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Abstract

The Hasse Norm Principle is valid for an extension L : K of number fields when for every
a ∈ K∗, a is a norm of L : K if and only if it is a local norm at every prime of K. In 1931
Hasse proved this principle to be valid for all cyclic extensions of number fields. He also
disproved his own conjecture that this principle is valid for all abelian extensions of num-
ber fields by showing it is not valid for the biquadratic extension Q(

√
−3,
√

13) : Q. Later
also Tate provided an example showing the principle is not valid for Q(

√
13,
√

17) : Q,
using modern methods of class field theory.

In this thesis both these examples are treated in a relatively elementary way, using the
classical ideal theoretic approach of class field theory. We use Hasse’s original method
of proof to show that also Tate’s example can be proved in this setting. Afterwards we
extend Tate’s example to Q(

√
p,
√
q) : Q with prime numbers p, q ≡ 1 (mod 4) such that(

p
q

)
= 1, still aiming to use as few tools as possible.
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1. History

In 1931 the German mathematician Helmut Hasse published an article [5] in which he
proved what is now known as the Hasse Norm Theorem: in a cyclic extension L : K
of number fields, an element a ∈ K∗ is a global norm if and only if it is a local norm
everywhere. To be more precise, there exists an α ∈ L∗ such that NL

K(α) = a if and only
if for every prime p of K there exists an αq ∈ L∗q such that Nq

p(αq) = a, where q is a prime
of L above p, Lq and Kp are completions of L and K at their respective primes q and p,
and Nq

p denotes the norm from Lq to Kp. More generally, for an arbitrary extension of
number fields we say the Hasse Norm Principle is valid when elements are global norms
if and only if they are local norms everywhere. In that terminology, the Hasse Norm
Theorem simply states that the Hasse Norm Principle is valid for all cyclic extensions of
number fields.

Unlike many other theorems in class field theory, there is no analogue for this theorem
for abelian extensions of number fields. In an article published in 1930 [4], after proving
the special case of the theorem of cyclic extensions of prime degree, Hasse conjectured
the norm principle to be valid for all abelian extensions of number fields. He disproved
this in the 1931 article [5] by providing a counterexample: in the biquadratic extension
Q(
√
−3,
√

13) : Q the element 3 is a local norm everywhere, but not a global norm. Hence
the Hasse Norm Principle is not valid for Q(

√
−3,
√

13) : Q.

Later on, in 1967, another example was given by John Tate, as an exercise in the book
Algebraic Number Theory [1]. Using the more modern methods of idèles and cohomol-
ogy, he provides a class of squares that are local norms at every prime of the extension
Q(
√

13,
√

17) : Q, but not global norms.

Beside these widely known examples, there are numerous mathematicians who have pub-
lished on this subject, aiming to find more precise criteria for whether or not the Hasse
Norm Principle is valid for a given number field extension. Notably, German mathemati-
cian Arnold Scholz wrote a number of articles about it during the 1930’s. In 1936 [14]
he introduced the concept of a knot of an extension L : K of number fields: the group of
all a ∈ K∗ that are local norms everywhere, divided by the subgroup of global norms. In
that terminology, the Hasse Norm Principle is valid for an extension if and only if it has
a trivial knot. Despite being regarded as a mathematical genius, Scholz was notoriously
bad at expressing his ideas on paper. That may have contributed to many of his results
being forgotten over the years, only to be rediscovered by others much later. For example,
the extension Q(

√
13,
√

17) : Q covered by Tate, already appeared in Scholz’s work in
1936. In more recent decades, his work has gained renewed appreciation.

2



Lastly we mention the work of Wolfram Jehne, a student of Hasse, who in 1979 published
an article [9] on knots in which he treats these from the more modern idèle theoretic
viewpoint of class field theory – also used by Tate in the example we mentioned above –
allowing him to greatly extend the results reached by Scholz. For biquadratic extensions
L : Q, what this thesis is concerned with, his work shows that the knot is trivial if and
only if there is a prime p such that the local degree at p, the degree of Lp : Qp with p
a prime of L above p, equals 4. While this result is quite definitive, it does not provide
explicit examples of elements in the non-trivial knots.

Both of the aforementioned examples are often referred to in books and articles, but
mostly either without proof or with an incorrect proof. This thesis will provide relatively
elementary proofs of both examples, set in the ideal theoretic approach to class field
theory, making no use of idèles or cohomology. Subsequently we will generalize this
method to apply to any biquadratic field extension Q(

√
p,
√
q) : Q with prime numbers

p, q ≡ 1 (mod 4) such that
(
p
q

)
= 1, giving a class of squares that are local norms

everywhere, but not global norms.
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2. The Classical Examples

We first turn our attention to the two examples given by Hasse and Tate. Before giving
proofs of those, some tools that will be useful are treated.

2.1 Artin’s Reciprocity Law

While in this thesis the aim is to use relatively basic tools, the most notable exception is
Artin’s Reciprocity Law. This is a central theorem in Class Field Theory, so any course
on the subject should treat it at some point. While stated in slightly varying ways, any
number of textbooks can be used to find a proof of this theorem, for example Algebraic
Number Fields by Janusz [8], Chapter V, Theorem 5.8. Here we present the theorem
as stated in Number Fields by Keune [10]. The differences in formulation and notation
that can be found throughout different sources should not cause any trouble, since we’re
actually interested in a relatively simple case, where the number field extension considered
is unramified. This completely removes any difficulties regarding notation, resulting in
the very simple statement in Corollary 3, which is all that will be used.

For readability we will go over some notation used in the theorem, assuming knowledge
of the concepts they represent.

Notation 1. Let L : K be an abelian extension of number fields.

� I(K) denotes the group of fractional ideals of OK , the ring of integers of K.

� IL(K) = {a ∈ I(K) | vp(a) = 0 for all in L ramifying p ∈ Max(OK)}, the subgroup
of I(K) generated by the non-ramifying prime ideals of OK .

� A modulus m of K, a formal product of primes of K, consists of a product of finite
primes denoted by m0 and a product of infinite primes denoted by m∞, so that
m = m0m∞.

� Im(K) = {a ∈ I(K) | vp(a) = 0 for all p | m0}, the subgroup of I(K) generated by
the prime ideals of OK not dividing the finite part m0 of a modulus m of K.

� Sm(K) = {αOK ∈ I(K) | α ∈ K, vp(α) = 0 and vp(α − 1) ≥ vp(m0) for all p |
m0, and σp(α) > 0 for all real p | m∞}, where σp : K → R is the embedding of K
in R associated with the real infinite prime p. Sm(K) is called the ray modulo m of
K.
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� C̀ (K) = I(K)/P(K), the ideal class group of K, consisting of the fractional ideals
of K modulo the principal fractional ideals P(K).

� ϕ
(L)
K : IL(K) → Gal(L : K) is the Artin map, defined by sending a non-ramifying

prime ideal p of OK to its Frobenius automorphism ϕ
(L)
p .

Theorem 2 (Artin’s Reciprocity Law). Let L : K be an abelian extension of number
fields. Then there is a modulus m of K having the ramifying primes as its prime divisors,
such that the Artin map ϕ

(L)
K : IL(K)→ Gal(L : K) induces an isomorphism

Im(K)/NL
K(Im(L))Sm(K)

∼−→ Gal(L : K).

Corollary 3. Let L : K be an unramified abelian extension of number fields. Then the
Artin map induces a surjective homomorphism

C̀ (K)→ Gal(L : K).

Proof. Since there are no ramifying primes, Theorem 2 holds for the trivial modulus
m = (1). Then the isomorphism translates to

I(K)/NL
K(I(L))P(K)

∼−→ Gal(L : K).

The left hand side of this isomorphism is a factor group of C̀ (K) = I(K)/P(K), from
which the corollary follows.

2.2 Local Degrees

Throughout this thesis, we will be considering biquadratic field extensions of Q. As
mentioned earlier, the work of Jehne [9] shows that for the Hasse Norm Principle not to
be valid for such an extension, it is necessary that no local degree of 4 occurs. While we
are explicitly avoiding to make use of the methods he used to obtain this result, it does
mean that our examples will naturally take place in extensions where no local degree of 4
occurs, and our proofs will rely on this fact. Here we will make precise what that means
and look at the splitting behavior of primes in biquadratic number field extensions to
find out when exactly such a local degree can appear, to be able to quickly show that
they do not appear in the examples we will be working with. We begin with a formal
definition to avoid confusion.

Definition 4. Let L : K be a Galois extension of number fields, p a prime of K and
q a prime of L above p. Then the local degree of L : K at p is the degree of the field
extension Lq : Kp, where Lq and Kp are the completions of L and K at their respective
primes.

Since the completion at an infinite prime is always either R or C, the local degree at
such a prime can only be 1 or 2. As we’re only concerned with local degrees of 4 in the
following, we assume all primes in this section to be finite.

Let L = Q(
√
m,
√
n) with m 6= n square-free integers 6= 1 and k = mn

gcd(m,n)2
, so that also

k is a square-free integer 6= 1 and the three quadratic subfields of L are Q(
√
m), Q(

√
n)

and Q(
√
k).
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Let p be a prime number and q a prime of L above p. Completing Q and L at their corre-
sponding primes, we obtain the local fields Qp of p-adic numbers and Lq = Qp(

√
m,
√
n).

Using the notation e
(L)
p for the ramification index of p in L and similarly f

(L)
p and r

(L)
p for

the residue class degree and the number of distinct primes q of L above p respectively, we
know that r

(L)
p e

(L)
p f

(L)
p = [L : Q] = 4 and [Lq : Qp] = e

(L)
p f

(L)
p . So the extension Lq : Qp

has degree ≤ 4, being equal to 4 only when r
(L)
p = 1.

For a non-ramifying prime r
(L)
p = 1 would mean that f

(L)
p = 4, meaning that p remains

prime in L. This however is impossible: if p were to remain prime in L, it would remain
prime in all quadratic subfields, implying for p = 2 that m ≡ n ≡ k ≡ 5 (mod 8) and for
p odd that

(
m
p

)
=
(
n
p

)
=
(
k
p

)
= −1, which both are obviously not possible.

So a local degree of 4 is only possible at ramifying primes that do not split. For a prime
p to ramify completely in L it would need to ramify in all quadratic subfields. Since the
primes ramifying in a quadratic number field Q(

√
m) are exactly those that divide the

discriminant of the quadratic field, which is either m or 4m, ramifying in all three of
them is only possible for p = 2.

The only case remaining is for pOL to decompose as p2. For odd p, ramifying in L means
it has to ramify in exactly two of the quadratic subfields, since it necessarily divides two
of the discriminants of the quadratic subfields of L. In the third quadratic subfield it
has to remain prime for this splitting behavior to occur. For p = 2 it is also possible to
ramify in one subfield, and remain prime in the other two. Summarizing, we have:

Lemma 5. Let L : Q be a biquadratic number field extension and p a prime with local
degree 4. Then p ramifies in L and either p = 2 and p doesn’t split in any of the quadratic
subfields, or p is odd and ramifies in exactly two of the quadratic subfields and remains
prime in the third.

2.3 Hasse’s Example: Q(
√
−3,
√
13)

For this section, unless specified otherwise, let L = Q(
√
−3,
√

13), K = Q(
√
−39) and

Gal(L : Q) = 〈σ, τ〉 such that Lσ = Q(
√
−3) and Lτ = Q(

√
13). We also use the notation

σ to indicate the restriction of σ ∈ Gal(L : Q) to K.

The original example by Hasse [5] shows that 3 is a local norm everywhere for the exten-
sion L : Q, but not a global norm. The proof given here is directly based on the method
used by Hasse, without making use of norm residue symbols. To start with, we determine
some useful facts about the extension L : Q and its sub-extensions.

Firstly, the easy part of the example is demonstrated: 3 is a local norm at every prime
of Q. We use Lemma 5 of the previous section to quickly establish this.

Lemma 6. For every prime p of Q and q a prime of L above p, the local extension
Lq : Qp is of degree 1 or 2.

Proof. A local extension at an infinite prime has degree 1 or 2 by definition. The only
finite primes ramifying in L are 3 and 13, which both split in one of the quadratic subfields:
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3 splits in Q(
√

13) and 13 splits in Q(
√
−3). Using Lemma 5 we see that a local degree

of 4 does not exist.

Lemma 7. The number 3 is a local norm of L : Q at every prime p of Q.

Proof. Let p be a prime of Q and q a prime of L above p. By Lemma 6 we know
that the local degree [Lq : Qp] is either 1 or 2. Since the case where it is 1 is trivial,
assume [Lq : Qp] = 2. Then the non-trivial element of Gal(Lq : Qp) is a prolongation
of either σ, τ or στ . Since (4 −

√
13) · σ(4 −

√
13) = (4 −

√
13)(4 +

√
13) = 3 and√

−3 · τ(
√
−3) =

√
−3 · στ(

√
−3) =

√
−3 · −

√
−3 = 3, in any case 3 is a local norm.

More generally, we could have used norm residue symbols here like Hasse did
in his original proof. For an abelian extension of number fields L : K, letting
the symbol

(
a,L:K

p

)
denote the image of a ∈ K∗ under the local Artin map

ϑ
(L)
p , this symbol equals 1 if and only if a is a local norm at p. One can use

the identity (
a,K1K2 : K

p

)
=

(
a,K1 : K

p

)(
a,K2 : K

p

)
to conclude that in our example 3 is a local norm at every prime: since 3 is
a norm of Q(

√
−3) : Q and of Q(

√
13) : Q, the Hasse Norm Theorem implies(3,Q(

√
−3):Q
p

)
=
(3,Q(

√
13):Q
p

)
= 1 for every prime p of Q, and so(

3, L : Q
p

)
=

(
3,Q(

√
−3) : Q
p

)(
3,Q(

√
13) : Q
p

)
= 1

for every p. See for example Hasse [4], §6, (9.) for a proof of this identity.

To make explicit calculations, we will be using the ideal class group C̀ (K) of K. Deter-
mining the ideal class group of a quadratic extension of Q is an easy exercise, so we limit
ourselves to stating some easy results.

Lemma 8. The ideal class group C̀ (K) of K is cyclic of order 4 and is generated by

the class [p2], where p2 =
(

2, 1+
√
−39
2

)
is a prime above 2. The class of the unique prime

p3 = (3,
√
−39) above 3 has order 2.

Also easy, but essential to this example, is the following observation.

Lemma 9. The extension L : K is unramified.

Proof. Any prime ramifying in L : Q must ramify in at least one of the quadratic sub-
extensions of Q. The only finite primes ramifying in these quadratic extensions are 3 and
13, which both ramify in K : Q. Since they can’t ramify completely in L : Q, as we’ve
seen in section 2.2, they do not ramify in L : K. There are also no ramifying infinite
primes, since the infinite prime of K is complex. So indeed L : K is unramified.

Finally we prove two lemmas in the more general setting of an arbitrary quadratic field
K, so that we will be able to use them in the other examples as well.
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Lemma 10. Let K = Q(
√
m) with m 6= 1 a square-free integer and let α ∈ K∗ be an

element of norm NK
Q (α) = 1. Let σ ∈ Gal(K : Q) be the non-trivial automorphism of K.

Then there is a β ∈ K∗ such that α = β
σ(β)

.

Proof. If α = −1, we can take β =
√
m. Otherwise, take β = α+1: then σ(β) = σ(α)+1,

so
ασ(β) = ασ(α) + α = 1 + α = β

and indeed α = β
σ(β)

.

This lemma is actually a simple case of the more general theorem known as
Hilbert’s Theorem 90, which states that for a Galois extension L : K with
cyclic Galois group Gal(L : K) = 〈σ〉 generated by σ, every α ∈ L∗ of norm
NL
K(α) = 1 can be written as α = β

σ(β)
for some β ∈ L∗. The name of

this theorem comes from the fact that it is the 90th theorem in Hilbert’s
Zahlbericht [7], though the theorem was already published by Kummer in
1855 [11].

Lemma 11. Let K be any quadratic number field. Then for every fractional ideal a of
OK we have [σ(a)]−1 = [a] in C̀ (K).

Proof. For every fractional ideal a we have a · σ(a) = NK
Q (a)OK , so [a][σ(a)] = 1 and

indeed [σ(a)]−1 = [a].

For the field K = Q(
√
−39) under consideration in this section, this leads to the following

corollary:

Corollary 12. For every ideal a of OK the order of
[

a
σ(a)

]
in C̀ (K) is at most 2, and

equals 2 if and only if the order of [a] is 4.

Proof. From Lemma 11 we know that
[

a
σ(a)

]
= [a]2. Since C̀ (K) is of order 4, the corollary

immediately follows from this.

We’re now ready to prove the main part of the example, in which we show that 3 is not
a norm of L : Q.

Proposition 13. In the extension L : Q the element 3 is a local norm at every prime of
Q, but not a global norm.

Proof. We already saw in Lemma 7 that 3 is a local norm at every prime. It remains to
be shown that 3 is not a norm of L : Q. We will derive a contradiction by assuming it is.

Suppose there is a γ ∈ L∗ such that NL
Q(γ) = 3. Consider the element α = 3−

√
−39
4
∈ K∗.

It has norm NK
Q (α) = 3−

√
−39
4
· 3+

√
−39
4

= 3. So NL
Q(γ) = NK

Q (NL
K(γ)) = NK

Q (α) and

NK
Q

(
NL
K(γ)

α

)
= 1.
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So by Lemma 10 there exists a β ∈ K∗ such that

NL
K(γ)

α
=

β

σ(β)
,

so

NL
K(γ) =

αβ

σ(β)
. (2.1)

Now consider the element 2α = 3−
√
−39
2

∈ OK . It has norm NK
Q (2α) = 12 and is an

element of the prime p2 =
(

2, 1+
√
−39
2

)
above 2: 2α = −

(
1+
√
−39
2
− 2
)

. Since the class

of the unique prime p3 above 3 has order 2 in C̀ (K), the two distinct primes above 2
can’t both be factors of the principal ideal 2αOK : [p2p

′
2p3] = [p3] 6= 1. Hence the prime

factorization of 2αOK is p22p3. So

αOK =
p22p3
2OK

=
p22p3
p2p′2

=
p2p3
σ(p2)

.

Hence

αβ

σ(β)
OK = p3

βp2
σ(βp2)

. (2.2)

Since [p3] is of order 2 and αβ
σ(β)
OK is a principal fractional ideal, the order of

[
βp2

σ(βp2)

]
is

also 2. By Corollary 12 this means that [βp2] is of order 4 and thus that there is a prime
ideal p ∈ Max(OK) such that [p] is of order 4, vp(βp2) is odd and vσ(p)(βp2) is even. Due
to its order in the ideal class group we see p 6= p3, so also

vp

(
p3

βp2
σ(βp2)

)
= vp(βp2)− vp(σ(βp2)) = vp(βp2)− vσ(p)(βp2)

is odd. By equations 2.1 and 2.2 we conclude that vp(N
L
K(γ)) is odd.

However, since L : K is unramified, by Corollary 3 of Artin’s Reciprocity Law, we have
a surjective homomorphism

C̀ (K)→ Gal(L : K).

Since the class [p] is of order 4 and therefore generates the ideal class group C̀ (K), its

image, the Frobenius automorphism ϕ
(L)
p of p in L, generates Gal(L : K). Since ϕ

(L)
p

also generates the decomposition group Z
(L)
p of p in L, we have Z

(L)
p = Gal(L : K). This

means that p does not split in L : K, and since L : K is unramified, that implies that p
remains prime in L. Let q denote the prime above p in L, then

vp(N
L
K(γ)) = vq(γ · στ(γ)) = vq(γ) + vq(στ(γ)) = vq(γ) + vστ(q)(γ) = 2vq(γ)

is even. Contradiction.
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2.4 Tate’s Example: Q(
√
13,
√
17)

For this second example, let L = Q(
√

13,
√

17), K = Q(
√

221) and Gal(L : Q) = 〈σ, τ〉
such that Lσ = Q(

√
13) and Lτ = Q(

√
17). Again we also use the notation σ to indicate

the restriction of σ ∈ Gal(L : Q) to K.

The example given by Tate is different not only in the way it was originally approached,
but also in the sense that instead of providing one example, it gives an infinitely large
class of numbers that are local norms everywhere, but not global norms. It was first
published in 1973 in the form of an exercise [1]. Contrary to what is done there, we show
that a similar approach as the one used in Hasse’s example can be used to prove the
result from the classical ideal theoretic point of view.

Two of the lemmas from the previous section, Lemma 6 and Lemma 9, translate directly
to this situation: again 13 ≡ 17 ≡ 1 (mod 4) which implies that 13 and 17 are the only
primes ramifying in L, and since

(
13
17

)
=
(
17
13

)
= 1 we see that 13 splits in Q(

√
17) and 17

splits in Q(
√

13). There are no ramifying infinite primes, so we have:

Lemma 14. For every prime p of Q and q a prime of L above p, the local extension
Lq : Qp is of degree 1 or 2. Furthermore, the extension L : K is unramified.

The class of numbers this example is about, consists of squares of natural numbers. These
are trivially local norms everywhere.

Lemma 15. For every rational number x ∈ Q∗, its square x2 is a local norm of L : Q at
every prime p of Q.

Proof. If [Lq : Qp] = 1, the norm of x2 is x2. If [Lq : Qp] = 2, it is the norm of x.

In Hasse’s example we made use of the ideal class group of Q(
√
−39) being of order

4. In the current case however, C̀ (K) is of order 2. Therefore we switch to using the
narrow ideal class group C̀ +(K) instead. The narrow ideal class group is defined as
C̀ +(K) = I(K)/P+(K), where P+(K) denotes the group of principal fractional ideals
generated by an element of positive norm. In an imaginary quadratic number field all
norms are positive, so the ideal class group and the narrow ideal class group coincide.
For a real quadratic number field it depends on the norm of the fundamental unit. If
that norm is −1, the principal fractional ideals that can be generated by an element of
negative norm can also be generated by an element of positive norm, so also then the two
groups coincide. If on the other hand the norm of the fundamental unit is 1, like in K,
where the fundamental unit is 7 + 1+

√
221

2
, the principal fractional ideals generated by an

element of negative norm form a separate class, say C, and C̀ (K) ∼= C̀ +(K)/C. Then
the order of C̀ +(K) is twice the order of C̀ (K). In our case we have:

Lemma 16. The narrow ideal class group C̀ +(K) is cyclic of order 4.

Proof. C̀ (K) is of order 2 and is generated by the class of p5 =
(

5, 1+
√
221

2

)
. We have

p25 = 11+
√
221

2
OK and NK

Q

(
11+
√
221

2

)
= −25, so combined with the observation that the

fundamental unit has norm 1, we see that [p5] is of order 4 in C̀ +(K).
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The proof of Lemma 11 remains valid when substituting C̀ +(K) for C̀ (K).

Lemma 17. Let K be any quadratic number field. Then for every fractional ideal a of
OK we have [σ(a)]−1 = [a] in C̀ +(K).

Another thing that needs to be adapted to this situation is what was shown in Lemma
10. In Proposition 13 we used an element of norm 3 to construct an element of norm 1
and apply Lemma 10 to it. In this case we won’t be able to get such an element, but in
Lemma 21 we will see that we’re able to construct an ideal of the norm we’re looking for
instead.

Notation 18. The norm map NK
Q : I(K) → I(Q) on fractional ideals of K takes values

in I(Q). This group is isomorphic to the group Q+ of positive rationals. We will use this
isomorphism to identify the norm of a fractional ideal of K with a positive rational. In
particular for every α ∈ K∗ we have NK

Q (αOK) =
∣∣NK

Q (α)
∣∣.

A similar result as Lemma 10 holds for ideals of norm 1.

Lemma 19. Let K be any quadratic number field and let a be a fractional ideal of OK
of norm NK

Q (a) = 1. Then there is a fractional ideal b of OK such that a = b
σ(b)

.

Proof. Let G = Gal(K : Q) and consider the two G-module homomorphisms

N: I(K)→ I(K), a 7→ aσ(a)

and
∆: I(K)→ I(K), a 7→ a

σ(a)
,

where I(K) denotes the G-module of fractional ideals of OK . It’s easily seen that

ker(N) = {a ∈ I(K) | vp(a) + vp(σ(a)) = 0 for all p ∈ Max(OK)}
= {a ∈ I(K) | vp(a) + vσ(p)(a) = 0 for all p ∈ Max(OK)}
= {a ∈ I(K) | vp(a) = −vσ(p)(a) for all p ∈ Max(OK)}
= im(∆).

So if N(a) = NK
Q (a) = 1 for some a ∈ I(K), then a ∈ im(∆), from which the lemma

follows.

As with Lemma 10, this is an easy case of a more general result. In terms
of Galois cohomology this result states that for a cyclic extension of number
fields, the first cohomology group H1(I(K)) is trivial.

The following observation is the basis for the class of numbers this example is about.

Lemma 20. Let p be a prime number with
(
p
13

)
=
(
p
17

)
= −1. Then p splits in K:

pOK = pp′, and the order of [p] in C̀ +(K) is 4.

Proof. Firstly, since
(
2
17

)
= 1, p must be odd. Then

(
221
p

)
=
(
13
p

)(
17
p

)
=
(
p
13

)(
p
17

)
= 1, so p

splits in K.

11



Suppose p is a principal ideal. Then there are a, b ∈ Z such that p is generated by
a+b
√
221

2
∈ OK . Since NK

Q (p) = p, we have NK
Q (a+b

√
221

2
) = ±p, so a2 ± 4p = 13 · 17b2 and

thus

(
13

p

)
=

(
13 · 17b2

p

)
=

(
a2 ± 4p

p

)
= 1,

which is a contradiction with
(
p
13

)
= −1. So p is not a principal ideal.

Since in C̀ +(K) the trivial class consists of all principal ideals generated by an element
with a positive norm, and the class of order 2 consists of the principal ideals generated
by an element with a negative norm, p must be in a class of order 4.

We’re now ready to prove the result the example is about. In the following lemma we
define the class of squares that are not global norms and construct the ideal we announced
before Notation 18. Then in Proposition 22 we conclude the proof.

Lemma 21. Let a ∈ N\{0} be a number such that
(
p
13

)
= −1 for all p | a, and

(
a
17

)
= −1.

Then there exists an ideal a of OK of norm NK
Q (a) = a2 such that the order of [a] ∈ C̀ +(K)

is 2.

Proof. Write a = p1 · · · pnq1 · · · qm so that
(
pi
17

)
= −1 and

(qj
17

)
= 1 for all 1 ≤ i ≤ n and

1 ≤ j ≤ m. Then n is odd, since
(
a
17

)
= −1.

According to Lemma 20, every pi splits in K as piOK = pip
′
i with [pi] of order 4.

Since 2 remains prime in K and for every odd qj we have(
221

qj

)
=

(
13

qj

)(
17

qj

)
=

(
qj
13

)(
qj
17

)
= −1,

every qj remains prime in K. So every [qjOK ] is trivial in C̀ +(K).

Then
a = p21 · · · p2nq1OK · · · qmOK

has norm NK
Q (a) = a2 and [a] = [p21 · · · p2n] is the unique class of C̀ +(K) of order 2 due to

n being odd.

Proposition 22. Let a ∈ N \ {0} be as in Lemma 21. Then a2 is not a global norm of
L : Q.

Proof. Suppose there is a γ ∈ L∗ such that NL
Q(γ) = a2. Let a be the ideal of OK with

norm NK
Q (a) = a2 such that the order of [a] in C̀ +(K) is 2, as constructed in Lemma 21.

Then NL
Q(γOL) = NK

Q (NL
K(γOL)) = a2 = NK

Q (a), so

NK
Q

(
a

NL
K(γOL)

)
= 1.

12



By Lemma 19 there is a fractional ideal b ∈ I(K) such that

a

NL
K(γOL)

=
b

σ(b)
.

Since NL
K(γOL) represents the trivial class of C̀ +(K) and [σ(b)]−1 = [b] by Lemma 17,

we have [a] = [b]2. From this it follows that the order of [b] is 4.

Then there must be a prime ideal p ∈ Max(OK) such that [p] is of order 4, vp(b) is
odd and vσ(p)(b) is even. Since all prime factors of a either represent the trivial class of
C̀ +(K), or appear an even number of times in the decomposition of a, also

vp(N
L
K(γOL)) = vp

(
ab

σ(b)

)
= vp(a) + vp(b)− vp(σ(b)) = vσ(p)(b)

is odd.

However, now L : K is unramified and [p] generates C̀ +(K). The surjective homo-
morphism C̀ (K) → Gal(L : K) we get from Corollary 3 combined with the surjection
C̀ +(K) → C̀ (K), [a] 7→ [a] yields a surjective homomorphism C̀ +(K) → Gal(L : K)
generated by sending the prime ideals of OK to their Frobenius automorphisms of L. So
using similar reasoning as in Proposition 13, we see that the Frobenius automorphism
ϕ
(L)
p generates Gal(L : K) and thus that p remains prime in L. So vp(N

L
K(γOL)) is even,

which is a contradiction.

13



3. Extension to Q(
√
p,
√
q)

In this chapter we will generalize Tate’s example to L = Q(
√
p,
√
q), where p and q are

prime numbers with p, q ≡ 1 (mod 4) and
(
p
q

)
= 1. In both previous examples we relied

heavily on the structure of the (narrow) ideal class group. To be able to obtain similar
results in this more general setting, we need some information about the narrow ideal
class group again. Specifically, we need to know the 2-rank and the 4-rank of this group.
We define this in an intuitive way.

Definition 23. Let A be a finite abelian group. Then A is isomorphic to a product of
cyclic groups

A ∼=
k∏
i=1

Cdi .

Requiring that di+1 | di for 1 ≤ i < k and dk 6= 1 yields a unique decomposition of A into
cyclic groups. The di are then called the group invariants of A. The 2n-rank of A, for an
n ∈ N \ {0}, is the number of group invariants divisible by 2n.

We will prove the classic theorem on the 2-rank of the narrow ideal class group of a
quadratic number field and use that to also determine the 4-rank in our specific situation.
To make computations easier, we also introduce a basic version of Hilbert symbols.

3.1 Hilbert symbols

First introduced in 1897 in Hilbert’s Zahlbericht [7], the Hilbert symbol started out as
a function of two rational integers and a rational prime. Over time it developed into an
essential part of class field theory, growing more complex along the way. The general
Hilbert symbols are defined on local fields containing sufficiently many roots of unity,
and use the local Artin map in their definition. We won’t be needing any of this here, so
we restrict ourselves to the classical quadratic Hilbert symbol. Since we will only make
very limited use of this symbol to simplify some calculations, we won’t go into too many
details and simply present the definition and some results on how to use and calculate
them.

Though Hilbert’s original definition would be sufficient for our purpose, we use a slightly
evolved version that can be found in Serre’s Cours d’Arithmetique [15]. This allows for
some easier arguments.
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In this section, let F be a completion of Q at a prime p. So F = Qp when p is a prime
number and for p =∞ we have F = R.

Definition 24. Let a, b ∈ F ∗. We define the Hilbert symbol of a and b relative to F to
be

(a, b) =

{
1 if z2 − ax2 − by2 = 0 has a solution (z, x, y) 6= (0, 0, 0) in F 3,

−1 otherwise.

The idea behind this definition becomes clear in the following proposition.

Proposition 25. For a, b ∈ F ∗ we have

(a, b) = 1 ⇐⇒ a ∈ N
F (
√
b)

F (F (
√
b)∗).

So (a, b) = 1 precisely when a is the norm of some element in F (
√
b)∗.

Proof. First suppose b is a square in F , say b = c2 for some c ∈ F ∗. Then z2−ax2−by2 = 0
has a solution (c, 0, 1), so (a, b) = 1 for any a. Also F (

√
b) = F , so any a ∈ F ∗ is simply

the norm of itself.

If b is not a square in F , then F (
√
b) : F is a quadratic field extension. Then every element

α ∈ F (
√
b) can be written as α = z + y

√
b, with z, y ∈ F . So then N

F (
√
b)

F (α) = z2 − by2.
So if a is a norm there are z, y ∈ F such that a = z2 − by2, making (z, 1, y) a solution to
z2 − ax2 − by2 = 0, and thus (a, b) = 1.

Conversely, if (a, b) = 1, then z2 − ax2 − by2 = 0 has a solution (z, x, y) 6= (0, 0, 0). Since
b is not a square, we have x 6= 0 and a is the norm of z

x
+ y

x

√
b:

0 = z2 − ax2 − by2,
ax2 = z2 − by2,

a =

(
z

x

)2

− b
(
y

x

)2

.

In this thesis we will only be using a particular kind of Hilbert symbols, where the a
and b are actually rational integers. When restricted to the rationals, all Hilbert symbols
relative to different F can be described by a single symbol.

Notation 26. Let a, b ∈ Q∗ and p a prime of Q. Let F be the completion of Q at p. We
will use the notation

(
a, b

p

)
= (a, b),

where (a, b) is the Hilbert symbol of a and b relative to F . We call this restriction of
(a, b) the Hilbert symbol on Q relative to p.
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The Hilbert symbol satisfies a number of identities, such as (a, b) = (b, a) and (a,−a) = 1,
that can be derived directly from the definition. These identities lead to formulas that
allow actual calculation of the symbol. Since we are only interested in the case where a
and b are integers, we state the theorem only for that case, simplifying the formulation.

Theorem 27. Let p be a prime number and let a, b ∈ Z \ {0}. Write a = pmc, b = pnd,
where m,n ∈ Z and c, d ∈ Z \ {0} such that c and d are relatively prime to p. Then for
odd p:

(
a, b

p

)
= (−1)mn

p−1
2

(
cndm

p

)
,

and for p = 2:

(
a, b

2

)
= (−1)

c−1
2

d−1
2

+n c2−1
8

+m d2−1
8 .

Furthermore, for the infinite prime ∞ and a, b ∈ Z \ {0}:

(
a, b

∞

)
=

{
−1 if a, b < 0

1 otherwise.

For a proof of the theorem we refer to the book by Serre [15], Theorem 1 of Chapter
III. As the title of the book suggests, the proof requires a lot, though relatively basic,
arithmetic and case distinctions, which does not add any additional insights in the subject
of this thesis.

3.2 The 2-rank of the Narrow Ideal Class Group of

a Quadratic Number Field

Even though field extensions weren’t considered in those days, the theorem on the 2-rank
of the narrow ideal class group of a quadratic field extension of Q dates all the way back
to Gauss’s Disquisitiones Arithmeticae [3], written in 1798 at age 21 and published in
1801, where he introduced genus theory. In the context of quadratic forms he proves
the principal genus theorem. Through work of famous mathematicians like Dirichlet and
Hilbert, the theory evolves from quadratic forms to quadratic field extensions of Q. A
complete account on this development of the principal genus theorem was written by
Franz Lemmermeyer [12].

In this context, genus theory resulted in the theorem on the 2-rank of the narrow ideal
class group through two key theorems – the principal genus theorem and the main theorem
on genera. While this theory is interesting and it’s history fascinating, as a part of this
thesis it would require too many new tools. Instead we prove the theorem in a way based
on the proof in the book Algebraic Number Theory by Fröhlich and Taylor [2]. This way

16



the proof fits very well within the theory we have already been using. For a detailed
proof using genus theory we recommend Hasse’s Number Theory [6].

For this theorem we will make use of the notion of a totally positive element:

Definition 28. Let L be a number field and α ∈ L∗. We call α totally positive if it is
positive under every real embedding of L into R. We use the notation L+ to denote the
multiplicative group of totally positive elements of L.

Let K be any quadratic number field with Gal(K : Q) = 〈σ〉 and denote by P the set of
prime ideals of OK that are ramified in K. In other words, P contains the primes of K
above the prime numbers dividing the discriminant of K. Let S be the group of fractional
ideals of OK of the form

∏
p∈P pap , where the ap are integers. Let us first formulate a

simple lemma concerning this group.

Lemma 29. Let a be a fractional ideal of OK such that a = σ(a). Then there exist an
r ∈ Q+ and a square-free a′ ∈ S such that a = ra′.

Proof. Write a =
∏

p p
vp(a), where the product ranges over the non-zero prime ideals of

OK . For a given prime ideal p, let p be the prime number below p. If p remains prime
in K, then obviously pvp(a) = (pOK)vp(a). If p splits in K, then since vp(a) = vp(σ(a)) =
vσ(p)(a), we get

∏
p|p p

vp(a) = (pOK)vp(a). Finally for ramifying p, if vp(a) is even, then

pvp(a) = (pOK)
vp(a)

2 and if it is odd, then pvp(a) = p
vp(a)−1

2 p.

We define a group homomorphism

ϕ : S → C̀ +(K), a 7→ [a] .

Since for every p in P we have [p]2 = [pOK ] = 1, it is immediately clear that im(ϕ) ⊆
2 C̀ +(K), where 2 C̀ +(K) denotes the subgroup of C̀ +(K) consisting of elements whose
order divides 2. Furthermore we see that S2 ⊆ ker(ϕ), which follows from the same
observation. So ϕ induces a homomorphism

ϕ′ : S/S2 → 2 C̀ +(K).

Theorem 30. The homomorphism ϕ′ : S/S2 → 2 C̀ +(K) is surjective and its kernel is
of order 2.

Proof. For the surjectivity of ϕ′, let a be an ideal of OK and suppose for its class [a] in
C̀ +(K) we have [a]2 = 1. As we’ve seen in Lemma 17, [a]−1 = [σ(a)], so

[a]

[σ(a)]
= [a]2 = 1.

This means that there is an α ∈ K of positive norm such that a
σ(a)

= αOK . Hence
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NK
Q (α)OK = α · σ(α)OK =

a

σ(a)
· σ
(

a

σ(a)

)
= OK .

Because the norm of α is positive, we can conclude that NK
Q (α) = 1. So by Lemma 10

there is a β ∈ K∗ such that α = β
σ(β)

. The signs of these β and σ(β) need to be equal
under every embedding in R, so by substituting β for −β if necessary, we may assume β
to be totally positive. Now we have a

σ(a)
= αOK = β

σ(β)
OK and thus

a · σ(β) = σ(a) · β = σ(a · σ(β)).

By Lemma 29 there exist r ∈ Q+ and square-free a′ ∈ S such that a · σ(β) = a′r. So by
construction we get

ϕ(a′) = [a′] =

[
a · σ(β)

r

]
= [a],

showing that indeed ϕ′ is surjective.

To prove that the kernel of ϕ′ : S/S2 → 2 C̀ +(K) is of order 2, we note that ker(ϕ′) ∼=
ker(ϕ)/S2 and work with that instead. The plan is to show that

ker(ϕ)/S2 ∼= O+
K/(O

+
K)2, (3.1)

where O+
K denotes the subgroup of totally positive units of the group O∗K of multiplicative

units of OK . It’s easily seen that [O+
K : (O+

K)2] = 2 as required: for imaginary K there
are no real embeddings, so O+

K = O∗K = µK , where µK is the group of roots of unity of
K. Since −1 ∈ µK , we see [µK : µ2

K ] = 2. For K real, O+
K is an infinite cyclic group, so

also then [O+
K : (O+

K)2] = 2.

In order to prove equation 3.1, we define a homomorphism by

ψ : ker(ϕ)→ O+
K/(O

+
K)2, a 7→ α

σ(α)
(O+

K)2,

where α ∈ K+ is such that a = αOK .

We first need to show that this is actually well-defined, after which we will show that ψ
is surjective and has S2 as its kernel, which will conclude the proof.

Let a ∈ ker(ϕ), then there is an α ∈ K+ such that a = αOK . Since a ∈ S, we have
a = σ(a), and thus α

σ(α)
OK = a

σ(a)
= OK , so α

σ(α)
∈ O∗K ∩K+ = O+

K . This α however is

only unique up to a totally positive multiplicative unit. Let ν ∈ O+
K be such a unit, then

νσ(ν) = NK
Q (ν) = 1, so
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ν

σ(ν)
=

ν

σ(ν)
νσ(ν) = ν2. (3.2)

So as required,

α

σ(α)
≡ αν

σ(αν)
(mod (O+

K)2)

and we see that ψ is well-defined.

To show that ker(ψ) = S2, let a ∈ S. We have a2 = rOK for some r ∈ Q+, so since
r

σ(r)
= 1 we see that ψ(a2) is trivial and indeed S2 ⊆ ker(ψ). Conversely, let a ∈ ker(ψ).

In other words, a ∈ S and a = αOK for an α ∈ K+ with α
σ(α)
∈ (O+

K)2. So we have
α

σ(α)
= ν2 for some ν ∈ O+

K . Just as in 3.2 we have ν2 = ν
σ(ν)

, so

α

σ(α)
= ν2 =

ν

σ(ν)

and thus α
ν

= σ
(
α
ν

)
, which implies α

ν
∈ Q+. Hence a = αOK = α

ν
OK , from which it

follows that vp(a) is even for all p ∈ P . So a ∈ S2 and indeed ker(ψ) = S2.

Finally, for the surjectivity of ψ, let ν ∈ O+
K . Then NK

Q (ν) = 1, so by Lemma 10
there is an α ∈ K∗ such that ν = α

σ(α)
. Since ν is totally positive, α and σ(α) need

to be of the same sign, so as before we may assume that α is totally positive. Then
σ(α)OK = νσ(α)OK = αOK , so we can apply Lemma 29. But because we’re applying it
to a principal fractional ideal here, there are α′ ∈ K+ and r ∈ Q+ such that αOK = α′rOK
and α′OK ∈ S. So α = α′rµ for some µ ∈ O+

K , and thus by equation 3.2

ν =
α

σ(α)
=

α′rµ

σ(α′rµ)
=

α′

σ(α′)
µ2.

Hence ψ(α′OK) = α
σ(α)

(O+
K)2 = ν(O+

K)2 as required.

Corollary 31. The 2-rank of C̀ +(K) is t − 1, where t denotes the number of distinct
primes dividing the discriminant of K.

Proof. The order of S/S2 is 2t, so by Theorem 30 we see that 2 C̀ +(K) is of order 2t−1.
This means it is isomorphic to Ct−1

2 and thus that the 2-rank of C̀ +(K) is t− 1.

Corollary 32. For K = Q(
√
pq) with distinct primes p, q ≡ 1 (mod 4) the 2-rank is

rk2(C̀ +(K)) = 1.
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3.3 The 4-rank of the Narrow Ideal Class Group of

Q(
√
pq)

In addition to the 2-rank, we also need the 4-rank of the narrow ideal class group. The
4-rank of the narrow ideal class group of general quadratic number fields was first es-
tablished in 1934 in an article by Rédei and Reichardt [13]. We however only need
a special case, and have already seen that the fields K that we’re working with have
rk2(C̀ +(K)) = 1. We’ll show directly that for these fields we have rk4(C̀ +(K)) = 1.

Let K = Q(
√
pq) with primes p, q ≡ 1 (mod 4) such that

(
p
q

)
= 1. Then as we saw in

Corollary 32, rk2(C̀ +(K)) = 1. This means that the 4-rank of C̀ +(K) must be either 0
or 1, depending on whether or not the unique class of order 2 is a square.

We start with a lemma that will allow us to quickly prove the main result afterwards.

Lemma 33. The primes p and q are norms of K.

Proof. Due to symmetry, it suffices to show this for p. The Hasse Norm Theorem tells
us that p is a norm of K : Q if and only if it is a norm locally at every prime of Q. Using
Theorem 27 on Hilbert symbols, we see that

(
p, pq

r

)
=

(
1

r

)
= 1

for all odd prime numbers r 6= p, q. Also

(
p, pq

2

)
= (−1)

p−1
2

pq−1
2 = 1 and

(
p, pq

∞

)
= 1.

Furthermore, using Theorem 27 again,

(
p, pq

p

)
=

(
q

p

)
= 1 and

(
p, pq

q

)
=

(
p

q

)
= 1.

So with Proposition 25, p is a norm locally at every prime and thus a norm of K : Q.

Lemma 34. Let p and q be the primes of K above p and q respectively. Then [p] and [q]
are squares in C̀ +(K).

Proof. We again only need to consider [p]. By Lemma 33, p is a norm, say NK
Q (α) = p

for some α ∈ K∗. Then since α has a positive norm, [p] =
[
p
α

]
in C̀ +(K). Because

NK
Q ( p

α
) = 1, Lemma 19 then implies p

α
= b

σ(b)
for some fractional ideal b of OK . So by

Lemma 17

[p] =
[ p
α

]
=

[
b

σ(b)

]
= [b]2.
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Corollary 35. Let K = Q(
√
pq) with primes p, q ≡ 1 (mod 4) such that

(
p
q

)
= 1. Then

the 4-rank of C̀ +(K) is rk4(C̀ +(K)) = 1.

Proof. In Theorem 30 we’ve seen that im(ϕ′) = 2 C̀ +(K) and that for this specific K =
Q(
√
pq) the order of this last group is 2. It follows that not all of [p], [q] and [pq] are

trivial, where p and q denote the primes above p and q respectively. So either [p] or [q] is
not trivial. By Lemma 34 these classes are both squares, and since both [p]2 = [pOK ] = 1
and [q]2 = [qOK ] = 1, at least one of them is the square of a class of order 4.

3.4 Q(
√
p,
√
q)

Finally, for this generalization of Tate’s example, set L = Q(
√
p,
√
q), where p and q are

prime numbers with p ≡ q ≡ 1 (mod 4) and
(
p
q

)
= 1. Similar to what we did before, set

Gal(L : Q) = 〈σ, τ〉 such that Lσ = Q(
√
p), Lτ = Q(

√
q) and K = Lστ = Q(

√
pq).

Our choice for p and q being congruent 1 modulo 4 is made so that the initial results
in Tate’s example in section 2.4 still hold true. In the same way as we did there, one
obtains:

Lemma 36. All completions of L : Q are of degree ≤ 2, the extension L : K is unramified
and x2 is a local norm of L : Q at every prime for all x ∈ Q∗.

In Lemma 21 of section 2.4 about Tate’s example we defined a class of numbers a ∈ N\{0}
whose squares are not global norms. For such an a we constructed an ideal a of norm
NK

Q (a) = a2 whose class in the narrow ideal class group had order 2. The next four
lemmas show that we can obtain a similar result in the current setting, without knowing
the order of C̀ +(K).

For these four lemmas, let r be a prime number such that
(
r
p

)
=
(
r
q

)
= −1.

Lemma 37. The prime number r splits in K: rOK = rr′.

Proof. If r = 2 we have
(
2
p

)
=
(
2
q

)
= −1, which only occurs when p, q ≡ 5 (mod 8). Then

pq ≡ 1 (mod 8) and so 2 splits in K.

For odd r we have
(
pq
r

)
=
(
r
p

)(
r
q

)
= 1, also implying that r splits in K.

Lemma 38. The prime number r is not a norm of K : Q.

Proof. By the Hasse Norm Theorem, r is a norm of K : Q if and only if it is a norm
locally at every prime. With Hilbert symbols we can easily show, using Theorem 27, that
r is not a local norm at p:

(
r, pq

p

)
=

(
r

p

)
= −1.

So indeed r is not a norm of K : Q.
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Lemma 39. Let r be a prime of K above r. Then [r] is not a square in C̀ +(K).

Proof. Suppose [r] is a square in C̀ +(K), say [r] = [a]2 for some ideal a of OK . By Lemma
17 we have [a] = [σ(a)]−1, so

[r] =

[
a

σ(a)

]
.

So there exists an α ∈ K of positive norm such that r = α a
σ(a)

. But a
σ(a)

has norm 1, so

r = NK
Q (r) = NK

Q

(
α

a

σ(a)

)
= NK

Q (αOK).

So NK
Q (α) = r, which contradicts Lemma 38.

Lemma 40. Let a ∈ N \ {0} be a product of prime numbers such that
(
r
p

)
= −1 for

all prime divisors r | a, and
(
a
q

)
= −1. Then there exists an ideal a of OK with norm

NK
Q (a) = a2, such that [a] is not a fourth power in C̀ +(K).

Proof. Write a = r1 · · · rns1 · · · sm, where ri and sj are prime numbers such that
(
ri
q

)
= −1

and
(sj
q

)
= 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then n is odd, since

(
a
q

)
= −1.

By Lemma 37, each ri splits in K: rOK = rir
′
i, and by Lemma 39 the classes of these ri

are not squares in C̀ +(K).

Every sj remains prime in K: sj = 2 is only possible when p ≡ 5 (mod 8) and q ≡
1 (mod 8). Then pq ≡ 5 (mod 8) and so 2 remains prime. For odd sj we have

(
pq
sj

)
=(sj

p

)(sj
q

)
= −1, so also then sj remains prime.

Take
a = r21 · · · r2ns1OK · · · smOK .

Then indeed NK
Q (a) = a2, so what’s left to show is that [a] is not a fourth power in

C̀ +(K).

First, note that every class [sjOK ] is trivial in C̀ +(K). So [a] = [r1 · · · rn]2. We will show
that [r1 · · · rn] is not a square, from which it follows that [a] is not a fourth power.

Let D be the subgroup of C̀ +(K) consisting of all elements of odd order. By Corollaries
32 and 35 we have rk2(C̀ +(K)) = rk4(C̀ +(K)) = 1, which implies that C̀ +(K)/D ∼= C2k

for some k ≥ 2. The squares of C2k form a subgroup of index 2, and since the elements
of odd order of C̀ +(K) are also squares – if [a]2l+1 = 1, then [a] = [al+1]2 – we see that
also the squares of C̀ +(K) form a subgroup of index 2. So since every [ri] is not a square
and n is odd, indeed also [r1 · · · rn] is not a square, which concludes the proof.

Lemma 41. Let p ∈ Max(OK) be a prime ideal such that [p] is not a square in C̀ +(K).

Then Gal(L : K) is generated by the Frobenius automorphism ϕ
(L)
p of p in L and p remains

prime in L.
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Proof. Since L : K is unramified, the Frobenius automorphism ϕ
(L)
p is defined for every

prime ideal of OK . We can apply Corollary 3 to get a surjective homomorphism C̀ (K)→
Gal(L : K). Combining this with the surjection C̀ +(K) → C̀ (K), [a] 7→ [a], like we did
in Proposition 22, yields a surjective homomorphism C̀ +(K)→ Gal(L : K) generated by
sending the prime ideals of OK to their Frobenius automorphisms of L. Since Gal(L : K)
is of order 2, the non-trivial element is not a square. So all classes that are a square in
C̀ +(K) are in the kernel of this homomorphism. As we’ve seen in the proof of Lemma
40, those squares of C̀ +(K) form a subgroup of index 2, so since the homomorphism
is surjective, the non-squares are mapped to the non-trivial element of Gal(L : K). So

indeed ϕ
(L)
p generates Gal(L : K). But then the decomposition group Z

(L)
p of p in L,

which is generated by ϕ
(L)
p , equals Gal(L : K). So p does not split in L : K. Because

L : K is unramified, this means that p remains prime in L.

Proposition 42. Let a ∈ N \ {0} be as in Lemma 40. Then a2 is not a global norm of
L : Q.

Proof. Suppose there is a γ ∈ L∗ with norm NL
Q(γ) = a2. Then NK

Q (NL
K(γOL)) = a2 =

NK
Q (a), so

NK
Q

(
a

NL
K(γOL)

)
= 1.

Then by Lemma 19 there exists a fractional ideal b ∈ I(K) such that a
NL

K(γOK)
= b

σ(b)
.

NL
K(γOL) represents the trivial class of C̀ +(K) and [σ(b)]−1 = [b], so [a] = [b]2. Since by

Lemma 40 [a] is not a fourth power, [b] is not a square in C̀ +(K).

This implies that there must exist a prime divisor p of b such that vp(b) is odd and

vσ(p)(b) is even, with [p] not a square in C̀ +(K). Then also vp(
aσ(b)
b

) = vp(N
L
K(γOL)) is

odd. But by Lemma 41 we know that p remains prime in L and thus that vp(N
L
K(γOL))

has to be even. So we have a contradiction and conclude that a2 indeed is not a global
norm of L : Q.
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