.03.

(c) Resampling: For each period of 10 days the mean of
that period is taken, for both the temperature and the

charge. Correlation coefficient is 0.20.

(d) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the charge.

Correlation coefficient is 0.18.

Figure 36: Four displays of cluster 8 of circuit 2719 and the soil temperature
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Figure 37 shows the the plots of another cluster of circuit 2719. In plot (a) we see that more PD is measured in
early 2021 when the temperature is low. We therefore expect a negative correlation. The data series plotted in
(b) confirm this with a coefficient of -0.22. Changing the data amplifies this effect with coefficients of -0.88 and
-0.84.

(a) Raw data

(b) For each hour the measured partial discharges are summed. Correlation coefficient is -0.22.

(c) Resampling: For each period of 10 days the mean of
that period is taken, for both the temperature and the

charge. This gives a correlation of -0.88.

(d) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the

charge. This gives a correlation of -0.84.

Figure 37: Four displays of cluster 1 of circuit 2719 and the soil temperature
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Figure 38 shows two clusters of circuit 2389. In (a) and (c) we see the raw data of respectively clusters 4 and 12. In
the summer of 2019 there were no partial discharges in cluster 12 while cluster 4 has some discharges all the time
of the cluster. However using the smoothed data in (b) and (d), cluster 4 shows a higher correlation coefficient.
This raises the idea of exploring the possibility of quantifying the relationship between partial discharges and
temperature by looking at the number of partial discharges per season of the year.

(a) Raw data of cluster 4 (b) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the charge.

Correlation coefficient is -0.49.

(c) Raw data of cluster 12 (d) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the charge.

Correlation coefficient is -0.32.

Figure 38: Raw and smoothed data of clusters 4 and 12 of circuit 2389 and the soil temperature
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There are also many clusters for which the PD only correlates well over a certain period of time. Figure 39 shows
an example of this phenomena. After smoothing the data, there is a huge correlation at the start of this cluster.
The correlation coefficient for the period until June 2020 is 0.92, while the overall correlation coefficient is 0.21.
This gives rise to the idea of investigating whether we can quantify a relationship between PD and temperature
by looking at certain periods of the clusters.

(a) Raw data (b) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the charge.

This gives a correlation of 0.21.

Figure 39: Raw and smoothed data of cluster 26 of circuit 2719 and the soil temperature

Figure 40 is another example of this phenomena. The overall correlation is -0.57 because there is no PD when the
temperature is high. However if we zoom in on the first and last period of this cluster, we notice something else.
In the period until July 2020 there is a correlation of 0.31 and in the period from November 2020 the correlation
coefficient is 0.09. The reason we do not see PD between July and November 2020 is probably not that there did
not occur PD. It seems like that there were no measurements during this period. This happens for example when
there are maintenance activities on the circuit. We should keep in mind that the data contain gaps, and we could
wonder if these features are appropriate for these clusters.

Although this example is not perfect it still shows that correlations of shorter periods could be different, which
makes it interesting to explore the correlations of these short intervals.

(a) Raw data (b) Smoothing: For each hour the mean of the previous
10 days is taken, for both the temperature and the charge.

This gives a correlation of -0.57.

Figure 40: Raw and smoothed data of cluster 1 of circuit 20830 and the soil temperature
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6.1.4 Masterframe feature

The feature correlation pd temp is added to the masterframe:

• correlation pd temp: Pearson(q′′, t),
Correlation between the soil temperature and the pd of the cluster.

6.1.5 Conclusion

To compute meaningful correlation coefficients between partial discharges and temperature, the timeseries have to
be modified. We investigated several methods. The method of smoothing takes the mean of the temperature and
PD of the last 10 days for each hour. This method seems like a good way to modify the data because the curve of
the PD gets smoother while the number of data points does not shrink much. This way the correlation coefficient
can be calculated well and expresses the relation between the PD and temperature well.

There are many clusters for which this method captures a characteristic of the cluster. So we include this
feature to the masterframe. In Chapter 8 we will test the predictive power of this feature by using it in the
classification model and see if it contributes to fault prediction.

There are two other interesting methods to quantify the relation between partial discharges and the tempera-
ture. In Section 6.2 we investigate the relation between the data in shorter periods of the cluster and in Section
6.5 we look at the relation between the partial discharges and the seasons.
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6.2 Dataframe of correlation coefficients of shorter periods

In Section 6.1 the correlation between temperature and partial discharges of a cluster is calculated. The time
period was equal to the period of the cluster. However there are clusters of which the partial discharges and tem-
perature relate differently for small time periods. From the masterframe features created in Section 6.1, one can
not extract clusters in which there is both a period in which the temperature and the partial discharges correlate
very well and a period in which they have a high negative correlation coefficient. The overall coefficient does not
show what is happening over time. This is why it could be interesting to look for shorter periods in the cluster in
which there is a high positive or negative correlation.

How can we identify clusters where there is only a short period in which partial discharges strongly
correlate with temperature?

6.2.1 Daily charge and temperature

We want to examine the effect of soil temperature on PD by looking at the correlation between the soil temperature
and the charge. At night there is less PD because of less human activity, also the soil temperature is lower
(although not much as we saw in Figure 27). These fluctuations during the nights do not help to find the effect
of the temperature on PD. In the previous section we got rid of these fluctuations by taking the mean of 10 days
after having hourly values of the temperature and the charge. Now we create daily values to exclude (to some
extend) the regular discrepancies on the electricity network:

Qcd =

d24∑
j=di

qhj : The sum of the charge of the measured PD of cluster c during day d, in picocoulomb (pC);

Td =
1

24

24∑
j=i

thj : The mean of the hourly temperatures during day d, in degrees Celcius;

Qc = [Qcd1 , ..., Q
c
dmax ] : The series of summed charges per hour in cluster c;

T c = [Td1 , ..., Tdmax ] : The series of temperatures per hour in cluster c.

If Qcd = 0, there is no PD on day d and we consider Qcd as undefined. We use capitals Q and T instead of the q
and t of the previous section because these are daily values instead of hourly values. Like in the previous section,
the superscripts are omitted if it is clear which cluster is being referred to.

6.2.2 Method to create dataframe of correlation coefficients

To find periods of a cluster in which the correlation is high, we need to calculate the correlation coefficient of all
periods. For each cluster we create a rolling window ρc consisting of correlation coefficients. For each day of the
cluster the correlation of the previous 20 days is calculated:

ρcdi =Pearson([Qcdi−19
, ..., Qcdi ], [Tdi−19, ..., Tdi ]) :

The correlation coefficient of the 20 daily values prior to and including day di of cluster c;

ρc =[ρd20 , ..., ρdmax ] :

Rolling window of cluster c.

ρcdi is considered as undefined if more than 10 of {Qcdi−19
, ..., Qcdi} are undefined. Then the correlation coefficient

ρcdi would be based on too few data which makes it unreliable. ρdi is also not defined for 1 ≥ i ≥ 19, because Qcdi
is not defined for i ≥ 1. max is the numbers of days in the cluster, so ρc contains 19 less data points than Qc.
From this rolling window ρc we can see if there are periods with a high correlation.
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6.2.3 Example

In Figure 41 is cluster 26 of circuit 2719 again. The temperature and charge are smoother than Figure 39(a) and
less smooth than Figure 39(b). The green curve is the rolling window ρ. So each of the three curves has one data
point per day. There were some days without PD. These days cause the small holes in the blue curve.

Figure 41: Rolling window consisting of correlations between the temperature and the partial discharges of cluster
26 of circuit 2719

The vertical axis for the temperature is left out for simplicity of the figure. Like Figure 39 the temperature is
between 6 and 20 degrees Celsius. During April and May 2020 both the temperature and the charge rises. Therefor
the correlation coefficient during this period is very high. During the end of July and August the charge drops
while the temperature rises. Therefor the correlation coefficient is negative during this period.

6.2.4 Masterframe features

For the masterframe we need to make features about the cluster. The rolling window is used to extract features
about the whole cluster. What is left to do is transforming the rolling window into a single number such that it
can be included in the masterframe.

The mean and median of the correlation coefficients of the rolling window are no good indicators because they
could be around 0 while there are both periods with high positive correlation and periods with high negative
correlation. The maximum and minimum are better indicators. However it is possible that the correlation
coefficient coincidentally takes very high values for some days. We see that it fluctuates very much in Figure 41.
To make it more robust we introduce two features:

• max timeperiod of consecutive positives: max{λ | ∃i : ρdi , ..., ρdi+λ−1
≥ 0.7},

The longest period of the cluster in which the correlation coefficient for each day of this period is at least
0.7.

• max corr which repeats 12 timeperiods: max{P | ∃i : ρdi , ..., ρdi+11
≥ P},

The maximum correlation coefficient for which there are at least 12 consecutive days for which the corre-
sponding correlation coefficient is at least this value.
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Index i 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Day di d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23

Correlation coefficient ρdi 0.9 0.3 0.9 0.9 0.6 0.6 0.7 0.7 0.6 0.8 0.8 0.8 0.7 0.6

Table 9: Rolling window of correlation coefficients of a fictitious cluster

Note that a correlation coefficient of a day is based on the past 20 days. See Table 9 for an example that clarifies the
two features. This cluster consists of 23 days. Note that the first 9 days are not shown in the table because they do
not have a corresponding correlation coefficient. (Their coefficient would be based on data of less than 10 days.) So
we see the last 14 days of this cluster with their coefficients. ρdi ≥ 0.7 for 19 ≤ i ≤ 22 and there is no longer period
in which the minimum correlation is at least 0.7. So the value of the feature max timeperiod of consecutive positives
is 4.

ρdi ≥ 0.3 for 10 ≤ i ≤ 21, but there is another period of 12 days in which the minimum correlation is higher:
ρdi ≥ 0.6 for 12 ≤ i ≤ 23. So the maximum correlation which lasts at least 12 days is 0.6. So the value of the
feature max corr which repeats 12 timeperiods is 0.6.

A negative correlation could also be a good predictor so we also add the opposites to the masterframe:

• max timeperiod of consecutive negatives: max{λ | ∃i : ρdi , ..., ρdi+λ−1
≤ −0.7},

The longest period of the cluster in which the correlation coefficient for each day of this period is at most
-0.7;

• min corr which repeats 12 timeperiods: min{P | ∃i : ρdi , ..., ρdi+11
≤ P},

The minimum correlation coefficient for which there are at least 12 consecutive days for which the corre-
sponding correlation coefficient is at most this value.

In Figure 42 we see a cluster for which the feature max timeperiod of consecutive positives gives 16. So there is a
period of 16 days for which the correlation coefficient is at least 0.7. That is the period at the end of July 2019.
The temperature drops first and rises after that. The charge does the same. So despite the few days for which
there were no partial discharges, the correlation coefficient was high for quite a while. During this period the
coefficient was above 0.84 for at least 10 days, which gave the feature max corr which repeats 12 timeperiods the
value of 0.84.

In Figure 43 is a cluster for which the feature max timeperiod of consecutive negatives gives 22. In July and
August 2019 there is a long period for which the correlation coefficient is at most -0.7. This period includes 10
consecutive days for which the coefficient was -0.88 at most, so max corr which repeats 12 timeperiods has value
-0.88. There are partial discharges measured from August 2018 until September 2019, otherwise there would not be
a blue line. However the charge seems insignificant low. The charge and the corresponding correlation coefficients
in the period from September 2019 seem much more relevant, so one idea to improve the used method is to exclude
the charge below a certain threshold.

Cluster 26 of circuit 2719 in Figure 41 is a good example where the features of this section related to the
shorter periods of the cluster are much more expressive than the feature correlation pd temp of the last section.
The overall correlation of this cluster is 0.21 while
max timeperiod of consecutive positives = 13; max timeperiod of consecutive negatives = 8;
max corr which repeats 12 timeperiods = 0.71; min corr which repeats 12 timeperiods = −0.61.
These features well express the period of April and May 2020 in which both the temperature and charge rise, and
they also express that there is a significant period where the PD behaves opposite to the temperature.
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Figure 42: Rolling window of correlations between the temperature and the partial discharges of cluster 98 of
circuit 1883: max timeperiod of consecutive positives = 16; max corr which repeats 12 timeperiods = 0.84.

Figure 43: Rolling window of correlations between the temperature and the partial discharges of cluster 8 of circuit
1883: max timeperiod of consecutive negatives = 22; max corr which repeats 12 timeperiods = −0.88.
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6.2.5 Choice of the parameters

Time period of 20 days
For each day the correlation of the past 20 days is calculated. If we would choose a bigger period, we could miss
small periods of for example 7 days in which there’s a huge correlation. It could be flattened by the other days of
the period. If we choose the periods to be much smaller than 20 days, then the correlation is not reliable anymore
because of the uncertainty of the temperature. Remember that we use the temperature of De Bilt while we do
not know where the circuits are.

Minimum 10 days of PD to calculate a correlation coefficient
The chosen length of the period of 20 days can not be too close to the chosen minimum number of days of measured
PD, which is 10. If these are too close, there would be many days in which the correlation would not be calculated
and consequently many empty cells in the rolling window. So the minimal number of days in which there is PD,
can not be too large. But it can not be too small either because then the correlation could be based on this few
numbers which makes the correlation unreliable.

One data point each 24 hours
Sum of PD and mean of temperature of 24 hours is chosen because we want to examine the direct effect of temper-
ature on PD. To illustrate, at night it’s colder than during the day so if we see less PD there is a high correlation
but maybe there is little PD because people use less electricity at night, instead of the lower temperature. To
exclude (to some extend) the regular discrepancies on the electricity network, we will be looking for a daily relation.

Correlation coefficient lasts for at least 12 days
To explain why we choose 12 days in which a coefficient has to last for both the feature
max corr which repeats 12 timeperiods and its negative equivalent, imagine a period of 30 days for which there is
PD measured only during day 11 until day 20. Then the correlation which is calculated for day 20 until day 29 is
only based on days 11 until 20 because the other days have no PD value. So if we would have chosen for 10 days
for which the coefficient would last, this could be based on only 10 consecutive days. By choosing the period to be
12 days, the value max corr which repeats 12 timeperiods could be based on only 12 values but these 12 values can
not be exactly the same. This way we exclude the cluster value can not be based on only one coefficient, which
makes it more robust.

Correlation coefficient at least 0.7
For the feature max timeperiod of consecutive positives, we choose the threshold 0.7. In a period in which all days
show this coefficient, one can clearly see the relation in the plots. If the threshold is much higher, we would exclude
periods in which there is a clear relation but its correlation coefficient is just not sufficient to be detected by this
feature. If the threshold is too low, the feature would become less valuable because the variance of the coefficients,
what the feature is build with, could be very high.
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6.2.6 Conclusion

We created the features max timeperiod of consecutive positives, max corr which repeats 12 timeperiods,
max timeperiod of consecutive negatives and min corr which repeats 12 timeperiods. These four features mark
short periods in which the PD correlates very well with temperature. The examples showed that the features
take on high values for clusters in which a clear correlation is visible in the graphs. The clusters for which the
features take high values can be easily distinguished from the clusters without a period of strong correlation. The
next section investigates the four features to get more insight into them.

6.2.7 Discussion

There are several ways to investigate if it is possible to improve the construction of the features in this section:

• The five parameters used for the features are based on common sense and could be tweaked.

• Clusters that have a longer existence have a higher chance to have a period in which the temperature
correlates well with the PD. An idea to improve the method used in this section is to normalize the lengths
of the clusters.

• Instead of taking the sum of the PD each day it could also be interesting to take the number of times PD is
measured per day.
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6.3 Relevance of the features about correlation of shorter periods

Four masterframe features are created in the last section:
max timeperiod of consecutive positives, max corr which repeats 12 timeperiods,
max timeperiod of consecutive negatives and min corr which repeats 12 timeperiods.
These features should represent to what extend there is a correlation between partial discharges and temperature
in shorter periods. This section investigates them further to get more insight in the reliability of them.

To what extent are the values of the 4 features of Section 6.2 based on coincidence?

6.3.1 Heatmap

Figure 44: Heatmap of the rolling windows of correlation coefficients of several locations between the temperature
and particles of circuit 2389. Correlations between -0.4 and 0.4 are discarded. A fault occurred 2020-07-28 at 1591
m.

Figure 44 shows a so called heatmap. For 200 equally distributed locations of circuit 2389 series of correlations
are created. The color in the figure shows the level of the correlation. All coefficients between -0.4 and 0.4 are
omitted to get a clearer view. There are many purple spots at approximately 1600m from the end of 2018 until
the summer of 2020. So at this location there are many periods in which the partial discharges correlate well with
the temperature. Right after this string of purple spots is a detection of a fault at 2020-07-28 at 1591 meters.
This indicates that the correlation coefficients calculated for the 4 features are relevant. However it makes sense
to see more spots before a fault because in general more partial discharges are detected before a fault, and this is
only one example.

6.3.2 Substitute datasets

To investigate if many numbers of the features are based on coincidence, we create two artificial datasets which
substitute the data of the temperature. To see if it is purely coincidental, that a cluster has periods for which
the temperature correlates well with the partial discharges according to the four features, we create a random set
of ’temperatures’. This set is built from the initial temperature data. The only difference is that the dates are
randomly shuffled.
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Figure 45: Soil temperature and two synthetic timeseries from January 2018 to May 2021

To see what the influence of the seasons is to the coefficients a sinusoid is created. This sinusoid is meant to
get a similar shape as the actual temperature, except for the fluctuations. For this experiment there is no need to
use a ’best’ formula for the sinusoid to get an idea of the values of the four features. The formula of the siusoid
we use is

12.5 + 7.5 ∗ 2π sin(x)

365 ∗ 24
,

where x is an integer based on the time of the actual temperatures: the temperature of 2018-01-01 00:00:00 gets
the integer 0, the next value (2018-01-01 01:00:00) gets 1, and so on.

Both the shuffled set and the sinusoid are plotted next to the original temperature in Figure 45. A random 100
clusters are used to test the influence of the two substitutes, in comparison to the actual temperature. For each
substitute the maximum, minimum, absolute value of the mean and absolute value of the median are calculated
for all 100 clusters. The means of these 100 numbers are shown in Table 10. Also the mean of the four features is
calculated and shown in Table 11.

↓ Data / Features → Maximum Minimum |Mean| |Median|
Temperature 0.74 -0.71 0.06 0.07

Shuffled temperature values 0.62 -0.62 0.04 0.05

Sinusoid 0.75 -0.75 0.04 0.05

Table 10: Four properties of the rolling window and their means over 100 clusters using the temperature and 2
substitute datasets

↓ Data / Features → max timeperiod of
consecutive positives

max timeperiod of
consecutive negatives

max corr which repeats
12 timeperiods

min corr which repeats
12 timeperiods

Temperature 2.99 2.15 0.41 -0.37

Shuffled temperature values 0.61 0.63 0.35 -0.35

Sinusoid 2.90 2.67 0.38 -0.35

Table 11: Four properties of the rolling window and their means over the 100 clusters using the temperature and
2 substitute datasets
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The mean of all clusters of both the maximum and minimum correlation coefficients per cluster drops a bit
if the shuffled temperature values are used, as can be seen in Table 10. However the means of the maxima and
minima are still significant high: many clusters have a period of 20 days in which the partial discharges correlate
well with the temperature. This suggests that these values are not relevant, as we already expected in Section 6.2
Also the means of the absolute values of the means and the medians are not relevant

Table 11 shows the means of the four masterframe features, created in Section 6.2. The means of the first two
features are significantly lower when the temperature values are shuffled, meaning that there are not many long
periods in which the correlation coefficients are at least 0.7. This indicates that it is no coincidence that there are
periods in which the partial discharges correlate well with the actual temperature. Looking at the last 2 features
however, there is not much of a difference. The numbers of the shuffled temperatures are a bit lower though.
Maybe 12 days is too long to see an actual difference. This suggests that a shorter period is better to remove some
of the coincidence.

The numbers of the sinusoid are very similar to the actual temperature, so it seems that the four features are
heavily influenced on the seasonal effects to the temperature, instead of just the fluctuations.

6.3.3 Conclusion

The four masterframe features (max timeperiod of consecutive positives, max corr which repeats 12 timeperiods,
max timeperiod of consecutive negatives and min corr which repeats 12 timeperiods) are based on the rolling win-
dow of correlation coefficients of the relevant cluster of partial discharges. The rolling window of the correlations
has a predictive value, as we saw in the heatmap. The four masterframe features created out of the rolling window
are investigated by comparing them to the features that result from replacing the data of the temperature to first
random numbers and second a sinusoid.

We can conclude that the first two features are not much based on coincidence, because the features of the
random numbers are very different. We can not conclude this about the other two features. The difference
between the features when using the temperature and using the random numbers is very small. However this
small difference could be caused by very few clusters in which there are periods of 12 days in which the correlation
coefficients are high. So maybe these two features are very useful to detect a few exceptional clusters. This could
be investigated further.

The features when using the sinusoid suggest that the features of the temperature are strongly influenced by
the seasons, rather than just the fluctuations. Ideally we would split the temperature into a trend (seasonal effect)
and the residue (fluctuations). Section 6.4 looks at the residual values of the temperature while Section 6.5 and
6.6 are about the seasons.
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6.4 Residue of temperature

We have seen that the seasonal effects have a huge influence on the 4 features we created in Section 6.2. To
see what the correlation is between the fluctuations and the partial discharges, we somehow have to get rid
of the seasonal effects on the temperature. The seasonal effects are approximately the same each year. It is a
trend. The fluctuations of the temperature is the residue: difference between the trend and the actual temperature.

How can we capture the trend of the temperature?

6.4.1 Catching the trend by the best sinusoid

Figure 46: Siniusoid that best describes the trend of the tem-
perature in De Bilt btween January 2018 and February 2021

The trend can be described by a sinusoid. A si-
nusoid is defined by the parameters mean, ampli-
tude, phase and frequency:

mean+ amplitude ∗ 2π sin(x− phase)
frequency

.

The sinusoid which describes the trend the best
is defined by the parameters for which the sum
of the squares of the differences is minimal. The
differences between the 29455 data points of the
temperature and the sinusoid are used.

The frequency is 365 ∗ 24 because we have a
data point for each hour. The best phase happens
to be 2018-05-08 04:00:00, the starting point of
the sinusoid. The best mean and amplitude hap-
pen to be 11.41 and 6.79 respectively. The result-
ing sinusoid is plotted in Figure 46. The initial
sinusoid of Section 6.3 is quite close to this one
because there the phase, mean and amplitude are 2018-05-01 00:00:00, 12.5 and 7.5 respectively.

Looking at the figure it seems that the sinusoid does not have the right shape to represent the winters and
summers well. The difference between the actual temperature and the sinusoid is quite large at the peaks. So it
is worth trying to find a better way to show the trend of the temperature.

6.4.2 Using data from 1981 to determine the trend

Figure 47: Soil temperatures measured each 6 hours at a depth of 50cm from 1981

The fluctuations are different each year but the trend of the seasons is the same each year. So the trend can be
determined by taking the mean of previous years. To get robust means we need the temperature values of many
years. The soil temperature we previously used is only available from January 2018, unfortunately. However there
is more data of the soil temperature available [21]. These temperatures are measured at a depth of 50 cm every 6
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hours from 1981. This data is way better for this experiment than the previously used temperatures measured at
28-100cm every hour from 2018. The soil temperatures typi we use in this section are plotted in Figure 47.

typi : The temperature of period pi in year y;

p1 = 01-01 00:00:00, p2 = 01-01 06:00:00, p3 = 01-01 12:00:00, etc.

t2018p1460 is the temperature at 2018-12-31 18:00:00.

Note that 2020 is a leap year which complicates the matter. We define the temperature of 2020 in such a way that
t2020pi and t2018pi are about the same date of the year for each i ∈ {1, ..., 1460}. The remaining four temperatures of
2020 are defined as follows:

t2020p1461 : The temperature of 2020-02-29 00:00:00;

t2020p1462 : The temperature of 2020-02-29 06:00:00;

t2020p1463 : The temperature of 2020-02-29 12:00:00;

t2020p1464 : The temperature of 2020-02-29 18:00:00.

The temperatures of the periods of the leap days of the other leap years between 1981 and 2020 are defined similarly.
The idea is to use all of this data to determine the trend by taking the mean of each year. The temperature is mea-
sured each 6 hours so for each period of 6 hours between January 2018 and February 2021 the trend is calculated by
taking the mean of the same period of 6 hours of all 40 years (1981-2020). For example the value of the trend which
belongs to 2018-01-01 00:00:00 is the mean of the measurements of 1981-01-01 00:00:00, 1982-01-01 00:00:00, ...,
2020-01-01 00:00:00.

Figure 48: The means of the soil temperatures at a depth
of 50cm and the linear regression. In general, the tem-
perature rises over time.

6.4.3 Compensating for global warming

There is one problem with this method, and that has to
do with the global warming. It is not clear from Figure
47, but in Figure 48 are the means of the years and the
linear regression, and this shows a rising trend.

To overcome the problem we compensate this rise
by normalizing the values of each year. To determine
the trend of 2018 we first take the average temperature
of each year and calculate the difference with the mean
of 2018. Then these differences are added to all values
of the corresponding years. For the trend of 2019 and
2020, we do the same. The trends of these three years
differ slightly because the means of these years differ
slightly.

M2018 =
1

1460

1460∑
j=1

t2018pj : The mean of 2018;

M2019 =
1

1460

1460∑
j=1

t2019pj : The mean of 2019;

M2020 =
1

1464

1464∑
j=1

t2020pj : The mean of 2020.

∀i ∈ {1, ..., 1460} ∀y ∈ {1981, ..., 2020} : uypi = typi +M2018 −My, The compensated temperatures compared to 2018;

∀i ∈ {1, ..., 1460} ∀y ∈ {1981, ..., 2020} : vypi = typi +M2019 −My, The compensated temperatures compared to 2019;

∀i ∈ {1, ..., 1460} ∀y ∈ {1981, ..., 2020} : wypi = typi +M2020 −My, The compensated temperatures compared to 2020.
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The four periods of the leap day of 2020 are treated separately:

∀i ∈ {1461, ..., 1464} ∀y ∈ {1981, ..., 2020} ∪ {leap years} : wypi = typi +M2020 −My,

The compensated temperatures compared to 2020.

Note that u2018pi = t2018pi , v2019pi = t2019pi and w2020
pi = t2020pi .

Only after normalizing the measurements, we calculate the mean for each period of 6 hours. So for example
to get the value of the trend for 2018-01-01 18:00:00 we first add the difference between the mean of whole 2018
and the mean of 1981 to each measurement of 1981, and the difference between the mean of whole 2018 and the
mean of 1982 to each measurement of 1982, and so on. Afterwards the mean of all the resulting values of January
first 18:00:00 is taken to get the value of the trend for 2018-01-01 18:00:00.

∀i ∈ {1, ..., 1460} : Upi =
1

40

39∑
j=0

u1981+jpi : The compensated temperatures of 2018;

∀i ∈ {1, ..., 1460} : Vpi =
1

40

39∑
j=0

v1981+jpi : The compensated temperatures of 2019;

∀i ∈ {1, ..., 1460} : Wpi =
1

40

39∑
j=0

w1981+j
pi : The compensated temperatures of 2020;

∀i ∈ {1461, ..., 1464} : Wpi =
1

40

9∑
j=0

w1984+4j
pi : The compensated temperatures of 2020-02-29.

The union
⋃
i∈{1,...,1460}{Upi , Vpi ,Wpi} ∪ {Wp1461 ,Wp1462 ,Wp1463 ,Wp1464} forms the trend which represents 2018-

2020, plotted in Figure 49. The trend of January and February 2021 can not be produced the same way so we
take a copy of January and February 2020 for this. We see the same outliers as we have seen when fitting the
best sinusoid: very high temperature in the summer and very low in the winter. We can conclude from this that
we have had warmer summers and colder winters in the past three years. The residual values are the differences
between the actual temperature and the trend.

∀i ∈ {1, ..., 1460} : r2018pi = t2018pi − Upi : The residual values of 2018;

∀i ∈ {1, ..., 1460} : r2019pi = t2019pi − Vpi : The residual values of 2019;

∀i ∈ {1, ..., 1464} : r2020pi = t2020pi −Wpi : The residual values of 2020.

The residue r =
⋃
i∈{1,...,1460}{R2018

pi , R2019
pi , R2020

pi } ∪ {R
2020
p1461 , R

2020
p1462 , R

2020
p1463 , R

2020
p1464} is also plotted in Figure 49.

6.4.4 Masterframe features

Using the residue instead of the temperature we create four new cluster features for the masterframe. They are
exactly the same as their equivalents in Section 6.2 except that the residue is used instead of the temperature.

• max timeperiod of consecutive positives residue: max{λ | ∃i : ρ′di , ..., ρ
′
di+λ−1

≥ 0.7};

• max timeperiod of consecutive negatives residue: max{λ | ∃i : ρ′di , ..., ρ
′
di+λ−1

≤ −0.7};

• max corr which repeats 12 timeperiods residue: max{P | ∃i : ρ′di , ..., ρ
′
di+11

≥ P};

• min corr which repeats 12 timeperiods residue: min{P | ∃i : ρ′di , ..., ρ
′
di+11

≤ P}.
with

Rd =
1

4

∑
p∈d

rp : The mean of the 6-hourly residues during day d, in degrees Celcius;

ρ′di = Pearson([Qcdi−19
, ..., Qcdi ], [Rdi−19, ..., Rdi ]) :

The correlation coefficient of the 20 daily values prior to and including day di of cluster c;

ρ′ = [ρ′d20 , ..., ρ
′
dmax ] :

Rolling window of cluster c.
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Figure 49: The trend of the temperature is determined by the data of 1981-2020. The residue is the difference
between the actual temperature and the trend.

6.4.5 Example

In Figure 41 of Section 6.2.3 we saw the rolling window of cluster 26 of circuit 2719. Figure 50 shows the rolling
window of the same cluster based on the residue instead of the temperature. The axis of the residue is left out for
simplicity of the figure. The residue is between -3 and 3 between 2020-03 and 2020-11. The residue features are:
max timeperiod of consecutive positives = 0; max timeperiod of consecutive negatives = 7;
max corr which repeats 12 timeperiods = 0.31; min corr which repeats 12 timeperiods = −0.68.

Figure 50: Rolling window of correlations between the residue and the partial discharges of cluster 26
of circuit 2719: max timeperiod of consecutive positives = 0; max timeperiod of consecutive negatives = 7;
max corr which repeats 12 timeperiods = 0.31; min corr which repeats 12 timeperiods = −0.68.

53



6.4.6 Conclusion

Two methods are inspected to determine the trend of the temperature. The first uses an sinusoid to mimic the
data and the second uses data from previous years to predict the trend. Although they both faced the problem
of not representing the winters and summers very well, the second method is considered to be better because it
is a more natural way to represent the trend. The trend resulting from the use of historical temperature data is
used to get the residual. The residual values represent the fluctuations of the temperature and are therefore used
to create 4 new cluster features that are added to the masterframe.

6.4.7 Discussion

The initial idea is to see if the temperature rises or drops and see what the effect is on the partial discharges. In
general the residue represents this quite nicely. However there are periods in which the temperature drops very
fast while the residue stays positive or vice versa. During these periods, the residue does not accurately reflect
the behavior of the temperature. For example right after the peaks in the summer of the last three years, the
temperature starts to drop while the residue stays above 0 for a short while. An idea to fix this issue is taking the
derivative of the temperature instead, or looking at the difference between the temperature and the temperature
one day before for example.

Another idea to determine the trend is by taking the mean of the temperature of the surrounding 20 days. For
example for 2018-01-01 18:00:00 one takes the temperatures of 18:00:00 of the next 10 days and the previous 10
days. This still gives a rather smooth curve. This is because the data points of the trend of for example 2018-01-01
18:00:00 and 2018-01-02 18:00:00 are based on many of the same data points. This is a simpler method and it
catches a peak if there would be a very hot summer one year. It also observes an effect if the temperature suddenly
drops. The rolling window is based on the 20 previous days, so in this matter it could be better to let the trend
also be based on the previous 20 days instead of the surrounding 20 days. The resulting residue is in this case the
drop or rise in comparison with the same period for which the correlation coefficients are being calculated. In this
sense, it seems much more logical to create the trend like this.
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6.5 Partial discharges when the temperature is low

There have been a lot of faults at locations of joints of the type resin in August 2020. To search for clues to predict
similar faults in the future we looked at many plots of the partial discharges and temperature at these locations.
It was quite remarkable that there were a lot of plots of circuits with almost all partial discharges during the cold
periods of the year. Figure 51 shows a nice example in which there is a lot of activity around January 2019 and
January 2020 while there is almost no PD in the warmer periods of the year. In this section we will investigate
the next hypothesis:

Partial discharges leading to faults in resin joints appear more often during the cold periods than
during the hot periods.

Figure 51: Partial discharges around 780 meters of circuit 2389 compared with the temperature

6.5.1 Method

The ground is coldest approximately between November and April. This is exactly half of the year, so we investigate
whether there are more partial discharges in these 6 months than in the other months, for three different sets:

1. Clusters for which the nearest joint to the median location of the cluster is of the type resin.

2. Clusters for which the nearest joint to the median location of the cluster is of the type resin, and the cluster
caused ≥ 1 fault according to Definition 6. The partial discharges after the first fault occurred are omitted.

3. Partial discharges measured at the locations (with a bandwith of 1% of the circuitlength) of the faults which
occurred at a resin joint. The partial discharges after the fault occurred are omitted.

We only take the partial discharges into account which are measured in 2018, 2019 and 2020 to let each month
contribute equally. For each of the sets we receive a dataframe like Figure 52. For each element of the set, the
dataframe shows the total measured partial discharges, the discharges in the cold period, hot period and the
percentages.

To interpret these numbers we calculate three percentages for each set:

(A) Percentage of elements with more charge in the cold period than in the warm period;

(B) Percentage of the sum of all measured charge in the cold period;

(C) Mean of the percentages of charge in the cold period per element.
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Figure 52: Part of the dataframe that contains the sum of the charge of the particles and the distribution across
two halves of the year. Each row represents a cluster of PD for which the nearest joint is resin.

6.5.2 Results

Table 12 shows the percentages A, B, C for all three sets. The size of the sets differ a lot as can be seen in the
table as well.

Set Size of dataset A B C

1. Clusters 747 50.7 48.7 49.4

2. Clusters with ≥ 1 faults 17 52.9 80.9 59.6

3. Resin joints at fault locations 63 52.4 44.6 48.4

Table 12: Percentages showing, according to methods A, B, C, for three sets, how much of the measured charge
takes place in the coldest half of the year: November until April

Almost all percentages of Table 12 are around 50%. Only the percentage of the charge during the cold period (B)
of clusters with ≥ 1 fault is an outlier. However this is based on just 17 clusters and there is one big cluster that
contributes far more than the others. The A and C values of clusters with ≥ 1 fault are not that much influenced
by this cluster because each cluster contributes equally for these methods.

6.5.3 Conclusion

We tested the hypothesis that most of the partial discharges leading to faults in resin joints appear during the
cold half of the year. From the results we can not conclude that the partial discharges leading to faults occur
significantly more during the cold periods.
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6.5.4 Discussion

To test the hypothesis we have looked at the sum of the charge instead of the number of PD-measurements. This
makes sense because a discharge with a high charge is more dangerous to cause a fault.

It could be interesting to test this hypothesis for other types of joints and for other periods of the year. The
next section is about choosing other periods of the year and adding the resulting numbers in the masterframe.
The type of joint is already a feature in the masterframe so the model that eventually predicts the faults will be
able to distinguish the clusters accordingly by itself. Chapter 8 elaborates on this model.

One has to note that the data of the joint types is not up to date as was already mentioned in Section 4.1.1.
The sets of the partial discharges that are investigated in this section are based on the clusters and faults. It can

be argued that they do not represent well the PD causing faults. Many of the faults, that were not prevented, are
not preceded by PD. This would make the dataset of the faults less suitable for this investigation. Also the clusters
represent the PD not perfectly because many of the clusters are actually noise. It may be better to investigate
the partial discharges at the location and time of the manually assigned warnings. Next section examines when
most warnings were assigned.
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6.6 Partial discharges in seasons

The previous sections provided indications that the distribution of the partial discharges across the seasons could
be of predictive value. We have seen clusters with almost all PD in winter (Figure 51 for example). So this section
is about:

Creating features for the masterframe that capture the seasonal effects of the partial discharges.

6.6.1 Defining the seasons

For each cluster the measured PD is categorized per season: for each season we get a value which tells us which
percentage of the charge occurred during that season. For this we define the seasons. It seems reasonable to expect
that the amount of PD in the warmer periods of the year could be of predictive value, for example by relating
it to the type of joint. This brings the idea of dividing the year into two parts: the 6 warmest months of the
year and the 6 coldest months of the year. There are also clusters with almost all PD in the months in which the
temperature decreases. See examples in Figure 54. So it seems like a good idea to divide the year in half in a
different way as well: 6 months in which the temperature decreases and 6 months in which the temperature rises.

Looking at the data of the soil temperature, the coldest 6 months appear to be November until April. We
name this period the cold period. The hot period is May until October. The period in which the temperature
rises appears to be the last 3 months of the hot period and the fist 3 months of the cold period: August until
January will be called the rising period and subsequently February until July is the decreasing period.

We also cut the year in the four regular seasons: winter, spring, summer and fall. We define them slightly
different than usual because the soil temperature has a small delay in comparison to the regular temperature. We
use the intersection of the four aforementioned seasons cold, hot, rising and decreasing.

• Winter is the intersection of cold and decreasing: November until January;

• Spring is the intersection of cold and rising: February until April;

• Summer is the intersection of hot and rising: May until July;

• Fall is the intersection of hot and decreasing: August until October.

We end up with 8 seasons that arise by dividing the year in 3 different ways, visualised in Figure 53.

Figure 53: The eight seasons Winter, Spring, Summer, Fall, Cold, Hot, Rising and Decreasing are defined by the
time
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Figure 54: Measured PD at certain locations (with a bandwith of 1% of the circuitlength) for which almost all PD occurred
in the decreasing season

Figure 55: Measured PD at certain locations (with a bandwith of 1% of the circuitlength) for which almost all PD occurred
in the winter season
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6.6.2 Masterframe features

For each season we calculate the percentage of the PD that occurs in that season. We add the next columns to
the masterframe:

• Charge in cold 6 months percentage

• Charge in hot 6 months percentage

• Charge rising temp percentage

• Charge decreasing temp percentage

• Charge in winter percentage

• Charge in spring percentage

• Charge in summer percentage

• Charge in fall percentage

These features tell directly something about the clusters. Some clusters are completely in one season while the
total PD at the location of the cluster is divided over multiple seasons. This is possible if the cluster only lasts for
one season. Even in this case are the masterframe features informative because there could easily be a reason for
this cluster living only in one season.

A cluster could be more dangerous causing a fault if it shows PD divided equally over seasons while most of
the PD of that location in the whole existence of the circuit is measured in one season, or vice versa. To catch
this effect we introduce new features for the masterframe which for each cluster tell how much of the PD at the
location of the cluster is measured during the existence of the circuit, instead of only during the existence of the
cluster.

• Charge in cold 6 months percentage all circuit

• Charge in hot 6 months percentage all circuit

• Charge rising temp percentage all circuit

• Charge decreasing temp percentage all circuit

• Charge in winter percentage all circuit

• Charge in spring percentage all circuit

• Charge in summer percentage all circuit

• Charge in fall percentage all circuit

The PD to be evaluated for these new features is the PD measured between the fifth percentile and 95th
percentile of the location of the cluster. We do this to ignore the outliers. There was no need to do this when
we evaluated only the PD of the cluster because the clusters are rounding at the sides, as a result of the cluster
algorithm.

In Figure 56 are the clusters of circuit 20133. Two clusters are highlighted by orange and blue. The rest of
the clusters are left grey. The vertical orange and blue lines are the fifth and 95th percentiles of the locations of
the corresponding clusters. By considering all PD which is between the blue vertical lines, not only most of the
blue cluster, but also the entire orange cluster and parts of other clusters are captured. Almost all of these PD
occurred in the cold period (November until April). So both the percentage of PD of the blue cluster in the cold
period and PD between the blue vertical lines in the the cold period are very high. The second tells that it is not
exceptional that the blue clusters live entirely in the cold period. This is an example in which the two features
work well together.
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Figure 56: Particles of circuit 20133; clusters 2 and 3 are highlighted with their 5th and 95th percentiles.

6.6.3 Histograms about the seasons

In Figure 57 are distributions of the faults, clusters and warnings over the seasons. Note that the clusters in (a)
are listed by 10, so there are more than 10 times as many clusters as faults. In (b) are the warnings per season.
There are not many level 1 warnings but it is clear that there are more level 2 en 3 warnings in the cold and
decreasing seasons. Therefore also their intersection, the winter, has many warnings. Remarkable is the fact that
the faults in (a) occur more often in the hot season and in the summer. One possible explanation for this is that
faults usually occur half a year later than the warnings.

(a) Faults and clusters per season (b) Warnings per season

Figure 57: Distributions of faults, clusters and warnings across the seasons

6.6.4 Conclusion

We defined 8 seasons based on the soil temperature. 16 masterframe are created that describe the amount of
charge in the seasons, for both the partial discharges of the cluster and the partial discharges measured at the
location of the cluster. Most of the warnings were given during winter and the cold season, although most faults
occurred during summer and the hot season.

61



7 Extract more features from the partial discharges only

One very predictive value of the partial discharges is the charge. The higher the charge, the more dangerous the
partial discharges are to cause a fault. This chapter creates cluster features for the masterframe concerning just
the partial discharges. So the temperature is not used in any sense.

How can we create masterframe features that quantify the charge of the partial discharges?

One simple but important feature is the total sum of the charge of the cluster. This feature already exists in
the current masterframe. So we look for other ways to quantify the charge, and add those quantifications to the
masterframe. In Section 6.1 we construct features that highlight clusters that have persistently high values of
charge for a while. Section 6.2 is about the distribution of the charge of the PD.

7.1 Persistently high charge

In August 2020, many faults in resin joints occurred. Looking at the plots of the PD at those locations, tells that
most of those faults were preceded by much PD. These PD usually started 6 months before the fault occurred and
their charge was high. One example is shown in Figure 58. The plot shows the measured particles and the faults
around 64 meter (with a bandwith of 1% of the ciruitlength). A fault occurred at 63.55 m at 2020-08-08.

How can we catch the effect of the persistently high charge?

Figure 58: Partial discharges around 64 meter on circuit 2389. A fault occurred at 63.55 meter.

7.1.1 Method

We would like a number that represents the longest period for which the charge is above a certain threshold. The
charge is measured every minute and by far most minutes there is no PD, so the charge is 0. As a result, the
longest periods when the charge is more than 0 are several minutes. Instead, we are looking at the previous week’s
charge for each minute. A week is 60 * 24 * 7 = 10080 minutes. Of all these data points, we take the 99.9th
percentile. This corresponds to approximately the 10th highest value. We choose this percentile to get the trend
of the highest values and avoid the big outliers. The 99th percentile would be 0 too often because of the many
minutes without PD.

This method is used to plot the trend of the highest values in Figure 59. A few months before the fault is the
curve very high, even above 50k pC. The charge drops rapidly when the fault occurs.
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Figure 59: Partial discharges around 64 meter on circuit 2389. The orange line shows the progression of the
magnitude of the charge, by taking the 99.9 percentile of the past week for each minute.

7.1.2 Masterframe features

If the threshold is 50000 pC, the longest period in which the curve of Figure 59 is above this threshold is several
months. This is significant because it distinguishes clusters in which there is a lot of PD before a fault in a resin
joint from other clusters. To be save, we choose a threshold of 20000 pC for the features. This is high enough to
still distinguish well, while more clusters are assigned a number higher than 0.

To get a nice number for the master frame, we divide the minutes of the longest period in which the trend is
above 20000 pC by 10080

7 = 1440, to get the number of days for which the trend is above 20000 pC. As in Section
6.6, this feature could work very well with the feature about all PD measured at the cluster’s location during the
circuit’s existence. We add two features to the masterframe:

• number of days more than 20000 pC

• number of days more than 20000 pC all circuit

7.1.3 Discussion

The method to get the trend of the highest values is only compared to the threshold of 20000 pC. This threshold
is not quantitatively substantiated, so it is possible that a different threshold would better distinguish clusters of
noise from clusters of actual partial discharges.

In general the trend towards the fault is increasing, while this is not so clear for noise clusters. So a positive
slope of a cluster’s trend is an indicator that the cluster is not noise. Also the evolution of the density of the
particles could be an indicator whether a cluster is noise or PD. In this section, we only looked at the 99.9th
percentile. In addition to the persistently high charge, it can also be useful to look at the slope and density or a
combination of all of them.
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7.2 Fit Weibull distribution to histogram of charge

The distribution of the charge of the PD of a cluster tells a lot about the cluster. This includes the ratio between
high charges and low charges, the total sum of charge, the percentiles of the charge and it tells if the cluster
contains a bit of noise. Figure 60 shows the distribution of the charge of the particles of a cluster.

How can we quantify the features of the distribution of the charge?

Figure 60: Distribution of the particles of cluster 1 of circuit 4082 across the magnitude of the charge

7.2.1 Method

Figure 60 shows a typical shape of the distribution of the charge of a cluster: a rapid increase in the beginning,
followed by a logarithmic decline. Many of the features of the distribution can be quantified by fitting another
distribution to it. The Weibull distribution can be used well for this because it is very flexible and non-symmetric.
The distribution of the charge of the PD of a cluster is also non-symmetric and can have a variety of forms. The
Weibull distribution has the ability to fit on many different shapes due to its versatility. Moreover, the Weibull
distribution is forced to be positive and the charge is also always positive. The Weibull distribution is widely used
in life data analysis, so this distribution is a good first attempt to fit on the data of the charge. See Section 3.3
for more information about the Weibull distribution. The Weibull distribution is defined by the two parameters
α and β:

W (x;α, β) =
β

α
(
x

α
)β−1e−(x/α)

β
.

α represents the scale of the distribution and β represents the shape. The method maximum likelihood estimation
(MLE) is used to find the best parameters. This method estimates α and β by maximizing a likelihood function,
so that the data of the charge is most probable under Weibull(α, β). Figure 61 shows the best Weibull distribution
for the data of the cluster in orange. The parameters resulting from the MLE are α = 507.09 and β = 1.11.
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Figure 61: Distribution of the particles of cluster 1 of circuit 4082. The orange line shows the Weibull distribution
with parameters α = 707.09 and β = 1.11 that fits best.

The two clusters of Figure 62 are called floating clusters. They have little to no PD with low charge. The
Weibull distribution can still fit quite well on these clusters because of the flexibility of the Weibull. The distribution
of Figure 62(a) is concentrated around the mode. All partial discharges have approximately the same charge. This
s why we see a relative high peak. The shape parameter β describes this because this parameter is higher if the
distribution is less stretched out. The scale parameter α is approximately equal to the mode (especially for β > 2.
Thus, this method could also be used to identify floating clusters. However, the cluster in Figure 62(b) has some
PD with low charge. This disturbs fitting the Weibull to it.

(a) Cluster 0 of circuit 4082 (b) Cluster 17 of circuit 20133

Figure 62: Examples of floating clusters and their best Weibull fits. The flexible Weibull distribution fits well on
floating clusters. The low charges thwart.

For some clusters there are no parameters for which Weibull(α, β) fits well on the charges. Figure 63 shows
2 examples. The charge in Figure 63(a) has two different sources. The first two bins are a clear result of noise.
Figure 63(b) shows three hills which also suggests there are multiple sources. It is also possible that the behaviour
of the PD changed over time, because some clusters span a time period of more than a year. So the hills in Figure
63(b) could be the distributions of three different periods of the cluster.

Anyway, the resulting Weibull(α, β) does not fitt well on these datasets. The obtained parameters α and β for
the shape and scale are not very representable. To capture this symptom we determine the goodness of fit. We
use four different tests to measure the goodness of fit and eventually find out which one helps the best to predict
the faults in chapter 7.
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(a) Cluster 0 of circuit 20830 (b) Cluster 12 of circuit 20133

Figure 63: Examples of clusters and their best Weibull fits where noise causes the Weibull distribution to not fit
properly.

The first criterion is the log of the maximum likelihood L̂, found by the MLE. The likelihood of the charges under
Weibull(α, β) gives the maximum likelihood. Taking the log gives a measure of the goodness of fit:

Log-Likelihood = ln(L̂).

The Akaike Information Criterion (AICc) also depends on the number of parameters k:

Akaike Information Criterion = 2k − 2 ln(L̂).

A somewhat more complicated value is the Bayesian Information Criterion (BIC). The number of measurements
of PD n has its influence:

Bayesian Information Criterion = k ln(n)− 2 ln(L̂).

The Anderson–Darling (AD) test is based on the distance between the empirical cumulative distribution function
Fn and the hypothesized distribution W (α, β):

Anderson-Darling goodness of fit statistic = n

∫ ∞
−∞

Fn(x)−W (x;α, β)

W (x;α, β)(1−W (x;α, β))
dW (x).

The Anderson–Darling distance places more weight on observations in the tails of the distribution. So this test is
good at detecting the noise as in figure 63.

Figure 64: Distribution of the particles of cluster 1 of circuit 20830 and the best Weibull fit. The four criteria of
the goodness of fit are: Log-Likelihood = −215504, AICc = 431014, BIC = 431028, AD = 119.
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7.2.2 Masterframe features

The method to find the best Weibull distribution for the data of the charge gives the next cluster features for the
masterframe:

• weibull scale: The parameter α

• weibull shape: The parameter β

• goodness of fit loglik : Log-Likelihood

• goodness of fit AICc: Akaike Information Criterion

• goodness of fit BIC : Bayesian Information Criterion

• goodness of fit AD : Anderson-Darling

7.2.3 Discussion

The Weibull distribution fits the charge better if the noise is not taken into account. Therefore, removing the
noise can improve the features. After fitting the Weibull first on all charge, the resulting goodness of fit can help
to detect the noise.

All features are fed to a model that ultimately predicts the faults. The features of goodness of fit help the
model to determine if the features of the scale and shape are reliable. It is probably a good idea to combine some
parameters, such that the model knows immediately if the parameters of the Weibull fit are useful. One suggestion
is multiplying the parameter of the scale by the goodness of fit (after normalizing). The resulting feature indicates
both the scale and the reliability.

Instead of looking at the distribution of the charge one could investigate features based on the distribution of
the locations of the measured PD of a cluster. One advantage is that the density of the PD can easily be extracted
from the distribution of the locations.

The Weibull seems a good distribution to compare to the distribution of the charge. However the log-normal
distribution also fits well to distributions with a steep slope for the lower values and a flat drop afterwards. The
distribution in Figure 64 is similar to a Normal distribution, and there are more clusters with a similar charge
distribution. It should be examined whether the features resulting from fitting the log-normal and the Normal
distribution contribute to the prediction of faults.

7.3 Conclusion

We created 2 features about the persistently high charge and 6 features about the charge distribution. There is
still room for improvement for both methods so that the features can better distinguish PD clusters from noise
clusters. Although the examples show that the features created in this chapter can already have predictive value.
In the next chapter, the classification model uses all the features to classify the clusters. We will see that especially
the features about the charge distribution contribute a lot to the classification.
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8 Predicting faults using the features

In Chapters 6 and 7 we have constructed 33 features for the masterframe. In this Section we predict faults using
a hierarchical classification model. This model has been created by Alliander and its input is a masterframe. It
makes use of the library XGBoost to classify the clusters by means of the features. The input and output of this
model will be discussed but more details on how the model precisely works are out of scope of this thesis.

Do the newly created features make a positive contribution to the model to predict faults?

8.1 Method

As mentioned in Chapter 1, it is difficult to measure how good the fault predictions are. If a fault is predicted to
occur, the joint is replaced and the fault is prevented. So in reality there would be no fault. What we would like
to predict are faults when no one would act on the predictions.

We can use the manually assigned warnings of Section 4.4 for this. These warnings are considered to be a
very good representative of potential faults: the warnings predict the faults very well when there would be no
maintenance work. The clusters are linked to the warnings according to Definition 8. Level 1 and 2 warnings are
far more serious than level 3 and noise warnings.

Definition 9. A cluster is dangerous if it requires manually inspection by a trained operator. All clusters linked
to a warning level 1 or 2 are considered to be dangerous. All clusters to be examined are considered dangerous if
a trained operator were to assign a warning level 1 or 2.

We predict the dangerous clusters and consider the results to represent the prediction of the faults.

The classification model needs a part of the masterframe to train and a part of the masterframe to test. We
choose the training set to be the data of the masterframe until 2019-12-31. All particles until 2019 are used by
the the clustering algorithm to create the clusters. Then all the cluster features are calculated to construct the
masterframe until 2019-12-31. The training set is labelled by historically assigned warnings by SCG operators.
The model is trained to act as an operator to assign warnings to clusters. The test set is the masterframe of the
data between 2020-01-01 and 2020-09-31, constructed in a similar way. The warnings are excluded from the test
set, because that is what needs to be predicted.

During the training phase the model uses the training set, including the warnings. It comes up with an
algorithm that for each cluster c assigns the dangerousness (degree of danger) of the cluster δc ∈ [0, 1] to it. The
input of this algorithm are the features. The dangerousness δc tells to what extend a cluster should be considered
dangerous. The model uses the warnings as the labels, to create the algorithm. The weight distribution [100, 100,
3, 1] is used to train the model mainly on the level 1 and 2 warnings, and reduce the influence of the level 3 and
noise warnings. So the idea is that δc is high for clusters with a level 1 or 2 warning.

This resulting algorithm assigns the dangerousness δc to each cluster c from both the training set and the
test set. The warnings are not included in the test set. The model classifies cluster c to be dangerous if the
dangerousness δc is higher than a certain threshold. If this threshold is very low, all dangerous clusters are
predicted well but also many harmless clusters are unexpectedly considered dangerous. Replacing joints at the
locations of the clusters costs money, so we do not want the threshold to be lower than necessary. If the threshold
is very high, many clusters will be considered not dangerous when they are, resulting in power outages. So there is
an optimal threshold between 0 and 1. The model creates the ideal threshold. This threshold is defined as follows.

Definition 10. The ideal threshold θ ∈ [0, 1] = min{δc | cluster c of training set has a warning level 1 or 2} is
the minimum dangerousness of all clusters with warning level 1 or 2 in the training set.

The model classifies cluster c to be dangerous if the dangerousness δc is higher than the threshold θ. The other
clusters are classified as not dangerous. The ideal threshold is the maximum threshold for which the dangerousness
of all clusters in the training set with warning level 1 or 2 is higher than this threshold. Using the threshold on
the training set always result in 0 false negatives, so all dangerous clusters are rightly classified as dangerous. On
the other hand this would probably also result in false positives. The better the classification model and resulting
threshold, the fewer false negatives and false positives there are in the test set.
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Definition 11.
TP = True positives: number of clusters correctly classified as dangerous;
TN = True negatives; number of clusters correctly classified as not dangerous;
FP = False positives: number of clusters incorrectly classified as dangerous;
FN = False negatives: number of clusters incorrectly classified as not dangerous.

The ideal threshold may be too high to classify all clusters with warning level 1 or 2 in the test set, as dangerous.
There could be some clusters c in the test with a warning level 1 or 2 for which the dangerousness δc is lower than
the ideal threshold θ. To check the performance of the model, the classification of the clusters into dangerous or
not dangerous can be compared to the actual manually assigned warnings.

8.2 Results

We run the model three times, such that the dangerousness of the clusters depend on three different sets of features.
First we force the model to only use the 33 features we created in this thesis, create δc for each clusters and check
the performance. Alliander’s features are not taken into account in this test. Next we run the model with only
the 44 features that Alliander currently uses to predict faults. The features created in this thesis are not taken
into account in this second test. Last we let the model base the dangerousness of the clusters on all clusters: the
33 new features and Alliander’s features combined. We call the 33 features of this thesis the new features. The
44 features that Alliander currently uses are called Alliander’s features and the two sets combined are called
all features.

8.2.1 New features

Based on the 33 new features, the model determined the dangerousness of the clusters in the training set, deter-
mined that the ideal threshold is 0.73 and determined the dangerousness of the clusters in the test set. Using
the ideal threshold to classify the clusters of the test set results in Figure 65.

Figure 65(a) shows the confusion matrix of the test set. pred neg is the number of clusters classified as not
dangerous and pred pos is the number of clusters classified as dangerous. There are 3660 clusters in the test set for
which 1000 are classified as dangerous. So the dangerousness of 1000 clusters is higher than the ideal threshold of
0.73. 2660 clusters of the test set are classified as not dangerous. The manually assigned warnings are also shown
in the confusion matrix. The row overlap lvl1 shows that there are 7 clusters in the test set that have a level 1
warning. 4 of them are classified as not dangerous and 3 are classified as dangerous. overlap lvlN is the number
of clusters with a noise warning. no information tells that the clusters do not have a warning.

Figure 65(b) shows a histogram of the 3660 clusters of the test set. The dangerousness δ is on the horizontal
axis. The vertical axis shows the number of clusters in the test set with the corresponding dangerousness. The
orange parts of the bars are the clusters that are classified as dangerous. The blue bars show the number of clusters
that are classified as not dangerous. Note the logarithmic scale. 3 clusters have a very low dangerousness while
in fact they have been assigned a level 1 or 2 warning. In the ideal scenario, the dangerous clusters have a high
dangerousness and the other clusters a low dangerousness, resulting in a plot where the orange bars are all on the
right and the blue bars on the left. We see that most of the orange bars are on the right, which is a sign that the
features used have predictive power.

In Figure 65(a) we see that the ideal threshold of 0.73 classifies 9 clusters as not dangerous while in reality
they have been given a level 1 or 2 warning. On the other hand it rightly classifies many clusters as dangerous. So
the number of false negatives is 9 and the number of false positives is 1000− 3− 23 = 974. If the threshold would
be 0.65 instead, we see in Figure 65(b) that the number of false positives would only be 3. However the threshold
can not be chosen after seeing the results of Figure 65 because in reality we would not have access to the right
labelling of the clusters. The ultimate goal is to predict the dangerous clusters without knowing it beforehand.
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(a) Confusion matrix: prediction of all 3660 clusters in
the test set and their manually assigned warnings

(b) Number of clusters with a warning level 1 or 2
(True, orange) and the clusters with warning level 3,

Noise or no warning (False, blue) with their
dangerousness on the horizontal axis

Figure 65: Results of the classification model for the 33 new features

(a) Confusion matrix: prediction of all 3660 clusters in
the test set and their manually assigned warnings

(b) Number of clusters with a warning level 1 or 2
(True, orange) and the clusters with warning level 3,

Noise or no warning (False, blue) with their
dangerousness on the horizontal axis

Figure 66: Results of the classification model for Alliander’s features

(a) Confusion matrix: prediction of all 3660 clusters in
the test set and their manually assigned warnings

(b) Number of clusters with a warning level 1 or 2
(True, orange) and the clusters with warning level 3,

Noise or no warning (False, blue) with their
dangerousness on the horizontal axis

Figure 67: Results of the classification model for all features
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8.2.2 Alliander’s features

When the classification model only uses Alliander’s features, the ideal threshold is 0.71. The results of the test
set are shown in Figure 66. There are 9 false negatives, but the number of false positives is lower this time. For
Alliander’s features the false positives are 910− 7− 19 = 884.

Figure 66(b) shows that there are no clusters with a warning level 1 or 2 and a low dangerousness (lower
than 0.4). This suggests that this is a better result than we see in Figure 65(b). However there are much more
dangerous clusters with a dangerousness lower than 0.65. The threshold used to classify the clusters is therefore
decisive in determining whether the new features or Alliander’s features lead to a better classification.

8.2.3 All features

The model now makes use of the 33 new features and the 44 features of Alliander combined. The resulting ideal
threshold is 0.74. Figure 67 shows the results. 11 clusters are wrongly classified as not dangerous. However the
total number of clusters that are classified as dangerous is only 729.

We see in Figure 67(b) that all clusters with a dangerousness over 0.95 do not have a warning level 1 or 2 in
reality. That in itself is remarkable, but there are only a few clusters that are assigned such a high dangerousness.
The orange bars seem more scattered than in Figure 66(b), but the number of dangerous clusters that are assigned
a dangerousness lower than 0.65 is only 5, compared to 8 for Alliander’s features.

8.3 Feature importance

The model uses the features to classify the clusters. The contribution of the features is also determined by the
model. This represents the predictive value of the features. The two features of the parameters of the Weibull fit
(weibull scale and weibull shape) of Section 7.2 appear to contribute a lot to the predictions. Also the feature of
the correlation between the PD and the soil temperature (correlation pd temp) of Section 6.1 has a large predictive
power. The relative feature importance of all features can be found in Figure 68, 69 and 70 in the Appendix.

8.4 Conclusion

The predictive model classifies clusters as dangerous to cause a fault or not dangerous. The model uses cluster
features and DNV’s manually assigned warnings to train. The training set used for this model consists of clusters
that are labelled by historically assigned warnings by SCG operators. The model is trained to act as an operator
to assign warnings to clusters.

We trained the model on three sets of cluster features, and then compared the predictive performance of the
model on the test set. First, the features created in this thesis are used, second, Alliander’s features, and finally
all features combined are used. The test set consists of 3660 clusters of which 35 with a warning level 1 or 2.

When using the 33 features of this thesis, the model performs remarkably well. Almost all clusters with a
warning level 1 or 2 received a high degree of danger. The threshold for determining which clusters are classified
as dangerous seems a bit high, causing the model to incorrectly classify some clusters as not dangerous. Of the
35 clusters with a warning level 1 or 2, 26 have been identified and classified as dangerous. In total, 1000 of the
3660 clusters are classified as dangerous.

Alliander’s features resulted in 910 clusters that were classified as dangerous, of which 26 with a warning level
1 or 2. Alliander’s features combined with the 33 features of this thesis resulted in only 729 clusters that were
classified as dangerous, of which 24 with a warning level 1 or 2. So by adding the new features, the model has
fewer false positives, but also misses more clusters that should have been classified as dangerous.

The model can predict well when only the features of this thesis are used. These features apparently contain a
lot of relevant data. Adding these to the model with Allianer’s features improves the performance of the model as
the number of false positives decreases with approximately 20%. The parameters of the Weibull fit (weibull scale
and weibull shape) and the correlation between the PD and the soil temperature (correlation pd temp) contribute
a lot to the predictions. Although the number of false negatives rises sightly when all features are combined, this
concerns only individual cases. These cases need to be looked at more closely.

The most important is the significant decrease in false positives, as this reduces the number of clusters that
must be manually assessed by a trained operator. Since the warnings represent the faults, we conclude that the
newly created features contribute positively to the model to predict faults.
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8.5 Discussion

To test the performance of the classification model, we used a training set of clusters until 2019 and a test set of
clusters between January and September 2020. These periods were used because this is customary within Alliander
for this classification model. However, using more recent clusters leads to a more reliable approximation of the
model’s performance on future clusters. Our training set consists of clusters between 2014 and 2019. The data
from the early years does not represent the future clusters well, so it was also worth considering using only the
last years of the training set.

The classification model makes use of the library XGBoost. The parameters used to train are the same for all
three sets of features. They were pre-selected based on Alliander’s features, so that the model performs relatively
better on Alliander’s features. Ideally we would use the best parameters for all sets of features.
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9 Discussion

In Section 4.1 we saw that there are many fault measurements that are caused by human actions. These do not lead
to a power outage or cannot be predicted with PD. These faults were included in the data, which could have given a
wrong picture. The faults outside circuits should be filtered better. Nowadays Alliander is able to filter those faults.

In Chapter 6, the temperature data measured at De Bilt were used. However these data are related to the
PD on the circuits over the entire service area of Alliander. The relations would have been better represented if
the temperature of the regions of the respective circuits had been used. We used the data of De Bilt because the
locations of the circuits are not easily accessible. Besides the location, the depth of the measurements is also not
exactly the same as the depth of the cables. The depth of the joints were assumed to be all between 80-100. We
used soil temperature level 3 which are measurements between 28-100cm. Although these depths do not exactly
match, these data are the best available temperature data.

In Chapter 6 we related the temperature to the discharge magnitude. Also in Chapter 7 we constructed clus-
ter features based on the magnitude of the charge. This makes sense because a discharge with high charge gives
more reason to suspect that a fault will occur. However the number of PD measurements could also be predictive.
In addition to the features created based on the magnitude, these features can also constructed based on the
number of measurements. The combination of these features gives the classification model even more information.
This will likely improve predictive performance even further.

It should be noted that in Chapter 8 no faults were predicted. Instead, it was determined which clusters are
dangerous, or should receive a warning level 1 or 2. This is because Alliander’s classification model uses the
manually assigned warnings as labels for the model to train. It is assumed that level 1 and 2 warnings represent
a potential fault and that clusters without such a warning will not cause a fault. This can be questioned, but it
should be very accurate.

Ideally, we would like to check to what extent the predictions of the classification model have come true. However,
many predicted faults have been prevented of course. The data of the replacements of the joints would offer a
solution. However, a lot of work is required to properly match this data to the correct circuits. Alliander has not
yet succeeded in this. So unfortunately we were unable to use this data in this thesis.

Many features constructed in this thesis are based on parameters. These parameters are determined so that
the feature best represents a character from a cluster. Whether these parameters are actually the best when it
comes to predicting faults has not been tested. These parameters can be tweaked according to the performance
of the classification model. This takes a lot of time, which makes it beyond the scope of this thesis.

Features that involve PD after the cluster

In Section 7.1 we created the feature number of days more than 20000 pC all circuit. In comparison to the feature
number of days more than 20000 pC this deals with the PD at the median of this cluster with a bandwidth of
the distance between the median and the 5th percentile, during the entire period in which the circuit is being
monitored. Likewise, in Section 6.6, we have created 8 features on the seasonal distribution of PD on the cluster
median over the entire period of the circuit. For example, Charge in cold 6 months percentage all circuit concerns
the PD in the coldest 6 months of the year. These features were in addition to the features about the PD of the
clusters themselves only. For example Charge in cold 6 months percentage.

These features concern not only the PD of the cluster and the PD that occurred earlier in the same location,
but also the PD that occurred after the cluster. Care should be taken when using these features to test the
performance of the classification model.

We want to predict which clusters are a precursor to a fault so that the fault can be prevented by replacing
the joint. Of course, to test whether the features can predict these potential faults, we should not use the data
obtained after the fault has occurred or the joint has been replaced. Only the data before the fault or replacement
of the joint may be used.
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It often happens that a fault occurs much later than the end of the cluster causing the fault. Therefore, the par-
ticles after the cluster may also be used to make the prediction. However, the particles after the fault/replacement
should absolutely not be used when testing the classification model.

This is not a problem when the model will be put into operation because it will then predict, on the basis of
PD, whether a joint should be replaced. So then no fault or joint replacement has occurred yet. Although the
model should only use the information before the mistakes and joint replacements during training.

The 9 features that concern the PD after the cluster can not be used carelessly during testing. They may only
contain the PD that occurs before a fault/joint replacement. Unfortunately, the data of the replacements are not
available, so this is unfortunately not possible. However, to ensure that there is no cheating during the testing
of the classification model, we should limit these features to the PD up to and including the cluster. Then these
features still add something because in addition to the PD of the cluster, they also contain the PD before the
cluster.

We assume here that no fault/replacement can take place in the middle of a cluster. This would make things
even more complicated because then not even all particles of a cluster would be allowed to be used in testing.

So for both training the model and testing the performance the features need to be tweaked slightly. So the test
results of Chapter 8 are not entirely valid. However, only for 9 of the features, extra features have been compiled,
and these features (recognizable by the all circuit-part) have no major impact on the predictive model as seen
in Figure 70 in the Appendix. Thus, the conclusion remains that the features created in this thesis contribute to
the prediction of faults.

The features involving PD after the cluster can thus be put to good use when the classification model is put
into use. Versions should therefore also be made of all other features that not only concern the PD of the cluster,
but also the PD before and after the cluster. The combination of a feature about the PD of a cluster and a feature
about the PD of a circuit in the same location will work very well together to predict faults because the behavior
of the cluster is then compared to what normal PD development is at that location.

74



10 Conclusion

Alliander is responsible for the maintenance of the medium voltage grid. This includes preventing power outages
so that the cable joints can be replaced and customers are not left without power. Faults are short-circuit currents,
which usually lead to power outage. Alliander predicts faults using the partial discharges (PD), measured by SCG
on the circuits. The contribution of this thesis can be divided into two parts. First, we collected faults data and
weather data so that we could thoroughly analyze the faults in relation to the PD and the weather. Second, we
searched for predictive features of the PD clusters, quantified them and tested their ability to predict faults.

In the period December 2014 to February 2021, 822 faults occurred, an average of 1.56 faults per circuit. 358
of these faults occurred in 2020 and this number is increasing every year as the number of SCG-systems increases.
We added the faults to the masterframe of clusters and only 56 faults in this period can be linked to a cluster.
These faults have not been prevented because no warning level 1 or 2 has been issued at the relevant locations.
Thus, only 7% of the faults that were not prevented could have been predicted from the PD. Many potential faults
have already been prevented by replacing the joints.

Comparison of the faults with the weather conditions suggests that faults can be predicted using weather data.
The temperature has the greatest influence on the faults. The soil temperature also affects the PD preceding a
fault. Depending on the material of the joint, the PD in a joint correlates positively or negatively with the soil
temperature. Most faults occur during the warm seasons of the year, while the warnings and the PD are more
likely to occur during the cold seasons, suggesting that faults usually occur about 6 months later than the PD
preceding them. A deeper analysis of the faults requires the data of the joint replacements.

Alliander uses a classification model that classifies clusters as dangerous to cause a fault or not dangerous. We
have constructed 33 features in addition to the existing features that Alliander has already constructed. These
features are used by the model to get better classification results.

25 of these features are based on the relation between discharge magnitude and soil temperature during the
discharge. The correlation between them has a high predictive power. Also, the distribution of the PD across
the seasons contributes to the prediction of the faults. The distribution of the discharge magnitude is also very
informative. The shape and scale of these distributions are two features extensively used by the classification
model to predict faults.

While there is still a lot of room to improve the features, they are already effective. When the classification
model only uses these 33 features instead of Alliander’s features, the model is able to predict faults with similar
accuracy. Thus, it is possible to predict faults from the relation between faults, PD and weather conditions. When
the features constructed in this thesis are combined with Alliander’s features, there is a significant improvement.
Then 20% fewer clusters are incorrectly classified as dangerous. Thus, the features constructed in this thesis
contribute to the prediction of faults. This helps prevent power outages.

75



List of features

5 features about the faults

Definition 12. A fault is linked to a cluster if the fault occurred at a location between the 5th percentile and the
95th percentile of the location of the particles of the cluster and the fault occurred after the first particle of the
cluster has been detected.

• fault-count inside/after cluster : Number of faults linked to the cluster;

• Date/time (UTC) of first fault : Time of the first fault linked to the cluster;

• location of first fault : Location of the first fault linked to the cluster;

• locationdelta of first fault : The distance between the location of the first fault and the median location of
the cluster;

• locationdeltarelative of first fault : The distance between the location of the first fault and the median location
of the cluster, divided by the circuitlength.

9 features about the correlation between PD and temperature

The period between the first and last particle of the cluster is used for the feature correlation pd temp. The soil
temperature level 3 (depth of 28-100cm) from De Bilt (CDS) is used. The charge qch is summed for each hour.
Then for each hour of this period the mean of the past 10 days (including this hour) q′′hi is assigned to this hour.
This way the first 10 days of the period are discarded. Then the correlation between these two series is calculated:

qch : The sum of the charge of the measured PD of cluster c during hour h, in picocoulomb (pC);

q′′hi =
1

240

i∑
j=i−239

qhj : the average of the 240 hourly charge values prior to and including hi;

q′′ = [q′′h240 , ..., q
′′
hmax ] : The series of the smoothed charges;

th : The temperature during hour h, in degrees Celcius;

tc = [th1 , ..., thmax ] : The series of temperatures per hour in cluster c.

• correlation pd temp: Pearson(q′′, t),
Correlation between the soil temperature and the PD of the cluster.

A rolling window ρ is used for the next 4 features. For each day of the cluster the correlation of the past 20 days
(including the day in question) ρcdi is calculated. This way we get a rolling window with a length of the number of
days of the cluster and for each day a coefficient. The two series of data which are used to calculate the correlation
have 20 data points each. For each day the mean of the temperature Td and the sum of the charge of the PD Qcd
are used. No correlation is being calculated for a day if the previous 20 days contain more than 10 days without
PD.

Qcd =

d24∑
j=di

qhj :

The sum of the charge of the measured PD of cluster c during day d, in picocoulomb (pC);

Td =
1

24

24∑
j=i

thj :

The mean of the hourly temperatures during day d, in degrees Celcius;

ρcdi = Pearson([Qcdi−19
, ..., Qcdi ], [Tdi−19, ..., Tdi ]) :

The correlation coefficient of the 20 daily values prior to and including day di of cluster c;

ρc = [ρd20 , ..., ρdmax ] :

Rolling window of cluster c.
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• max timeperiod of consecutive positives: max{λ | ∃i : ρdi , ..., ρdi+λ−1
≥ 0.7},

The longest period of the cluster in which the correlation coefficient for each day of this period is at least
0.7.

• max timeperiod of consecutive negatives: max{λ | ∃i : ρdi , ..., ρdi+λ−1
≤ −0.7},

The longest period of the cluster in which the correlation coefficient for each day of this period is at most
-0.7;

• max corr which repeats 12 timeperiods: max{P | ∃i : ρdi , ..., ρdi+11
≥ P},

The maximum correlation coefficient for which there are at least 12 consecutive days for which the corre-
sponding correlation coefficient is at least this value.

• min corr which repeats 12 timeperiods: min{P | ∃i : ρdi , ..., ρdi+11
≤ P},

The minimum correlation coefficient for which there are at least 12 consecutive days for which the corre-
sponding correlation coefficient is at most this value.

For the next 4 features the rolling frame is based on the residue instead of the temperature. In short the residue
is the difference between the trend of the temperature and the actual temperature. It represents the fluctuations
of the temperature.

Residue is being created using the 6-hourly soil temperatures from De Bilt (depth of 50cm). For 2018 the
difference between the mean of the year and the other years is being calculated to get 3 ∗ 40 values. Then the
difference between the mean of 1980 and 2018 is added to the 6-hourly temperatures values from 1981. This will
be done for each year in 1980-2020. Now the means of all years are equal to the mean of 2018. The mean of
all first values (the first measurement which is 01-01 06:00:00) is taken and assigned to the first value of 2018.
This will be done for each period of 2018. And the process is repeated for 2019 and 2020. The period January
and February 2021 is created by making a copy of January and February 2020. The residue is for each value the
difference between this and the actual temperature.

Rd : The residue of day d :

The difference between the trend and the actual temperature;

ρ′di = Pearson([Qcdi−19
, ..., Qcdi ], [Rdi−19, ..., Rdi ]) :

The correlation coefficient of the 20 daily values prior to and including day di of cluster c;

ρ′ = [ρ′d20 , ..., ρ
′
dmax ] :

Rolling window of cluster c.

• max timeperiod of consecutive positives residue: max{λ | ∃i : ρ′di , ..., ρ
′
di+λ−1

≥ 0.7};

• max timeperiod of consecutive negatives residue: max{λ | ∃i : ρ′di , ..., ρ
′
di+λ−1

≤ −0.7};

• max corr which repeats 12 timeperiods residue: max{P | ∃i : ρ′di , ..., ρ
′
di+11

≥ P};

• min corr which repeats 12 timeperiods residue: min{P | ∃i : ρ′di , ..., ρ
′
di+11

≤ P}.

16 features about the relation between PD and seasons

The sum of the charge of PD of the cluster in a certain period, divided by the total PD in this cluster. The year
is divided into periods:

• Charge in cold 6 months percentage: November - April

• Charge in hot 6 months percentage: May - October

• Charge rising temp percentage: February - July

• Charge decreasing temp percentage: August - January

• Charge in winter percentage: November - January
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• Charge in spring percentage: February - April

• Charge in summer percentage: May - July

• Charge in fall percentage: August - October

The next 8 features are similar. Only the dataset of PD is different: The sum of the charge at the median of this
cluster with a bandwidth of the distance between the median and the 5th percentile in a certain period, divided
by the total PD in this cluster. This concerns the entire period in which the circuit is being monitored.

• Charge in cold 6 months percentage all circuit : November - April

• Charge in hot 6 months percentage all circuit : May - October

• Charge rising temp percentage all circuit : February - July

• Charge decreasing temp percentage all circuit : August - January

• Charge in winter percentage all circuit : November - January

• Charge in spring percentage all circuit : February - April

• Charge in summer percentage all circuit : May - July

• Charge in fall percentage all circuit : August - October

8 features about the charge of the PD

For each minute of the cluster the 99.9th percentile of the charge of the previous 10080 minutes (1 week) is
assigned to it. The longest consecutive period in which all minutes have a value higher than 20000 pC determines
the feature. The value is the number of minutes of this period divided by 10080

7 = 1440, to get the number of days.

• number of days more than 20000 pC

• number of days more than 20000 pC all circuit : This deals with the PD at the median of this cluster with
a bandwidth of the distance between the median and the 5th percentile, during the entire period in which
the circuit is being monitored.

Fitting the best Weibull distribution to the distribution of the charge of the PD, results in 6 features: 2 parameters
of the Weibull distribution and 4 criteria for the goodness of fit. The function Fit Weibull 2P from reliability.Fitters
is used for this. More information can be found on reliability.readthedocs.io.

• weibull scale: Scale of the Weibull distribution

• weibull shape: Shape of the Weibull distribution

• goodness of fit loglik : Log-Likelihood

• goodness of fit AICc: Akaike Information Criterion

• goodness of fit BIC : Bayesian Information Criterion

• goodness of fit AD : the Anderson-Darling goodness of fit statistic
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List of terms

Circuit
Group of connected electricity cables, joints and RMUs monitored by a SCG-system, by means of a SCG-
device on each side of the circuit. The placement of the measuring devices defines the circuits. i, 2, 4, 10–13,
15, 17, 19–23, 25, 28, 30, 32, 73, 75, 79, 80

Circuit number
The number of the circuit. Each circuit has a unique number assigned to it to differentiate them. 10, 11,
13, 14, 22, 79

Circuitlength
The circuitlength is the length of the circuit: the cumulative length of the cables of the circuit. This is equal
to the location of the slave unit. See also Figure 9(a). 11, 19, 21, 25, 55, 59, 76, 79

Climate Data Store (CDS)
The CDS provides information about the past, present and future climate, on the global, continental, and
regional scale [18]. 15, 18, 76, 80

Cluster
A group of particles, bundled by the cluster algorithm. i, 1, 2, 19, 20, 73–75

Cluster algorithm
The cluster algorithm is an algorithm developed by Alliander which clusters the particles measured by . The
particles which are partial discharges and have the same source are put into one cluster. All other particles
are filtered and considered noise. i, 19, 60, 79

Det Norske Veritas (DNV)
Det Norske Veritas which translates to ”The Norwegian Truth”, provides digital solutions for managing
risk and improving safety and asset performance for ships, pipelines, processing plants, offshore structures,
electric grids, smart cities and more [2]. It provides Smart Cable Guard (SCG) to Alliander to monitor its
electricity grid. 4, 11, 12, 25, 27, 71

Fault
Faults are short-circuit currents. These usually lead to circuit breakdown. i, 1–4, 10–13, 15–23, 25, 26, 28,
29, 33, 62, 71, 73–76, 79, 80, 83

Faultcount
Faultcount is the number of large sparks that occur during the minute of the fault. One fault can consist of
multiple detections. If a short circuit occurs in a cable, multiple blows (sparks) can occur. SCG combines
these per minute. So if there are multiple detections per minute, a fault gets a faultcount of more than 1.
10, 13

Faultgroup
Some faults belong to the same faultgroup. Fault grouping is a way to group multiple faults, based on
location and time. We give faults the same faultgroup if they have the same circuit number and location is
within and including ±2% of the circuitlength and their time is within 180 days.
For example, when a fault occurred on one specific circuit at 2020-10-01 00:00:00, at location 30% and then
another fault, on that circuit, occurred on 2020-10-05 00:00:00, at location 32%, then those faults will have
a same fault group id. 11, 13

Joint
Joints are the parts of a circuit that connect the cables. The joints are usually the weak spots of the circuits,
depending on the material of the joints. i, 1, 3, 4, 33, 73, 75, 79
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Koninklijk Nederlands meteorologisch instituut (KNMI)
Dutch national weather forecasting service [23]. 15, 80

Master unit
The master unit is the SCG-device that is placed in the RMU at the start of the circuits. 3, 4, 80

Masterframe
Huge dataframe with all clusters and its features. The masterframe is used to predict faults.. 19–23, 26, 28,
29, 75

Partial discharge (PD)
A partial discharge is a small charge displacement in the cavity or layer of the insulation of a component.
PD is a good predictor of faults. i, 1, 2, 4, 10, 19, 20, 22, 23, 28–30, 32, 33, 55, 71, 73–78, 80

Particle
Umbrella term of PD and noise. The observations of SCG when it measures PD. 19–22, 26, 28, 76, 79

Ring Main Unit (RMU)
A ring main unit is a set of switchgear used at the secondary substations. The SCG-devices are placed in
the ring main units. 3, 4, 11, 12, 79, 80

SCG-device
A SCG-device is one of the two measuring devices of a SCG-system. It is either the master unit or the slave
unit. 3, 4, 79, 80

SCG-system
A SCG-system consists of two SCG-devices: the master unit and the slave unit. These SCG-device are
placed in the RMUs at the end of a circuits, to measure the faults and PD on the circuits. 1–4, 10, 12,
16–18, 75, 79, 80

Slave unit
The slave unit is the SCG-device that is placed in the RMU at the end of the circuits. 3, 4, 79, 80

Smart Cable Guard (SCG)
Smart Cable Guard is a sensor-based digital monitoring platform that puts owners in control of their medium
voltage cable network. Combining patented technology with 24/7 monitoring and support, it detects and
locates faults and weaknesses in underground cables [3]. i, 1, 10, 12, 17, 19, 30, 68, 71, 75, 79, 80

Substation
A substation is a station that transforms the power from high voltage to medium voltage. A secondary
substation transforms the power from medium voltage to low voltage. 3, 80

Weather application programming interface
An interface to retrieve data about the weather from both the KNMI and the CDS [15]. 10
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Appendix

Table 13: t-table to determine the p-value for the t-test [24]
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Table 14: Correlation coefficient between absolute/relative number of faults and several weather variables for three periods
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Figure 68: Feature importance of the 33 new features
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Figure 69: Feature importance of Alliander’s features
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Figure 70: Feature importance of all features
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