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Dutch Summary

Dit rapport hoort bij het afstudeer onderzoek dat is uitgevoerd voor de Master Mathematics
aan de Radboud Universiteit, in opdracht van Liander NV. Het doel van deze thesis was
om een efficiënt, wiskundig algoritme te ontwikkelen dat voor een middenspanningsnetwerk
bepaald hoe deze geschakeld moet worden zodat het vermogensverlies in dit netwerk min-
imaal is. Hierbij wordt onder vermogensverlies verstaan het verlies door de kabels. In dit
rapport is een wiskundige definiëring van dit minimalisatieprobleem gegeven, evenals een
bewijs van de NP-hardheid van dit probleem. Dit impliceert dat het onwaarschijnlijk is dat
er een efficiënt algoritme voor dit probleem bestaat, als gevolg van het “P 6= NP” vermoeden.

Sinds 1975 met Merlin & Back als pioniers, zijn er echter tal van efficiënte benaderings algo-
ritmes voor dit probleem ontwikkeld. Er is geen garantie dat een dergelijk algoritme voor een
netwerk de beste schakeling teruggeeft, maar er zal wel een goede schakeling teruggegeven
worden. Voor deze thesis is een uigebreide literatuurstudie uitgevoerd, waarna een aantal
van de ontwikkelde benaderings algoritmes zijn geselecteerd voor verder onderzoek. Dit zijn
het Greedy-Shifting algoritme van Baran & Wu, het Greedy-Demeshing algoritme van Shirmo-
hammadi & Hong, een toepassing van het Harmony Search Algoritme gebaseerd op een artikel
van Rao et al. en een toepassing van Mixed-Integer Linear Programming door Jabr, Singh
& Pal. Ook is een nieuw ontwikkelde versie van het Genetisch algoritme toegevoegd, eve-
nals een Brute Force Calculation, waarin simpelweg alle mogelijke schakelingen worden nage-
gaan. Deze algoritmes zijn gëımplementeerd in “R”, getest op de middenspanningsnetwerken
van Texel, Zaltbommel en Zaandam (met uitzondering van het Greedy-Shifting algoritme,
aangezien een soortgelijke variant hiervan beschikbaar is in “Vision”), en de resultaten zijn
met elkaar vergeleken. Ook zijn het Harmony Search Algoritme en het Genetische Algoritme
gecombineerd met het Greedy-Demeshing algoritme, door de uitkomst van de laatste toe te
voegen aan de startschakelingen van de eersten. Deze combinaties zijn evenwel getest en
vergeleken met elkaar en met de losse algoritmes. Uit de resultaten blijkt dat de combinatie
van het Greedy-Demeshing algoritme met het Genetisch algoritme het beste presteert. Dit
zal daarom de basis vormen voor de definitieve methode.

Vrijwel alle benaderings algoritmes die te vinden zijn in de literatuur, zijn slechts geschikt voor
middenspanningsnetwerken met een enkele aansluiting op een hoogspanningsnetwerk, inclusief
het Greedy-Demshing algoritme en het Genetisch Algoritme. Het is echter wenselijk dat de
definitieve methode ook geschikt is voor netwerken met meerdere hoogspanning aansluitin-
gen, zodat deze breder inzetbaar is. Daarom is een innovatieve, algemene methode ontwikkeld
die een netwerk met meerdere hoogspanning aansluitingen aanpast zodat ieder ontwikkelde
benaderings algoritme gebruikt kan worden om ook in dit netwerk de optimale schakeling te
benaderen. Deze methode wordt beschreven in dit rapport en is opgenomen in de definitieve
methode.

De uitkomsten van de voorgestelde definitieve methode op Texel en Zaandam zijn vergeleken
met de huidige schakeling van de corresponderende middenspanningsnetwerken. Met als
resultaat dat in Texel een vermogensverlies reductie van 15% gerealiseerd wordt met de
voorgestelde schakeling ten opzichte van de huidige, en in Zaandam zelfs 27%. Nu moeten



deze cijfers wat genuanceerd worden, aangezien de algoritmes zoals ze nu gëımplementeerd
zijn, slechts in staat zijn om de beste schakeling voor een bepaald moment te benaderen. Aan-
passingen zodat de beste schakeling over een periode (dag, seizoen, jaar) benaderd kan wor-
den zullen nog moeten gebeuren, maar dan zullen deze percentages wellicht niet meer gehaald
worden. Desalniettemin zijn dit veelbelovende resultaten, die laten zien dat de voorgestelde
definitieve methode een goede basis is voor een praktisch toepasbaar programma ter onders-
teuning van netwerkplanning activiteiten.
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Abstract

The subject of this master Mathematics graduation thesis is finding and proving a mathemat-
ical method for minimizing the power loss in Liander medium-voltage distribution networks,
by reconfiguring such a network. This minimization problem is defined mathematically as
an optimization problem, and a proof is found and given which shows that this problem is
NP-hard. As a consequence, it is unlikely that an efficient algorithm could be developed that
actually minimizes the power loss in a network. However, many approximation algorithms
for this problem have been developed that can efficiently approximate an optimal solution for
such a network. In this report, several of these algorithms are described. These algorithms
were investigated, improved and/or adjusted at some aspects, implemented in “R” and tested
on real Dutch networks such as Texel, Zaltbommel and Zaandam. Results are included in
this report as well. Based on these results, a final method for approximating an optimal so-
lution for a certain network is proposed, which combines the Greedy-Demeshing algorithm of
Shirmohammadi & Hong with a novel application of the Genetic Algorithm to this problem.
Moreover, many of the developed approximation algorithms found in the literature are only
suitable for medium-voltage networks with a single connection to a high-voltage network.
In this thesis, an innovative and general method is proposed that adapts any network with
multiple high-voltage connections such that any developed appoximation algorithm can be
used to approximate a solution for this network as well. This method is adopted in the final
method. At last, a comparison of the output of the final method with the actual situation
was executed, which resulted in a 15% power loss reduction in Texel, and 27% in Zaandam. It
is noted that these results are not definite, but they show that the end product of this thesis
gives a promising basis for a practical program that can support network planning activities.
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Chapter 1

Introduction

Liander NV is a regional Dutch utility company that operates in the distribution of elec-
tricity and gas in the Netherlands. It is responsible for keeping the distribution networks
in a well-working state of operation. In the past, the electricity distribution network was a
simple, one-way network, where power was generated in a controllable way at certain power
plants, and via the network this power was distributed to the clients. However, today the
electricity network tends to become more and more complex because of numerous technologi-
cal developments. This is due to for instance distributed generation; solar panels, CHP units
etc. installed at consumers, making it possible that power is delivered instead of received at
certain points in the net, resulting in a reversed current. An other example is the growing use
of natural sources such as wind- and solar energy, which are not controllable and introduce
huge volatility in the grid.

Due to these developments, the management of the distribution network shows more and
a high variety of difficulties compared to the past. One specific example of this is network
planning activities; deciding which configuration of (a part of) the network is most suitable
for a specific situation, taking into account several factors such as robustness of the network,
load balancing over the assets and power loss through the cables. The number of possible con-
figurations can grow to hundreds of thousands for medium sized networks, and even more for
the bigger ones. Due to the growing complexity of the distribution networks, these planning
activities show much more difficulties than in the past. Today however, planning decisions
still are made by the network architects at the Liander control room, based on their experience
and intuition. A supportive computer program that can be used to get good initial config-
uration suggestions or to base decisions on would be very helpful, but is not yet available.
The aim of this research project is to investigate different possibilities for the mathematical
algorithms of such a program, to compare the performances of these algorithms, and finally
to do a well-founded suggestion for an efficient algorithm to base such a program on.

Another motivation for the development of such a program is with a view to the future.
Nowadays, actually reconfiguring a network is a complex, time consuming activity, since
switches in the network have to be switched on location by professional engineers. However,
it is possible that at some point in the future all these switches can be switched remotely, from
one central point. This makes reconfiguring a network much easier, and therefore it could be
beneficial to reconfigurate the network any time the situation in the network changes. For
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instance, if the sun starts to shine on the solar panels in a part of the Liander area, this results
in a new power flow pattern, probably inducing a new optimal configuration. This could lead
to several reconfigurations in one day, which is not appropriate to plan manually. Then a
supportive computer program is needed, to quickly get suitable configuration suggestions for
every new situation. This project aims to develop a good basis for such a program.

This research project has been performed as a M.Sc. Mathematics graduation project at
the Radboud University in Nijmegen, in corporation with Liander NV. In order to mark out
the scope of this project, we focused on reconfiguring an electricity distribution network to
minimize power losses through the cables. This objective was chosen for the aspect of sus-
tainability, but also since this generates an unnecessary big expense for Liander NV.

In this chapter, a summary will be given of the electricity networks in the Netherlands in
Section 1.1. After this, the problem and the research questions can and will be specified in
Section 1.2, and then a quick overview will be given of the rest of this report.

1.1 Electricity networks in the Netherlands

The electricity distribution networks are split in three categories, based on the voltage of the
electricity in the cables. From 110 kilovolt (kV) to 380kV is labelled ‘high voltage’ (HV).
Medium voltage (MV) covers voltages between 10 and 20kV, and any network part with
voltage up to 400V is labelled low voltage (LV). This covers all the present voltages in the
distribution networks.

Transporting a certain amount of power P = ∆U · I over a distance through a cable with
a certain resistance R (where ∆U is the voltage difference between the end points, I is the
current through the cable; see Figure 1.1), the energy loss is Ploss = I2R. So if the voltage
difference is increased, a lower current is needed for transporting the same amount of power,
hence the loss is lowered. On the other hand, due to consumption amounts and safety rea-
sons, high voltage electricity is normally impractical for small consumers. This justifies the
existence of these different categories; HV for long-range transportation over the country, MV
for finer distribution, and LV for the finest distribution to households and small consumers.
However, exceptions in this model are not uncommon, for instance when big industrial com-
panies are connected immediately to the MV network, or when households generate power
into the network with their solar panels.

Figure 1.1: Quantities and units in electrical engineering

Different voltage level networks are connected via transformers. Transformers can change the
voltage level of electricity. The switch from HV to MV, or from MV to LV, or voltages within
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a level, is performed in stations, in size varying from a wardrobe to a whole football field filled
with transformers. To give an indication, in the operating area of Liander there are around
350 HV/MV stations, with circa 45.000 MV/LV connections, and these contain over three
million connections to the consumers ([29]).

The different voltage level networks are structured in different, specific ways. The HV net-
work has a meshed structure, which means that it contains cycles, closed rings. Now when a
fault occurs, it automatically gets isolated, and then no interruption of the power transport
occurs. On the other hand, the LV networks mostly have radial structures (i.e. are forests in
graph theoretical terms, see [1]). Although a meshed network structure would result in lower
network losses, a radial structure is preferable since disturbances, which occur far more in LV
than HV networks, can be found quicker in this topology, and short-circuit currents will be
lower.

In an MV network, the situation is more complicated. The underlying structure of this
network is meshed, but a radial structure is preferable for the same reasons as in LV. There-
fore, several cables and links in this network are equipped with switches that can be opened
to shut off the cable/link. Hence with a certain specification for the switches to be opened
or closed, a radial structure can be accomplished. The resulting network from such a switch
specification is called a configuration. The number of switches in a network is high, leading
to a high variety of radial (and non-radial) configurations for one MV network.

The main reason why an MV network is build up this way is that when a fault occurs,
by reconfiguring the network this fault can be isolated and power supply can be restored to
all/many consumers without actually needing to repair the fault. Now when a fault occurs,
this restoration will always be priority one. However, when an MV network is in a well op-
erating state, one could reconfigure the network for other objectives. As may be clear, this
project focusses on this last situation.

A complete and detailed description of the Liander distribution network can be found in
[2].

1.2 Research Questions and Report Overview

We can now define the central problem in this project:

Which feasible configuration of an MV network minimizes the power loss through the cables?

We will call this problem the Loss Reduction Reconfiguration Problem (LRRP), and it will be
stated more precise and in a mathematical way in chapter 3. For now, we will give a quick
overview of this problem, and then state the research questions in this project.

For a network, a configuration is feasible if it satisfies three constraints: radiality, the demand
constraint and the capacity constraint. These constraints are the mathematical representa-
tion of the conditions that a configuration must satisfy according to ??, and they will now be
described.
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The topology of a configuration has the following requirements:

• Every node in the network must be connected to an HV/MV transformer, in order to
be able to gain power from, or withdraw power to the HV network.

• No cycles (closed rings, see [1]) are allowed in the network. This makes it easier to
allocate and restore a disturbance. Also, when a fault occurs in a cycle, the short-
circuit current will be higher. Hence this requirement is imposed also for safety reasons.

• HV/MV transformers are not allowed to be connected to each other. Different trans-
formers constitute different voltage and current frequencies, so when these are con-
nected, an unstable voltage and current will arise as a consequence.

If a configuration meets these requirements, it satisfies the radiality constraint.

In reality, the HV/MV transformers in an MV network admit a specific voltage. For the
other busses (nodes), a certain power demand or supply occurs at these busses. As a con-
sequence of these values, the power distributes in a specific way through the network, with
certain voltages at the nodes and certain currents in the lines. This behavior can be com-
puted by so called power flow equations, which will be explained in detail in Chapter 2. Since
we need these voltages and currents for the calculation of the power losses, we have to add
a constraint to the problem that simulates this distribution. Hence we define the demand
constraint, which states that the nodal voltages in the configuration satisfy the power flow
equations. With this, the line currents can be calculated by Ohm’s law (2.3).

Another reason for the need of the nodal voltages and line currents is that the assets have
certain capacities. Therefore, the capacity constraint is added to check whether the assets
can handle the accompanying voltages and currents. If not, the configuration is not suitable
for the situation, hence should no longer be considered.

As will be described in Chapter 2, the power loss through a line e with impedance Ze =
Re + jXe and current Ie can be calculated as L(e) = |Ie|2 ·Re. So we can state LRRP more
precise as:

Which configuration of an MV network that satisfies the radiality, demand, and capacity
constraints, minimizes the sum of the line losses L(e) over all lines e of the network?

As mentioned earlier, LRRP will be described mathematically in Chapter 3. However, the
main research question of this graduation project can now be expressed:

Can we find an efficient algorithm that solves LRRP?

Here ’efficient’ means ’polynomial-time’, i.e. for such an algorithm A a polynomial P must
exist such that for an input of size s, the algorithm needs at most P (s) steps to get an output.
See ??.

The problem shows some similarity with the Minimum Weight Spanning Tree problem (MWST),
where for a weighted graph, a spanning tree is asked in which the total weight is minimized.
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This problem is efficiently solvable, meaning there exist fast algorithms that solve this prob-
lem for any weighted graph. However, in LRRP the weights of the edges are not constant,
but in contrast to MWST they depend on the configuration that is considered. This makes
the problem far more complicated. Indeed, as we will see, LRRP is an NP-hard problem,
making it unlikely that an efficient algorithm for LRRP exists.

However, interesting results remain to be achieved. During the years, a high variety of
approximation algorithms were derived for LRRP. Many publications can be found about
this subject, each claiming to have better algorithms than others. With this in mind, the
following questions guided the project and were attempted to be answered:

1. Is LRRP efficiently solvable?

2. Can we find/develop fast and good (approximation) algorithms for LRRP on realistic
sized networks?

3. Which algorithm is best suitable for networks under Liander management?

This report gives a detailed description of the process and the results of the project. In
Chapter 2, background information is given about the physics of electricity in general and
in distribution networks. The power flow equations are explained in detail, as well as the
calculation of power losses though a line. In Chapter 3, LRRP is described as a mathematical
optimization problem, and some useful propositions which will be used further in the report,
are stated and proved here. The NP-hardness of LRRP will be proved in Chapter 4. In
Chapter 5 several suggestions are given for algorithms to approximate (or solve) LRRP,
based on findings in the literature and expansions/adaptations on these findings. However,
most of these suggested algorithms are only suitable for distribution networks with a single
HV-connection. Chapter 6 states a novel method to adapt networks with multiple HV-
connections in such a way that all the suggested algorithms are suitable for them, and proves
its correctness. Chapter 7 is about the implementation procedure of the suggested algorithms,
what difficulties occurred and how they were solved. Test results and conclusions are given
in Chapter 8. Future work and research can be found in chapter 9, and chapter 10 gives the
bibliography.
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Chapter 2

Physics: Background Information
on Electricity

In this chapter background information will be given about the physics involved with alternat-
ing current electricity (Section 2.1) and three-phase circuits (Section 2.2). This information is
essential in order to get a good understanding of the network problematics, since all electricity
is executed in a three-phase alternating current fashion. Full information can be found in [3].
In Section 2.3 detailed information can be found concerning the distribution of electricity in
a network and the power flow equations, which directly explains the demand constraint in
detail.

2.1 Alternating Current

In a generator, electricity is generated by a mechanically driven rotation of a coil in a magnetic
field. This can be modelled as in Figure 2.1. Here a coil with length and width a is positioned

in a magnetic field
−→
B , and it is rotated with a rotation speed ω. In this situation a time

Figure 2.1: A rotating coil in a magnetic field ([3])

dependent voltage difference is generated over the endpoints of the coil. We can compute this
voltage difference as follows:

Let
−→
A be the vector normal to the plane of the coil, with length |

−→
A | = a2. Then the
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value of the magnetic flux satisfies the following equality:

Φ−→
B

= 〈
−→
B,
−→
A 〉 = |

−→
B | · a2 · sin(θ) (2.1)

Here θ is the angle between
−→
A and

−→
B . This angle is time dependent since the coil is rotating,

so we can write θ = ωt+ψu with ψu the starting phase angle. Now this magnetic flux induces
a time dependent potential difference or voltage difference between the two vertical sides of
the coil, with value

u(t) =
d

dt
Φ−→
B

(t) = |
−→
B | · a2 · ω · cos(ωt+ ψu) = U0 cos(ωt+ ψu) (2.2)

where U0 = |
−→
B | · a2 · ω. Now assume that the endpoints of the coil are connected via a cable

with resistance R. Then as a consequence of this voltage difference, an electrical current I
will flow from the higher voltage side to the lower voltage side through the cable. Now Ohm’s
law tells us

I ·R = |U1 − U2| = ∆U (2.3)

with U1, U2 the voltages on the end points of the cable. Applying this to our circuit with
∆U = u(t) we get a time dependent alternating current i(t):

i(t) =
u(t)

R
=
U0

Z
cos(ωt+ ψu) = I0 cos(ωt+ ψi) (2.4)

with I0 = U0
R and ψi = ψu. We call ψu, ψi the phase of the voltage, current respectively.

In this case where we have only a real-valued resistance, the phases of the voltage and the
current will always be the same.

As will become clear later on, calculating with alternating current and voltage is easier when
they are expressed as (the real part of) complex numbers. Therefore, the following definitions
are made:

U(t) = U0e
j(ωt+ψu) (2.5)

I(t) = I0e
j(ωt+ψi) (2.6)

Note that j is used for the complex number
√
−1 instead of i. Now u(t) = <(U(t)) and

i(t) = <(I(t)).

In reality, in an AC network the voltage and current phase will normally not be equal. A
phase difference can occur over a certain part of a circuit, due to condensator- or coil-like
behavior of assets (components in the network). Say we are in this case, and ψi 6= ψu are
different starting phases of the voltage and the current. We will always assume that the
frequencies of the voltage and the current are equal, so we obtain a constant phase difference
δ = ψu − ψi. Therefore, the ratio between U(t) and I(t) will be a constant complex number:

U(t)

I(t)
=
U0

I0
ej(ωt+ψu)−j(ωt+ψi) =

U0

I0
ejδ = Z (2.7)
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This number Z is called the impedance of this specific part of the circuit, and is a time-
invariant characteristic. If the argument δ of the impedance is zero, the impedance is a real
number, corresponding to an ideal resistance as mentioned above. In general, the real part
of the impedance is called the resistance, and the imaginary part is called the reactance. The
former is the actual resistance of the asset an specifies the permeability of the asset, where
the latter specifies the phase difference caused by the asset. Details can be found in [2] and
in [3].

It should be noted that the assumption about equal frequencies is a simplification of re-
ality, resulting in a discrepancy between actual voltage and current values and the calulated
ones. However, it is believed that these differences are less than 5%. And since calculations
are far better manageable with this assumption, this discrepancy is tolerated.

As mentioned before, the appearance of phase differences is a consequence of the specific prop-
erties of condensators and coils. Briefly, the alternating voltage causes alternating loading-
unloading behavior in these components. As a consequence, part of the power transported
through the network cannot be used in practice, but is going alternately forward and backward
in the circuit, in order to alternately load and unload the components. This part is called
the reactive power, in contrast to the active power, which is the power that is consumed by
client devices in the circuit. We will now make this precise.

The power p(t) present at a certain moment t is the product of the voltage and the cur-
rent (using cosine product-to-sum identities):

p(t) = u(t) · i(t) (2.8)

= U0I0 cos(ωt+ ψu) cos(ωt+ ψi) (2.9)

= U0I0
cos(ωt+ ψu) cos(ωt+ ψi) + sin(ωt+ ψu) sin(ωt+ ψi)

2
(2.10)

+ U0I0
cos(ωt+ ψu) cos(ωt+ ψi)− sin(ωt+ ψu) sin(ωt+ ψi)

2

= U0I0
cos(ψu − ψi)

2
+ U0I0

cos(2ωt+ ψu + ψi)

2
(2.11)

=
U0I0

2
cos(δ) +

U0I0

2
cos(2ωt+ ψu + ψi) (2.12)

with δ = ψu − ψi the phase difference. Now the average power is P = U0I0
2 cos(δ). We call

this the active power, often noted as Peff. Although the value of the power is actually a
sinusöıde, we often work with it as a constant power with value Peff, since we work in a big

time scale in where these waves are flattened out. Furthermore, we define Ueff = 1
2

√
2 · U0

and Ieff = 1
2

√
2 · I0. We call these values the voltage magnitude and current magnitude,

respectively. Together with the starting phases ψu and ψi, which are called the voltage angle
and current angle, we often regard the voltage as a constant complex voltage U = Ueff · e

jψu

and the current as a constant complex current I = Ieff · e
jψi . In the literature this is often

noted as phasor notation. Remark that U
I = U(t)

I(t) = U0
I0
ejδ is the impedance.

For a complex number y = a · ejθ, set y∗ = a · e−jθ the complex conjugate. Set S = U · I∗ =
UeffIeffe

jδ. Then P = <(S). It appears that the reactive power Q takes the average value
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Q = UeffIeff sin(δ). Hence S = P + jQ, and it turns out that |S| is the total power that is
transported through the circuit component in order to get a usable active power P . We call
S the apparent power.

It is clear from the definitions that a smaller phase difference results in a smaller reactive
(useless) power, hence a smaller difference between the active power and the apparent power.
In electrical engineering it is important to take into account the reactive power as much as the
active power. So we should work with the complex value S, and not just with the real value P .

Now we can calculate the power loss through a line. If I is the complex current through
a line from a to b with voltages Ua, Ub, and Z = R+ jX the impedance of this line, then the
apparent power loss Sloss can be calculated simply as the difference between the powers at a
and b:

Sloss = Sa − Sb (2.13)

= (Ua − Ub) · I∗ (2.14)

= IZI∗ (2.15)

= |I|2Z (2.16)

= |I|2R+ j|I|2X (2.17)

using Ohm’s law (2.3). Now the reactance X only gives information about the phase difference
between the current and the voltages due to the cable, where the resistance R induces the
permeability of the cable. Only the latter plays a role for power loss, so the actual power loss
is Ploss = |I|2R.

2.2 Three-phase Circuits

Most electrical distribution networks in the Netherlands are organized in a three-phase sys-
tem. The principle of three-phase electric power is that three conductors carry an alternating
current. These currents all have the same voltage- and current magnitude and frequency, but
the voltage and current angles are shifted one-third of a period. See Figure 2.2.

The voltages will take the values:

UA(t) = Ueffe
jωt+ψu (2.18)

UB(t) = Ueffe
j(ωt+ψu+ 2π

3
) (2.19)

UC(t) = Ueffe
j(ωt+ψu− 2π

3
) (2.20)

If the impedances over all phases are equal, representing a power demand balanced equally
over the phases, the currents on phase A,B, and C will be (taking ψi = 0, possibly by shifting

11



Figure 2.2: Generation of three-phase electricity ([3])

in time):

IA(t) =
UA(t)

Z
= Ieffe

jωt (2.21)

IB(t) =
UB(t)

Z
= Ieffe

j(ωt+ 2π
3

) (2.22)

IC(t) =
UC(t)

Z
= Ieffe

j(ωt− 2π
3

) (2.23)

with Z the value of the impedances. See Figure 2.3. In this situation, we have

Figure 2.3: Three-phase circuit ([3])
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IA(t) + IB(t) + IC(t) = Ieff(ejωt + ej(ωt+
2π
3

) + ej(ωt−
2π
3

)) (2.24)

= Ieffe
ωt(1 + cos(

2π

3
) + j sin(

2π

3
) + cos(−2π

3
) + j sin(−2π

3
))

(2.25)

= Ieffe
ωt(1 + 2 cos(

2π

3
)) (2.26)

= 0 (2.27)

so the circuit satisfies the Kirchhoff Current Law (KCL, stating that the sum of the currents
at a node should be zero), hence it is a closed, well-behaving circuit.

(Note that if we work with the phasor notation IA, IB, IC , we get the same outcomes, since
then we just omit the factor ejωt in the above calculation.)

In reality however, towards the endpoint of the distribution network the power demand is
often not balanced equally over the phases, resulting in different current magnitudes over the
phases. Therefore, in general we have

IA + IB + IC = |IA|e0 + |IB|e
2π
3 + |IC |e−

2π
3 6= 0 (2.28)

To cope with this, in the LV networks normally a fourth phase is added, possibly connected
to the earth. This phase is called the neutral phase or ground phase, normally represented
with an n. The voltage in this phase is zero, so the remaining current can be transported
over this phase, in order to get the circuit satisfying the KCL.

In the MV and HV networks though, normally the voltages and currents in the different
phases are almost equally balanced again, as an effect of the transformers. This justifies the
general custom of modelling these network parts as if the loads are perfectly balanced, as
is mentioned in [2].Therefore, we model a three-phase cable in the net as one line with one
impedance, which makes it much easier to investigate a network model.

2.3 Power Flow

To compute the nodal voltages, line currents and total power loss as mentioned in Chapter
1 for a certain configuration of a network, we need to know the distribution of the electricity
through the network, the so called power flow. We will now describe this behaviour and how
we can simulate this. Detailed information can be found in [2] and in [4].

We model a network N = (W,E) as a set of nodes W , and a set of connections between these
nodes E. See [1]. Assume in a network N we know the impedances of all lines. Say node
k ∈ W is connected with nodes l1, ..., lt ∈ W through lines e1 = (k, l1), ..., et = (k, lt) ∈ E,
with impedances Ze1 , ..., Zet ∈ C. We define for k the complex nodal current Ik as the sum
of the currents flowing away from k through lines e1, ..., et, multiplying a current with −1 if
it flows into k. For α ∈ {1, ..., t} we have:

Uk − Ulα = Ieα · Zeα (2.29)
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as is known from Ohm’s law (2.3). (Note that if Ulα > Uk then the current flows into k, and
indeed we get a minus sign.) Hence

Ik =
∑

α=1,...,t

Ieα (2.30)

=
∑

α=1,...,t

Uk − Ulα
Zeα

(2.31)

= Uk ·

 ∑
α=1,...,t

1

Zeα

−
 ∑
α=1,...,t

Ulα
Zeα

 (2.32)

Now we define the bus admittance matrix Ybus as the symmetric |W | × |W | matrix with, for
a, b ∈W , the values (set E[a] the lines in E connected to a):

(Ybus)a,b =


∑

e∈Es[a]

1
Ze

if a = b

−1
Ze

if a 6= b and a is linked to b with line e

0 else

(2.33)

Then in the previous example we have

Ik =
∑
l∈W

(Ybus)l,k · Ul (2.34)

So for node k we have a remaining apparent power Sk with value:

Sk = Uk · I∗k (2.35)

= Uk
∑
l∈W

(Ybus)
∗
l,k · U∗l (2.36)

For every Bus k in the network N we can set up this equation, with two complex unknowns
Sk and Uk, hence four real unknowns: The active and reactive powers, and the voltage mag-
nitude and angle. We call these equations the power flow equations. Since every equation is
complex, it gives us two real equations. Hence, if for every bus we specify two unknowns, the
system is fixed by the power flow equations. And with this also the complex currents at the
lines by (2.29).

In a distribution network indeed we know two parameters for every bus. For this, we can
distinguish three types of nodes. The MV/LV transformers are referred to as load busses, and
for such a bus we know the active and reactive power demand or supply (demand goes out of
the network, given as negative value, while supply comes into the network, given as positive
value). Generators in the network can be synchronized or asynchronized. For the former we
know the supplied active and reactive power, hence we consider these as load busses. For the
latter, we know the generated active power and the voltage magnitude. An HV/MV trans-
former is called a slack bus, although nowadays the function is more that of a compensator; it
compensates the difference in total power supply, power demand and power loss in a network.
For this node we know the voltage magnitude and angle. In the literature these nodes are
also referred to as slack bus or infinite bus.
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Now for each node two real parameters are assumed to be known, and two remain unknown.
However, as mentioned above, these unknowns are fixed by as many power flow equations.
Indeed, the behaviour in the network will satisfy these equations. However, as these equations
are quadratic, they might have several solutions. How can we know which solution matches
the behaviour in the network? It turns out that in case of multiple solutions for the voltages,
those voltages will be realized that are as close to each other as possible. This seems nat-
ural, since smaller voltage differences cause smaller currents for the same apparent powers,
resulting in smaller power losses. So in reality, the most thrifty power flow pattern will occur.
Therefore, from now on, in case of multiple solutions for the power flow equations, we will
only consider the one that is realized in the network.

To illustrate how we can use these power flow equations, an example cited from [4] is given.
Consider the network in figure 2.4. At each cable ex we have an impedance Zex = Zx =
|Zx|ejλx . And at each node k we have a complex voltage Uk = |Uk| ·ejφk with |Uk| the voltage
magnitude and φk the voltage angle, and a complex power Sk = Pk + jQk with Pk the real
power and Qk the reactive power.

In the example of Figure 2.4, Bus 1 and 2 are generator busses, Bus 3 and 4 are load

Figure 2.4: Example of an electricity network ([4])

busses, and Bus 5 is set as slack bus. For each Bus k we have a power flow equation

Sk = Uk ·
5∑
l=1

(Ybus)
∗
l,k · U∗l (2.37)

We will now make these equations explicit.

The line admittance matrix in this example is defined as

Yline =


1
Z1

0 0 0

0 1
Z2

0 0

0 0 1
Z3

0

0 0 0 1
Z4

 (2.38)
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and the oriented incidence matrix of the network is

A =


1 0 0 0
0 0 0 1
−1 1 1 0
0 0 −1 −1
0 −1 0 0

 (2.39)

Then the bus admittance matrix can be computed as follows, with AT the transposed matrix
of A:

Ybus = A · Yline ·AT (2.40)

=


1 0 0 0
0 0 0 1
−1 1 1 0
0 0 −1 −1
0 −1 0 0




1
Z1

0 0 0

0 1
Z2

0 0

0 0 1
Z3

0

0 0 0 1
Z4




1 0 −1 0 0
0 0 1 0 −1
0 0 −1 1 0
0 1 0 −1 0


(2.41)

=


1
Z1

0 −1
Z1

0 0

0 1
Z4

0 −1
Z4

0
−1
Z1

0 ( 1
Z1

+ 1
Z2

+ 1
Z3

) −1
Z3

−1
Z2

0 −1
Z4

−1
Z3

( 1
Z3

+ 1
Z4

) 0

0 0 −1
Z2

0 1
Z2

 (2.42)

Note that exchanging a 1 with a −1 in a column of A, i.e., changing the orientation of a line,
does not effect Ybus. So we can choose an arbitrary orientation on a network for constructing
the incidence matrix.
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Now the power flow equations become

S1 = U1 ·
(
U1 − U3

Z1

)∗
=
|U1|2 − U1U

∗
3

Z1
(2.43)

(2.44)

S2 = U2 ·
(
U2 − U4

Z4

)∗
=
|U2|2 − U2U

∗
4

Z4
(2.45)

(2.46)

S3 = U3 ·
(
U3 − U1

Z1

)∗
+ U3 ·

(
U3 − U4

Z3

)∗
+ U3 ·

(
U3 − U5

Z2

)∗
(2.47)

=
|U3|2 − U3U

∗
1

Z1
+
|U3|2 − U3U

∗
4

Z3
+
|U3|2 − U3U

∗
5

Z2
(2.48)

(2.49)

S4 = U4 ·
(
U4 − U2

Z4

)∗
+ U4 ·

(
U4 − U3

Z3

)∗
(2.50)

=
|U4|2 − U4U

∗
2

Z4
+
|U4|2 − U4U

∗
3

Z3
(2.51)

(2.52)

S5 = U5 ·
(
U5 − U3

Z2

)∗
=
|U5|2 − U5U

∗
3

Z2
(2.53)

Each of these complex equations can be decomposed in two real equations, one for the real
part and one for the imaginary part. For S1 we get

S1 =
|U1|2

|Z1|
e−jλ1 − |U1||U3|

|Z1|
ej(φ1−φ3−λ1) (2.54)

hence

P1 = <(S1) =
|U1|2

|Z1|
cos(−λ1)− |U1||U3|

|Z1|
cos(φ1 − φ3 − λ1) (2.55)

Q1 = =(S1) =
|U1|2

|Z1|
sin(−λ1)− |U1||U3|

|Z1|
sin(φ1 − φ3 − λ1) (2.56)
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We can repeat this for nodes 2, 3, 4 and 5 to get the remaining power flow equations:

P2 =
|U2|2

|Z4|
cos(−λ4)− |U2||U4|

|Z4|
cos(φ2 − φ4 − λ4) (2.57)

Q2 =
|U2|2

|Z4|
sin(−λ4)− |U2||U4|

|Z4|
sin(φ2 − φ4 − λ4) (2.58)

P3 =
|U3|2

|Z1|
cos(−λ1)− |U1||U3|

|Z1|
cos(φ3 − φ1 − λ1) +

|U3|2

|Z3|
cos(−λ3)

− |U3||U4|
|Z3|

cos(φ3 − φ4 − λ3) +
|U3|2

|Z2|
cos(−λ2)− |U3||U5|

|Z2|
cos(φ3 − φ5 − λ2)

(2.59)

Q3 =
|U3|2

|Z1|
sin(−λ1)− |U1||U3|

|Z1|
sin(φ3 − φ1 − λ1) +

|U3|2

|Z3|
sin(−λ3)

− |U3||U4|
|Z3|

sin(φ3 − φ4 − λ3) +
|U3|2

|Z2|
sin(−λ2)− |U3||U5|

|Z2|
sin(φ3 − φ5 − λ2) (2.60)

P4 =
|U4|2

|Z4|
cos(−λ4)− |U2||U4|

|Z4|
cos(φ4 − φ2 − λ4) +

|U4|2

|Z3|
cos(−λ3)

− |U3||U4|
|Z3|

cos(φ4 − φ3 − λ3) (2.61)

Q4 =
|U4|2

|Z4|
sin(−λ4)− |U2||U4|

|Z4|
sin(φ4 − φ2 − λ4) +

|U4|2

|Z3|
sin(−λ3)

− |U3||U4|
|Z3|

sin(φ4 − φ3 − λ3) (2.62)

P5 =
|U5|2

|Z2|
cos(−λ2)− |U3||U5|

|Z2|
cos(φ5 − φ3 − λ2) (2.63)

Q5 =
|U5|2

|Z2|
sin(−λ2)− |U3||U5|

|Z2|
sin(φ5 − φ3 − λ2) (2.64)

Now for every node two of the four parameters are known, as described. Substituting these
known parameters into the equations gives a system of ten equations with ten variables. Solv-
ing these equations exactly is a complex problem, it might be NP-hard itself. Therefore it is
widely common to approximate these solutions with the Newton-Raphson method, see [30].
This will also be the method used during this project.

One important remark should be made. In actual distribution networks, distributed gen-
eration is a growing factor in the network, which can result in reversed currents and slack
busses receiving power instead of delivering it. Although this demands caution for the ac-
tual assets, this is not a problem for the theoretical power flow calculations. Generators can
be added to the network without any difficulties, and when they supply power back in the
direction of the slack bus, the voltages will become higher than the slack bus voltage and
the corresponding current angles will simply turn 180 degrees, corresponding to a reversed
current.
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Chapter 3

Mathematics: Problem Description
and Propositions

This chapter contains the mathematical description of the central problem (Section 4.1). Also
some interesting propositions are stated and proved in Sections 4.2 and 4.3. These will be
used later on in this report.

3.1 The Loss Reduction Reconfiguration Problem

The Loss Reduction Reconfiguration problem (LRRP) is described in Chapter 1 as

Which configuration of an MV network that satisfies the radiality, demand, and capacity
constraints, minimizes the sum of the line losses L(e) over all lines e of the network?

We will now describe this problem as a mathematical optimization problem. To define the
search space, i.e. the set of search candidates, a mathematical formulation of a configuration
for a network is given. After this, the constraints and the objective function are defined
mathematically as well.

We can represent an MV network as an undirected graph N = (W,E) with nodes W and
edges E (see [1] for full information about graph theory). The nodes W represent the busses;
stations and transformers in the net. We distinguish HV/MV transformers connected to the
HV net which we traditionally call slack busses (although nowadays these nodes actually
function as compensators for the difference between the power supply and demand in the
network), MV/LV transformers connected to LV networks which we call load busses (which,
again, can also supply power to instead of demand power of the MV net), and (asynchronised)
generators. The difference between load busses and generators was made clear in Chapter 2,
and these nodes together are known as the client busses in the net. Set Wn as the set of slack
busses in the network, and Wc the set of client busses, then W = Wn ∪Wc.

For the edges E, we distinguish the set of optional edges Eo which represent the cables
and links with switches. These switches can be opened, resulting in a deletion of the cor-
responding edge in the network. Other edges are fixed edges Ef representing those without
switches. So these edges will always be present in the network. Now E = Eo ∪ Ef .
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A certain open/closed specification of the switches in N results in a certain configuration
of N . Let A ⊆ Eo be the set of optional edges with closed switches. We call A a switch
specification, and NA the corresponding configuration. Then Eo\A are the open edges, hence
NA = (W,EA = Ef ∪A), the subgraph of N with only the fixed edges and the closed optional
edges.

Let A be a switch specification for network N . Every node v ∈W contains a certain voltage
UAv , and every line e ∈ EA contains a certain current IAe . These voltages and currents depend
on the power supplies and demands at the nodes in the network, and can be calculated by
solving the power flow equations, as described in Chapter 2. But they also depend on the
way NA is configured, since different connections give different power flow pattern. Hence
we have to add the index A to the parameters. Note that when a line e ∈ Eo is opened, the
current through this line will always be zero, hence we can always talk about current IAe for
every e ∈ E.

Cables and links in the network have certain impedances. Say line e ∈ E has impedance
Ze = Re + jXe (with j =

√
−1, standard in electrical engineering). Then the power loss

through line e can be calculated as P loss
e = |IAe |2 · Re. With this, we can describe our objec-

tive function as

L(A) =
∑
e∈EA

|IAe |2 ·Re (3.1)

=
∑
e∈E
|IAe |2 ·Re (3.2)

Note that if e /∈ A, then IAe = 0, so the second equality holds. Now L(A) is the total power
loss in NA, so we want to find A such that L(A) is minimized.

As described in Chapter 1, the topology of a configuration has the following requirements:

• Every node in the network must be connected to an HV/MV transformer, in order to
be able to get demanded power from or withdraw remaining power to the HV net.

• No cycles (rings) are allowed in the network. This makes it easier to allocate and restore
a disturbance. Also, when a fault occurs in a cycle, the short-circuit current will be
higher. Hence this requirement is also for safety reasons.

• HV/MV transformers are not allowed to be connected to each other. Different trans-
formers constitute different voltage and current frequencies, so when these are con-
nected, an unstable voltage and current will arise as a consequence.

Taking these requirements into account, a feasible configuration must be, in graph theoretical
terms, a forest with in each subtree exactly one slack bus v ∈Wn. This is what we from now
on mean with a radial structure or topology, and we will refer to it as the radiality constraint.

As described in Section 2.3, due to power supply and demand in the network, a specific
power flow pattern occurs. This pattern can be simulated by the power flow equations. Since
we need this pattern for loss calculation and capacity checks, the demand constraint is added,
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which postulates that the voltages and currents in the network satisfy the power flow equa-
tions. These equations can be found in section 2.3.

The capacity constraint simply states that the nodal voltages should be between certain
bounds and the line currents should be bounded from above, in order to maintain good power
quality and avoid overcharging of the assets. Mathematically, this can be described as

∀v ∈W |Umin
v | ≤ |UAv | ≤ |Umax

v | (3.3)

∀e ∈ E |IAe | ≤ |Imax
e | (3.4)

where the values of Umin
v , Umax

v for any v ∈W , and Imax
e for any e ∈ E are assumed as known.

Now we are able to describe the central problem LRRP mathematically. For network N =
(W,E) we have the following optimization problem:

LRRP : min
A⊆Eo

∑
e∈E
|IAe |2 ·Re such that

NA is a radial network

(UAv1 , ..., U
A
vn), (IAe1 , ..., I

A
em) satisfy the power flow equations

∀e ∈ E : |IAe | ≤ |Imaxe |
∀v ∈W : |Uminv | ≤ |UAv | ≤ |Umaxv |

3.2 Bijection Cycle Basis - Deleted Edges

Note that a radial configuration of a network with a single slack bus is actually a spanning
tree of the corresponding graph. For a connected, undirected graph G, a spanning tree T
of G can be constructed by deleting some edges of G. One way of finding all possible span-
ning trees of a graph is by checking all possible combinations of edge deletions of the graph.
However, in this section we will suggest a faster method based on a mathematical proposition.

Before we can do this, we have to define the notion of a cycle basis of G. And therefore
we will need the notion of symmetric difference.

Definition 3.1. Let G = (W,E) be a connected, undirected graph, and let C1, C2 ⊂ E be
cycles. Define the symmetric difference C14C2 of C1 and C2 as

C14C2 = C1\C2 ∪ C2\C1 (3.5)

Note that C14C2 is an even subgraph of G, i.e. a subgraph which is a cycle or a combination
of cycles. Furthermore, note that symmetric difference is associative and commutative, so we
can define

4n
i=1Ci = C14C24 ... 4Cn (3.6)

If C1, ..., Cn are cycles, the resulting subgraph will always be a cycle itself or the union of
some cycles in G. And since A4A = ∅, we have that

∀(α1, ..., αn) ∈ Nn 4n
i=1αiCi = 4n

i=1(αi mod 2) · Ci (3.7)
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Definition 3.2. For a connected, undirected graph G = (W,E), let C be the set of all cycles
C ⊆ E in G. Now C is a subset of the cycle space of G, which is the vector space consisting
of all even subgraphs in G, with symmetric difference as operator on the edges (see [1]).
In this context, we call cycles C1, ..., Cn linear dependent if there exists a non-trivial vector
(α1, ..., αn) ∈ {0, 1}n such that

4n
i=1αiCi = ∅ (3.8)

i.e., assuming α1 = 1, C1 can be constructed by ’adding up’ cycles of C2, ..., Cn. Otherwise,
we call C1, ..., Cn linearly independent. Now we define a cycle basis of G to be a linearly in-
dependent subset C1, ..., Cn of C of maximal cardinality, so any cycle C ∈ C can be constructed
out of this basis.

Note that a cycle basis of G is also a vector basis of the cycle space of G. Hence two cycle
bases of G will have the same cardinality. As we will see, this cardinality is r = m−n+1, with
n = |V |, m = |E|. For this, first we state another lemma, which is easy to prove inductively
and can be found in [1]. Therefore we will not prove it here.

Lemma 3.3. Graph G = (V,E) is a tree (a connected graph without cycles) if and only if
|E| = |V | − 1.

Lemma 3.4. Let G = (V,E) be a connected, undirected graph , with |V | = n, |E| = m. Set
r = m− n+ 1. Then a cycle basis of G has r elements.

Proof. We will proof this lemma with induction on r.
Say r = 0. Then m = n − 1, hence G is a tree by Lemma 3.3. So C is empty, hence has an
empty cycle basis.
Choose r ≥ 1, and say the lemma holds for 1, ..., r − 1. Since r = m− n+ 1 > 0, G contains
a cycle C ⊂ E, since G is connected and by lemma 3.3 not a tree. Choose e ∈ C. Define
G′ = (V,E\{e}). Then |E\{e}| − |V | + 1 = m − 1 − n + 1 = r − 1. Hence, by induction, a
cycle basis of G′ has r− 1 elements. Say C1, ..., Cr−1 is such a basis. These cycles are linearly
independent in G as well. Furthermore, they do not contain e. Now note that

4k
i=1Xi ⊆

k⋃
i=1

Xi (3.9)

always holds, which implies that there cannot exist α1, ..., αr−1 such that C = 4r−1
i=1αiCi.

Hence C,C1, ..., Cr−1 are linearly independent cycles in G.

Now choose another cycle D in G. If e /∈ D, then D is a cycle in G′. Therefore, D,C1, ..., Cr−1

are linearly dependent, hence D,C,C1, ..., Cr−1 are linear dependent as well.
If e ∈ D, then e /∈ D4C, which is an even graph in G′. This even graph can be decomposed
into cycles in G′, so each of these cycles is linearly dependent with C1, ..., Cr−1, i.e. can be
constructed out of C1, ..., Cr−1. Hence D4C is linearly dependent with C1, ..., Cr−1, so D is
linearly dependent with C,C1, ..., Cr−1. This implies that C,C1, ..., Cr−1 is a linearly indepen-
dent set of cycles of maximal cardinality, hence a cycle basis of G. And it has r = m− n+ 1
elements.

The notion of a cycle basis will become very useful for the Loss Reduction Reconfiguration
Problem. This will be expressed in the next proposition.
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Proposition 3.5. Let G = (V,E) be a connected, undirected graph, and set r = |E|− |V |+1.
Let S = {e1, ..., er} ⊂ E be such that G\S = (V,E\S) is a spanning tree and let B =
{C1, ..., Cr} ⊂ C be a cycle basis of G. Then a bijection f : S → B exists such that for all
e ∈ S: e ∈ f(e).

Note that |E\S| = |V | − 1 by Lemma 3.3, hence |S| = |E| − (|V | − 1) = r. This proposition
implies that for a network G with one slack bus and a cycle basis B of G, we can construct any
radial configuration of G by picking a certain optional edge in every cycle in B that should
be opened. This gives a practical method for finding all radial configurations of G in which
significantly fewer combinations have to be checked compared to simply checking all possible
combinations of edges that can be opened.

In order to prove this proposition, we will make use of the following theorem.

Proposition 3.6 (Hall’s Marriage Theorem). Let G = (W1∪W2, E) be a bipartite graph with
|W1| = |W2|. For X ⊂W1, let N(X) be the set of neighbours of X, i.e. the nodes in W2 that
are connected to some node in X. Then a perfect matching for G exists if and only if for any
X ⊂W1: |X| ≤ |N(X)|.

A matching of a graph G = (W,E) is a subset M ⊆ E such that any node v ∈ W is covered
by at most one edge in M . Furthermore, M is a perfect matching if it covers every node of
G. A proof of this theorem can be found in [1], and will not be given here. However, we can
now prove Proposition 3.5.

Proof of Proposition 3.5. Define the bipartite graph H = (B ∪ S,E′) with (Ci, ej) ∈ E′ iff
ej ∈ Ci. Then a bijection as stated in proposition 3.5 corresponds to a perfect matching of
H. By Hall’s Marriage Theorem and since |B| = |S|, a perfect matching of H exists if for
every X ⊆ B : |X| ≤ |N(X)|. We will prove that this is the case by induction on k = |X|.

Let |X| = 1, so X = {Ci} for some i. Then there exists a j such that ej ∈ Ci, since else
Ci is a cycle in E\S, contradicting E\S being a tree. So ej ∈ N(X), hence |N(X)| ≥ 1 = |X|.

Now choose k ∈ N, 2 ≤ k ≤ r, and assume the induction hypothesis holds for all X ⊆ B
with |X| < k. Then choose X ⊆ B with |X| = k. Say X = {C1, ..., Ck}, possibly after
renumbering the elements of B. Define X ′ = {C1, ..., Ck−1}, X ′′ = {Ck}. By induction,
|N(X ′)| ≥ k − 1, |N(X ′′)| ≥ 1.

If |N(X ′)| ≥ k, or if N(X ′′) 6⊆ N(X ′), then |N(X)| = |N(X ′) ∪ N(X ′′)| ≥ k, so the hy-
pothesis holds.
Now assume |N(X ′)| = k − 1 and N(X ′′) ⊆ N(X ′). We will see that this leads to a contra-
diction.

Say N(X ′) = {e1, ..., ek−1} and N(X ′′) = {e1, ..., el1} with 1 ≤ l1 ≤ k − 1 (possibly af-
ter renumbering elements of S). Let H ′ be the subgraph of H on X ′ and N(X ′), so
H ′ = H[X ′ ∪ N(X ′)]. Then by the induction hypothesis and Hall’s Marriage Theorem,
H ′ admits a perfect matching. For i = 1, ..., k − 1, let ei be matched to Ci (possibly after
renumbering).
Now look at Ck ∪C1∪ ... ∪Cl1 in G. We can construct a cycle D1 in this subgraph that does

23



not contain e1, ..., el1 as follows: Start in a node on Ck and walk through Ck. If we reach an
edge ei with 1 ≤ i ≤ l1, there is at least one path avoiding ei and leading back to Ck, namely
(a part of) Ci. Once back on Ck, proceed walking in the same direction of Ck. Since we have
finitely many edges, we will eventually pass a node we visited before. Hence we found a cycle
that does not contain e1, ..., el1 .
Now if D1 does not contain any edge from el1+1, ..., ek−1, then D1 does not contain any edge
in S. Hence D1 is a cycle in E\S, a contradiction. So let el1+1, ..., el2 be the edges contained
by D1, with l1 < l2 ≤ k − 1. But then with the same construction, Ck ∪C1 ∪ ... ∪Cl2 has a
cycle D2 that does not contain e1, ..., el2 : We can walk through D1 and when we reach an ei
with l1 +1 ≤ i ≤ l2, at least one path is available that avoids ei and leads back to D2, namely
(a part of) Ci. If this path contains an ej with 1 ≤ j ≤ l1, we arrived at Ck and we can walk
to the other side of ej avoiding any edge of e1, ..., el1 by using Cj again, and proceed to D1.
Again, there are only finitely many edges, so ultimately a cycle is formed.
And again, D2 must contain at least one edge of el2+1, ..., ek−1, leading to the construction
of a new cycle D3. This cannot continue for more than k − 1 iterations, so we will end up
with a cycle Dq in G that does not contain any edge of S. Hence Dq is a cycle is G\S, which
contradicts G\S being a tree.

As a consequence, we have either |N(X ′)| ≥ k, or N(X ′′) 6⊆ N(X ′), which results in
N(X) ≥ k = |X|. And since X was arbitrary, this holds for any X ⊆ B with |X| = k.
Hence, by induction, for all X ⊆ B : |X| ≤ |N(X)|. So by Hall’s Marriage Theorem, H
admits a perfect matching, i.e. there is a bijection f : S → B such that e ∈ f(e) for all
e ∈ S.

A radial configuration of a (connected) distribution network with one slack bus is actually
a spanning tree of this network. Assuming we have a cycle basis for this network and an
arbitrary radial configuration, Proposition 3.5 implies that there exists a one-to-one corre-
spondence between the cycles in the basis and the opened edges. This implies that any radial
configuration of a network can be constructed by choosing an edge on every cycle in a cycle
basis, and opening this edge. This gives us a method for finding all radial configurations
without actually checking all possible switch specifications.

However, also non-radial configurations can be constructed this way. For instance, look at
the small network in Figure 3.1. Here Bus 1 is the slack bus, recognizable by the square con-
nected to it. The other busses are load busses, recognizable by the outgoing arrows. Say we
have cycle basis C1 = {1, 4, 7, 5, 2}, C2 = {2, 5, 8, 6, 3}, C3 = {9, 12, 10, 7}, C4 = {10, 13, 11, 8}.
(Indeed this is a cycle basis of the network. We will not check this here.)

Note that some edges are contained in more than one cycle in the basis. As a consequence,
if we choose an edge in every cycle in the basis arbitrary, we might choose some edges more
than once. And if we then open the chosen edges, we will open less than r edges, hence the
configuration can never be a spanning tree, i.e. never be radial.

But even if we choose r different edges, radiality cannot be ensured. In Figure 3.1, choose
edge 5 for cycle C1, edge 8 for C2, edge 7 for C3 and edge 10 for C4. The resulting configura-
tion contains cycle {1, 4, 9, 12, 13, 11, 6, 3} and Bus 6 is isolated. Hence no radial configuration.
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Figure 3.1: Network 1 (”Vision”)

We conclude that by opening an edge for every cycle in a cycle basis, we can construct
any radial configuration of a network with one slack bus, but also non-radial configurations
can be constructed. We have to take this into account when we use this method for the
algorithms.

3.3 Bijection Semi-Ear Decomposition - Deleted Edges

However, instead of looking at a cycle basis of the network, an alternative method might be
to look at a semi-ear decomposition:

Definition 3.7. Let G = (V,E) be a connected, undirected graph, and let {C1, ..., Cr} be a
cycle basis of G. Define O1 = C1 ⊂ E and for all i = 2, ..., r : Oi = Ci\(

⋃i−1
j=1Cj) ⊂ E. Then

{O1, ..., Or} is a semi-ear decomposition of G, and O1, ..., Or are called semi-ears.

We call this a semi-ear decomposition since this concept is much alike that of an ear decom-
position ([1]). Only semi-ears can consist of several connected components, in contrast to an
ear, which is connected by definition. Furthermore, a semi-ear decomposition can consist of
more than one cycle, where in an ear decomposition only the first ear is a cycle. Another,
more critical difference is that a semi-ear can be empty, since a cycle in a cycle basis can be
fully contained in the union of other cycles in the basis. Nevertheless, we will work with a
semi-ear decomposition rather than an ear decomposition, since the former can be constructed
easily for a graph, and the latter not. Note that an ear decomposition is always a semi-ear
decomposition.

For a single slack bus network, the fact that deleting an edge in every cycle of a cycle basis can
generate also non-radial configurations, is caused by the intersections of the cycles. Indeed,
if for two cycles two edges are deleted on the intersection of these cycles, a new cycle remains
and a part of the graph is isolated. In a semi-ear decomposition, all these intersections are
deleted for all but one of the concerning cycles. And as will be substantiated by the following
proposition, this ensures that any configuration created by deleting an edge on every semi-ear
will be radial.
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Proposition 3.8. Let G = (V,E) be a connected, undirected graph, and let D = {O1, ..., Or}
be a semi-ear decomposition of G such that no semi-ear is empty. For i = 1, ..., r, choose
ei ∈ Oi. Then G\{e1, ..., er} is a spanning tree of G.

Proof. We will prove this proposition by induction on r.

Say r = 0. Then G has an empty cycle basis, hence G does not contain any cycle. This
means G is a tree, hence the proposition holds.

Now let r ∈ N, r > 0. Say the proposition holds for 1, ..., r− 1. Further, let B = {C1, ..., Cr}
be the cycle basis used for the construction of D, in this order.

Say Or consists of k connected components (which are sub paths of Cr, we will call them
strings). Look at H = G−Or. We will see that H has k connected components as well: If H
has fewer than k connected components, then k > 1 and there is a string s of Or that connects
two nodes in one component of H. Hence a cycle Ĉ in G exists containing this string, and
no other string of Or. This cycle cannot be contained in B, else Or would not contain s by
construction of the semi-ear decomposition. But this cycle is linearly independent of B. This
is because Cr is the only cycle in B containing s, but since k > 1, Cr contains another string
s′ not contained by any other cycle in B and also not contained by Ĉ. A contradiction, since
B is a cycle basis.
If H has more than k connected components, then G was not connected, a contradiction as
well.

Let H1, ...,Hk be the connected components of H. Note that C1, ..., Cr−1 are fully contained
in H, since any edge in C1, ..., Cr−1 is not in Or. Also, for i = 1, ..., r− 1 there is exactly one
j ∈ {1, ..., k} such that Ci is contained by connected component Hj of H.
Furthermore, if Ĉ and C̃ are two cycles in two different connected components of H, then
Ĉ ∩ C̃ = ∅, since else they would be in the same connected component.

Let Bj = {Cj1 , ..., C
j
rj} be the cycles in the basis contained by Hj for all j = 1, ..., k, in

the same order as they are in B. Then Bj is a cycle basis of Hj .

Say for j ∈ {1, ..., k}, i ∈ {1, ..., rj} we have Cji is actually Cq in B. Then by the above
arguments:

Oji = Cji \(
i−1⋃
l=1

Cjl ) = Cq\(
q−1⋃
p=1

Cp) = Oq (3.10)

Indeed, for l ≤ i− 1 there is a p ≤ q − 1 such that Cjl = Cp, since the order of the elements

of Bj is consistent with the order of those in B. And if Cp /∈ Bj , then Cji ∩ Cp = ∅, hence

removing Cp from Cji has no effect.

Now Dj = {Oj1, ..., O
j
rj} is a semi-ear decomposition of Hj , with rj ≤ r − 1. Hence, by

induction, if ej1, ..., e
j
rj are the edges chosen for Oj1, ..., O

j
rj , then Hj − {ej1, ..., e

j
rj} is a tree.

This implies that

H − {e1, ..., er−1} = (H1 − {e1
1, ..., e

1
r1}) ∪ ... ∪ (Hk − {ek1, ..., ekrk}) (3.11)
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is a forest with k trees.
Now Or connects all these subtrees in G − {e1, ..., er−1} = H − {e1, ..., er−1} ∪ Or, since G
was connected and every tree is connected. Therefore, G−{e1, ..., er−1} contains exactly one
cycle, since r edges have to be deleted in order to get a tree, as implied by lemma 3.3.
This cycle can be constructed by starting on a point of Or and walking in a fixed direction.
When we reach the end of a string of Or, we are at some tree Hj − {ej1, ..., e

j
rj} for some j.

There is a path in this tree to a new string of Or, which leads to another tree. Proceeding
this way, we will cross any string of Or and any subtree Hj − {ej1, ..., e

j
rj},until we get back

to our starting point.

Now Or is fully contained in this cycle, so opening any edge of Or opens this cycle, resulting
in a spanning tree of G. Hence G− {e1, ..., er} is a tree.

In contrast to a cycle basis, by opening an edge in every semi-ear of a semi-ear decomposition
of a connected distribution network with a single slack bus, the resulting configuration will
always be radial, as implied by Proposition 3.8. However, there is a disadvantage for this
method as well. In general, not all radial configurations of a network can be constructed with
one semi-ear decomposition. Look again at network 1 in Figure 3.1. The semi-ear decompo-
sition corresponding to the mentioned cycle basis is O1 = {1, 4, 7, 5, 2}, O2 = {8, 6, 3}, O3 =
{9, 12, 10}, O4 = {13, 11}. Indeed, the non-radial configuration constructed earlier by opening
edges 5, 7, 8, and 10 cannot be generated by this ear decomposition. Moreover, any config-
uration constructed by opening an edge in every semi-ear is radial. But if we open edges 5,
7, 10, and 13, we do get a radial configuration as well, although this configuration cannot
be generated with this ear decomposition. So there are radial configurations that cannot be
constructed by this semi-ear decomposition.

There is a way to solve this. If we change the order of the cycles in the cycle basis, we can ob-
tain a different semi-ear decomposition, for instance Ô1 = {2, 5, 8, 6, 3}, Ô2 = {1, 4, 7}, Ô3 =
{9, 12, 10}, Ô4 = {13, 11}. With this semi-ear decomposition, the proposed radial configura-
tion can be constructed by picking an edge for each semi-ear.

Indeed, if we consider enough semi-ear decompositions for a connected distribution network
with a single slack bus, we are able to construct every radial configuration for this network
by opening an edge on every semi-ear in a decomposition. However, as we will see in Chapter
7, ’enough’ might not be a practical number.
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Chapter 4

NP-hardness of the Loss Reduction
Reconfiguration Problem

Finding the network reconfiguration which results in minimal power loss is a hard problem in
general. In this chapter we will prove that this problem is actually NP-hard, which implies
that the existence of an efficient algorithm that solves LRRP is unlikely. To understand the
full meaning of this statement, we give some definitions. Details can be found in [24].

Definition 4.1 (Class P). A problem Π belongs to class P if and only if there exists an
algorithm A and a polynomial P : N → N that for any instance I of Π of input size n (in
data, for instance cardinalities or dimensions), A solves I and the number of steps needed for
this is smaller than P (n). We say that A solves Π in polynomial time.

Definition 4.2 (Class NP). A problem Π belongs to class NP if and only if there exists an
algorithm A and a polynomial P : N → N that for any instance I of Π of input size n (in
data, for instance bits or dimensions) and any certificate c of I, A decides whether or not c
is a witness of I and the number of steps needed for this is smaller than P (n).

To illustrate this, consider the Minimum Weight Spanning Tree problem (MWST). An in-
stance is a graph G with edge weights. One wants to find a spanning tree of G with minimal
total weight. This problem belongs to P, since several efficient, polynomial-time algorithms
are developed that find a minimal spanning tree of G. For instance Kruskal’s algorithm or
Prim’s algorithm, see [23]. On the other hand, consider Hamilton Cycle (HC). Again an
instance is a graph G, and now one wants to know whether G has a Hamilton cycle, i.e. a
cycle which visits every node of G exactly once. Now a certificate of G would be a cycle of
G. To check whether this is a Hamilton cycle is simple, so HC belongs to NP. However, a
polynomial-time algorithm that decides whether or not a Hamilton cycle exists has not yet
been found. So it is not clear whether HC belongs to P or not. This describes a very famous
open problem in mathematics, stated in the following conjecture:

Conjecture 4.3. P ( NP, i.e. there exist problems in NP that are not solvable in polynomial
time.

It is widely believed that this conjecture is true. However, no proof has yet been found for
this. Now look at the following definition.
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Definition 4.4. A problem Π is called NP-hard if any problem Π′ in NP admits a polynomial
time reduction to Π, i.e. using a subroutine for Π that is assumed to give a solution of Π in
polynomial time, there is a polynomial time algorithm for solving Π′.

So if we assume that a polynomial-time algorithm exists for Π, then we use this algorithm to
develop a polynomial-time algorithm for Π′ by transforming the input data. Intuitively, we
can interpret this as that an NP-hard problem Π is harder than any problem in NP. Indeed, if
an efficient algorithm exists for an NP-hard problem Π, then by definition efficient algorithms
exist for all problems in NP, hence they are ’not harder’ than Π.

Now assume the conjecture is true. Then NP contains problems which are not polynomial-
time solvable, and therefore an NP-hard problem Π is not polynomial-time solvable as well,
since it is harder than these problems. On the other hand, if the conjecture is false, finding a
polynomial-time algorithm for Π would result in polynomial-time algorithms for every prob-
lem in NP, proving the converse of the conjecture. In other words, finding such an algorithm
would solve this famous open problem immediately.

To prove that LRRP is NP-hard, first we specify a subproblem of LRRP. Then we give a
mathematical representation of this subproblem, and then a polynomial-time reduction of
PARTITION to this problem is given. Now PARTITION is NP-complete (NP-hard and in
NP itself, proof can be found in [24]), so at least as hard as any problem in NP. Therefore,
the subproblem of LRRP and so LRRP itself are NP-hard.

4.1 Specification of a Subproblem of the LRRP

We define the Special Loss Reduction Reconfiguration Problem (SLRRP) as the subproblem
of LRRP in where we consider only a special kind of networks. Namely those distribution
networks with only one slack bus, where all lines have strictly real impedances, and where all
client busses are load demand busses with a purely active power demand (and no supply).
These distribution networks have certain physical properties which will become useful, and
which will be expressed in the following lemma’s.

Lemma 4.5. In a distribution system with one slack bus bus and only client busses with
power demand of type constant power, the voltage magnitudes at the client busses will always
be smaller than the voltage magnitude of the slack bus, and in case of multiple solutions of
the power flow equations, the solution with values closest to the slack bus voltage is realized.

Lemma 4.6. In an alternating current circuit with purely real impedances and power de-
mands, no phase differences occur at the nodal voltages and the line currents.

We will not prove the above lemma’s, since they are not strictly mathematical and beyond
the scope of this project. But we will give a short explanation of their validity. Lemma 4.5
can be justified by looking at the physical situation in a load demand bus. A certain power S
is demanded at a MV/LV transformer in this node. In reaction the voltage U in this node de-
creases such that the voltage difference between the node and the slack bus increases. Hence
the current I flowing into the node increases, until the product U · I∗ equals the demanded
power S, and the system is balanced. This will happen at the first suitable voltage difference,
hence the voltage closest to the slack bus voltage.
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Phase differences occur as a consequence of the presence of condensators and coils. This
presence is expressed in the imaginary parts of the impedances and power demands. These
values being zero imply that no condensator- or coil-like behaviour is present in the network,
hence no phase differences will occur. This explains lemma 4.6.

It is clear that once we prove this subproblem SLRRP to be NP-hard, the general prob-
lem is NP-hard as well; if we can solve the general problem LRRP in polynomial time, we
can also solve the subproblem SLRRP in polynomial time, and hence by NP-hardness any
problem in NP.

4.2 Mathematical Representation

In this section we define the Flow-Cost Minimal Spanning Tree problem (FCMST). We will
see that this is the mathematical representation of SLRRP. In the next section, we will prove
NP-hardness of FCMST.

FCMST: We describe the Flow-Cost Minimal Spanning Tree problem (FCMST ) as the
following search problem. An instance I of FCMST consists of

• A directed graph G = (W,E), with |W | = n, |E| = m.

• A special node ω ∈W and height Hω ∈ R. Set W\{ω} = Wc.

• A subset Eo ⊂ E of optional edges. Set Ef = E\Eo, the fixed edges.

• Weight function κ : E → R, demand function D : Wc → R, and capacity functions
Cmin, Cmax : W → R, Imax : E → R.

• An objective function L : P(Eo)→ R ∪ {∞}.

For a subset O ⊂ Eo, compute height vector h ∈ Rn and flow vector f ∈ Rm as follows:

For O ⊂ Eo, construct admittance matrix Y ∈ Rn×n (E[v] are the edges in E connected
to v):

Yv,w =


∑

e∈Ef [v]

κ(e) if v = w

−κ(e) if v 6= w and (v, w) = e ∈ E\O
0 else

Then h is the vector such that

hω = Hω (4.1)

∀v ∈Wc hv · (Y · h)v = D(v) (4.2)

and satisfying the flatness property : For v ∈ Vc, the value hv must be smaller than Hω, and in
case of multiple solutions for equation (4.2), the solution with the values as close as possible
to the value hw is realized.
Then ∀e ∈ E fe = κ(e) · (hv − hw), where v is the head and w is the tail of e.

Now we have L(O) =∞ if and only if O does not satisfy the following constraints:
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1. radiality : The resulting graph GO = (V,E\O) is a tree.

2. Capacity : Cmin(v) ≤ |hv| ≤ Cmax(v) for all v ∈ V and |fe| ≤ Imax(e) for all e ∈ E.

The solution space S(I) of instance I is the set of subsets O ⊂ Eo such that L(O) is minimal
and less than ∞, i.e. O satisfies the radiality and capacity constraints.

Note that this search problem is indeed the mathematical representation of the physical
reconfiguration subproblem SLRRP described above. Node ω corresponds to the single slack
bus and Wc to the client busses. Eo is the set of lines with switches, hence the optional
lines. Then we have for each line e a real-valued admittance κ(e) which is the inverse of the
resistance. For each client bus v we have a real-valued load demand D(v), for slack bus ω
a real-valued voltage Hω, and we have nodal voltage capacities Cmin, Cmax and line current
capacities Imax. Further, we have an objective function L with an O ⊆ Eo as input, which
in SLRRP corresponds to the sum of the power losses through the lines in the configuration
where O are the opened lines. Now the admittances and the load demands are all taken as
real numbers, so by Lemma 2 the vectors h and f representing the nodal voltages and line
currents will also be real-valued vectors. And the flatness property corresponds exactly to
Lemma 1.

4.3 Reduction to PARTITION

We will now prove the NP-hardness of SLRRP by reducing the decision problem ”PARTI-
TION” to it. An instance of this problem is a set of weighted elements, which we want to
split up in two subsets of equal weigth. Since PARTITION is NP-complete (NP-hard and in
NP) and reducibility is transitive, this proves the claim.

PARTITION: An instance I of PARTITION is a set A = {a1, ..., an} and a weight function
w : A→ N+. We want to know whether or not I admits a half-weight partition, i.e. a subset
A′ ⊂ A with w(A′)(=

∑
a∈A′ w(a)) = 1

2w(A).

For an instance of PARTITION, construct an instance of FCMST as follows. For each
ai ∈ A construct a node li. Then construct three other nodes: t1, t2, g. Set ω = g, so
Wc = {l1, ..., ln, t1, t2}. Then construct two fixed lines p1 = (g, t1), p2 = (g, t2) ∈ Ef and for

each i ∈ {1, ..., n}, j ∈ {1, 2} the optional line eji = (tj , li) ∈ Eo. Set E = Eo ∪ Ef . See figure
1.
Now we define the values of the capacity functions, the demand function, the height function

31



Figure 4.1: The graph G = (W,E)
.

and the weight function as:

∀v ∈W Cmin(v) = 0

Cmax(g) = 2

Cmax(t1,2) =
3

2
∀i = 1, ..., n Cmax(li) = 1

∀i = 1, ..., n, j = 1, 2 Imax(eji ) =
1

2
w(ai)

Imax(f1,2) =
α

2

∀i = 1, ..., n D(li) = −1

2
w(ai)

D(t1,2) = 0

hω = 2

∀i = 1, ..., n, j = 1, 2 κ(eji ) = w(ai)

κ(p1,2) = α

with α = 1
2w(A). We can set the objective function L to any function we want, satisfying the

mentioned property, since we will see that it will not play an actual role in the prove. Here
we set L(O) = 0 if O ⊆ Eo satisfies the radiality and capacity constraints, and L(F ) = ∞
else.

Proposition 4.7. An instance I of PARTITION admits a half-weight partition if and only if
the constructed instance of FCMST has a non-empty solution space, i.e. there is an F ⊂ Eo
satisfying the constraints.

This proposition implies that deciding whether a feasible configuration exists for a network,
is already an NP-hard problem. Indeed, a subroutine that solves this problem is indirectly
capable of solving PARTITION according to the proposition.
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The underlying idea of the suggested construction and the proof is that a radial configu-
ration of the constructed graph G corresponds to a partition of A. Indeed, if a configuration
is radial, then each node li is connected to either t1 or t2. Then the impedances, voltages and
power demands are chosen in such a way, that for i = 1, 2, the flow (current) through line pi
is exactly half the sum of the weights of the elements connected to ti. And by chosing the
capacities of p1, p2 equal to a quarter of the total weight of A, both sums must be equal to
half of the total weight in order to satisfy the capacity constraint. So if a half-weight partition
of A exists, then a feasible O ⊆ Eo exists. And on the other hand, if no half-weight partition
exists, then any O ⊆ Eo satisfying one constraint will never satisfy the other constraint.

Proof. ”⇒”: Let δ ⊂ {1, ..., n} be an index set such that for Aδ = {ai|i ∈ δ} we have
w(Aδ) = α = 1

2w(A). Define S1 = {e1
i |i ∈ δ}, S2 = {e2

i |i /∈ δ}, and set S = S1 ∪ S2 ⊂ Eo.
Then S satisfies the radiality constraint.
The network GS has two branches from g. We can compute the values of the height vector
of the nodes connected to g via p1 by solving system (4.2):

(Y · h)v =
∑

(v,x)∈E

(hv − hx)κ((v, x)) (4.3)

⇒ (Y · h)li = w(ai)(hli − ht1) (4.4)

⇒ hli · (Y · h)li = w(ai)h
2
li
− w(ai)ht1hli (4.5)

= D(li) (4.6)

= −1

2
w(ai) (4.7)

⇒ 0 = w(ai)h
2
li
− w(ai)ht1hli +

1

2
w(ai) (4.8)

= h2
li
− ht1hli +

1

2
(4.9)

since w(ai) 6= 0. So for all li connected to t1 only two values for the nodal voltages are
available, namely the roots of (4.9). But by the flatness property, all voltages will take the
same root as value, namely the one closest to hω. Say this root is r, then we have hli = r for
all i ∈ δ.
Now we look at t1:

(Y · h)t1 = κ(p1)(ht1 − hg) +
∑
i∈δ

κ(eji )(ht1 − hli) (4.10)

= α(ht1 − 2) +
∑
i∈δ

w(ai)(ht1 − r) (4.11)

= α(ht1 − 2) + α(ht1 − r) (4.12)

Now we must have ht1 · (Y · h)t1 = D(t1) = 0, so ht1 = 0, or (Y · h)t1 = 0. But if ht1 = 0 then
hli will become complex due to (4.9). So (Y ·h)t1 = 0. With (4.12) this results in ht1 = r

2 + 1.
Now we can substitute this in (4.9):

r2

2
− r +

1

2
= 0 (4.13)

⇒ r = 1 (4.14)

⇒ ∀i ∈ δ : hli = 1, and ht1 =
3

2
(4.15)

33



Now we can compute the flow vector values as follows:

fe1i
= W (e1

i )(hli − ht1) (4.16)

= −1

2
w(ai) (4.17)

fp1 = W (p1)(ht1 − hg) (4.18)

= −1

2
α (4.19)

So in this component of the network no capacities are exceeded. Note that we can compute
h and f in the other component in exactly the same way by replacing δ with {1, ..., n}\δ,
resulting in the same values. So also in the other component no capacities are exceeded.
Hence S satisfies the capacity constraint. Hence L(S) = 0, so S is contained in the solution
space.

”⇐”: Let S ⊂ Eo be such that L(S) = 0. Then S satisfies the radiality constraint, hence
each li is connected to either t1 or t2 in GS . Set δ1 = {i|e1

i ∈ S}, δ2 = {i|e2
i ∈ S}, and

A1 = Aδ1 , A2 = Aδ2 . Then A1, A2 is a partition of A.
For eji ∈ S we have

|(Y · h)li | = |w(ai)(hli − htj )| = |feji | ≤ I
max(eji ) =

1

2
w(ai) (4.20)

|hli | ≤ C
max(li) = 1 (4.21)

but hli · (Y · h)li = D(li) = −1

2
w(ai) (4.22)

So hli = 1, (Y · h)li = −1
2w(ai) or hli = −1, (Y · h)li = 1

2w(ai). Now together with (4.10) we
have for j = 1, 2:

0 = D(tj) (4.23)

= htj · (Y · h)tj (4.24)

= htj (α(htj − 2) +
∑
i∈δj

w(ai)(htj − hli)) (4.25)

⇒ htj =
2α+

∑
i∈δj w(ai)hli

α+ w(Aj)
or htj = 0 (4.26)

Look at the solution hli = 1 ∀i = 1, ..., n and htj =
2α+w(Aj)
α+w(Aj)

, j = 1, 2 of (4.22),(4.25). Since

w(Aj) ≥ 0, we have
2α+w(Aj)
α+w(Aj)

≤ 2. And this is the height vector with values as close as

possible to hg = 2, . So by the flatness property, this is the realized solution.
And we have |htj | ≤ Cmax(tj) = 3

2 for j = 1, 2, since S is a feasible switch specification. So
w(A1), w(A2) ≤ α. But w(A1) + w(A2) = w(A) = 2α, hence w(A1) = w(A2) = α. Hence I
admits a half-weight partition.

Now with the above proposition we can formulate a correct many-one reduction from PAR-
TITION to FCMST as follows:

1. Let I =< A,w > be an instance of PARTITION.
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2. Construct the instance I∗ for FCMST as described above.

3. Use the assumed subroutine for FCMST to compute an F ∈ S(I∗).

4. If such an F exists, then S(I∗) is not empty, i.e. I∗ has a feasible solution. Then I
admits a half-weight partition by proposition 4.7. Return ”I is yes-instance”.

5. Else, S(I∗) is empty, so no feasible solution exists. Hence I does not admit a half-weight
partition by proposition 4.7. Return ”I is no-instance”.

The construction in step 2 can be done in linear time and the reduction is correct by the
proposition. This proves that FCMST is an NP-hard problem. Therefore SLRRP is an NP-
hard problem, and so the general problem LRRP is NP-hard as well.

Notice that we did not make use of the objective function for loss calculation specifically.
Now if we change the problem to for instance load balancing or reliability, we only change
the objective function. Therefore the given proof will be feasible for these problems as well.
Hence the argument given above actually proves a more general theorem, namely that any
distribution network reconfiguration problem is NP-hard.

35



Chapter 5

Approximation Algorithms for the
Loss Reduction Reconfiguration
Problem

Although the Loss Reduction Reconfiguration problem is by NP-hardness not likely to admit
a polynomial-time algorithm that solves it, many approximation algorithms for this problem
have been developed. For this project an extensive literature study was executed to inves-
tigate the developments in this field, which can be found in [32]. In 1975, Merlin and Back
where the first to publish about profound ideas for network configurations in urban power
distribution systems ([5]), and they lifted this field to a higher, more recognized level. Since
then, scientists all over the world worked on network reconfiguration for loss reduction, with
a large variety of publications as a result.

In this chapter several suggestions are given for (approximation) algorithms to solve LRRP.
These suggestions are a selection of algorithms found in the literature, based on claimed
results, comparison to other methods and clarity of the publications. Then eventually adap-
tations or extensions are added to these algorithms, and the idea of a ’brute force’ calculation
was added to the selection.

Remark: One important remark must be made. In many of the suggested algorithms it is
assumed that the input network has only one slack bus. The descriptions and the flowcharts
given will not work in case of multiple slack busses, since the algorithms are based in some
way on Proposition 3.5 or 3.8. Only the Mixed Integer Linear Programming algorithm can
also handle multiple slack bus networks as it is suggested now. However, in Chapter 6 a
method is given to adapt a multiple slack bus network in such a way that all the suggested
algorithms are suitable for this network. So for this chapter we will assume that a network
has a single slack bus.

5.1 Edge Shifting Algorithm

One straight-forward approximation algorithm was developed by Baran and Wu ([6]) in 1989.
It assumes for a network N to have an initial switch specification S. This switch specification
is adjusted by replacing the open edges in S for their neighbours, and checking whether this
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increases or decreases the total power loss. The replacement that induces the highest loss
reduction is executed, and then the process is repeated. See Figure 5.1.

The loss reduction in step 2b can be computed with a simple quadratic equation, as described

Figure 5.1: Edge Shifting algorithm

in [6]. Once no strict loss reduction is found, the algorithm stops and returns the resulting
switch specification.

This is a fast, simple approximation algorithm that needs only one power flow calculation,
which is a time-consuming calculation. However, an initial configuration is needed, and it
cannot be assured that the process will converge to a global optimum. Only a local optimum
can be assured. Furthermore, this algorithm can return only one switch specification, which is
constructed in a deterministic way, hence the output will always be the same for a fixed input.

At Liander NV, the distribution networks are modelled in a program called “Vision”. Now
Vision has a tool which gives for a network, a new configuration in which the power loss is
reduced. It turns out that this tool is based on an algorithm almost the same as the Edge
Shifting algorithm. Only in Vision, no capacities of the nodes and lines are checked during
the process, which can result in an unfeasible configuration as output.

Nevertheless, the Edge Shifting algorithm will not be implemented in this project, although
we will compare the results of the Vision tool with the results of the final, most suitable
method.

5.2 Greedy Demeshing Algorithm

The second approximation algorithm also dates back to 1989. It was developed by Shir-
mohammadi and Hong ([7]) and is based on the fact that in a meshed network (all switches
closed) the power flow is balanced in the most thrifty way, with as little power loss as possible.
By opening those edges that effect this pattern the least, it is tried to find the configuration
that looks as much as the meshed pattern as possible.

The algorithm works with a greedy principle. Initially, al switches are closed, and then
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in an iterative process the optional edge is opened which effects the current power flow as
little as possible. This continues until enough edges are opened to make the configuration
radial. See Figure 5.2.

Note that when an edge is not on a cycle, opening this edge results in a disconnected

Figure 5.2: Greedy Demeshing algorithm

network. Since we assume that N has only one slack bus, this counters the radiality con-
straint. Therefore it is justified to consider only optional edges that are contained by a cycle.

In [7], a method is described to calculate the optimal line currents, which can be done by
solving a linear system. These line currents are based on the nodal currents resulting from
the power flow equations, computed in the network with only the resistances, and not the
reactances. As proven in [7], by taking these currents into account for the opening selection,
the power flow pattern in the meshed network is effected as less as possible. Now if enough
edges are opened, the network will be radial. Since capacities are checked in every iteration,
the resulting configuration is feasible by construction.

The Greedy-Demeshing algorithm is a fast and simple algorithm as well, needing a relatively
small number of iterations. However, as with the Edge Shifting algorithm, only convergence
to a local optimum can be assured. And the process is deterministic as well, so a certain
input will always result in one and the same configuration.

5.3 Harmony Search Algorithm

The harmony search algorithm is an optimization algorithm of Zong Woo Geem, inspired by
the process of, say n, musicians with different instruments when making a pleasant harmony.
The idea is to update a harmony memory in an iterative process. A new harmony, which
is a specification for every instrument which note should be played, is constructed based on
experience (by a certain probability, picking a note for an instrument that is in the harmony)
and improvisation (by a certain probability, adjusting this note a bit up or down the band-
width of the instrument). Then is checked whether this new harmony is better than the worst
harmony in the memory. If so, the latter is replaced by the former, and the process repeats.
In this way the harmony memory gets better and better, and when a maximum iteration is
reached, the best harmony in the memory is given as output.
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In [12], an implementation is given of the harmony search algorithm for the power loss recon-
figuration problem, by Rao et al. A harmony S corresponds to a radial configuration, and
the fitness function is given as

L(S) =
∑
e∈E

(|ISe |2 ·Re + β1 max{0, |ISe | − |Imax
e |}) (5.1)

+
∑
v∈W

(β2 max{0, |Umin
v | − |USv |}+ β3 max{0, |USv | − |Umax

v |}) (5.2)

Here β1, β2, β3 are large numbers, counting as penalty factors for every capacity that is ex-
ceeded in NS . So the fitness of a configuration is the total power loss plus penalties for
capacity exceeding.

However, in [12] it is not clear at all how the instruments should be chosen. Therefore,
based on the publication and on Propositions (3.5) and (3.8) in chapter 3, two suggestions
are made for this. One can take the cycles in a cycle basis of the network as instruments,
and the edges on the cycles as notes. Or one can take the ears in a semi-ear decomposition as
instruments, again with the edges as notes. Now a harmony, which is a selection of one edge in
each cycle/semi-ear, corresponds to that configuration of N in which the chosen edges are the
opened edges. In the first case, by Proposition (3.5) any radial configuration of a network N
can be constructed as a harmony in the Harmony Search Algorithm. However, as mentioned,
also non-radial configurations can be constructed. Therefore an extra subroutine has to be
build into the algorithm to check whether a harmony corresponds to a radial configuration
or not. And if not, this harmony must be abandoned. See Figure 5.3.

In the second case, by Proposition (3.8) a harmony will always correspond to a radial
configuration. However, as mentioned, not all radial configurations can be constructed with
one semi-ear decomposition. Therefore, more than one decomposition must be considered to
get a complete search space. See Figure 5.4.

In both versions, HMCR and PAR are two numbers between 0 and 1, representing the
harmony memory consideration rate and the pitch adjustment rate, respectively. The first
gives the probability that an edge must be chosen from the harmony memory instead of ran-
dom from the full bandwidth, where the second gives the probability that this edge must be
replaced by its neighbour on the corresponding cycle or semi-ear.

Due to the improvisation aspect, the process of the Harmony Search Algorithm ensures con-
vergence to a global optimum. Moreover, this algorithm provides the opportunity to return
not only the best configuration found, but more than one good configuration can be returned.
This is highly advantageous when we want to use this method as a tool for netplanners, since
they would like to have a list of switch specifications of which they can choose the most suit-
able one, based on their considerations. However, disadvantage is that this algorithm needs
a power flow calculation in every iteration. Since the number of iterations needed for good
results can be high, this makes the method slower than the previous ones.

In [13], the given algorithm is extended in the presence of distributed generation. Given
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Figure 5.3: Harmony Search Algorithm (version 1)

a certain number of b distributed generators on fixed places in the network, a harmony is ex-
tended with b instrument values, namely the generated powers at each distributed generator.
This makes it possible to examine what are the best places for distributed generation, but
also how to configure the network and maybe tune the generators in a given situation with
fixed distributed generators. This will not be taken into account during this project, but this
might be interesting for future research.

5.4 Genetic Algorithm

The genetic algorithm is an optimization algorithm inspired by the idea of evolution and
genetic improvement. In an iterative process, new generations of individuals are created from
old ones via the principle of evolution, where the fitness of the individuals gets better and
better. Two individuals from the old generation, represented by a string of genes called a
chromosome, are chosen to mate and reproduce. This selection is based on their fitness, the
higher the fitness, the more likely an individual is to mate. Then these individual strings are
both cut in two parts and interchanged, producing two new individuals. Finally, by a certain
probability, mutation takes place at some genes. When the new generation size has reached
the population limit, it becomes the old generation from which again a new generation is
build. This repeats until a maximum generation number is reached, and then the best indi-
vidual in the newest generation is returned.

This algorithm shows much similarity with the harmony search algorithm. New individ-
uals are constructed based on experience (cross-over of old individuals) and improvisation
(mutation). In [31] an argumentation can be found that indeed the harmony search algo-
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Figure 5.4: Harmony Search Algorithm (version 2)

rithm, which was developed when the genetic algorithm was already mature and widely used,
is just a subclass of the genetic algorithm. More about this later in this section.

In [10], an implementation of the genetic algorithm is given for the power loss reconfigu-
ration problem. In [11], this implementation is improved on some details. A short description
of the described algorithm follows. However, this will not be the version we will work with.

In a network N = (W,E), because of the radiality constraint, each feasible configuration
has a fixed number of switches set open. Say this number is r, and m = |E|. Then an
individual is defined as a switch specification S, represented by a binary string b = (b1, ..., bl)
with length l = r · dlog2(m)e. Here b1, ..., bdlog2(m)e give the binary representation of the edge
number of the first open switch S1, bdlog2(m)e+1, ..., b2dlog2(m)e the edge number of the second
open switch S2, and so on.

Almost identical to the Harmony Search Algorithm, the fitness function will be the penalty
function f(S) = 1

L(S) with

L(S) =
∑
e∈E

(|ISe |2 ·Re + β1 max{0, |ISe | − |Imax
e |}) (5.3)

+
∑
v∈W

(β2 max{0, |Umin
v | − |USv |}+ β3 max{0, |USv | − |Umax

v |}) (5.4)

as earlier. We want to minimize L(S), hence maximize f(S). In contrast to the Harmony
Search Algorithm, in the Genetic Algorithm we specifically want to maximize the fitness,
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since higher fitness of an individual gives a higher probability of mating and reproducing.

Now the principle of the genetic algorithm can be applied to these switch specification strings,
corresponding to the individuals, and the fitness function. However, the implementation of
this method in ”R” shows extremely bad behaviour. It will be clear that a new string con-
structed by gluing two parts of two old strings representing radial configurations, does not
have to represent a radial configuration itself, or a well-defined switch specification at all,
since a slight change in a binary string of a number can result in a big change of the number
itself. As it turns out, the probability that a new individual represents a radial configuration
is very small, making this method very slow and inefficient, and not suitable for this project.

However, we can apply the method for the Harmony Search Algorithm also to the Genetic
Algorithm. Indeed, if we assign every cycle in a cycle basis or every ear in a semi-ear decom-
position to a gene place, we can choose a gene to be an edge from the corresponding cycle or
semi-ear. Then an individual is a string of length r = |E| − |V |+ 1 corresponding to a switch
specification S for the network. The resulting algorithms are described in Figure 5.5 and 5.6.

Here COR and MR are the cross-over rate and the mutation rate, respectively. The

Figure 5.5: Genetic Algorithm (version 1)

first gives the probability that two individuals mix their chromosomes for producing new in-
dividuals, or just ’clone’ themselves. The second gives the probability that mutation takes
place at some genes, which will adjust the gene a bit up or down the bandwidth. In [11] it is
suggested that the mutation rate should be depending on the development in the algorithm,
in the following way: Set fmin(k) the minimal value of the fitness values fi in generation k.
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Figure 5.6: Genetic Algorithm (version 2)

Then the mutation rate in the constructing generation k + 1 is suggested to be

rm(k + 1) =
rm(k)− rstep if fmin(k) ≥ fmin(k − 1)
rm(k) if fmin(k) < fmin(k − 1)
rfinal if rm(k) = rfinal

(5.5)

with in [11] the values rm(0) = 1, rstep = 0.001, rfinal = 0.05. So if the whole generation gets
better, the mutation rate goes down. This suggestion will be taken into account during the
implementation of the Genetic Algorithm.

Note that the same disadvantages hold for these algorithms as for the versions of the Har-
mony Search Algorithm. According to Propositions (3.5) and (3.8), in the cycle basis version
also non-radial configurations can be represented, whereas in the semi-ear decomposition ver-
sion more than one decomposition is needed to cover all radial configurations. Again, the
algorithms are adapted to these circumstances. Furthermore, as with the Harmony Search
Algorithm, due to the mutation factor the process in this algorithm will also converge to a
global optimum. And again, the Genetic Algorithm can easily return more than one good
configuration. However, again for every iteration a power flow calculation is needed, which
makes the method rather slow.

As mentioned earlier, and as will be clear from the descriptions, the Harmony Search Al-
gorithm and the Genetic Algorithm show much similarity. And both seem very well suitable
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for the Loss Reduction Reconfiguration Problem, since the influence of one opened edge on
the total power loss is dependent of the other opened edges, but in a rather smooth way. So it
will be interesting which algorithm shows better behaviour when tested on realistic networks.

5.5 Mixed Integer Linear Programming

Jabr et al. transform in [14] the power loss configuration problem into a linear convex opti-
mization problem. These kind of problems are well-known and good methods to solve them
are available.

In [14] it is assumed that every edge e ∈ E of network N = (W,E) contains a switch,
with switch specification se ∈ {0, 1}. We assume that we know the power demand Pk + jQk
at the load busses, the real powers and voltage magnitudes at the generator busses, the volt-
ages at the slack busses (of which can be multiple!), and the impedance Ze = Re + jXe at
each line e. Now we define ge and be as the real and imaginary part of the admittance at e,
hence ge = Re

|Ze|2 , be = −Xe
|Ze|2 . Now say W = Wn ∪Wg ∪Wl, the set of slack busses, generator

busses and load busses respectively. The Loss Reduction Reconfiguration Problem is then
formulated in [14] as (using notation as in Chapter 2 and 3, and N(k) the set of neighbours
of k):

min
∑
e∈E
|Ie|2Re subject to (5.6)

s ∈ {0, 1}|E|, φ, |U | ∈ R|W | (5.7)

Ns is radial (5.8)

∀k ∈W : |Umin
k | ≤ |Uk| ≤ |Umax

k | (5.9)

∀k ∈Wg ∪Wl :
∑

l∈N(k)

skl(|Uk|2gkl − |Uk||Ul|(gkl cos(φk − φl) + bkl sin(φk − φl))) = Pk

(5.10)

∀k ∈Wl :
∑

l∈N(k)

skl(−|Uk|2bkl + |Uk||Ul|(bkl cos(φk − φl)− gkl sin(φk − φl))) = Qk

(5.11)

∀(k, l) ∈ E : |Ikl|2 = skl(
|Uk − Ul|2

|Zkl|2
) (5.12)

= skl((g
2
kl + b2kl)(|Uk|2 + |Ul|2 − 2|Uk||Ul| cos(φk − φl)))

≤ |Imax
kl |2 (5.13)

Here skl = 1 implies that edge (k, l) is closed, hence contained in the configuration. In this
way, the power flow study is otiose, since constraint (5.10) and (5.11) are actually the power
flow equations as in chapter 2. So the demand constraint is satisfied. (5.8) represents the
radiality constraint, and (5.9), (5.13) the capacity constraint. In [14] it is proven that this
optimization problem is equivalent to the following convex, almost linear optimization prob-
lem (details of the transformation can be found in [14]):
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min
∑
e∈E
|Ie|2Re subject to (5.14)

∀(kl) ∈ E : βkl, βlk ∈ {0, 1};∀e ∈ E : Ye, Te ∈ R;∀k ∈W : uk ∈ R (5.15)

∀k ∈Wg ∪Wl :
∑

l∈N(k)

βkl = 1 (5.16)

∀k ∈Wn, l ∈ N(k) : βkl = 0 (5.17)

∀(kl) ∈ E : 0 ≤ βkl + βlk = skl ≤ 1 (5.18)

∀k = 1, ..., n :
|Umin
k |2√

2
≤ uk ≤

|Umax
k |2√

2
(5.19)

∀(kl) ∈ E : 0 ≤ uklk ≤
|Umax
k |2√

2
skl (5.20)

∀(kl) ∈ E : 0 ≤ ukll ≤
|Umax
l |2√

2
skl (5.21)

∀(kl) ∈ E : 0 ≤ uk − uklk ≤
|Umax
k |2√

2
(1− skl) (5.22)

∀(kl) ∈ E : 0 ≤ ul − ukll ≤
|Umax
l |2√

2
(1− skl) (5.23)

∀k = 0, ..., n :
∑

l∈N(k)

skl(gklu
kl
k

√
2− gklYkl − bklTkl) = Pk (5.24)

∀k = 1, ..., n :
∑

l∈N(k)

skl(−bkluklk
√

2 + bklYkl − gklTkl) = Qk (5.25)

∀(kl) ∈ E : |Ikl|2 = (g2
kl + b2kl)((u

kl
k + ukll )

√
2− 2Ye) ≤ |Imaxkl |2 (5.26)

∀(kl) ∈ E : 2uklk u
kl
l ≥ Y 2

kl + T 2
kl, Ykl ≥ 0 (5.27)

Equations (5.19), (5.24), (5.25), (5.26) can be obtained by substituting

uk =
|Uk|2√

2
(5.28)

Ykl = |Uk||Ul| cos(φk − φl) (5.29)

Tkl = |Uk||Ul| sin(φk − φl) (5.30)

into (5.9)-(5.13). Equations (5.20)-(5.23) are used to distinguish between open and closed
edges. (5.16)-(5.18) represent the radiality constraint. Equation (5.27) is the only nonlinear
constraint. However, in [14] a method of Ben-Tal and Nemirovski is used that approximates
this constraint by a system of linear constraints. Details can be found in [25], and we will
only state the results here.

Choose k ∈ N. Define 2(k+1) variables a0, ..., ak, b0, ..., bk. Then the cone defined by equation
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x3 ≥
√
x2

1 + x2
2 can be approximated by the polyhedron defined by

a0 ≥ |x1| (5.31)

b0 ≥ |x2| (5.32)

∀ j = 1, ..., k : aj = cos(
π

2j+1
)aj−1 + sin(

π

2j+1
)bj−1 (5.33)

∀ j = 1, ..., k : bj ≥ | − sin(
π

2j+1
)aj−1 + cos(

π

2j+1
)bj−1| (5.34)

ak ≤ x3 (5.35)

bk ≤ tan(
π

2j+1
)ak (5.36)

The maximal error of this approximation is

ε(k) =
1

cos( π
2k+1 )

− 1 (5.37)

and in [14] is suggested to take k = 11, resulting in an error ε(k) ≈ 6× 10−7. Now constraint
(5.27) can be described as

uklk + ukll√
2

≥

√
r2
kl + (

uklk − ukll√
2

)2 (5.38)

rkl ≥
√
Y 2
kl + T 2

kl (5.39)

which both can be linearized as described. Note that this linearization, for k = 11, adds
4|E|(k + 1) variables and 4|E|(k + 2) constraints. Now an implementation of this algorithm
could be as described in figure 5.7.

The advantage of this method is that we can use available linear mixed-integer optimization

Figure 5.7: Mixed Integer Linear Programming

methods to solve the problem. Very good methods exist, and the field is still developing.
Also, most of these methods converge to global optima. Further, the transformation given
is exact, no stochastics are involved. A disadvantage is the high complexity of this method.
It does not seem flexible for adaptations or extra requirements, and it will return only one
solution.

5.6 Brute Force Calculation

The most basic algorithm for solving the Loss Reduction Reconfiguration Problem exactly
would be to calculate the power loss in any radial configuration, and then return the config-
uration in where this loss is minimized. We will call this a Brute Force Calculation. Since
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LRRP is NP-hard, this is certainly not a polynomial-time algorithm, which implies that the
running time depends at least exponentially on the size of the input network N . However, it
might be the case that the size of a standard MV network in Liander management is not too
big, so that the Brute Force Calculation will give an output within acceptable time. If so, this
algorithm would be highly preferable over the previous ones, since it will certainly return the
global optimum. Moreover, it can return a multiple number of good configurations, namely
the best configurations of the network. Therefore this method will be implemented as well,
and the running time will be compared to those of the other methods.

For the implementation of the Brute Force Calculation again we will use Proposition (3.5). We
want to investigate all radial configurations of an input network N . However, we do not know
in advance which configurations are radial and which are not. So instead of checking all pos-
sible configurations on radiality, we will calculate a cycle basis B of N . Then we can decrease
the search space by investigating only those configurations that can be constructed from B
by opening one edge on every cycle in B. As Proposition (3.5) implies, all radial configura-
tions will be investigated this way. See Figure 5.8 for a full description of the implementation.

Figure 5.8: Brute Force Calculation
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Chapter 6

Expanding the Algorithms to
Multiple Slack Bus Situations

All of the suggested methods in Chapter 5, except for the Mixed-Integer Linear Programming,
are developed for single slack bus networks. When more than one slack bus is present, these
algorithms will fail to achieve satisfying results. The critical aspect is that these algorithms
focus on opening all cycles in a network. However, as Proposition 3.5 implies, this results in
a spanning tree of the network, which is only a radial configuration if the network has one
slack bus. In case of multiple slack busses, opening the cycles is not enough. Then also paths
from one slack bus to another must be opened. Hence an output configuration will never be
radial.

The functionality of these algorithms is decreased extremely due to this, since we are also
interested in larger networks with several slack busses. With the current algorithms, we have
to divide such a network into subnetworks by separating the slack busses before we can use
the algorithms. And this division cannot be based on these algorithms, but has to be done
manually.

Therefore a method is proposed that adapts a multiple slack bus network in such a way
that all the suggested algorithms can be used to find or approximate the optimal config-
uration of this network. Moreover, this optimal configuration corresponds to the optimal
configuration of the original network in a clear way. The method is based on a mathematical
proposition which will be stated and proved in Section 6.1. In Section 6.2 it will be described
how this method can be used for the suggested algorithms.

6.1 Mathematical Construction

Let N = (W,E) be a network with W = Wn ∪Wc, Wn the set of slack busses, and Wc the set
of client busses. Say |Wn| = n′, so N has n′ slack busses. Set E = Ef ∪Eo, the set of fixed and
optional lines respectively. Furthermore, assume the input data such as impedances, voltages
for the slack busses, powers for the load busses and voltage magnitudes/active powers for the
generator busses are present.

Now construct network N̂ = (Ŵ , Ê) out of N by adding one artificial load bus a to Wc,
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and for any slack bus v ∈ Wn, add a fixed line fv = (v, a) to Ef . For load bus a, set active
and reactive power demands equal to zero, so Pa, Qa = 0. And for all added edges fv, set the
impedance Zfv = 0 + j · ∞, so the admittance Afv = 1

Zfv
= 0. Then we have the following

proposition:

Proposition 6.1. For network N , and network N̂ constructed out of N as described above,
the power flow in N and N̂ [W ] will be equal. That is, for any v ∈W , if Uv, Sv are the voltage
and power in v in N , and Ûv, Ŝv are the voltage and power in v in N̂ , then Uv = Ûv and
Sv = Ŝv. Furthermore, the total power loss in N and N̂ is equal.

Proof. Say N has k slack busses v1, ..., vk, and set fvi = fi for all i = 1, ..., k. Let A be the
admittance matrix of N . Then the admittance matrix of N̂ will be

Â =


A

−Af1
...

−Afk
0
...
0

−Af1 · · · −Afk 0 · · · 0 (Af1 + ...+Afk)


(6.1)

=

 A
0
...
0

0 · · · 0 0

 (6.2)

Now let Û =

(
V̂

Ûa

)
and Ŝ =

(
T̂

Ŝa

)
be the vectors of voltages and powers in N̂ , with V̂

and T̂ the vectors of voltages and powers in nodes in W , and Ûa, Ŝa the voltage and power
in a. Then

Â · Û =

(
A · V̂

0

)
+ (0 . . . 0) · Ûa (6.3)

=

(
A · V̂

0

)
(6.4)

So for w ∈W , we have the power flow equation in N̂ :

Ŝw = T̂w = Ûw · (Â · Û)∗w (6.5)

= V̂w · (A · V̂ )∗w (6.6)

since V̂ is the vector of voltages in nodes inW . But this gives exactly the same equations as the
power flow equations in N , with voltage vector U and power vector S, since Sw = Uw ·(A·U)∗w
and the input voltages and powers are equal. Furthermore, we have the equation for a:

Ŝa = Ûa · (Â · Û)∗a (6.7)

= Ûa · 0 (6.8)

= 0 (6.9)
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This equation is correct since the demanded power in a is set to zero. Moreover, this equation
is correct for any Ua, and since this is equation is completely free from the other equations,
it adds no condition at all. So the power flow equations for N̂ on the nodes in W are equal
to the equations for N , hence will result in the same voltages and powers in any node.

Therefore, for an e ∈ E, the current Ie through e in N will be equal to the current Îe in
N̂ . And for i ∈ 1, ..., k, Îfi = Afi(Ûvi − Ûa) = 0 by Ohm’s Law. So

∑
e∈Ê

|Îe|2 · <(Ze) =
∑
e∈E
|Îe|2 · <(Ze) +

k∑
i=1

|Îfi |
2 · <(Zfi) (6.10)

=
∑
e∈E
|Ie|2 · <(Ze) + 0 (6.11)

since the current and the resistance for any fi is zero. So the total power losses in N and N̂
are equal.

Note that for a configuration NA of N , where A is the set of closed optional edges and
B = Eo\A the set of opened optional edges, the power flow in NA will be equal to the power
flow in N if all edges in B get an infinite impedance, so an admittance of value 0. Hence this
proposition implies not only that the power flow and power loss in N and N̂ will be equal,
but also in any configuration of N and the corresponding configuration of N̂ .

6.2 Application to the Algorithms

The reason for the failure of most of the suggested algorithms when applied to multiple slack
bus networks, is that these algorithms only open the cycles present in the network. Paths
between slack busses do not have to be opened this way, resulting in a non-radial configura-
tion. However, when a multiple slack bus network is adapted as suggested, any path between
two slack busses in the old network is turned into a cycle in the new network via node a.
And since the two edges in this cycle linked to a are fixed, opening this cycle corresponds to
opening the path. So in the new, adapted network, opening all cycles is sufficient to attain
a radial configuration in the original network, no matter how much slack busses are present.
And for this new network, we can use Propositions 3.5 and 3.8 again.

For example, look at Figure 6.1. This network contains one cycle. Two edges have to be
opened to attain a radial configuration, one in path (1, 3, 4, 2) and one in path (1, 5, 6, 7, 2).
For the Greedy-Shifting algorithm, such a radial configuration is assumed as initial configu-
ration. But when one of the opened edges is closed, no cycle will arise, hence it is not clear
which edges could be opened. For instance, say edges (3, 4) and (5, 6) are opened. Then
closing (3, 4) allows (1, 3) or (2, 4) to be opened for radiality, but no other edge.

In the Greedy-Demeshing algorithm, one of the edges will be opened, and then the algo-
rithm stops, returning a non-radial configuration. And even if it continues, it is not clear
immediately which edges are candidates to be opened again. For the Harmony Search Algo-
rithm and the Genetic Algorithm, the cycles or semi-ears are the sets from which the edges
are chosen to be opened, in this case the one cycle in the network. Therefore, no radial
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Figure 6.1: A multiple slack bus network (”Vision”)

configurations will be considered. The same holds for the Brute Force Calculation.

Now look at Figure 6.2. Here the network construction as described for proposition (6.1)
is applied. In this case a cycle basis contains two cycles. Both will be opened by the Greedy-
Demeshing algorithm, the Harmony Search Algorithm, the Genetic Algorithm and the Brute
Force Calculation. And since the additional edges (1, a), (2, a) are fixed, a resulting config-
uration in the new network will be a tree where all slack busses are connected via a, which
corresponds to a radial configuration in the original net. Also for the Greedy-Shifting al-
gorithm, closing an edge in a radial configuration results in a cycle, which corresponds to
an actual cycle or a path between slack busses. Then the shifting procedure can be applied
successfully.

Note that Proposition 6.1 also holds for a single slack bus network. So a procedure to
make the Greedy-Shifting algorithm, the Greedy-Demeshing algorithm, the Harmony Search
Algorithm, the Genetic Algorithm and the Brute Force Calculation suitable for single- and
multiple slack bus networks would be simply to start with the above construction (see Fig-
ure 6.3), and then run the algorithm. From now on we will assume that all the suggested
algorithms are extended with this procedure, which we will call the Network Adapter. As
described above, in this way the algorithms work with radial configurations of the origi-
nal network, or work towards such a configuration. And by Proposition (6.1), the voltages,
currents and powers in the original part of a configuration of the new network will be the
same as the corresponding configuration in this original network, as well as the total power
loss. So minimizing the power loss without capacity excess in the new network is equiva-
lent to minimizing the power loss without capacity excess in the original network. Hence
the extended algorithms will return/approximate the configuration of the input network with
minimal power losses.

Two remarks must be made. First, note that in Proposition 6.1 we work with infinite
impedances, and we assume that the inverse of this is zero. Mathematically this works out
fine. However, in actual calculations this can lead to difficulties. Therefore, we will take in
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Figure 6.2: Addition of an artificial node (”Vision”)

the actual implementations a relatively high number β, and set the impedances as Z = 0+jβ
instead of 0+ j∞ (and for the capacities similar substitutions as well). Then the admittances
become 1

Z = 0 − j
β instead of 0. This leads to a difference between the total power losses

in the original and the adapted network. However, if we take β large enough (for instance
1.000.000 times the highest impedance magnitude present in the original network) then this
difference becomes insignifficant, no more than 0.0001 %. In practical situations, this is good
enough.

Second, this method can be used when other objective functions are considered as well.

Figure 6.3: Network Adapter

Indeed, for other objectives the radiality constraint remains the same, hence can be ensured
with this method. And since for other objectives normally the current magnitude through
a line is a factor in the objective calculation of this line, the objective through an artificial
added line will be zero, since the current is zero. Therefore, the objective value for the total
configuration will not be effected by this adaptation.
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Chapter 7

Adaptations and Decisions during
the Implementation Process

The step from theoretical algorithm to a well working program in ”R” revealed several difficul-
ties and defects for almost all of the suggested methods. The Greedy-Demeshing algorithm is
very straight-forward, and did not cause any problems as it is described in chapter 5. However,
all the other implementations did. This chapter will survey the fundamental, mathematical
problems that occurred, and, when found, the solutions that are brought up to this.

During the implementation procedure, two imaginary test networks were used. Test net
1 can be found in Figure 7.1, and contains nine nodes of which one slack bus, and ten edges.
Hence two lines must be opened in order to obtain a radial configuration (implied by Lemma
3.3). Test net 2 contains 50 nodes and 60 lines. Node 1 and optionally node 2 are slack
busses, so 11 or 12 lines respectively have to be opened in this network (implied by lemma
3.3). See Figure 7.2. In both networks, multiple values for the impedances, voltages and
power supplies/demands were chosen, to check whether the implementations worked as ex-
pected. These are small, imaginary networks, used for fast testing of correctness of the

Figure 7.1: Test Network 1 (”Vision”)

implementations. Almost all defects in this chapter were revealed while the corresponding
algorithm was tested on one of these test networks.
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Figure 7.2: Test Network 2 (”Vision”)

7.1 Drawback Semi-Ear Decomposition

For the Harmony Search Algorithm and the Genetic Algorithm, a version was suggested that
makes use of semi-ear decompositions. As mentioned in Chapter 3, out of a semi-ear de-
composition only radial configurations will be constructed, but not all radial configurations.
Therefore, in Chapter 5 it was suggested that several semi-ear decompositions out of one cycle
basis should be considered, to cover all possible radial configurations.

However, it turns out that the number of semi-ear decompositions needed to cover all possi-
ble radial configurations of one network could be very high. This became clear when these
versions of the Harmony Search Algorithm and the Genetic Algorithm were tested on test
network 2. Also, this will be mathematically substantiated by Lemma 7.1. Moreover, it is
not clear at all for a network and a cycle basis of this network, which semi-ear decompositions
are actually needed to cover all these configurations. Another difficulty of the semi-ear de-
composition version is that a semi-ear could be empty, which always results in bad behaviour
of the algorithms, since in that case not enough edges will be opened. Together with the
fact that checking radiality of a configuration is rather simple, this makes the cycle basis
versions of the Harmony Search Algorithm and the Genetic Algorithm highly preferable over
the semi-ear decomposition versions. Therefore, the semi-ear decomposition versions will no
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longer be considered, and so they will not be further tested and compared to other methods.

The next proposition shows that the number of semi-ear decompositions needed could grow
impracticably big, by presenting example networks in which this happens. In short, for any
number k ∈ N there exists a network in which k decompositions are needed to cover all radial
configurations. Moreover, this network only has 2(k + 1) nodes and k independent cycles,
and it has a realistic structure. So the examples given are not difficult, artificial networks,
but similar to MV (sub)networks that could occur in reality.

Lemma 7.1. For all k ∈ N there exists a network Nk with a cycle basis B = {C1, ..., Ck}
for which at least k different semi-ear decompositions are needed in order to cover all radial
configurations, i.e., in order to be able to construct all possible spanning trees by deleting one
edge in every semi-ear of a certain decomposition.

Proof. For k ∈ N, define Nk to be the network with 2k + 2 nodes and 3k + 1 edges as shown
in Figure 7.3. Say all edges are optional. For 1 ≤ i ≤ k, set Ci = {3i − 2, 3i − 1, 3i, 3i + 1}.
We will prove that Nk needs at least k different semi-ear decompositions in order to cover all
radial configurations by induction on k.

Figure 7.3: Construction of Nk

N0 is already radial, so needs no decomposition to construct a radial configuration. N1 is a
cycle, and has a unique semi-ear decomposition, namely itself. And indeed, this decomposi-
tion is enough to cover all possible radial configurations.

Now assume k ≥ 2 and Nk−1 needs at least k − 1 decompositions. Look at Nk. In C1,
at least one edge must be opened to make the network radial. And if two edges are opened
in C1, one of them must be edge 4, since else node 1 or node 2 is isolated (or both). Three or
four edges opened in C1 will never result in a radial configuration.
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Now we will consider two cases; one of edges 1, 2, or 3 is opened, or these three edges
are all closed. In the first case, edge 4 can be either opened or closed, where in the seconds
case it must be opened.

First, look at a radial configuration R of Nk where edge 1,2 or 3 is opened, say e. Set
N ′ = Nk − e. Then {C2, ..., Ck} is a cycle basis of N ′, and R induces a radial configuration
for N ′. Moreover, a radial configuration of N ′ is equivalent to a radial configuration of Nk−1,
since they have the same structure when we look at their cycles, and only edges on cycles
must be opened in order to make a configuration radial.

By induction, Nk−1 needs at least k−1 different semi-ear decompositions in order to cover all
possible radial configurations. This means N ′ needs at least k−1 different decompositions as
well, that is, k − 1 different orders of C2, ..., Ck to construct a semi-ear decomposition of N ′.
So for all radial configuration of Nk with edge 1,2 or 3 opened, if we choose equivalent orders
of C2, ..., Ck and always add C1 as the last cycle to construct the decompositions of Nk, all
these configurations (where edge 1, 2 or 3 is opened) are covered. Note that it is even enough
for a specific order of C2, ..., Ck to add C1 anywhere after C2 to get the same decompositions
of Nk. Moreover, note that all these decompositions are needed, else we could also use fewer
decompositions for Nk−1, which is not true by assumption.

Now look at a radial configuration where edges 1,2 and 3 are closed. Then edge 4 is opened.
But edge 5, 6 or 7 then has to be opened as well. Say edge e′ is opened. If C1 is used after
C2 for a decomposition, then edge 4 and e′ are contained in the semi-ear corresponding to
C2. Hence this configuration cannot be constructed via such a decomposition. Therefore, we
need at least one new order of C1, ..., Ck for a decomposition with C1 before C2. Hence, we
need at least k decompositions in total for Nk.

Note that after adding a decomposition where C1 was used before C2, we cannot remove
another decomposition, since with any of the old decompositions we can choose a unique
radial configuration with edge 4 and, say, edge 1 opened. This configuration cannot be con-
structed with the new decomposition, so we still need the old one as well.

7.2 Minimum Weight Cycle Basis

A network usually admits several cycle bases. For instance, test network 1 has basis B1 =
{(1, 3, 5, 4, 2), (5, 6, 8, 10, 9, 7)}, B2 = {(1, 3, 5, 4, 2), (1, 3, 6, 8, 10, 9, 7, 4, 2)} and
B3 = {1, 3, 6, 8, 10, 9, 7, 4, 2), (5, 6, 8, 10, 9, 7)}. As Proposition 3.5 implies, all radial configu-
rations can be constructed by opening one edge in every cycle of a cycle basis, independent
of which cycle basis is used. And the search space of the Harmony Search Algorithm (cycle
basis version), the Genetic Algorithm (cycle basis version) and the Brute Force Calculation
is actually the set of all possible combinations of edges that can be constructed this way. We
shall call such a combination an edge-open combination. Note that by Proposition 3.5 any
combination that generates a radial configuration can occur, but also combinations that do
not generate radial configurations.

For basis B1, the total number of edge-open combinations that can be made this way is
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5 · 6 = 30. For B2 this is 5 · 9 = 45 and for B3 this is 9 · 6 = 54. So out of B2 at least
15 combinations generate non-radial configurations, since if a combination generates a radial
configuration, by Proposition 3.5 it must be available in B1 as well. And out of B3 even
more, namely 24. This means that by using B2 or B3 for the Harmony Search Algorithm, the
Genetic Algorithm, or the Brute Force Calculation, more irrelevant edge-open combinations
can and will be considered than by using B1.

Initially, a simple subroutine was used for the implementations of HSA, GA and BFC

Figure 7.4: Simple Cycle Basis Finder

to construct a cycle basis of the input network N = (W,E). This subroutine starts with
graph G = (W, ∅) and iteratively adds an edge to G. If a cycle arises, this cycle is saved in the
basis and the last edge is deleted again. In this way, a spanning tree is constructed, and for
every edge not in the tree, exactly one cycle containing this edge is present in the resulting
basis. Hence these cycles are independent, and the cardinality of the basis is |E| − |W | + 1,
so by Lemma 3.4 this is indeed a cycle basis of N . See figure (7.4).

This is a fast and simple subroutine, and it is easy to implement it such that orientation
of the cycles is preserved. However, this subroutine turns out to return bases with very big
cycles. For instance, in test network 1 it will return cycle basis B2, and in test network 2 this
gets more extreme. More about this later.

Bigger cycles in the cycle basis lead to bigger intersections between pairs of these cycles.
And it is exactly this intersection that causes edge-open combinations which generate non-
radial configurations. Indeed, if for two cycles, both edges are chosen in the intersection
of these cycles, a non-radial configuration will arise. Moreover, this configuration can be
constructed in two ways, choosing the first edge for the first and for the second cycle, and
vice versa for the second edge. Now when the intersections get bigger, the number of these
possibilities gets higher, leading to more irrelevant combinations to be considered.

Already for test network 2, which is a very small network compared to real MV networks,
this gives problems. HSA and GA show bad behaviour concerning convergence and running
time, since many of the considered configurations are non-radial. Also BFC suffers from this;
for test network 2 it has to consider around 2.4×1011 combinations, of which more than 99%
is surely irrelevant, as we will see later on.

So we actually want a subroutine that finds the cycle basis in where the cardinalities of
the pairwise intersections between the cycles are minimized. No literature was found on this,
and it is beyond the scope of this project to find such an algorithm. However, a fine alterna-
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tive would be to use a cycle basis in which the length of the cycles is minimized. Small cycles
will generally lead to small intersections. And in 1987, Horton developed a polynomial-time
algorithm to find such a basis, see [26]. Formally, we want to find the cycle basis in which the
sum of the cardinalities of the cycles is minimized. So if we give every edge in the network
weight equal to 1, we want to find the cycle basis of minimal total weight. Horton proved
that such a basis always consists of Horton cycles, fundamental cycles of a shortest path tree
of the graph, of which at most |W | · |E| exist. So the algorithm first finds all these Horton
cycles, and then builds a basis out of these cycles by adding a cycle to the basis-to-be-build if
and only if it is independent of the already added cycles. Hereby it considers the cycles from
small to big. We will call this algorithm Horton’s Algorithm, see Figure 7.5.

Using this new subroutine for test network 2, a cycle basis arises that admits around 2.0×109

Figure 7.5: Horton’s Algorithm

edge-open combinations, almost five times fewer than with the basis from the Simple Cycle
Basis Finder. As we know from Proposition (3.5), this new cycle basis can generate all radial
configurations of N , so indeed more than 99% of the combinations constructed with the old
cycle basis is irrelevant.

As a consequence of these results, Horton’s Algorithm is used for the implementations of
HSA, GA and BFC. And already on test network 2 the behaviour of these algorithms greatly
improved.

7.3 Construction of Random Configurations using MWST

For the cycle basis version of the Harmony Search Algorithm, an initial harmony memory
is generated by randomly constructing configurations. Each configuration is constructed by
randomly picking an edge for every cycle in the specified cycle basis, and then checking if it
is radial or not. If not, the configuration is abandoned and a new one is created. Also the
initial generation of the cycle basis version of the Genetic Algorithm is generated this way.
When these algorithms were tested on test network 2, using Horton’s Algorithm introduced
in the previous section, the number of edge-open combinations needed to make enough radial
configations to fill the initial harmony memory/generation was over twice the size of this
memory/generation. So over a half of the considered combinations did not generate a radial
configuration. And when these algorithms were applied to realistic networks with hundreds
of nodes, it became clear that that this was a serious problem. In the first 500 combinations
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checked, at most 3 of them generated radial configurations. Clearly when the networks get
bigger, the probability that a configuration, created by randomly picking an edge for each
cycle, is radial decreases rapidly. This results in an extremely slow start of the algorithms,
which is clearly undesirable.

To avoid this slow start, a new method for constructing the initial harmony memory/generation
is suggested, which turns out to be successful in practice. A radial configuration of a network
is actually a spanning tree of this network, assuming the network is adapted as proposed
in Chapter 6. Now finding a minimum weight spanning tree in a weighted graph is an effi-
ciently solvable problem as mentioned earlier. Fast algorithms such as Prim’s algorithm are
developed for this. So constructing a random radial configuration of a network N = (W,E)
can be achieved quickly by adding random weights to the edges in E, and then computing
a minimum weight spanning tree of this graph with such an algorithm. It turns out that if
for every edge a natural number between 1 and |E| is chosen as weight randomly, the result-
ing minimum weight spanning trees will show much variation and will not have too much
similarity. With this method, only a number of configuration constructions equal to the size
of the initial harmony memory/generation is needed to fill them, since by Chapter 6 every
configuration constructed is surely radial. And since any radial configuration can be attained,
and a wide variety of configurations will be attained, the results will be as good as with the
original method. Moreover, this suggested method is much faster than the original one.

One important remark must be made. In the suggested method no difference between fixed
and optional edges is taken into account. Fixed edges cannot be opened, hence the must be
contained by the minimal spanning tree. For the method as described above, this cannot be
ensured at all. However, a simple adaptation will solve this problem, and is based on the
following lemma.

Lemma 7.2. Let G = (W,E) be graph with for every e ∈ E, weight we ∈ N. Assume that
for every cycle C ⊆ E of G, there is at least one edge e ∈ C such that we > 0. Then for any
minimum weight spanning tree T ⊆ E of G and for all e ∈ E with we = 0: e ∈ T .

Proof. Let T be a minimum weight spanning tree of G, and let e ∈ E be an edge with weight
we = 0. Assume e /∈ T . Then T ∪{e} contains a cycle C of G, since T is a spanning tree. And
e ∈ C. Furthermore, by assumption C contains an edge e′ 6= e with we′ > 0. Now e′ ∈ T ,
since e′ 6= e, e′ ∈ C and C ⊆ T ∪ {e}. Set T ′ = (T ∪ {e})\{e′}. Then T ′ is a spanning tree of
G as well.

Say w(T ) =
∑

e∈T we is the weight of T . Then

w(T ′) = w(T ) + we − we′ (7.1)

< w(T ) (7.2)

But then T is not a minimum weight spanning tree. A contradiction, hence e ∈ T must hold.
And since T and e were chosen arbitrary, the claim holds for any minimum weight spanning
tree T of G and any weight zero edge e ∈ E.

For an MV network N , we can assume that any cycle C of N contains an optional line. If
not, then C cannot be opened, hence any configuration on N contains C and therefore will
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not be radial. This will never be the case.

Therefore the following adaptation on the method above is suggested. For any edge e ∈ E,
if e is fixed, give e weight zero. Else, give e an arbitrary natural number between 1 and |E|
as weight. Then compute a minimum weight spanning tree of the network. See Figure 7.6.
Now by assumption any cycle in N has an optional edge, so an edge with weight greater than
zero. Therefore by Lemma 7.2, for a minimum weight spanning tree T of N , all edges with
weight zero are contained by T . These are exactly all the fixed edges, as desired.

Figure 7.6: Random Radial Configuration Finder

7.4 Drawback Mixed Integer Linear Programming

Although the idea behind the Mixed Integer Linear Programming algorithm seems very
promising, the implementation of this method causes serious problems. For this project,
two different ”R” packages for solving mixed integer linear programs were tried for the imple-
mentation, namely ”lpSolve” ([27]) and ”Rglpk” ([28]). In both cases, a program was written
that builds the constraint matrix corresponding to constraints (5.16)-(5.36) out of the input
network, in the format desired by the packages. Then the optimization tool was applied to
this matrix, yielding a solution.

In both cases the output for test network 1 was already far from good. If all load busses
in test network 1 have equal power demand, the optimal configuration is clearly reached
when edges 5 and 10 are opened. However, with the first package the output was invariably
to open edge 1 and 5, where the output using the second package never even generated a
radial configuration. And a short test on test network 2 gave similar results.

This failure could be caused by several reasons:

1. Publication [14] contains errors.

2. The method was not implemented properly.

3. The used ”R” packages contain errors.

Reason 1 could be plausible. However, the article is very detailed, hence every substitution
can be followed and checked, and no error has been detected by the author. Reason 2 could
be the cause as well. But again, exhaustive investigation of the implementation as well as
re-implementing the method did not give any positive results. Furthermore, e-mails were send
to the authors of [14], but no useful reactions were received at the time of writing this report.
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Reason 3 does not seem likely, since two different, independent packages were used.

So a well-working state of operation of MILP was not achieved in this project. As a con-
sequence, the Mixed Integer Linear Program algorithm has been abandoned for further in-
vestigation in this project, and will no longer be taken into account as a candidate for solv-
ing/approximating LRRP.
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Chapter 8

Results and Conclusions

After the implementation procedure, four candidate algorithms remained, besides the Greedy-
Shifting algorithm from “Vision”: the Greedy-Demeshing algorithm, the Harmony Search
Algorithm (cycle basis version), the Genetic Algorithm (cycle basis version) and the Brute
Force Calculation. These algorithms were tested and compared to each other on several net-
works, in order to find which algorithm is most suitable for the MV networks under Liander
management.

In this chapter, the results of these tests will be shown, and the conclusions that are based on
these results will be stated. In section 8.1 the test results and conclusions with respect to test
network 2 (Figure 7.2) will be discussed. After this, the (remaining) implementations were
tested on a part of the MV network of the Dutch town of Zaltbommel, a network consisting
of 211 nodes and for which good “R” data were available. Based on these results a final
method was determined, which happens to be a combination of two algorithms. This will be
described in Section 8.2. However, the data of Zaltbommel were not available in “Vision”, so
these results could not be compared to the Greedy-Shifting method or to the current config-
uration. Therefore, a final comparison was executed on the MV network of the Dutch city of
Zaandam and the Dutch island Texel. The MV network of Zaandam contains 408 nodes and
8 slack busses, and the MV network of Texel is a single slack bus network with 228 nodes.
Moreover, these networks are simulated in detail in “Vision”, so this gave a good opportunity
to compare the final method with the existing tool in “Vision”, and to investigate the current
configurations in these nets. Moreover, this gave a nice challenge to turn “Vision” data into
“R” data, which was handled successfully.

8.1 Test Network 2: Drawback Brute Force Calculation

Test network 2 (see Figure 7.2) was used to test the correctness of the implementation during
the process, but also for comparing the different algorithms. For this, the following artificial
values were added to the network, which were randomly chosen:

• Node 1 is the slack bus, with voltage magnitude 10000V and angle 0◦.

• The other nodes are load busses, with active power demand 10000W and reactive power
demand 12000VAr.

• All lines have impedance 1 + j0.1Ω.
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• The optional lines are lines 1, 9, 10, 12, 16, 17, 19, 21, 22, 24, 26, 27, 29, 31, 33, 34,
37, 39, 40, 42, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, and 60. These were
chosen randomly, but evenly spread over the network.

• Capacities are chosen wide, voltage magnitudes between 0V and 10000V for every node,
current magnitudes under 1000A for every line.

The Brute Force Calculation gave as output a list of the 20 best configurations, which can be
found in figure 8.1.

Each row represents a feasible configuration, namely those edges that are opened in this

Figure 8.1: Output Brute Force Calculation on Test Network 2

configuration, followed by the total power loss in this configuration. So the total power loss
in this network under the above circumstances is minimized at 11894W, since the Brute
Force Calculation considers all feasible configurations. However, the running time critically
decreases the status of the Brute Force Calculation, since this calculation took over 50 hours.

Applying the Greedy-Demeshing algorithm to the network with the above data, a configura-
tion was returned in which a power loss was achieved of 12693W. Note that this configuration
does not belong to the 20 best configurations, since the power loss is over 250W above num-
ber 20 in Figure 8.1. However, the running time of the Greedy-Demeshing algorithm on this
network situation is less than a second, which is fast.
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The Harmony Search Algorithm and the Genetic Algorithm are non-deterministic algorithms,
hence will not always give the same configuration as output. Moreover, both algorithms con-
tain parameters which can be tuned (such as the harmony consideration rate, the cross-over
rate and the population space) and will affect the performance and (for the population space,
the memory space and the number of iterations) the running time of the algorithms. Several
combinations of values for these parameters were applied to the algorithms and tested on
the described network situation a 100 times. Based on maxima, minima and averages, the
optimal values for the parameters were determined. The complete test results will not be
shown here, but the optimal values that are found will be given now:

• For the Harmony Search Algorithm:

– Harmony memory space = 10

– Harmony memory consideration rate = 0.75

– Pitch adjustment rate = 0.1

• For the Genetic Algorithm:

– Population space = 10

– Cross-over rate = 0.7

– Initial mutation rate = 0.15, final mutation rate = 0.05, and mutation rate step
size = 0.004

With the parameters chosen as above, the best results were achieved. Note that the number
of iterations cannot be optimized: A higher number of iterations always results in better
output, but also in larger running-time. So this parameter will remain as a free variable,
which can be decided by the user based on the time that is affordable for the computation.
The test results achieved when using the above parameter values can be found in Figure 8.2,
for 500 iterations and for 1000 iterations. Note that in the Genetic Algorithm a construction
of a new generation takes 10 iterations, hence 50 and 100 generations are constructed here.

As can be seen, both algorithms mostly give better results than the Greedy-Demeshing

Figure 8.2: Results 100 times GA and HSA on test network 2 with best found parameters

algorithm. Moreover, with 1000 iterations HSA scored better than GD every time. But the
running time has to be taken into account as well; for 500 iterations both HSA and GA need
around 10 seconds for one computation, and for 1000 iterations around 20 seconds.

Based on therunning times, the Brute Force Calculation does not seem a good method for
reducing the power loss in Dutch MV networks. If we take into account that the running
time of the algorithm scales badly with the size of the input network, the time needed when
Zaltbommel or Zaandam is used as input will be far from practical, even if the algorithm is
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speeded up or if better computers are used. To give an example, the number of edge-open
combinations to be considered for Zaandam, with a cycle basis constructed by Horton’s al-
gorithm, is around 1.6 × 1046. Even if every iteration would take the same amount of time
(which is absolutely not the case), the time needed for Zaadam would be over 504 = 6250000
hours. Therefore we abandon this method as a candidate, and we will no longer consider it
in our tests and comparisons.

A slight difference can be seen between the results from the Harmony Search Algorithm and
the Genetic Algorithm. Overall the first scores a little bit better than the second. However,
this difference is too small to base conclusions on, so none will be made at this point.

8.2 Zaltbommel: Combining Algorithms

To check if the remaining methods are suitable for big, realistic networks, they were tested
on a part of the MV network of Zaltbommel, a Dutch town. See Figure 8.3. This subnetwork
contains 211 nodes with one slack bus, several synchronized generators (hence load busses
with negative demand) and load busses. There are 221 links and cables, which means that
11 of them have to be opened for radiality.

The network data for Zaltbommel, connectivity, impedances, capacities and power profiles

Figure 8.3: Zaltbommel and a schematic rendering of the MV net (”Vision”)

for the nodes are available as “R” data, which makes this network very suitable as testing
network for this project. For the comparison, three scenarios were made for the network,
with different power supplies and demands at the load busses, based on the profiles. To these
scenarios, the Greedy Demeshing algorithm was applied, resulting in a specific configuration
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for each scenario. After this, the Harmony Search Algorithm and the Genetic Algorithm were
both applied twenty times to each scenario, each computation consisting of 2000 iterations.
During the processes, after every hundred iterations, the power loss of the best configuration
so far was saved. When all computations were executed, for each scenario and each batch
of hundred iterations, the average of the twenty HSA computations were calculated and for
the twenty GA computations as well. The results for scenario 1 can be found in Figure 8.4.
Similar graphs for scenario 2 and 3 can be found in the appendix.

The results from scenario 1, 2 and 3 show similar and very clear results: HSA shows
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Figure 8.4: results testing on Zaltbommel, scenario 1

better performance in general in the first few hundred iterations. However, the decrease of
the minimal power loss becomes smaller much faster than by GA. And at some point, after
at most 1500 iterations, GA shows better results. When we take GD into account as well,
it turns out that HSA scores badly on improving the power loss once it reaches losses lower
than the loss found by GD. GA, on the other hand, seems to have no problems with this at all.

We are also interested in the running time of the algorithms. The computation of the Greedy
Demeshing algorithm for this network with these scenarios is under 10 seconds. On the other
hand, the time needed for the Harmony Search Algorithm and the Genetic Algorithm to finish
2000 iterations for the three situations is between 6 and 6.5 minutes. And the time needed
for these two algorithms is about linear with the number of iterations.
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At this point, the idea arose to combine the fast, deterministic Greedy-Demeshing algo-
rithm with the slower meta-heuristic algorithms. For both HSA and GA an initial mem-
ory/generation is created at the start of a computation. Then around 1000 to 1500 iterations
are needed to reach results similar to GD. What if we first compute a starting configuration
with GD, and then put this configuration in the initial memory of a HSA computation/ initial
generation of a GA computation. These two combinations were implemented and tested on
the three scenarios of the Zaltbommel subnetwork as well, and the results can be found in
Figure 8.5 for scenario 1, and in the appendix for scenario’s 2 and 3. For scenario 1, these re-
sults are plotted, together with the results of the single algorithm computations, in Figure 8.6.
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Figure 8.5: results testing on Zaltbommel, scenario 1

We can see that the combined algorithms start with similar behaviour at iteration 0 as
the single algorithms somewhere between iteration 1000 and 1500. Clearly adding a good
configuration found by a quick computation of GD can speed up HSA and GA extremely by
making the first 1000/1500 iterations otiose. Furthermore, the observations made earlier are
confirmed as well: The Genetic Algorithm decreases the minimal power loss found much faster
than the Harmony Search Algorithm under the results of the Greedy-Demeshing algorithm.
Based on these results and observations, a final method for a program that approximates
LRRP is proposed, which will be described in the next section.
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Figure 8.6: results testing on Zaltbommel, scenario 1

8.3 Proposal for a Final Method

Based on the results on test network 2 and on a subnetwork of Zaltbommel, a final method is
proposed that finds for an MV network a configuration with small total power losses. After
the implementation procedure and the testings on test network 2, the Greedy-Demeshing
algorithm, the Harmony Search Algorithm and the Genetic Algorithm remained as serious
candidates. The Greedy-Demeshing algorithm gives a good result in a relatively short time,
but as can be seen in the testings on Zaltbommel, the Harmony Search Algorithm and the
genetic Algorithm can improve this once enough iterations are executed. However, by com-
bining GD with HSA and GA, the same results can be achieved in a much smaller number of
iterations. Therefore, such a combination will be proposed as the most suitable method for
approximating the Loss Reduction Reconfiguration Problem.

On the subnetwork of Zaltbommel it was clear that the improvement speed of the Harmony
Search Algorithm decreased faster than that of the Genetic Algorithm. As a consequence,
GA finds better configurations than HSA in less iterations. Therefore, the combination of
the Greedy-Demeshing algorithm with the Genetic Algorithm is proposed as final method,
the most suitable algorithm for finding feasible configurations of a network with small power
losses. With this method, for an input network, first this network is adapted as described in
Chapter 6. Then the Greedy-Demeshing algorithm quickly computes a starting configuration
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of the network, as described in Section 5.2. This configuration forms the basis of generation
0 of the Genetic Algorithm, which is described in Section 5.4. With the method from Section
7.3, generation 0 is filled with randomly generated configurations. Then a cycle basis of the
network is computed based on Horton’s Algorithm, see Section 7.2. With the cycles in this
basis as genes, new generations are build out of generation 0. When a (user determined)
maximum number of iterations is reached, the algorithm stops and returns the best (or a
number of best) configuration(s) found. See Figure 8.7.

Some additional features can be added to this algorithm. Suggestions are:

Figure 8.7: Final Method for solving LRRP

• Normally a user might have a reasonable guess for good configurations, for instance the
actual configuration, if it exists. Such a guess could be used for generation 0 as well as the
output of GD. This would make generation 0 even better, probably resulting in better
performance. Therefore a feature that makes this adding possible seems preferable.

• For some links or cables it might be preferable/necessary that they are opened. Others
might be needed to be closed. A useful feature would be the option to add this infor-
mation to the input. This narrows the search space and makes it more likely that the
output configuration is actually a suitable configuration.

• The method could also be used for planning future connections in an MV net. If
a number of possible connections is present, of which only a small number can be
executed, one would like to know which connection has the best impact. By adding all
these connections to the input data of the existing network, with realistic impedances
and capacities, one could see which of the possible connections is actually used in the
output configuration. These are the connections that would make power loss reduction
possible.

• As mentioned in Chapter 1, Liander is not only interested in which configuration mini-
mizes the power loss, but also for instance which configuration is most reliable, or has the
best power balance. The Genetic Algorithm is very suitable for changing the objective
function. And if line currents or nodal voltages/currents are needed for this objective
function (which is the case for the examples), the Genetic Algorithm is probably even
relatively fast approximation algorithm. In case of the Greedy-Demeshing algorithm,
this transition to other objective functions is a bit more complex. The idea behind GD
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is that the situation is at its best if all edges are closed, and by opening the right edges,
this situation is effected as little as possible. For reliability and power balance this is
not immediately clear, and this is beyond the scope of this project.

8.4 Texel and Zaandam: Performance of the Final Method

For the subnetwork of Zaltbommel that was used to test and compare the different methods,
no good “Vision” data is available. Hence no good comparison could be made of the final
method with the power losses in current configurations or in configurations resulting from the
“Vision” tool, based on the Greedy-Shifting method. However, for an area of North-Holland,
good “Vision” data is available. For two networks, of the island Texel (228 nodes, 1 slack
bus) and the city Zaandam (406 nodes, 8 slack busses), this data was transformed in “R”
data suitable for the final method. This made it possible to compare the results of the final
method with actual power losses and with the “Vision” tool. See Figure 8.8.

Figure 8.8: The MV network in Texel (left) and Zaandam (right) (”Vision”)

Figure 8.9 shows the results of this comparison. On Texel a power loss reduction of 15%
can be established, and in Zaandam almost twice as much, 27%. This difference is probably
caused by the number of slack busses in the networks. The network of Texel contains one slack
bus, where the network of Zaandam contains eight slack busses. Moreover, the (adapted, as
described in Chapter 6) network of Zaandam admits a cycle basis of 49 cycles, where in Texel
this number is 23. This makes the network of Zaandam far more complex than the network
of Texel, with a much larger search space.

As can be seen in Figure 8.9, the final method gives much better results than the “Vision”
tool. Furthermore, in the network of Zaandam several line currents exceed the corresponding
capacities in the configuration suggested by this tool. We conclude that the final method is
highly preferable over the existing “Vision” tool.
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Figure 8.9: Results comparing on Texel and Zaandam

These results need to be nuanced. The final method is, as all the implemented algorithms,
suitable for computing a good configuration based on one specific power demand/supply pat-
tern in a network. However, in a network, the power demands and supplies normally vary in
time. So an optimal configuration on one moment could be a bad configuration on another
moment. More general, the power loss for a specific configuration normally varies in time.
The results in Figure 8.9 are based on one specific power demand/supply pattern, namely
25% of the maximal load pattern. With this pattern, a power loss reduction of 15% and
27% can be established, but the reduction over a day, a month or a year is probably less.
Nevertheless, considered that power losses in MV networks in 2014 led to 747.570.000 tons of
CO2 emission and costs of 40 million euros ([29]), even if a quarter of the results in Figure
8.9 can be established in reality, serious profits could be achieved. We conclude that the
suggested final method forms a good fundament for creating a computer program usable in
real situations for reducing power loss in the MV networks.
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Chapter 9

Discussion

The final method for approximating the Loss Reduction Reconfiguration Problem as it is de-
veloped now, is believed to be capable to function as a basis for a network planning program.
This holds especially for future situations, when a network can be reconfigurated quickly from
one central point. Then any time the situation in the network changes, the new voltages and
power supplies/demands can be used as input and the method will approximate the optimal
configuration for this situation.

Because of the improvement described in Chapter 6, the method can be used for any kind
of MV network, single- and multiple slack bus networks. This is a huge improvement with
respect to existing algorithms, especially since the improvement is very general, and can be
applied to any other algorithm for LRRP, even new ones. Therefore, this supports future
innovation in this field, since with this method an algorithm for single slack bus networks is
immediately an algorithm for multiple slack bus networks.

As claimed in Chapter 1, the adaptability of the final method to other objectives is taken
into account as well. For the Greedy-Demeshing algorithm, this cannot be ensured in general,
since this algorithm is based on the fact that the underlying, meshed structure of a network
is optimal for the objective. This is the case for minimizing power loss, but it is probably
not for every other objective. However, in the final method the Greedy-Demeshing algorithm
serves only as a ‘kick start’ for the Genetic Algorithm. This greatly improves the perfomance
of the method, but it is not indispensable. And the Genetic Algorithm on the other hand, is
suitable for any other objective function in where the line currents and/or the nodal voltages
in a configuration are needed (note that if these values are not necessary, then the demand
constraint becomes futile and we consider a totally different problem). Indeed, we can simply
change the fitness function in the Genetic Algorithm without adjusting anything in the pro-
cess of the algorithm. Results in Chapter 8 show that this process based on evolution is the
most suitable one among all the considered precesses and algorithms for searching optimal
configurations. This probably does not change when the objective function changes.

It should be noted that by other objectives as mentioned above we understand objectives
for networks in well-working operation state, so when no unisolated faults are present. An
interesting question would be whether the final method could also function as a good basis
for a program which can support by isolating a fault in a network and restoring the service
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in this network. In this case, the objective function could be to restore service to as much
consumers as possible in as little switch exchanges as possible. Or maybe even, in case of
multiple possible reconfigurations for fault isolation and service restoration, to find among
these reconfigurations the one with minimal power loss, or optimal load balancing, etcetera.
This question goes beyond the scope of this thesis, and is not investigated.

As mentioned above, the final method is capable of serving as a good basis for a supportive
program for netplanning activities, also for today. However, some adjustments or extensions
are needed in order to achieve this. The main shortcoming of the method as it is now, is that
it is only able to approximate the optimal configuration for one specific moment, in where
to power demands/supplies and the voltages are constant. However, openening or closing a
switch today has to be executed on location by a professional engineer, hence reconfigurating
a network is a time consuming activity. Moreover, today switches are mechanical instruments
which can only be switched a limited number of times before they crash. Therefore, it is
desirable for present-day usage that an optimal configuration for a certain period instead
of a moment is approximated, for instance for a day or a season. This desired extension is
adopted as future work. However, it should be noted that this disadvantage also holds for
the existing tool in “Vision” based on the Greedy-Shifting algorithm. So the final method
remains superior over this tool.

Another shortcoming for operation is the running time. As can be found in Chapter 8,
the final method takes several minutes for an MV network, but this must be reduced to sec-
onds to make this interesting as a tool for network architects, especially in future situations.
However, by using more powerful computers and improving the implementations of the algo-
rithms, this seems achievable. This is another essential part of future work.

What makes the final method so suitable as a supportive tool for planning activities is that
it can easily return not just one configuration, but the ten best configurations found can also
be returned, or even the hundred best. This is highly advantageous over other algorithms,
including the existing tool in “Vision”, since in reality there are numerous practical limita-
tions for network reconfigurations. Lines with switches which cannot be switched because
the switch is currently unreachable or is broken, are not uncommon. Therefore the best con-
figuration found could be impractical to execute, so it is useful to have other good alternatives.

Mathematical options for improvement are present as well. As argued in Chapter 7, it was
not achieved to get a well-working implementation of the Mixed Integer Linear Programming
algorithm. It could be that this algorithm is capable of better performance than the final
method. However, this algorithm is also deterministic, so it will always return one and the
same configuration for a specific network. Moreover, MILP does not seem suitable for other
objectives as well. So these disadvantages with respect to the final method will certainly
remain. However, maybe MILP could function as a better kickstarter than the Greedy-
Demeshing algorithm, or maybe using both gives even better results. Therefore, it would still
be useful to attain a well-working implementation of MILP.

Also the semi-ear decomposition versions of the Genetic Algorithm and the Harmony Search
Algorithm were abandoned, based on mathematical grounds. But the author does not ex-
clude the possibility that these versions could be improved. For instance, a method that could
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decide which orders of a cycle basis give enough semi-ear decompositions to cover all possible
radial configurations would make these versions interesting again. Especially if the number
of order needed remains practical.

Another point of improvement that follows from Chapter 7 is that we actually want a cycle
basis of a network that minimizes the sum of the pairwise intersections of the cycles. Horton’s
algorithm however, only gives a cycle basis in where the sum of the length of the cycles is
minimized. Although an optimal basis for the second problem is often also an optimal basis
for the first problem, this is not always the case. Hence this desire remains open as well.

However, the last two improvements become futile if another, more fundamental question is
solved, based on Propositions 3.5 and 3.8. These propositions show a frustrating phenomenon
for finding a radial configuration of a network. We have a method based on Proposition 3.5
which can construct any radial configuration of the network, only also non-radial configu-
rations can occur with this construction. On the other hand, we have a method based on
Proposition 3.8 that only constructs radial configurations. However, not all radial configura-
tions can be constructed in this way. An extremely desirable result would be a method which
can construct a configuration if and only if this configuration is radial. Implementing such a
method in the Genetic Algorithm replaces the need for checking a configuration to be radial,
making the algorithm more fundamental and faster.

One last point of discussion should be attended. The Genetic Algorithm contains several
parameters, which are now tuned with test network 2. It is possible that the resulting val-
ues are no longer a good approximation of the optimal parameters for realistic networks.
Therefore, finetuning on a real network could lead to better performance. Moreover, in the
implementation of the final method, a very basic version of the Genetic Algorithm was used.
However, the Genetic Algorithm is already an old algorithm, and many versions of this algo-
rithm where developed. It might be that such a more complex version is more suitable for
approximating LRRP. This is an interesting point of future investigation.
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Chapter 10

Future Work

Based on the discussion in Chapter 9, the following subjects are suggested as future work:

• Adapt the method for calculations over a period of time. Now the algorithm returns a
configuration that approximates the optimal solution for one specific moment. However,
we also want to know good configurations for a certain period, for instance a day or a
season.

• Speed up the final method. By using a more powerful computer, but also by imple-
menting the algorithms more efficiently.

• Expand the method to other objective functions. For networks in a well-working state,
but maybe also for networks in where a fault has occured. The second case lead to a
significantly different problem about service restoration, so this will be more complex
than the first case, in where the problem remains almost the same.

• Find a method that constructs every radial configuration of a network, and no more.
This boils down to a desired proposition with a meaning somewhere between Propo-
sition 3.5 and Proposition 3.8, since the former gives a method that finds all radial
configurations but also more, where the latter only finds radial configurations, but not
all.

• Get the Mixed Integer Linear Programming algorithm in a well-working operation state.

• Improve the semi-ear decomposition versions of HSA and GA.

• Find a method that returns a cycle basis of a network in where the sum of the pairwise
intersection lengths of the cycles is minimized.

• Finetuning the Genetic Algorithm and investigating different versions of this algorithm.
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Appendix A

Additional Results on Zaltbommel

The Greedy-Demeshing algorithm, Harmony Search Algorithm and Genetic Algorithm were
tested and compared on Zaltbommel, with three scenarios. Results with the first scenario can
be found in chapter 8. For scenario 2 and 3, the results can be found in the following figures.
Figure A.1 and A.2 give the results of the single algorithms, and figures A.3 and A.4 give the
results of the combined algorithms.
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Figure A.1: results testing on Zaltbommel, scenario 2
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Figure A.2: results testing on Zaltbommel, scenario 3
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Figure A.3: results testing on Zaltbommel, scenario 2
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Figure A.4: results testing on Zaltbommel, scenario 3
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