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Preface

This thesis is about continued fractions and in particular algorithms on continued fractions.

What are Continued Fractions?

Continued fractions are finite or infinite expressions obtained through an iterative process. An infinite
continued fraction can be seen as a limit of finite continued fractions

a0 +
1

a1 +
1

a2 +
1

. . . +
1

ai−1 +
1

xi

.

Continued fractions can be seen as one of the most mathematically natural representations of real num-
bers. Also truncating the continued fraction representation of a real number x yields a rational approxi-
mation with is in a certain sense the best possible rational approximation. This is a huge motivation to
study continued fractions and to develop certain algorithms on continued fractions.

Thesis Format

Chapter 1 - Continued Fractions

As this thesis is about continued fractions a quick introduction to continued fractions is given in this
chapter. This introduction is sufficient for our purposes and references are provided to more rigorous
approaches.

Chapter 2 - Measure and Cantor Sets

One very important element in this thesis is the understanding of Cantor Sets. In this chapter some
theory of these Cantor Sets is developed. The first part gives a technical, but general, definition of Cantor
Sets in such a way that these sets become easy to handle. In the second part of this chapter some general
theorems of sums of Cantor Sets are proved. This chapter is by no means a profound introduction to
Cantor Sets, it only develops the mathematical tools for proving theorems in the next chapters.

Chapter 3 - Hall’s Theorem

In this chapter Hall’s Theorem is proved, i.e.̃that every real number can be written as a sum of two
regular continued fractions with partial quotients less than or equal to 4. In order to prove this one must
observe that the set of all regular continued fractions with quotients less than or equal to 4 is actually
the sum of infinitely many General Cantor Sets. Then it is possible to use the machinery, developed in
chapter 2, to tackle this problem. After that a couple of other problems of the same kind are solved,
such as the one for the Nearest Integer Continued Fractions, using the idea of singularisation, and one
for all Complex Numbers with bounded quotients.
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Chapter 4 - Hall’s Algorithm

In this chapter a special algorithm, named after Marshall Hall, is given, to do the following. Given a
(complex) continued fraction

x = [a0; e1/a1, e2/a2, e3/a3, ...]

and a Möbius transformation

M =

(
a b
c d

)

with a, b, c, d ∈ Z (or Z[i]) such that |ad− bc| > 0, this algorithm gives an efficient way for calculating

y = Mx =
ax+ b

cx+ d
= [b0; f1/b1, f2/b2, f3/b3, ...].

The chapter closes with calculating an explicit example for Regular Continued Fractions.

Chapter 5 - Applications

In this chapter two applications of the theory developed in Chapter 3 and Chapter 4 are discussed.
First an explicit algorithm is given to calculate, given a real number x, two elements a, b with quotients
between 1 and 4 such that x = a + b. Second, a connection is given between Hall’s theorem, described
in Chapter 3, and Hall’s Algorithm described in Chapter 4.

Chapter 6 - Drawing Nice Pictures

As will be seen throughout this thesis a lot of fractals appear. Drawing these Fractals cost a lot of
computation time. In this chapter an algorithm is given for drawing these Fractals. This chapter does
not contain a lot of mathematical content, however it might be still interesting to read. The author
thinks that GiNaC is a very interesting tool to work with and someone interested in Computer Algebra
would at least have to read this section of GiNaC.
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Notations & Basic definitions

This thesis starts with some useful notation.

Z>0,Z,Q, R and C denote the sets of all positive integers, integers, rational numbers, real numbers and
complex numbers respectively. Z[i] denotes the set of the Gaussian integers, hence

Z[i] = {a+ bi ∈ C : a, b ∈ Z}. (1)

Inclusion of sets is denoted by ⊆. We reserve ⊂ for strict inclusion. So A ⊂ B means that A ⊆ B and
that A 6= B.

Let n be a natural number. The set of all invertible n by n matrices over Z is denoted by GLn(Z).

If a, b ∈ Z, then (a, b) is used for the greatest common divisor of a and b. If n ≥ 3 and a0, a1, ..., an ∈ Z,
then (a0, a1, ..., an) is defined recursively as

(a0, a1, ..., an) = (a0, (a1, a2, ..., an)).

Let x, y, z ∈ R, then x, y ≤ z means x ≤ z and y ≤ z. x ≥ y, z, x, y,< z, x > y, z, x < y < z and
x ≤ y ≤ z are defined similar.

If a, b, c ∈ C, where a 6= 0, then the solution of

ax2 + bx+ c = 0

is

x =
−b±

√

b2 − 4ac

2a
.

This formula is called the abc-formula .

The map µ is reserved for the Lebesgue-measure on the real number line.
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Chapter 1

Continued Fractions

Figure 1.1: CCF1(0) in the complex square [−1, 1]× [−i, i].

This is a quick introduction to continued fractions. For a more rigorous approach see [RS92] and [Sch80].
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1.1 Regular Continued Fractions

Definition 1.1.1. Every x ∈ R\Q has a unique regular continued fraction expansion of the form

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a0; a1, a2, a3, ...]

where a0 ∈ Z is the integer part of x and where an for n > 0 is a positive integer. These an are called
the partial quotients or simpler quotients.

If x ∈ Q, then a regular continued fraction expansion of x is finite. There are exactly two finite expansions
of x, one of them ending with a 1. Writing x = p

q
, the expansion is obtained from Euclid’s algorithm to

find the greatest common divisor of p and q. A finite expansion of x is

x = [a0; a1, ..., ai−1, xi] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

ai−1 +
1

xi

hence pn

qn
converges to x. where a0 is the integer part of x, aj where j < i are positive integers and xi is

the i-th fractional part of x.

Definition 1.1.2. The regular continued fraction operator T is defined by

T : [0, 1) → [0, 1) : x 7→ 1

x
−
⌊
1

x

⌋

,

where ⌊y⌋ is the integer part of y. To find the continued fraction of x one puts

T0 = x,

T1 = T (T0),

T2 = T (T1) = T 2(T0),

...

and then defines the partial quotients of x by

a0 = ⌊x⌋ , an =

⌊
1

Tn−1

⌋

, n ≥ 1.

Then [a0; a1, a2, ...] converges to x.

Definition 1.1.3. Define the following recurrence relation for pn and qn, where n ≥ 1:

p−1 = 1, p0 = 0, pn = anpn−1 + pn−2

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2.

These pn and qn have the property that

pn
qn

= a0 +
1

a1 +
1

a2 +
1

a3 + · · ·+ 1

an
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So that pn

qn
converges to x as n → ∞. The following two facts are known for n ≥ 1:

∣
∣
∣
∣
x− pn

qn

∣
∣
∣
∣
<

∣
∣
∣
∣
x− pn−1

qn−1

∣
∣
∣
∣

and

∣
∣
∣
∣
x− pn

qn

∣
∣
∣
∣
<

1

q2n

for every n ≥ 0.

In 1798 Legendre proved the following result.

Theorem 1.1.4. For every x ∈ R, If p, q ∈ Z, q > 0, and gcd(p, q) = 1, if

∣
∣
∣
∣
x− p

q

∣
∣
∣
∣
<

1

2q2

then p = pn(x) and q = qn(x), for some n ≥ 0.

Legendre’s Theorem is one of the main reasons for studying continued fractions, because it tells us
that good approximations of irrational numbers by rational numbers are given by continued fraction
convergents.

1.2 Nearest Integer Continued Fractions

The nearest integer continued fraction (NICF) is a real continued fraction which allows negative integers
as partial quotients. Instead of rounding down, the algorithm to calculate the NICF of a real num-
ber x rounds to the nearest integer. In the case of a tie, it rounds to the smallest integer. For this
the notation ⌊x⌉ is used. Thus ⌊2.5⌉ = 2 and ⌊−2.5⌉ = −3. So, the algorithm to find the nearest in-
teger continued fraction of x is equal to the one in Definition 1.1.2 and uses a0 = ⌊x⌉ and an+1 = ⌊xn+1⌉.

Because negative quotients can occur in the NICF expansion the following notation is used. Every
irrational number x can be expanded in a NICF as

x = [a0; e1/a1, e2/a2, e3/a3, ...] = a0 +
e1

b1 +
e2

b2 +
e3

b3 + ...

where b0 ∈ Z, ei = ±1 and bi ∈ Z>1.

Theorem 1.2.1. For every n ≥ 1 one has en+1 + bn ≥ 2.

For a good reference on this see ??. If ei = 1 then it will be omitted usually. For example [1; 2,−1/3, 4, 2,−1/4, ...]
is written instead of [1; 1/2,−1/3, 1/4, 1/2,−1/4, ...]. In Chapter 4 the ei are ommited for simplicity,
therefore the example above would become [1; 2,−3,−4,−2, 4, ...].

1.3 Complex Continued Fractions

The complex continued fraction can be defined in various ways. One of the ways known at this moment
is due to Asmus Schmidt [Sch75]. It gives the best approximations by ratios of Gaussian integers [Hen06,
p.67], but the link with real continued fractions is not immediately clear. An algorithm which still gives
good approximations, and is a direct extension of the nearest integer continued fraction is the Hurwitz

Continued Fraction [Hur]. To get the Hurwitz continued fraction (HCF) of a complex number x, take
the nearest integer, only now, it is a Gaussian integer. In case of a tie the same rules as for the NICF-
expansion are extended to the complex plane, hence ⌊−2.5⌉ = −3, ⌊2.5 − 3.5i⌉ = 2 − 4i. The complex
plane can then be divided into squares that show which complex numbers round to a specific Gaussian
integer.
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1.4 Some General Theorems

The following theorems hold for the regular, nearest integer and Hurwitz continued fraction.

Theorem 1.4.1. For every x ∈ Q there is a finite continued fraction such that x = [a0; . . . , an].

Theorem 1.4.2. Let x = [a0; a1, a2, ...] and pn, qn defined as in Definition 1.1.3. Then for every k ≥ 0

pkqk−1 − pk−1qk = (−1)k−1. (1.1)

In addition, for all k ≥ 0, let

pk
qk

= [a0; a1, a2, ..., ak], and ζ = ζk+1 = [ak+1; ak+2, ak+3, ...], (1.2)

then

x =
pkζ + pk−1

qkζ + qk−1
. (1.3)

A Möbius transformation of a complex number z is a function of the form y = az+b
cz+d

with a, b, c, d
(complex) integers, and ad − bc 6= 0. A few simple Möbius transformations on some expansions can
easily be deducted by hand, for example multiplication by −1 or i:

−1 · x = −a0 +
− 1

x1
= −a0 +

1

−x1

i · x = ia0 +
i

a1 +
1

x2

= ia0 +
1

−ia1 +
− i

x2

= ia0 +
1

−ia1 +
1

ix2

Obviously, multiplication by −1 is different for the regular continued fraction, because only the first
partial quotient can be negative.

Another simple one is addition by an integer. If k is an integer, then [a0; a0, a2, . . .]+k = [a0+k, a1, a2, . . .].
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Chapter 2

Cantor Sets

Figure 2.1: CCF2(0) in the complex interval [−1, 1]× [−i, i].

One very important element in this thesis is the understanding of Cantor Sets. In this chapter some
theory for these Cantor Sets is developed. The first part gives a technical, but general, definition of
Cantor Sets in such a way that these sets become easy to handle. The second part of this chapter proves
some general theorems of sums of Cantor Sets. This chapter is by no means a profound introduction
to Cantor Sets, it only develops the mathematical tools for proving theorems in the next chapters. A
curious reader is referred to literature such as [Can83], [Hau14] or [Eng89].
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2.1 Cantor Sets

The Cantor sets where introduced by the German mathematician Georg Cantor in 1883 [Can83]. The
most simple Cantor set is the Cantor ternary set . This set is created by recursively removing the open
middle thirds of a set of line segments. One starts by deleting the open middle ( 13 ,

2
3 ) from the interval

[0, 1], leaving two line segments [0, 1
3 ] and [ 23 , 1]. Next, the open third of each of these remaining segments

is deleted. This process is continued indefinitely. The Cantor ternary set contains all points in the interval
[0,1] that are not deleted at any step in this infinite process.

Figure 2.2: The first six steps of this process.

Of course this process can be done a bit more generally. Let A0 = [a, b] be a closed interval. Then for
a00, a01 ∈ R such that a < a00 < a01 < b one can split A0 in

A0
1 = [a, a00], and A1

1 = [a01, b]

removing the middle open interval (a00, a01). Then again a10, a11, a12, a13 ∈ R can be chosen such that
a < a10 < a11 < a00 and a01 < a12 < a23 < b. Now let A0

1 split in

A0
2 = [a, a10], and A1

2 = [a11, a00],

removing the middle open interval (a10, a11). Also let A1
1 split in

A3
2 = [a01, a12], and A4

2 = [a23, b],

removing the middle open interval (a12, a23). This process is continued infinitely many times.

As a formal technical, but useful, definition.

Definition 2.1.1. Let A ⊆ R be a closed bounded interval. Let {Cn
k ⊂ A : n ∈ Z≥0, k < 2n−1} be open

subintervals of A. Define subsets An
k recursively as follows:

i. A0
0 = A, called the root,

ii. An
2k = {x ∈ An−1

k \Cn
k : ∀c ∈ Cn

k , x < c}, called the left interval of An
k ,

iii. An
2k+1 = {x ∈ An−1

k \Cn
k : ∀c ∈ Cn

k , x > c}, called the right interval of An
k .

In addition suppose that for all n ∈ Zn≥0 and k < 2n also Cn
k ⊂ An−1

k . Then the family of sets
{Cn

k : n ∈ Z≥0, k < 2n} is called Cantor gaps for A. Now a General Cantor Point Set is defined as

L(A, {Cn
k : n ∈ Z≥0, k < 2n}) = A\

⋃

n∈Z≥0

k<2n

Cn
k .

If no confusion is possible L(A, {Cn
k : n ∈ Z≥0, k < 2n}) is written for simplicity as L(A).

It is convenient to see this General Cantor Point Set as a tree as follows.

14



A

A1
0 C1

0 A1
1

A2
0 C2

0 A2
1 A2

2 C2
1 A2

3

A3
0 C3

0 A3
1 A3

2 C3
1 A3

3 A3
4 C3

2 A3
5 A3

6 C3
3 A3

7

mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

��
��

��
��

��
��

�

??
??

??
??

??
??

?

��
��

��
��

��
��

�

??
??

??
??

??
??

?

��
��
��
��
��

++
++

++
++

++

��
��
��
��
��

++
++

++
++

++

��
��
��
��
��

++
++

++
++

++

��
��
��
��
��

++
++

++
++

++

Figure 2.3: The first 3 steps in this process.

Example 2.1.2. The Cantor Gaps of the Cantor Set in Figure 2.2 are now defined as follows. For every
m ≥ 0 and k < 2m − 1

Cm
k =

(
3k + 1

3m
,
3k + 2

3m

)

.

From which the Cantor Set becomes

[0, 1]\
⋃

m≥0

⋃

k<2m−1

Cm
k = [0, 1]\

⋃

m≥0

⋃

k<2m−1

(
3k + 1

3m
,
3k + 2

3m

)

.

Theorem 2.1.3. Let L(A) be a General Cantor Point Set.

i. L(A) is a perfect set in R, i.e.̃the set of all limit points of L(A) is again L(A).

ii. All end points of any one of the subdividing interval Ai
k belong to L(A).

iii. L(A) contains an interval or L(A) is nowhere dense.

iv. The measure µ(L(A)) may be zero or any positive quantity less than the length of A.

Proof. See [Hau14], pp.1̃29-138.

Here a couple of simple definitions are introduced.

Definition 2.1.4. If A,B ⊆ R, then A + B = {a + b : a ∈ A, b ∈ B}. Hence, if A = (x1, x2) and
B = (y1, y2), then A+B = (x1 + y1, x2 + y2). Also A ·B = {ab : a ∈ A, b ∈ B}.

Definition 2.1.5. If A ⊆ R then

l(A) =

{
| sup(A)− inf(A)| if sup(A) and inf(A) exists,
∞ otherwise.

Definition 2.1.6. Let L(A, {Cn
k ⊂ A : n ∈ Z≥0, k < 2n}) be a General Cantor Point Set. Define An

k as
in Definition 2.1.1. Then

ank = l(An
k ) and cnk = l(Cn

k ).
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2.2 Sums of Cantor Sets

The proofs given in this section are based on the proofs given in [Hal47]. They are however completely
rewritten and (all) errors in [Hal47] are corrected.

An interesting question is; given two Cantor sets L(A) and L(B), what is the measure of L(A) + L(B)
(µ(L(A) + L(B)))? In this section this question is answered.

Theorem 2.2.1. Let A,B ⊂ R be closed bounded subsets. Suppose {Cn
k } and {Dn

k} are Cantor gaps
for respectively A and B. If there exists a map r : Z≥0 → R such that for all n ∈ Z≥0 and k < 2n

cnk ≥ r(n)an−1
k , dnk ≥ r(n)bn−1

k

with
∞∏

n=0

(2− 2r(n)) = 0,

then µ(L(A) + L(B)) = 0.

Proof. Let i, k, l ≥ 0. Now Ai
k splits up in Ai+1

2k and Ai+1
2k+1 and similar Bi

l splits up in Bi+1
2l and Bi+1

2l+1.

Remark that if Ai
k +Bi

l contains the whole set L(Ai
k) + L(Bi

l ), then

Ai+1
2k +Bi+1

2l , Ai+1
2k +Bi+1

2l+1, A
i+1
2k+1 +Bi+1

2l and Ai+1
2k+1 +Bi+1

2l+1

cover all of L(Ai
k) + L(Bi

l ). The length of the new intervals is

(ai+1
2k + bi+1

2l ) + (ai+1
2k + bi+1

2l+1) + (ai+1
2k+1 + bi+1

2l ) + (ai+1
2k+1 + bi+1

2l+1)) = 2aik − 2cik + 2bil − 2dil

≤ (2− 2r(i))(aik + bil).

Define

Ti =
2i−1∑

k=0

(l(Ai
k) + l(Bi

k))

Then by the previous remark

Ti+1 ≤
i∏

n=0

(2− 2r(n))T0.

Since lim
∏i

n=0(2− 2r(n)) = 0, it follows that

µ(L(A) + L(B)) = 0.

Remark 2.2.2. Theorem 2.2.1 can be generalized such that if k > 0 and L(A1), L(A2), ..., L(Ak) are
General Cantor sets with Cantor gaps {1Cn

l }, ..., {kCn
l } satisfying

kcnl ≥ r(n)kan−1
l

for all n and l with

∞∏

n=0

(k − kr(n)) = 0,

then µ(L(A1) + L(A2) + ...+ L(Ak)) = 0.

Corollary 2.2.3. Let A,B be closed bounded subsets of R. Suppose {Cn
k } and {Dn

k} are Cantor Gaps
for respectively A and B. If for all n > 0 and k < 2n one has cnk > 1

2a
n−1
k , then

µ(L(A) + L(B)) = 0.
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Proof. Take r(n) = 1
2 + ǫ, where ǫ > 0 and cnk > r(n)an−1

k for all n > 0 and k < 2n. Then for all n > 0

|2− 2r(n)| = |1− 2ǫ| < 1.

Therefore

0 ≤
∣
∣
∣
∣
∣

∞∏

n=0

(2− 2r(n))

∣
∣
∣
∣
∣
≤

∞∏

n=0

|2− 2r(n)| = 0,

hence

∞∏

n=0

(2− 2r(n)) = 0.

Then by Theorem 2.2.1 the measure of L(A) + L(B) is 0.

So if L(A) + L(B) should not be zero, at least the condition

(C1) for every n > 0 and k < 2n one has cnk ≤ an2k, a
n
2k+1 and dnk ≤ bn2k, b

n
2k+1

should be true. The next part of this section will show that condition (C1) is also sufficient.

Definition 2.2.4. Let A = [a1, a2], B = [b1, b2] be two closed intervals and e = min(a2 − a1, b2 − b1).
Then

[A,B] = [a1 + b1, a1 + b1 + 2e],

[A,B] = [a2 + b2 − 2e, a2 + b2].

Lemma 2.2.5. Let A,B ⊂ R be closed bounded subsets, a = l(A), b = l(B). Suppose C and D are
open subsets of A and B. Let

A1 = {a ∈ A : a < c for all c ∈ C}, A2 = {a ∈ A : a > c for all c ∈ C},
B1 = {b ∈ B : b < c for all c ∈ C}, B2 = {b ∈ B : b > c for all c ∈ C}.

and suppose that l(C) ≤ l(A1), l(A2) and l(D) ≤ l(B1), l(B2). Let γ ∈ [A,B] ∪ [A,B], then

1. γ ∈ [A,B1] ∪ [A,B1] or,

2. γ ∈ [A,B2] ∪ [A,B2] or,

3. γ ∈ [A1, B] ∪ [A1, B] or,

4. γ ∈ [A2, B] ∪ [A2, B].

Proof. By symmetry of cases a ≤ b and b ≤ a it suffices to treat the case a ≤ b. Let A = [a1, a2],
B = [b1, b2], then e = a2 − a1. Therefore

[A,B] = [2a1 − a2 + b2, a2 + b2], [A,B] = [a1 + b1, 2a2 − a1 + b1].

Suppose that B1 = [b1, x], B2 = [y, b2]. There are four cases depending on the lengths of the intervals
A, B1 and B2.

i. l(A) ≤ l(B1), l(B2). Then e = a2 − a1 and

[A,B2] = [2a1 − a2 + b2, a2 + b2] = [A,B],

[A,B1] = [a1 + b1, 2a2 − a1 + b1] = [A,B].

This gives case 1 or 2.
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ii. l(A) ≤ l(B1) and l(B2) < l(A). In this case

[A,B1] = [A,B].

But e = a2 − a1 in [A,B1] and e = b2 − y in [A,B2]. This gives

[A,B1] = [2a1 − a2 + x, a2 + x],

[A,B2] = [a2 − b2 + 2y, a2 + b2].

Because of l(A1), l(A2) ≥ l(C) and l(B1), l(B2) ≥ l(D),

y − x = l(D) ≤ l(B2) = b2 − y, so 2y ≤ x+ b2 and therefore a2 − b2 + 2y ≤ a2 + x,

hence the two intervals [A,B1] and [A,B2] overlap. A second observation is that x ≤ b2, hence

2a1 − a2 + x ≤ 2a1 − a2 + b2.

But then

[A,B] = [2a1 − a2 + b2, a2 + b2] ⊆ [2a1 − a2 + x, a2 + b2] = [A,B1] ∪ [A,B2].

Which gives case 1 or 2.

iii. l(B1) < l(A) and l(A) ≤ l(B2). This problem is dual to case ii. That is

[A,B] = [A,B2], and [A,B] ⊆ [A,B1] ∪ [A,B2]

and again this is of the form 1 or 2.

iv. l(B1) < l(A), l(B2) < l(A). Since x− b1 ≥ y − x in this case l(A) > y − x and

3l(A) > (x− b1) + (y − x) + (b2 − y) = b2 − b1 = l(B).

Therefore 3a2 − 3a1 ≥ b2 − b1, yielding

2a1 − a2 + b2 ≤ 2a2 − a1 + b1.

But that means that A+B = [A,B] ∪ [A,B]. It is useful to look at the four intervals

[A,B1] = [a1 + b1, a1 − b1 + 2x],

[A,B2] = [a1 + y, a1 + 2b2 − y],

[A,B1] = [a2 + 2b1 − x, a2 + x],

[A,B2] = [a2 − b2 + 2y, a2 + b2].

Now note the following.

a. [A,B1] and [A,B2] overlap, because

x− b1 ≥ y − x, so 2x− b1 ≥ y and thus a1 − b1 + 2x ≥ a1 + y.

b. [A,B1] and [A,B2] overlap, because

b2 − y ≥ y − x, so x ≥ 2y − b2, and thus a2 + x ≥ a2 − b2 + 2y.

c. Because x− b1 ≥ y − x, b2 − y ≥ y − x and l(B) = (x− b1) + (y − x) + (b2 − y) one has

3l(B1) ≥ l(B) or 3l(B2) ≥ l(B).

If 3l(B1) ≥ l(B), then [A,B1] and [A,B1] overlap, because l(A) ≤ l(B) by assumption:

a2 − a1 ≤ b2 − b1and so ≤ 3(b1 − x), a2 + 2b1 − x ≤ a1 − b1 + 2x.

If 3l(B2) ≥ l(B), then [A,B2] and [A,B2] overlap, because l(A) ≥ l(B) by assumption:

a2 − a1 ≤ b2 − b1and so ≤ 3(b2 − y), a2 − b2 + 2y ≤ a1 + 2b2 − y.
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Hence γ lies in one of those four intervals.

This proves the lemma.

Theorem 2.2.6. Let A = [a1, a2], B = [b1, b2] be closed bounded subsets or R, where a = a2 − a1 and
b = b2 − b1. Suppose {Cn

k } and {Dn
k} are Cantor Gaps for A and B, respectively. In addition suppose

that condition

(C1) for every n > 0 and k < 2n one has cnk ≤ an2k, a
n
2k+1 and dnk ≤ bn2k, b

n
2k+1,

is satisfied.
Define e = min(a, b), then

L(A) + L(B) = [A,B] ∪ [A,B] = (a1 + b1, a1 + b1 + 2e) ∪ (a2 + b2 − 2e, a2 + b2).

Proof. Obviously L(A) + L(B) ⊆ [A,B] ∪ [A,B].

Suppose that γ ∈ [A,B] or γ ∈ [A,B]. By Lemma 2.2.5 there exists a shrinking sequence

(A1, B1), (A2, B2), (A3, B3), ...

where for all i, j > 0, Ai+1 ⊆ Ai, Bj+1 ⊆ Bj and there are m,n, k, l > 0 such that Ai = Am
k , Bj = An

l .
In addition, for every i > 0

γ ∈ [Ai, Bi], or γ ∈ [Ai, Bi].

There are two cases.

i. limi→∞ l(Ai) = 0 and limj→∞ l(Bj) = 0. Take in this case

α = lim
i→∞

max(Ai), β = lim
j→∞

max(Bj).

Then α ∈ L(A), β ∈ L(B) and γ = α+ β.

ii. limi→∞ l(Ai) = s 6= 0 or limj→∞ l(Bi) = t 6= 0. Suppose first that t > s. There there are i, j > 0
such that Ai = [a1, a2], l(Ai) = s and Bj = [b1, b2], l(Bj) = t. By Lemma 4.1.10 the sequence
(A1, B1), (A2, B2), (A3, B3), ... could have been taken such that Bj cannot be split up anymore, i.e.
Bj ⊆ L(B). Hence γ ∈ Ai +Bj = [a1 + b1, a2 + b2].

1. If a1 + b1 ≤ γ ≤ a1 + b1 + t, take α = a1 and β = γ − a1.

2. If a1 + b1 + t ≤ γ ≤ a2 + b2, take α = a2 and β = γ − a2.

In both cases α ∈ L(A), because α is an endpoint of interval Ai, and β ∈ L(B). But then also

γ = α+ β ∈ L(A) + L(B).

Next suppose that t = s. Then there are i, j > 0 such that l(Ai) = t = l(Bj). By Lemma 2.2.5
Ai and Bj could have been taken such that they cannot be split up anymore, i.e. Ai ⊆ L(A) and
Bj ⊆ L(B). But then

γ ∈ Ai +Bj ⊆ L(A) + L(B).

Corollary 2.2.7. Assume the same setup as in Theorem 2.2.6. Also suppose that the following condition
holds:

(C2) 1
3 ≤ a

b
≤ 3.

Then

L(A) + L(B) = A+B.
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Proof. Because 1
3 ≤ a

b
also b ≤ 3a and a

b
≤ 3 implies that a ≤ 3b. Therefore

(a2 − a1) + (b2 − b1) ≤ a+ b ≤ 4a,

(a2 − a1) + (b2 − b1) ≤ a+ b ≤ 4b.

Hence

(a2 − a1) + (b2 − b1) ≤ 4e.

Rearranging the symbols gives

a2 + b2 − 2e ≤ a1 + b1 + 2e.

Now applying Theorem 2.2.6 gives

L(A) + L(B) = (a1 + b1, a1 + b1 + 2e) ∪ (a2 + b2 − 2e, a2 + b2) = (a1 + b1, a2 + b2) = A+B.
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Chapter 3

Hall’s Theorem

Figure 3.1: CCF3(0) in the complex interval [−1, 1]× [−i, i].

In this chapter Hall’s Theorem is proved, i.e.̃that every real number can be written as a sum of two
regular continued fractions with quotients less then or equal to 4. In order to prove this one observes
that the set of all regular continued fractions with quotients less then or equal to 4 is actually the sum of
infinitely many General Cantor Sets. Then it is possible to use the machinery, developed in chapter 2, to
tackle this problem. After that a couple of other problems of the same kind are solved, such as the one
for the Nearest Integer Continued Fractions, using the idea of singularisation, and one for all Complex
Numbers with bounded quotients.
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3.1 Basic Definitions

Definition 3.1.1. Let n ∈ Z and k ∈ Z>0, then the k-bounded Regular Continued Fractions with integral

part n are defined as

RCFk(n) = {[a0; a1, a2, a3, ...] ∈ R : a0 = n, ∀i ≥ 1 : 1 ≤ ai ≤ k},

and the k-bounded Regular Continued Fractions are

RCFk =
⋃

n∈Z

RCFk(n).

Definition 3.1.2. Let n ∈ Z and k ∈ Z>0, then the k-bounded Nearest Integer Continued Fractions with

integral part n are defined as

NICFk(n) = {[a0; e1/a1, e2/a2, e3/a3, ...] ∈ R : a0 = n, ∀i ≥ 1 : ai ≤ k,

[a0; e1/a1, e2/a2, e3/a3, ...] is a Nearest Integer Continued Fraction },

and the k-bounded Nearest Integer Continued Fractions are

NICFk =
⋃

n∈Z

NICFk(n).

Definition 3.1.3. Let m + ni ∈ Z[i] and k ∈ Z>0, then the k-bounded Complex Continued Fractions

with integral part m+ ni are defined as

CCFk(m+ ni) = {[a0; e1/a1, e2/a2, e3/a3, ...] ∈ R : a0 = m+ ni, ∀i ≥ 1 : ai ∈ Z[i], |ai| ≤ k},

and the k-bounded Complex Continued Fractions are

CCFk =
⋃

m+ni∈Z[i]

CCFk(m+ ni).

3.2 RCF4 + RCF4

First there are some calculations.

Lemma 3.2.1. Let a, b ∈ Z>0, then

[0; a, b, a, b, a, b, ...] = −1

2
b+

√

1

4
b2 +

b

a
.

Proof. Let x ∈ R such that x = [0; a, b, a, b, ...]. Then

x = [0; a, b, a, b, ...] = 0 +
1

a+
1

b+ x

=
b+ x

ax+ ab+ 1
.

Hence ax2 + abx− b = 0. Using the ABC-formula gives

x =
−ab±

√

(ab)2 + 4ab

2a
= −1

2
b±

√

1

4
b2 +

b

a
.

x cannot be negative, hence the result.

22



Lemma 3.2.2. Let a, b ∈ Z>0, then

[b; a, b, a, b, a, ...] =
1

2
b+

√

1

4
b2 +

b

a
.

Proof. This can be easily deduced from Lemma 3.2.1, left as exercise for the reader.

Take a better look at RCFN (0). Using Lemma 3.2.1 one concludes that the maximum and minimum of
RCFN (0) are both attained and equal to

max(RCFN (0)) = [0; 1, N, 1, N, ...] =

√
N2 + 4N −N

2
,

min(RCFN (0)) = [0;N, 1, N, 1, ...] =

√
N2 + 4N −N

2N
.

In particular

max(RCF4(0)) = 2
√
2− 2,

min(RCF4(0)) =

√
2− 1

2
.

Hence RCF4(0) is contained in the closed interval A = [ 12 (
√
2− 1), 2

√
2− 2].

One can obtain the set RCF4(0) as a Cantor set of this interval A.

Definition 3.2.3. Let S ⊂ R be a bounded subset of the real numbers. Define [S] to be the smallest
closed interval containing S. Hence

[S] =
⋂

[x,y]⊂R

S⊆[x,y]

[x, y] = [µ, ν],

where µ = inf(S) and ν = sup(S).

Closed subsets of RCF4(0) can be divided into three different types.

Definition 3.2.4. Let b0, b1, ..., bk ∈ Z>0, where k ≥ 0. Define

1. T1(b0, b1, ..., bk) = [{[0; b0, b1, ..., bk, ak+1, ak+2, ...] : 1 ≤ aj ≤ 4 for all j > k}],

2. T2(b0, b1, ..., bk) = [{[0; b0, b1, ..., bk, ak+1, ak+2, ...] : 2 ≤ ak+1 ≤ 4, 1 ≤ aj ≤ 4 for all j > k + 1}],

3. T3(b0, b1, ..., bk) = [{[0; b0, b1, ..., bk, ak+1, ak+2, ...] : 3 ≤ ak+1 ≤ 4, 1 ≤ aj ≤ 4 for all j > k + 1}].

From the definition A = T1(). Now it is possible to obtain RCF4(0) as a Cantor subset of A as follows.
An infinite binary tree T of nodes Ti(b0, ..., bk), where 1 ≤ i ≤ 3 and b0, ..., bk ∈ Z>0 where k ≥ 0; can
be defined inductively. The root of T is equal to A = T1().

T1()

Suppose there is a leaf L of depth n in the binary tree T . Let b0, ..., bk ∈ Z>0 where k ≥ 0, there are
three cases.

1. V = T1(b0, ..., bk). In this case the two children of V are T1(b0, ..., bk, 1) and T2(b0, ..., bk).

T1(b0, ..., bk)

T1(b0, ..., bk, 1) T2(b0, ..., bk)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ
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2. V = T2(b0, ..., bk). Then the two children of V are T1(b0, ..., bk, 2) and T3(b0, ..., bk).

T2(b0, ..., bk)

T1(b0, ..., bk, 2) T3(b0, ..., bk)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

3. V = T3(b0, ..., bk). This last case gives children T1(b0, ..., bk, 3) and T1(b0, ..., bk, 4).

T3(b0, ..., bk)

T1(b0, ..., bk, 3) T1(b0, ..., bk, 4)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

This recursive definition defines the complete binary tree T . To extend this tree with Cantor gaps let

An
k

An+1
2k An+1

2k+1

mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

be a part of T and define

Cn+1
k = An

k\(An+1
2k ∪An+1

2k+1).

Then these intervals {An
k} and {Cn

k } satisfy Definition 2.1.1 and thus they form a General Cantor Point
Set L(A) = L(A, {Cn

k }). By definition L(A) = RCF4(0).

T1()

T1(1) C1
0 T2()

T1(1, 1) C2
0 T2(1) T1(2) C2

1 T3()

T1(1, 1, 1)C3
0 T2(1, 1) T1(1, 2) C3

1 T3(1) T1(2, 2) C3
2 T3(2) T1(3) C3

3 T1(4)

mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ
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Figure 3.2: The first 4 layers of tree T with Cantor Gaps.

Remark 3.2.5. An important constant in the next calculations is

ζ = [1; 4, 1, 4, 1, 4, ...] =
1

2
(
√
2 + 1).
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ζ satisfies the following interesting relations

4ζ = [4; 1, 4, 1, 4, 1, ...] = 2
√
2 + 2,

1

ζ
= [0; 1, 4, 1, 4, ...] = 4ζ − 4.

Lemma 3.2.6. Let b1, ..., bk ∈ Z>0 and pk, qk, pk−1, qk−1 ∈ Z such that

pk−1

qk−1
= [0; b1, b2, ..., bk−1],

pk
qk

= [0; b1, b2, ..., bk].

Then for every ν ∈ R

[0; b1, b2, ..., bk, ν] =
νpk + pk−1

νqk + qk−1
.

Proof. See Definition 1.1.3 and Theorem 1.4.2.

Lemma 3.2.7. Let b1, ..., br ∈ Z>0 and pk−1, qk−1, pk, qk ∈ Z such that

pk−1

qk−1
= [0; b1, b2, ..., bk−1],

pk
qk

= [0; b1, b2, ..., bk].

Then for every µ, ν ∈ R let x, y ∈ R such that

x = [0; b1, b2, ..., bk, µ],

y = [0; b1, b2, ..., bk, ν].

Let ǫ = qk−1

qk
; then

|x− y| = |µ− ν|
qk(µ+ ǫ)(ν + ǫ)

holds.

Proof. By Theorem 1.4.2, pkqk−1 − pk−1qk = (−1)k. Knowing this the calculation becomes

|x− y| = |[0; b1, b2, ..., bk, µ]− [0; b1, b2, ..., bk, ν]|

=

∣
∣
∣
∣

µpk + pk−1

µqk + qk−1
− νpk + pk−1

νqk + qk−1

∣
∣
∣
∣

=

∣
∣
∣
∣

(µpk + pk−1)(νqk + qk−1)− (µqk + qk−1)(νpk + pk−1)

(µqk + qk−1)(νqk + qk−1)

∣
∣
∣
∣

=

∣
∣
∣
∣

µ(pkqk−1 − pk−1qk) + ν(pk−1qk − pkqk−1)

qk(µ+ ǫ)(ν + ǫ)

∣
∣
∣
∣

=
|(−1)kµ+ (−1)k+1ν|

qk(µ+ ǫ)(ν + ǫ)

=
|µ− ν|

qk(µ+ ǫ)(ν + ǫ)
.

Lemma 3.2.8. L(A) + L(A) = A+A = (
√
2− 1, 4

√
2− 4).

Proof. Because A = [ 12 (
√
2− 1), 2

√
2− 2], A+A = [

√
2− 1, 4

√
2− 4]. If the conditions of Corollary 2.2.7

applied to L(A) are satisfied then A+A = L(A) + L(A) and the theorem is proved.

Let us first check condition 1, which states
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(C1) for every n > 0 and k ≤ 2n−1 one has cnk ≤ an2k, a
n
2k+1 and dnk ≤ bn2k, b

n
2k+1.

Let b0, b1, ..., bk ∈ Z>0, then there are three cases.

i. Case 1 where

T1(b0, ..., bk)

T1(b0, ..., bk, 1) C T2(b0, ..., bk)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

Denote by t1, c, t2 the lengths of respectively the intervals T1(b0, ..., bk, 1), C and T2(b0, ..., bk).
Suppose that k is even.

t1. The smallest and largest elements of T1(b0, ..., bk, 1) are, respectively,

[0; b1, ..., bk, 1, 4, 1, 4, 1, ...] and [0; b1, ..., bk, 1, 1, 4, 1, 4, ...].

Let µ = [1; 4, 1, 4, ...] = ζ and ν = [1; 1, 4, 1, 4, ...] = 1 + 1
ζ
. Then by Lemma 3.2.7 the length

of T1(b0, ..., bk, 1) is

t1 =
1 + 1

ζ
− ζ

qk(1 +
1
ζ
+ ǫ)(ζ + ǫ)

.

c. The smallest and largest elements of C are, respectively,

[0; b1, ..., bk, 1, 1, 4, 1, 4, ...] and [0; b1, ..., bk, 2, 4, 1, 4, 1, ...].

Let µ = [1; 1, 4, 1, 4, ...] = 1 + 1
ζ
and ν = [2; 4, 1, 4, 1, ...] = 2 + 1

4ζ . Then by Lemma 3.2.7 the
length of C is

c =
2 + 1

4ζ − 1− 1
ζ

qk(2 +
1
4ζ + ǫ)(1 + 1

ζ
+ ǫ)

.

t2. The smallest and largest elements of T2(b0, ..., bk) are, respectively,

[0; b1, ..., bk, 2, 4, 1, 4, 1, ...] and [0; b1, ..., bk, 4, 1, 4, 1, ...].

Let µ = [2; 4, 1, 4, 1, ...] = 2 + 1
4ζ and ν = [4; 1, 4, 1, ...] = 4ζ. Then by Lemma 3.2.7 the length

of T2(b0, ..., bk) is

t1 =
4ζ − 2− 1

4ζ

qk(4ζ + ǫ)(2 + 1
4ζ + ǫ)

.

Now calculate

c

t1
=

2 + 1
4ζ − 1− 1

ζ

qk(2 +
1
4ζ + ǫ)(1 + 1

ζ
+ ǫ)

qk(1 +
1
ζ
+ ǫ)(ζ + ǫ)

1 + 1
ζ
− ζ

=
(4− 3ζ)(ζ + ǫ)

(3ζ − 3)(1 + ζ + ǫ)
,

c

t2
=

(4− 3ζ)(4ζ + ǫ)

(3ζ − 1)(4ζ − 3 + ǫ)
.

Note that 0 ≤ qk−1 ≤ qk, hence 0 ≤ ǫ ≤ 1. c
t1

takes its maximum at ǫ = 1 and c
t2

takes its
maximum at ǫ = 0. In both cases

c

t1
≤ (4− 3ζ)(ζ + 1)

(3ζ − 3)(2 + ζ)
< 1

c

t2
≤ (4− 3ζ)4ζ

(4ζ − 1)(4ζ − 3)
< 1.
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Hence c < t1 and c < t2 satisfying the first condition of Corollary 2.2.7.

If k is odd the results are, because of the symmetry in µ and ν in the formula in Lemma 3.2.7, the
same.

Case 2 and case 3 are proved similarly to case 1, hence only the results are given. The calculations
are left for the reader.

ii. Case 2:

T2(b0, ..., bk)

T1(b0, ..., bk, 2) C T3(b0, ..., bk)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

Denote by t1, c, t2 the lengths of, respectively, the intervals T1(b0, ..., bk, 2), C and T3(b0, ..., bk).

t1 =
2 + 1

ζ
− 2− 1

4ζ

qk(2 +
1
ζ
+ ǫ)(2 + 1

4ζ + ǫ)
,

c =
3 + 1

4ζ − 2− 1
ζ

qk(2 +
1
ζ
+ ǫ)(3 + 1

4ζ + ǫ)
,

t2 =
4ζ − 3− 1

4ζ

qk(3 +
1
4ζ + ǫ)(4ζ + ǫ)

.

They satisfy c ≤ t1, c ≤ t2 for all 0 ≤ ǫ ≤ 1.

iii. Case 3:

T3(b0, ..., bk)

T1(b0, ..., bk, 3) C T1(b0, ..., bk, 4)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

Denote by t1, c, t2 the lengths of, respectively, the intervals T1(b0, ..., bk, 3), C and T1(b0, ..., bk, 3).

t1 =
3 + 1

ζ
− 3− 1

4ζ

qk(3 +
1
ζ
+ ǫ)(3 + 1

4ζ + ǫ)
,

c =
4 + 1

4ζ − 3− 1
ζ

qk(3 +
1
ζ
+ ǫ)(4 + 1

4ζ + ǫ)
,

t2 =
4ζ − 4− 1

4ζ

qk(4 +
1
4ζ + ǫ)(4ζ + ǫ)

.

They satisfy c ≤ t1, c ≤ t2 for all 0 ≤ ǫ ≤ 1.

Condition 2

(C2) 1
3 ≤ a

b
≤ 3,

is satisfied trivially, since 1
3 ≤ a

a
≤ 3.

So Corollary 2.2.7 can be applied, hence A+A = L(A) + L(A). This proves the lemma.
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Theorem 3.2.9. RCF4 +RCF4 = R.

Proof. This follows from Lemma 3.2.8. Because L(A) + L(A) = [
√
2− 1, 4

√
2− 4] every element within

[ 12 ,
3
2 ] can be written as the sum of two elements of RCF4(0). Hence

RCF4 +RCF4 ⊃
⋃

n∈Z

(RCF4(n) + RCF4(n)) = R.

3.3 Singularization

A large class of continued fraction expansions can be derived from the regular continued fraction expan-
sion by an operation called singularization . Here the underlying idea is described. For a ∈ Z, b ∈ Z>0

and x ∈ [0, 1)

a+
1

1 +
1

b+ x

= a+ 1 +
−1

b+ 1 + x
.

In this way the digit 1 can be singularized in

[..., a, 1, b, ...]

to

[..., a+ 1,−1/b+ 1, ...]

If x ∈ [0, 1) with RCF expansion

x = [0; e1/a1, e2/a2, e3/a3, ...]

then any finite or infinite string of consecutive digits

ak = 1, ak+1 = 1, ak2
= 1, ... ak+n−1 = 1

is called a 1-block if either k = 1 and ak+n 6= 1 or k > 1 and ak−1 6= 1, ak+n 6= 1.

The following algorithm, [IK02] p257-260, is known to singularize a complete regular continued fraction.

For any x ∈ [0, 1) singularize the first, third, fifth, etc., components in any 1-block.

Applying this algorithm to a RCF expansion [0; a1, a2, a3, ...] yields a continued fraction of the form

b0 +
e1

b1 +
e2

b2 + ...

= [b0; e1/b1, e2/b2, ...].

where en = ±1, bn + en+1 ≥ 2 and bn > 1.

Hence this form of singularization gives a nearest integer continued fraction expansion.

For a better analysis of this algorithm see [IK02].

3.4 NICF6 +NICF6

Lemma 3.4.1. Every 4-bounded Regular Continued Fraction is a 6-bounded Nearest Integer Continued
Fraction. i.e. RCF4 ⊂ NICF6.
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Proof. Let x = [0; a1, a2, a3, ...] be a 4-bounded regular continued fraction. Applying the algorithm
described above, x can be singularized to a nearest integer continued fraction

x = [b0; e1/a1, e2/a2, e3/a3, ...].

It is easy to see that the most extreme case which can occur is the following.

[..., a, 1, 4, 1, b, ...] = [..., a+ 1,−1/5, 1, b, ...]

= [..., a+ 1,−1/6,−1/b+ 1, ...]

Hence x ∈ NICF6.

Corollary 3.4.2. NICF6 +NICF6 = R.

Proof. By Lemma 3.5.1 RCF4 ⊂ NICF6 and by Theorem 3.2.9 RCF4 +RCF4 = R. Hence

R = RCF4 +RCF4 ⊆ NICF6 +NICF6 ⊆ R.

3.5 CCF4 + CCF4 + CCF4 + CCF4

Lemma 3.5.1. If a0 ∈ Z, a1, a2, ... ∈ Z\{0} such that

[a0; a1, a2, ...] = x ∈ R

then

[a0i;−a1i, a2i, ..., (−1)nani, ...] = xi ∈ Ri.

Proof. By induction on n. If x = a0 +
1
x1

, then

xi = i(a0 +
1

x1
) = a0i+

i

x1
= a0i+

1

−x1i
.

Now suppose that n > 0 and the induction hypothesis holds, then

xni = (−1)ni

(

an +
1

xn+1

)

= (0)nani+
(−1)ni

xn+1
= (−1)nani+

1

(−1)n+1ixn+1
.

Hence xi = [a0i;−a1i, a2i, ..., (−1)nani, ...].

Theorem 3.5.2. CCF4 +CCF4 +CCF4 +CCF4 = C.

Proof. Let a+ bi ∈ C arbitrary. By Theorem 3.2.9 there exists x1, x2 ∈ RCF4 such that x1 +x2 = a and
there exists y1, y2 ∈ RCF4 such that y1 + y2 = b. Hence

x1 + x2 + y1i+ y2i = a+ bi.

Now suppose that

y1 = [a0; a1, a2, ...],

y2 = [b0; b1, b2, ...],

where a0, b0 ∈ Z and 1 ≤ aj , bk ≤ 4 for all j, k > 0. Then by Lemma 3.5.1 also

y1i = [a0i;−a1i, a2i, ..., (−1)jaji],

y2i = [b0i;−b1i, b2i, ..., (−1)kbki].

Because |(−1)jaj | = |aj | ≤ 4 and |(−1)kbki| ≤ 4 it must be that y1i, y2i ∈ CCF4. Since RCF4 ⊂ CCF4,
x1, x2, y1i, y2i ∈ CCF4. Because a+ bi was arbitrary,

CCF4 +CCF4 +CCF4 +CCF4 = C.

29



3.6 More results

First some notation. If n, k > 0 then

nRCFk =

n times
︷ ︸︸ ︷

RCFk +RCFk + ...+RCFk .

In the same way

nCCFk =

n times
︷ ︸︸ ︷

CCFk +CCFk + ...+CCFk .

There has been done quite some research on the sums of RCFk. Hall [Hal47] was the first to prove, more
or less, that RCF4 +RCF4 = R. Divǐs and Cusick proved independently [Div73, Cus73] that

RCF3 +RCF3 6= R and 3RCF2 6= R,

but

3RCF3 = R and 4RCF2 = R.

Later, Hlavka showed [Hla75] that

RCF4 +RCF2 6= R, and RCF3 +RCF2 +RCF2 6= R,

however

RCF4 +RCF3 = R, RCF4 +RCF2 +RCF2 = R, RCF3 +RCF3 +RCF2 = R, RCF7 +RCF2 6= R.

Astels even went further and proved [Ast00, Ast01, Ast02] that

RCF5 ± RCF2 = R, RCF3 ± RCF4 = R, RCF3 − RCF3 = R, RCF3 ± RCF2 ± RCF2 = R.

Combining these results with Lemma 3.5.1 and the proof of Theorem 3.5.2 one gets an infinite number
of equalities.

C = 3CCF3 + 3CCF3

= 3CCF3 + 4CCF2

= CCF4 +CCF3 + 4CCF2

= 2CCF3 + 2CCF4

= 2CCF3 − 2CCF3

= 4CCF3 + 2CCF2

...
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Chapter 4

Hall’s Algorithm

Figure 4.1: CCF4(0) in the complex square [−1, 1]× [−i, i].

In this chapter a special algorithm, named after Marshall Hall, is given to do the following. Given a
(complex) continued fraction

x = [a0; a1, a2, a3, ...]

and a Möbius transformation

M =

(
a b
c d

)
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with a, b, c, d ∈ Z (or Z[i]) such that |ad− bc| > 0, this algorithm gives an efficient way of calculating

y = Mx =
ax+ b

cx+ d
= [b0; b1, b2, b3, ...].

The chapter closes with calculating an explicit example for Regular Continued Fractions.

This chapter is a revision of the algorithm described in [Hal47]. There have also been found other ways to
solve this solution described above. For Regular Continued Fractions Raney showed in [Ran73] an other
algorithm using transducers. Recently, an other student at the Radboud University, tried to generalize
this algorithm of Raney to the case of Hurwitz Continued Fractions in this Master Thesis [Lui11].

4.1 Möbius transformations and successors

In this section Möbius transformations and successors are introduced. Also two important finiteness
theorems about successors are proved.

Definition 4.1.1. The relation between indeterminate x and y such that

y =
ax+ b

cx+ d
(4.1)

where a, b, c, d ∈ Z[i] with |ad−bc| = N , N > 0, is called a linear fractional form or a Möbius transforma-

tion. In this paper the latter is name is used. N is called the determinant of the Möbius transformation.
Often throughout this paper the following notation is used for a Möbius transformation

y = Mx, M =

(
a b
c d

)

, (4.2)

where det(M) = |ad− bc| = N .

Remark 4.1.2. The definition of det in Definition 4.1.1 is not the usual definition for the determinant.
However this notation makes a lot of calculations a bit easier.

Lemma 4.1.3. If x, x1, y ∈ C are such that x and y satisfy (4.2) and there exists a0 ∈ Z[i] with
x = [a0, x1], then

y =
a′x1 + b′

c′x1 + d′
= M ′x,

with a′, b′, c′, d′ ∈ Z[i] and |a′d′ − b′c′| = N . In addition, if y1 ∈ C, b0 ∈ Z[i] such that y = b0 +
1
y1

, then

y1 =
a′′x+ b′′

c′′x+ d′′
= M ′′x

with a′′, b′′, c′′, d′′ ∈ Z[i] and |a′′d′′ − b′′c′′| = N .

Proof. This is a simple calculation. Let x = [a0, x1], then

y =
ax+ b

cx+ d
=

a(a0 +
1
x1

) + b

c(a0 +
1
x1

) + d
=

(aa0 + b)x1 + a

(ca0 + d)x1 + c
.

Hence |(aa0 + b)c − a(ca0 + d)| = |ad − bc| = N , which proves the first part of the lemma. The second
part is done similarly.

Remark 4.1.4. Suppose that x, y ∈ C and

x = [a0; a1, ..., ai−1, xi], (4.3)

y = [b0; b1, ..., bj−1, yj ], (4.4)

are complex continued fraction expansions of x and y such that xi and yi are their complete quotients.
Also suppose that y = Mx, det(M) = N . Then by repeated application of Lemma 4.1.3, yi = M ′xj ,
where det(M ′) = N .
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Definition 4.1.5. Suppose that

x = [a0;x1], y = [b0; y1] (4.5)

are expansions of x and y and y = Mx, where M is a Möbius transformation, then

i. If c 6= 0, then y = M ′x1 and y1 = M ′′x and the triples (M ′, x1, y) and (M ′′, x, y1) are called
immediate successors of the triple (M,x, y).

ii. If c = 0, then y1 = M ′′′x1 and the triple (M ′′′, x1, y1) is called an immediate successor of the triple
(M,x, y).

Now successors of (M,x, y) are defined recursively as follows

1. An immediate successor of (M,x, y) is a successor of (M,x, y).

2. An immediate successor of a successor of (M,x, y) is again a successor.

3. All successors of (M,x, y) are defined by rules 1 and 2.

Definition 4.1.6. Now let M be a Möbius transformation. The set of immediate successors T or
immediate successors of M is defined as follows

T =
⋃

x∈C

{(M ′, x′, y′) : y = Mx, (M ′, x′, y′) is an immediate successor of (M,x, y)}.

Hence S is the set of all possible immediate successors of M ranging over x, y ∈ C. An element of T is
called an immediate successor of M . A successor of M is defined similarly.

a. The set of immediate successors of M are successors of M .

b. The set of immediate successors of a successor of M is again a successor of M .

c. All successors of M are defined by rules a and b.

Remark 4.1.7. These successors play a very important role in the next theorems, so it is important
to understand them well. Given the continued faction expansion of x ∈ C and y = Mx, then the triple
(M,x, y) has at most two immediate successors M ′ and M ′′. But the set of all immediate successors of
M could be infinite.

Luckily there is a finiteness property for this set of all possible immediate successors. This gives the first
main theorem of this chapter.

Theorem 4.1.8. For every Möbius transformation

y =
ax+ b

cx+ d
= Mx, det(M) = N

there exists a finite subset S of the immediate successors T of M such that, for every x, y ∈ C with
y = Mx and

x = [a0;x1], y = [b0; y1] (4.6)

there is an immediate successor (M ′, x′, y′) of (M,x, y) for which M ′ ∈ S.

Proof. There are two cases.

c 6= 0. Take E1 = y − a
c
and E2 = x− d

c
. Then

|E1E2| = |ad− bc

c2
| = N

|c2| .

Hence |E1E2| = N
|c|2 and therefore

|y − a

c
| = |E1| ≤

√
N

|c| or |x− d

c
| = |E2| ≤

√
N

|c| .
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Now let x = [a0;x1] = a0 +
1
x1

, y = [b0; y1] = b0 +
1
y1

, this gives

|b0 −
a

c
| ≤ |b0 − y|+ |y − a

c
| ≤ 1 +

√
N

|c| or |a0 −
d

c
| ≤ |a0 − x|+ |x− a

c
| ≤ 1 +

√
N

|c| .

Since N is fixed this shows that there are only a finite number of a0 or b0. Let T be the set

T = {a0 : |a0 −
d

c
| ≤ 1 +

√
N

|c| } ∪ {b0 : |b0 −
a

c
| ≤ 1 +

√
N

|c| }

Each of these a0 and b0 from T determine immediate successors (M ′, x1, y) and (M ′, x, y1). Let S
be the finite set of these immediate successors.

c = 0. Suppose

x = [a0;x1], y = [b0; y1].

A straightforward calculation shows that the immediate successor x1 = M ′y1 is of the form

y1 =
dx1

Cx1 + a

where C = b+ aa0 − db0. Because

y =
ax− b

−d

one has that b = ax− dy, hence

C = ax− dy − aa0 + db0 =
a

x1
− d

y1
.

But, because x1, y1 ≥ 1, also
|C| ≤ |a|+ |d|,

hence the set of immediate successors is finite.

Remark 4.1.9. If c = 0 in the proof of Theorem 4.1.8 one can even prove a stronger result. Note that
in this case |ad| = N , hence

|a| ≤ N and |d| ≤ N

hence |C| ≤ 2N . So the immediate successors may be chosen from a finite set depending only on N ,
rather than M .

Lemma 4.1.10. Given a Mob̈ıus transformation y = ax+b
cx+d

= Mx, where c 6= 0. Suppose r, s ≥ 2 and

x = [a0; a1, ..., ar−1, xr], y = [b0; b1, ..., bs−1, ys].

Let E1 = y − a
c
and E2 = x − d

c
. Suppose that |E1| < 1

2 or |E2| < 1
2 . Then there are i, j ≤ 2 and

a′, b′, c′, d′ ∈ Z[i] with |c′| < c where

yj =
a′xi + b′

c′xi + d′
= M ′xi

such that (M ′, xi, yj) is a successor of (M,x, y).

Proof. The proof is given in form of an algorithm.

|E1| < 1
2 . Let y = [b0; y1], now

−1

2
< |E1| = |y − a

c
| = |b0 −

a

c
+

1

y1
| < 1

2
.

Let y1 = [b1; y2], there are two cases.

34



|b1| ≥ 2. Then y1 ≥ 2, hence

−1

2
< |b0 −

a

c
+

1

y1
| < 1

2
, −1 < |b0 −

a

c
| < 1, |cb0 − a| < |c|.

Remark now that

y1 =
cx+ d

(a− cb0)x+ (−b− db0)
= M ′x

such that (M ′, x, y1) is a successor of (M,x, y) which satisfies the properties of the theorem.

|b1| = 1. Then y1 = 1 + 1
y2

, hence y1 < 2. Now

−3

2
< |b0 −

a

c
| < 0, −1

2
< |b0 + 1− a

c
| < 1, |cb0 + c− a| < |c|.

Now take

y2 =
(a− cb0)x+ (−b− db0)

(cb0 + c− a)x+ (db0 + d+ b0)
= M ′x

such that (M ′, x, y2) as successor (notice here that b1 = 1) of (M,x, y). This successor satisfies
the properties of the theorem.

|E2| < 1
2 . This proof is similar to the case |E1| < 1

2 .

Lemma 4.1.11. Given a Mob̈ıus transformation y = ax+b
cx+d

= Mx and |c| > 2
√
N . Suppose r, s ≥ 2 and

x = [a0; a1, ..., ar−1, xr], y = [b0; b1, ..., bs−1, ys].

Then there are i, j ≤ 2 and a′, b′, c′, d′ ∈ Z[i] with |c′| < |c| where

yj =
a′xi + b′

c′xi + d′
= M ′xi

such that (M ′, xi, yj) is a successor of (M,x, y).

Proof. This is an immediate consequence of the previous lemma. Let E1 = y− a
c
and E2 = x− d

c
. Then

|E1E2| =
N

|c|2 <
1

2
.

Hence |E1| < 1
2 or |E2| < 1

2 . Now apply Lemma 4.1.10.

Lemma 4.1.12. Given a Möbius transformation y = ax+b
cx+d

= Mx with |ad − bc| = N . Suppose
r, s ≥ 2|c|+ 2 and

x = [a0; a1, ..., ar−1, xr], y = [b0; b1, ..., bs−1, ys].

Then there are i ≤ r, j ≤ s and a′, b′, c′, d′ ∈ Z with

yj =
a′xi + b′

c′xi + d′
= M ′xi

such that (M ′, xi, yj) is a successor of (M,x, y) with

|a′| ≤ 2N + 1, |b′| ≤ 2
√
N, |c′| ≤ 4N + 2, |d′| ≤ 2N + 1.

Proof. By, at most 2|c|− 4
√
N , repeated applications of Lemma 4.1.11 one may assume that |c| ≤ 2

√
N .

If |E1| > 1
2 or |E2| > 1

2 apply Lemma 4.1.10 until both |E1|, |E2| ≤ 1
2 . This takes at most ⌊4

√
N⌋ steps.

So we may assume that |c| ≤ 2
√
N and |E1|, |E2| ≤ 1

2 . There are two cases.
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c = 0. Then by Theorem 4.1.8 there is an immediate successor (M ′, x1, y1) with

y1 =
a′x1

c′x1 + d′
= M ′x1

where, by Remark 4.1.9,

|a′| ≤ N ≤ 2N + 1, |b′| = 0 ≤ 2
√
N, |c′| ≤ 2N ≤ 4N + 2, |d′| ≤ N ≤ 2N + 1.

This is the successor satisfying the theorem.

c 6= 0. Then 1 ≤ |c| ≤ 2
√
N . Let x = a0 +

1
x1

and y = b0 +
1
y1

, then

y1 =
a′x1 + b′

c′x1 + d′
= M ′x1

where

a′ = d− a0c, b′ = −c, c′ = ca0b0 − ab0 − da0 + b, d′ = cb0 − a

and (M ′, x1, y1) is a successor of (M,x, y). These four elements satisfy the properties of the
theorem.

b′: |b′| = |c| ≤ 2
√
N .

d′: First

|b0 +
1

y1
− a

c
| = |y − a

c
| = |E1| = |N

c2
E2| ≤ 2

N

c2
.

Therefore

|b0 −
a

c
| ≤ 2

N

c2
+ 1

and

|d′| = |cb0 − a| ≤ 2
N

|c| + |c| ≤ 2N + 1.

a′: In a way similar to d′.

c′: Because cxy − dy − ax+ b = 0, also

c′ = ca0b0 − aa0 − db0 + b

=
d− ca0

y1
+

a− cb0
x1

=
a′

y1
+

d′

x1

hence
|c′| ≤ |a′|+ |d′| ≤ 4N + 2.

Remark 4.1.13. Notice that every time Lemma 4.1.12 is applied to a Möbius transformation M where
y = Mx then the triple (M,x, y) gives a new successor (M ′, xi, yj) where i, j > 0. This is very important,
because if it is known that

x = [a0; a1, a2, ..., ai−1, xj ]

then after applying Lemma 4.1.12 it must also be known what the values of b0, b1, ..., bj−1 in

y = [b0; b1, b2, ..., bj−1, yi].

must be. Hence this lemma provides a way to calculate the first j > 0 quotients of y given the first i
quotients of x.
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This is the second main theorem of this chapter. It shows that given a Möbius transformation y = Mx
there exists a finite set of successors of y = Mx where it is possible to calculate, given

x = [a0; a1, a2, ..., ai−1, xi]

the first j quotients

y = [b0; b1, b2, ..., bj−1, yj ].

Theorem 4.1.14. Given an integer N > 0. There exists a finite set C of forms of determinant N and
m > 0 such that the following is true.
Let M a Möbius transformation with det(M) = N with x ∈ R and y = Mx. Then for all i > m with

x = [a0; a1, ..., ai−1, xi]

there is j > 0 such that

y = [b0; b1, ..., bj−1, yj ]

where yj = M ′xi and M ′ ∈ C.

Proof. Define

C0 = {M ∈ GL2(Z[i]) : det(M) = N, |a| ≤ 2N + 1, |b| ≤ 2
√
N, |c| ≤ 4N + 2, |d| ≤ 2N + 1}.

Let M ∈ C0. Then by Theorem 4.1.8 there exists a finite set S of Möbius transformation of determinant
N of M such that for every x, y ∈ R with y = Mx there is an immediate successor (M0, x

′, y′) of (M,x, y)
in S. For every M0 ∈ S there are, by Lemma 4.1.12, successors

(M1, xi1 , yj1), (M2, xi2 , yj2), (M3, xi3 , yj3), ..., (Mk, xik , yjk)

of determinant N leading from (M,x, y) to (Mk, xik , yjk) with Mk ∈ C0. Let CM be the union of all
sequences M1,M2,M3, ...,Mi belonging to a M0 ∈ S. Now define

C = C0 ∪
⋃

M∈C0

CM .

Take m = 4|c|+ 4. Lemma 4.1.12 explains how to get, given a Möbius transformation M with y = Mx,
in at most 4|c| + 4 steps to a Möbius transformation M ′ ∈ C with yj = M ′xi. So this m is the desired
upper bound and by construction this C is the desired set.

4.2 Hall’s Algorithm

Theorem 4.1.14 provides an algorithm to give a finite set of rules to calculate the quotients of y. This
set of rules, although it is finite, can become extremely large. In this section the special case is treated
when a continued fraction is a regular continued fraction. Some important modifications are made to
get this set of rules for regular continued fractions smaller.

Definition 4.2.1. Fix N > 0. Any finite set C of forms of determinant N satisfying Theorem 4.1.14
will be called a canonical set of N -forms.

Our aim is to find a canonical set of N -forms which is as small as possible. This set can be found if
N = 1.

Theorem 4.2.2. Suppose N = 1, then C = {M}, where

M =

(
1 0
0 1

)

is a canonical set of 1-forms.
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Proof. If y = x and x = [a0;x1], y = [b0; y1] then also y1 = x1. So every immediate successor of (1, x, y)
is again (1, x, y). Therefore it is sufficient to show that for every Möbius transformation

M =

(
a b
c d

)

, where ad− bc = ±1

and y = Mx for x, y ∈ R there exists i, j ≥ 0 such that

x = [a0; a1, a2, ..., ai−1, xi],

y = [b0; b1, b2, ..., bj−1, yj ]

with yj = xi.

To prove this an algorithm is given. By repeated application of Lemma 4.1.12 one may assume that
|c| < 2

√
N = 2. Hence c = −1, 1 or 0. The first two cases can be reduced to the last one. Because:

c = −1. Multiply the numerator and denominator by −1, this gives the same Mob̈ıus transformation with
c = 1.

c = 1. In this case

y =
ax− b

x− d
, with ad− b = ±1.

But then
(x− d)(y − a) = (ax− b)− a(x− d) = ad− b = ±1.

The last equation shows that there is an immediate successor given by one of the four following
transformations

x = [d;x1], y = [y],

x = [d− 1;x1], y = [y],

x = [x], y = [a; y1],

x = [x], y = [a− 1; y1].

They lead respectively to the following Möbius transformations

y = ±x1 + a, (4.7)

y =
(a∓ 1)x1 − a

x1 − 1
, (4.8)

y1 = ±(x− d), (4.9)

y1 =
x− d

x− (d∓ 1)
(4.10)

where (4.7) and (4.9) have c = 0. In (4.8)

y =
(a∓ 1)x1 − a

x1 − 1
.

Remark that the determinant of this transformation (a ∓ 1) + a = ±1. Hence also (x1 − 1)(y −
(a∓ 1)) = ±1. This gives one of the following three expansions

x1 = [1;x2], y = [y],

x1 = [x1], y = [a∓ 1; y1],

x1 = [x1], y = [a∓ 1− 1; y1].

These lead respectively to the following Möbius transformations

y = ∓x2 − (1± a),

y1 =
x1 − 1

±1
,

y1 =
x1 − 1

x1 − 2
.
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The first two transformations satisfy c = 0. For the last one

(x1 − 2)(y1 − 1) = 1

which leads to one of the two expansions

x1 = [2;x2], y1 = [y1],

x1 = [x1], y1 = [1; y2].

These two expansions, respectively, give transformations

y1 = x2 + 1,

y2 = x1 − 2

both having c = 0.

c = 0. Because now ad = ±1 we must have a = ±1 and d = ±1 so the Möbius transformation is y = ±x−b.
Let

x = [a0;x1], y = [b0; y1]

then
1

y1
= ±a0 ±

1

x1
− b− b0.

As x1, y1 > 0 and b, a0, b0 ∈ Z there are only two possibilities: b = 0 or b = 1. For b = 0

y1 = x1.

For b = 1,

±x− 1 = ±a0 +
1

x1
− 1 = ±a0 − 1± 1 +

1
x1

x1−1

hence

y1 =
x1

x1 − 1
.

The first of these is the successor desired to prove the theorem. In the second case (x1−1)(y1−1) =
±1, so there is one of the expansions

x1 = [1;x2], y1 = [y1],

x1 = [x1], y1 = [1; y2]

leading respectively to successors

y1 = x2 + 1,

y2 = x1 − 1.

These leading again respectively to successors

y2 = x3,

y3 = x2.

Transformation (4.10) works in the same fashion as transformation (4.8). This proves the theorem.

Remark 4.2.3. The proof of Theorem 4.2.2 gives an explicit algorithm to calculate, given a Möbius
transformation M with det(M) = ±1 and x = [a0; a1, a2, ...],

y = Mx = [b0; b1, b2, ...].

Since M can be transformed in a finite number of steps to the Möbius transformation M = 1, there exist
j, k ≥ 0 and b0, b1, ..., bj ∈ Z such that

y = [b0; b1, ..., bj , ak, ak+1, ak+2, ...].

This result gives an alternative proof of a well-known theorem in the theory of continued fractions; also
see Theorem 2, pp. 6-8 of [RS92].
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Remark 4.2.4. Let y = Nx, where N > 0 is a Möbius transformation. Applying theorem 4.1.14 to
this transformation gives a set C which is a canonical set of N -forms for y = Nx. Moreover this set is
in most cases sufficiently smaller and therefore easy for practice.

Our goal is to create a set of rules for a sets like C. It is showed now that every arbitrary Möbius
transformation y = Mx of determinant ±N can be transformed to this special Möbius transformation
y = Nx. First an important algorithm, called Smith Normal Form, is explained.

Theorem 4.2.5. (Smith Normal Form) Let a, b, c, d ∈ Z, (a, b, c, d) = 1 and ad− bc = ±N . Then there
are e, f, g, h, t, u, v, w ∈ Z such that eh− fg = ±1, tw − uv = ±1 and

(
N 0
0 1

)(
e f
g h

)

=

(
t u
v w

)(
a b
c d

)

Example 4.2.6. No proof will be given here. One could find the original proof in Smith’s paper [Smi61].
Instead an example will provide all the details how to find these matrices. Take the following Möbius
transformation

M =

(
3 −4
1 −2

)

.

We will determine matrices P,Q ∈ GL2(Z) such that

PMQ = D =

(
2 0
0 1

)

.

M can always be brought to diagonal form D with elementary row and column operations. Let P0 and
Q0 be the identity matrices and M0 = M . Every time we apply a row operation on M we also apply
the same row operation on P0, every time we apply a column operation on M we also apply the same
column operation on Q0. So

P0 =

(
1 0
0 1

)

,M0 =

(
3 −4
1 −2

)

, Q0 =

(
1 0
0 1

)

.

Add the first column of M0 to the second column

P1 =

(
1 0
0 1

)

,M1 =

(
3 −1
1 −1

)

, Q1 =

(
1 1
0 1

)

.

Now add the second column of M0 to the first column

P2 =

(
1 0
0 1

)

,M2 =

(
2 −1
0 −1

)

, Q2 =

(
2 1
1 1

)

.

Then subtract the second row from the first row

P3 =

(
1 −1
0 1

)

,M3 =

(
2 0
0 −1

)

, Q3 =

(
2 1
1 1

)

.

As last subtract the second column 2 times from itself

P =

(
1 −1
0 1

)

, D =

(
2 0
0 1

)

, Q =

(
2 −1
1 −1

)

.

Because matrices P and Q consist only of elementary operations their determinant is ±1. Also Q−1 ∈
GL2(Z), so a solution is

(
2 0
0 1

)(
1 −1
1 −2

)

=

(
1 −1
0 1

)(
3 −4
1 −1

)

.
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The Algorithm

Given a Möbius transformation y = Mx where

M =

(
a b
c d

)

and ad− bc = ±N . Determine, with Theorem 4.2.5, e, f, g, h, t, u, v, w ∈ Z such that

(
N 0
0 1

)(
e f
g h

)

=

(
t u
v w

)(
a b
c d

)

eh− fg = ±1 and tw − uv = ±1.

Now define

x′ =
ex+ f

gx+ h
, y′ =

ty + u

vy + w
,

then

y′ = Nx′.

Now, given the continued fraction of

x = [a0; a1, a2, ...],

then, by the algorithm of Theorem 4.2.2, there is an efficient way to calculate

x′ = [a′0; a
′
1, a

′
2, ...].

Since y′ = Nx′ there is, by Remark 4.2.4, an efficient algorithm to calculate

y′ = [b′0; b
′
1, b

′
2, ...].

But then again by Theorem 4.2.2 one can calculate

y = [b0; b1, b2, ...].

4.3 An example for N = 2

Here we calculate the following example for N = 2. Let

M =

(
3 −4
1 −2

)

such that y = Mx. By Example 4.2.6

(
2 0
0 1

)(
1 −1
1 −2

)

=

(
1 −1
0 1

)(
3 −4
1 −2

)

.

and so putting

x′ =
x− 1

x− 2
, y′ =

y − 1

1

gives

y′ = 2x′.

Now use Theorem 4.2.2 to find explicit calculations. As an example we show one calculation.
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Example 4.3.1. Since

x′ =
x− 1

x− 2

c = 1, a = 1 and d = 2. Also (x− 2)(x′ − 1) = 1, which gives the following 4 possible continued fractions

x = [2;x1], x′ = [x′]

x = [1;x1], x′ = [x′]

x = [x], x′ = [1;x′
1]

x = [x], x′ = [0;x′
1].

Suppose the first continued fraction occurs. Now x = 2 + 1
x1

, hence

x′ =
x− 1

x− 2
=

2 + 1
x1

− 1

2 + 1
x1

− 2
= x1 + 1.

Now let x1 = [a1;x2] and x′ = [b0;x
′
1]. Then

b0 +
1

x′
1

= x′ = x1 + 1 = a1 + 1 +
1

x2

hence

a1 + 1 = b0, and x′
1 = x2.

This gives the following rule
x = [2; a, x2] → x′ = [a+ 1;x2].

For example if
x = [2; 3, 4, 5, 6, 7, 8, 9, ...]

then

x′ =
x− 1

x− 2
= [3; 3, 4, 5, 6, 7, 8, 9, ...].

In this same fashion all other possibilities can be calculated.

The next step is to calculate
y′ = 2x′.

By Remark 4.2.4 there is a canonical set C generated by y′ = Ax′ where

A =

(
2 0
0 1

)

Example 4.3.2. As an example we calculate the first step. Let

x′ = [a0;x
′
1], y′ = [b0; y

′
1].

Hence

b0 +
1

y′1
= y′ = 2x′ = 2a0 +

2

x′
1

. (4.11)

By Theorem 4.1.8 the relation between y′1 and x′
1 is

y′1 =
dx1

Cx1 − a

where C = b− aa0 − db0 = −2a0 − db0. Now there are two cases

1
x1

< 1
2 . In this case 0 < 2

x1

< 1. So equation (4.11) implies that b0 = 2a0. So C = 0 and the successor is

y′1 =
−x1

−2
=

x1

2
= A−1x.
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1
x1

≥ 1
2 . In this case 1 ≤ 2

x1

< 2. Hence by equation (4.11) b0 = 2a0 + 1. So then C = 1 and the successor
becomes

y′1 =
−x1

x1 − 2
=

x1

−x1 + 2
= Bx,

where

B =

(
1 0
−1 2

)

.

So A−1, B ∈ C.

Successively applying lemma 4.1.12 finally produces the complete canonical set C. Here the set C is given

y′ = Ax′, y′ = A−1x′, A =

(
2 0
0 1

)

, A−1 =

(
0 1
0 2

)

,

y′ = Bx′, y′ = B−1x′, B =

(
1 0
−1 2

)

, B−1 =

(
2 0
1 1

)

,

y′ = Cx′, y′ = C−1x′, C =

(
1 1
1 −1

)

, C−1 = C,

y′ = Dx′, y′ = D−1x′, D =

(
2 1
0 1

)

, D−1 =

(
1 −1
0 2

)

,

y′ = Ex′, y′ = E−1x′, E =

(
3 1
1 1

)

, E−1 =

(
−1 1
1 −3

)

,

y′ = Fx′, y′ = F−1x′, F =

(
1 0
2 −2

)

, F−1 =

(
2 0
2 −1

)

,

y′ = Gx′, y′ = G−1x′, G =

(
2 −1
1 0

)

, G−1 =

(
0 −1
1 −2

)

.

If y′ > 1 or x′ > 1 the forms B,E, F and their inverses have only one possible successor. But in these
six cases always y′ > 1 and x′ > 1. So

B. if y′ > 1, then x′ = 2 y′

y′+1 and so 1 < x′ < 2. Therefore

x′ = [1;x′
1], y′ = [y′]

and

y′ =
x′

−x′ + 2
=

1 + 1
x′
1

−1− 1
x′
1

+ 2
=

x′
1 + 1

x′
1 − 1

= Cx1.

Hence if we are in B we can immediate transform to C.

E. This transforms into C with x′ = [x′] and y′ = [2; y′1].

F . This transforms into G−1 with x′ = [1;x′
1] and y = [y].

Now it is sufficient to look at the set {A,A−1, C,D,D−1, G,G−1} and find a set of rules transforming
one state to an other.

Example 4.3.3. As an example we look (again) at transformation y′ = Ax′. In this setting

b0 +
1

y′1
= 2a0 +

2

x′
1

and there are two possible new transformations between x′
1 and y′1.

A−1. In this case 2
x′
1

< 1, so x′
1 > 2 and b0 = 2a0. This leads to the rule

x′ = [a;x′
1], x

′
1 > 2, → y′ = [2a; y′1], A → A−1.
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B. Which happens if 1 ≤ 2
x′
1

< 2, so b0 = 2a0 + 1. This leads to the rule

x′ = [a;x′
1], x

′
1 < 2 → y′ = [2a+ 1; y′1], A → B.

But by previous observations case B can be immediately transformed to case C. Therefore the
rule becomes

x′ = [a; 1, x′
2] → y′ = [2a+ 1; y′1], A → C.

The complete set of rules is given here:

A 7→ A−1, x′ = [a;x′
1], x

′
1 > 2 → y′ = [2a; y′1]

A 7→ C, x′ = [a, 1;x′
2] → y′ = [2a+ 1; y′1]

A−1 7→ A, x′ = [2a;x′
1] → y′ = [a; y′1]

A−1 7→ C, x′ = [2a+ 1;x′
1] → y′ = [a; 1, y′2]

C 7→ D, x′ = [1;x′
1] → y′ = [y′]

C 7→ C, x′ = [2;x′
1] → y′ = [2; y′1]

C 7→ D−1, x′ = [x′], x′ > 2 → y′ = [1; y′1]

D 7→ G−1, x′ = [a, 1;x′
2] → y′ = [2a+ 2; y′1]

D 7→ A−1, x′ = [a;x′
1], x

′
1 > 2 → y′ = [2a+ 1; y′1]

D−1 7→ A, x′ = [2a+ 1;x′
1] → y′ = [a; y′1]

D−1 7→ G, x′ = [2a+ 2;x′
1] → y′ = [a; 1, y′2]

G 7→ C, x′ = [a; 1, x′
2] → y′ = [2a; y′1]

G 7→ A−1, x′ = [a;x′
1], x

′
1 > 2 → y′ = [2a− 1; y′1]

G−1 7→ A, x′ = [2a− 1;x′
1] → y′ = [a; y′1]

G−1 7→ C, x′ = [2a;x′
1] → y′ = [a; 1, y′2]

Finally a set of rules for the transformation

y = y′ + 1

can be found using again theorem 4.2.2. It is, of course

y′ = [a; y′1] → y = [a+ 1; y′1].

Example 4.3.4. Consider the following continued fraction of the Euler constant e

x = e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...].

Suppose we are interested in the first few quotients of continued fraction

y =
3x− 4

1− 2x
.

Then first

x′ =
x− 1

x− 2
= [2; 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...].

The next step is to calculate

y′ = 2x′.

This can be done with the rules explained above. Here the important quotients of x′
i which are used to
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calculate a few quotients of y′j are underlined.

x′
1 = [2; 1, 1, 4, 1, 1, 6, 1, 1, 8, ...], y′ = [4; y′1], A 7→ A−1,

x′
2 = [1; 1, 4, 1, 1, 6, 1, 1, 8, ...], y′ = [4; 1, y′2], A−1 7→ A,

x′
4 = [4; 1, 1, 6, 1, 1, 8, ...], y′ = [4; 1, 3, y′3], A 7→ C,

x′
4 = [4; 1, 1, 6, 1, 1, 8, ...], y′ = [4; 1, 3, 1, y′4], C 7→ D−1,

x′
5 = [1; 1, 6, 1, 1, 8, ...], y′ = [4; 1, 3, 1, 1, 1, y′6],

...

Hence y′ = [4; 1, 3, 1, 1, 1, ...]. The last step is

y = y′ + 1 = [5; 1, 3, 1, 1, 1, ...].

As one can check, these are indeed the first six quotients of the number

3e− 4

e− 2
.
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Chapter 5

Applications

Figure 5.1: CCF5(0) in the complex square [−1, 1]× [−i, i].

In this chapter two applications of the theory developed in Chapter 3 and Chapter 4 are discussed. First,
an explicit algorithm is given to calculate, given a real number x, two elements a, b with partial quotients
between 1 and 4 such that x = a + b. Second, a connection is given between Hall’s theorem, described
in Chapter 3, and Hall’s Algorithm described in Chapter 4.
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5.1 Explicit calculation of Hall Sums

Theorem 2.2.6 does not provide an algorithm to calculate, given a real number x, two elements a, b of
the General Cantor sets such that x = a+ b. However, there are special cases where it is possible to find
these two elements. Here the case of Theorem 3.2.9 is discussed.

Suppose that x ∈ [
√
2− 1, 4

√
2− 4], then

x ∈ [
√
2− 1, 4

√
2− 4] = [T1(), T1()] ∪ [T1(), T1()]. (5.1)

Now by Lemma 4.1.10 this x must be in one of the sets

[T1(), T2()], [T1(), T2()], [T1(1), T1()], [T1(1), T2()]. (5.2)

Hence

x ∈[T1(), T2()] ∪ [T1(), T2()], or x ∈ [T1(1), T1()] ∪ [T1(1), T2()], (5.3)

because the beginning of the tree for the Cantor Set is

T1(b0, ..., bk)

T1(b0, ..., bk, 1) T2(b0, ..., bk)
mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ

In this way one can continue finding elements [Ai, Bj ] ∪ [Ai, Bj ] containing x. This process should be
seen as follows. Take two trees A and B and point at the roots A0 and B0. Suppose the pointer points
to Ai and Bj . The next step should move the pointer of Ai to one of his leaves Ak or it should move

the pointer of Bj to one of his leaves Bl. This is done is such a way that x ∈ [Ak, Bj ] ∪ [Ak, Bj ] (resp.

x ∈ [Ai, Bl] ∪ [Ai, Bl]).

Suppose b0, ..., bk ∈ Z such that 1 ≤ bi ≤ 4 for all bi. Let us take a look at the structure of the trees in
Theorem 3.2.9.

T1(b0, ..., bk)

T1(b0, ..., bk, 1) T2(b0, ..., bk)

T1(b0, ..., bk, 2) T3(b0, ..., bk)

T1(b0, ..., bk, 3) T1(b0, ..., bk, 4)

mmmmmmmmmmmmmmmmmmmmmmm

QQQQQQQQQQQQQQQQQQQQQQQ
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Figure 5.2: A part of the Cantor Tree of Theorem 3.2.9.

Suppose x ∈ [Ti(a0, ..., ak), Tj(b0, ..., bl)] ∪ [Ti(a0, ..., ak), Tj(b0, ..., bl)]. As seen in this tree there are two
cases.
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1.
x ∈ [Ti+1(a0, ..., ak), Tj(b0, ..., bl)] ∪ [Ti+1(a0, ..., ak), Tj(b0, ..., bl)]

or
x ∈ [Ti(a0, ..., ak), Tj+1[b0, ..., bl] ∪ [Ti(a0, ..., ak), Tj+1[b0, ..., bl].

2.
x ∈ [T1(a0, ..., ak, a), Tj(b0, ..., bl)] ∪ [T1(a0, ..., ak, a), Tj(b0, ..., bl)]

or
x ∈ [Ti(a0, ..., ak), T1(b0, ..., bl, b)] ∪ [Ti(a0, ..., ak), T1(b0, ..., bl, b)],

where 1 ≤ a, b ≤ 4.

Now remark that, looking at the tree in Figure 5.2, case 2 will happen arbitrarily often. This is because
after at most 5 steps Case 2 always occures once.
Also remark that the quotients a0, ..., ak and b0, ..., bl give an approximation for the numbers a and b.
I.e, x ≈ [0; a0, ..., ak] + [0; b0, ..., bl]. Hence if

[A0, B0] ∪ [A0, B0], [A1, B1] ∪ [A1, B1], [A2, B2] ∪ [A2, B2], ... (5.4)

is the result of the process described above and if in addition lim l(Ai) = 0 and lim l(Bj) = 0 then Ai

converges to a point a and Bj convergence to a point b such that x = a + b. Also all coefficients are
known, because limAi = T1(a0, a1, a2, ...) and limBj = T1(b0, b1, b2, ...).

Hence it is sufficient to prove that lim l(Ai) = 0 and lim l(Bj) = 0. Because Case 2 occurs arbitrary often,
one may assume that one of Ai or Bj convergences to one point. Without loss of generality suppose
lim l(Bj) = 0.
Suppose Ai = [ai1, a

i
2], Bi = [bi1, b

i
2] and ei = min(l(Ai), l(Bi)); because lim l(Bj) = 0 it must be that

lim ei = 0. Therefore

lim l([Ai, Bi]) = lim l([ai1 + bi1, a
i
1 + bi1 + 2ei]) = lim 2ei = 0, (5.5)

lim l([Ai, Bi]) = lim l([ai2 + bi2 − 2ei, a
i
2 + bi2]) = lim 2ei = 0. (5.6)

In addition by Theorem 3.2.9

Ai +Bi = [Ai, Bi] ∪ [Ai, Bi] = [ai1 + bi1, a
i
2 + bi2]. (5.7)

But that means that lim l(Ai +Bi) = 0 from where one concludes that limBi = 0.
This shows that there is an algorithm for, given x a real number between

√
2 − 1 and 4

√
2 − 4, to find

an arbitrary number a0, ..., ak and b0, ..., bl such that

x ≈ [0; a0, ..., ak] + [0; b0, ..., bl]. (5.8)

5.2 Sage source

Using the findings of the previous section one can make a program to calculate these quotients. The
source presented here is written in Sage, a free open source mathematics software.

The first function is used to check the results of the calculations of Hall Sums.

1 def c f2e lm ( c on t i nu ed f r a c t i o n ) :
’ ’ ’ c f2e lm ( [ . . ] ) : input f i n i t e cont inued f rac t i on , output element o f the

r ing with uni ty . ’ ’ ’

i f l en ( c on t i nu ed f r a c t i o n ) == 0 :
6 return 0

e l i f l en ( c on t i nu ed f r a c t i o n ) == 1 :
return c on t i nu ed f r a c t i o n [ 0 ]

else :
r e s t = cf2e lm ( c on t i nu ed f r a c t i o n [ 1 : ] )

11 i f r e s t == 0 :
return c on t i nu ed f r a c t i o n [ 0 ]

else :
return c on t i nu ed f r a c t i o n [ 0 ] + 1/ r e s t
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As seen in theorem 3.2.9 the ζ constant is very important to find the boundries of the Hall intervals.

15 # The constant z e ta = [ 1 , 4 , 1 , 4 , 1 , 4 , 1 , 4 , . . . ]
zeta = 1/2 ∗ ( s q r t (2 ) + 1)

These three functions calculate the Hall intervals.

def T1( l = [ ] ) :
’ ’ ’T1 ( [ b1 , b2 , . . . , bk ] ) , r e turns f i r s t Ha l l s e t wi th beg in [ 0 ; b1 , . . . , bk ] . ’ ’ ’

20 e1 = cf2e lm ( [ 0 ] + l + [ zeta ] )
e2 = cf2e lm ( [ 0 ] + l + [4∗ zeta ] )

return min( e1 , e2 ) , max( e1 , e2 )

25 def T2( l = [ ] ) :
’ ’ ’T2 ( [ b1 , b2 , . . . , bk ] ) , r e turns second Hal l s e t wi th beg in [ 0 ; b1 , . . . , bk ] . ’ ’ ’

e1 = cf2e lm ( [ 0 ] + l + [4∗ zeta ] )
e2 = cf2e lm ( [ 0 ] + l + [ 2 , 4∗ zeta ] )

30
return min( e1 , e2 ) , max( e1 , e2 )

def T3( l = [ ] ) :
’ ’ ’T3 ( [ b1 , b2 , . . . , bk ] ) , r e turns t h i r d Ha l l s e t wi th beg in [ 0 ; b1 , . . . , bk ] . ’ ’ ’

35
e1 = cf2e lm ( [ 0 ] + l + [ 3 , 4∗ zeta ] )
e2 = cf2e lm ( [ 0 ] + l + [4∗ zeta ] )

return min( e1 , e2 ) , max( e1 , e2 )

Then put the three functions together. This programming style is just a matter of taste.

40 # Groups a l l t h ree Ha l l gaps as one func t i on l i s t .
T = [T1 , T2 , T3 ]

Here [[a1, a2], [b1, b2]] and [[a1, a2], [b1, b2]] are implemented.

def under ( ( a1 , a2 ) , ( b1 , b2 ) ) :
’ ’ ’ under (( a1 , a2 ) , ( b1 , b2 ) ) , r e turns the under l ine i n t e r v a l o f [ a1 , a2 ] + [ b1 , b2 ] . ’ ’ ’

45 e = min ( a2 − a1 , b2 − b1 )

return a1 + b1 , a1 + b1 + 2∗ e

def over ( ( a1 , a2 ) , ( b1 , b2 ) ) :
50 ’ ’ ’ over (( a1 , a2 ) , ( b1 , b2 ) ) , r e turns the o v e r l i n e i n t e r v a l o f [ a1 , a2 ] + [ b1 , b2 ] . ’ ’ ’

e = min ( a2 − a1 , b2 − b1 )

return a2 + b2 − 2∗e , a2 + b2

Check if elm is in the interval [a1, a2]. This function can probably be optimized in a lot of ways.

55 def e in ( elm , ( a1 , a2 ) ) :
’ ’ ’ e in ( elm , (a1 , a2 ) ) , check o f elm i s in c l o s ed i n t e r v a l [ a1 , a2 ] . ’ ’ ’

return bool ( a1 <= elm and elm <= a2 )

This is the implementation of the tree seen in chapter 3 for RCF4(0).

def g e t ch i l d r en ( case , prox ) :
60 ’ ’ ’ g e t c h i l d r en ( case , prox ) , walks through the General Cantor s e t o f RCF4(0 ) .

case g i v e s the p lace in the t r e e and prox the quo t i en t s . Hence i t c a l c u l a t e s
the ch i l d r en o f T case ( prox ) . ’ ’ ’

i f case == 1 :
65 return (1 , prox + [ 1 ] ) , (2 , prox )

e l i f case == 2 :
return (1 , prox + [ 2 ] ) , (3 , prox )

e l i f case == 3 :
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return (1 , prox + [ 3 ] ) , (1 , prox + [ 4 ] )
70 else :

return None , None

This is where it all happens. This function checks in which interval elm is and returns the first of these
intervals.

def next ( elm , ( ( acase , aprox ) , ( bcase , bprox ) ) ) :
’ ’ ’ next ( elm , (( acase , aprox ) , ( bcase , bprox ) ) ) , r e turns the next two Hal l s e t s

( a1case , a1prox ) and ( bcase , bprox ) such t ha t elm i s an element o f the sum
75 o f two elements o f t he s e Ha l l s e t s . ’ ’ ’

( a1case , a1prox ) , ( a2case , a2prox ) = ge t ch i l d r en ( acase , aprox )
( b1case , b1prox ) , ( b2case , b2prox ) = ge t ch i l d r en ( bcase , bprox )

80 i f e in ( elm , under (T[ acase −1]( aprox ) , T[ b1case −1]( b1prox ) ) ) \
or e in ( elm , over (T[ acase −1]( aprox ) , T[ b1case −1]( b1prox ) ) ) :

return ( acase , aprox ) , ( b1case , b1prox )

e l i f e in ( elm , under (T[ acase −1]( aprox ) , T[ b2case −1]( b2prox ) ) ) \
85 or e in ( elm , over (T[ acase −1]( aprox ) , T[ b2case −1]( b2prox ) ) ) :

return ( acase , aprox ) , ( b2case , b2prox )

e l i f e in ( elm , under (T[ a1case −1]( a1prox ) , T[ bcase −1]( bprox ) ) ) \
or e in ( elm , over (T[ a1case −1]( a1prox ) , T[ bcase −1]( bprox ) ) ) :

90 return ( a1case , a1prox ) , ( bcase , bprox )

else :
return ( a2case , a2prox ) , ( bcase , bprox )

Calculate the first couple of steps and return the result.

def f indsum ( elm , s t ep s ) :
95 ’ ’ ’ findsum (elm , s t e p s ) , c a l c u l a t e s at l e a s t the f i r s t s t e p s /6 quo t i en t s o f

x = [ 0 ; x1 , x2 , x3 , . . . ] and y = [ 0 ; y1 , y2 , y3 , . . . ] such t ha t elm = x + y .
elm must be in T1( [ ] )+T1 ( [ ] ) . ’ ’ ’

s t a t e = ( ( 1 , [ ] ) , ( 1 , [ ] ) )
100

for i in xrange ( s t ep s ) :
s t a t e = next ( elm , s t a t e )

return s t a t e [ 0 ] [ 1 ] , s t a t e [ 1 ] [ 1 ]

A couple of examples.

105 i f name == ’ ma in ’ :
x , y = findsum ( sq r t ( 2 ) , 50)
print [0 ]+x , ’= ’ , c f2e lm ( [0 ]+ x )
print [0 ]+y , ’= ’ , c f2e lm ( [0 ]+ y )
print c f2e lm ( [0 ]+ x ) , ’+ ’ , c f2e lm ( [0 ]+ y ) , ’= ’ , f l o a t ( c f2e lm ( [0 ]+ x ) + cf2e lm ( [0 ]+ y ) )

110 print f l o a t ( s q r t ( 2 ) )

x , y = findsum ( sq r t (3)−1 ,50)
print [0 ]+x , ’= ’ , c f2e lm ( [0 ]+ x )
print [0 ]+y , ’= ’ , c f2e lm ( [0 ]+ y )

115 print c f2e lm ( [0 ]+ x ) , ’+ ’ , c f2e lm ( [0 ]+ y ) , ’= ’ , f l o a t ( c f2e lm ( [0 ]+ x ) + cf2e lm ( [0 ]+ y ) )
print f l o a t ( s q r t ( 3 ) )

x , y = findsum ((1 + sq r t ( 5 ) ) /2 , 100)
print [0 ]+x , ’= ’ , c f2e lm ( [0 ]+ x )

120 print [0 ]+y , ’= ’ , c f2e lm ( [0 ]+ y )
print c f2e lm ( [0 ]+ x ) , ’+ ’ , c f2e lm ( [0 ]+ y ) , ’= ’ , f l o a t ( c f2e lm ( [0 ]+ x ) + cf2e lm ( [0 ]+ y ) )
print f l o a t ( (1 + sq r t ( 5 ) ) / 2 )

x , y = findsum ( euler gamma , 5 0 )
125 print [0 ]+x , ’= ’ , c f2e lm ( [0 ]+ x )

print [0 ]+y , ’= ’ , c f2e lm ( [0 ]+ y )
print c f2e lm ( [0 ]+ x ) , ’+ ’ , c f2e lm ( [0 ]+ y ) , ’= ’ , f l o a t ( c f2e lm ( [0 ]+ x ) + cf2e lm ( [0 ]+ y ) )
print f l o a t ( euler gamma )
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130 x , y = findsum ( e−2 ,50)
print [1 ]+x , ’= ’ , c f2e lm ( [1 ]+ x )
print [1 ]+y , ’= ’ , c f2e lm ( [1 ]+ y )
print c f2e lm ( [1 ]+ x ) , ’+ ’ , c f2e lm ( [1 ]+ y ) , ’= ’ , f l o a t ( c f2e lm ( [1 ]+ x ) + cf2e lm ( [1 ]+ y ) )
print f l o a t ( e )

135
x , y = findsum ( pi −2 ,50)
print [1 ]+x , ’= ’ , c f2e lm ( [1 ]+ x )
print [1 ]+y , ’= ’ , c f2e lm ( [1 ]+ y )
print c f2e lm ( [1 ]+ x ) , ’+ ’ , c f2e lm ( [1 ]+ y ) , ’= ’ , f l o a t ( c f2e lm ( [1 ]+ x ) + cf2e lm ( [1 ]+ y ) )

140 print f l o a t ( p i )

Running the program gives the following nice results.

√
2 = [0; 1, 3, 2, 1, 1, 4, 4, 1, 1, 4, 1, 3, ...] + [0; 1, 1, 1, 3, 1, 4, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 3, ...],

√
3 = [1; 2, 1, 4, 1, 2, 4, 1, 1, 1, 1, 4, 1, 4, ...] + [0; 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 3, 1, 1, ...],

1 +
√
5

2
= [0; 1, 4, 1, 4, 4, 2, 1, 3, 1, 3, 1, 4, 1, 4, ...] + [0; 1, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, ...],

γ = [0; 4, 1, 2, 1, 4, 3, 1, 1, 3, 1, 4, 1, 1, ...] + [0; 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 3],

e = [1; 2, 1, 3, 1, 1, 1, 4, 2, 1, 4, 1, 2, 3, ...] + [1; 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 2, ...],

π = [1; 2, 4, 1, 4, 2, 1, 1, 1, 4, 1, 1, 1, 1, 4, ...] + [1; 1, 2, 4, 1, 2, 1, 1, 1, 1, 1, 3, 3, 1, 2, 4, ...].

5.3 An Application of Hall’s Algorithm

In [Hal47] a couple of applications of Hall’s Algorithm are given. It is nice to mention one of them. This
one combines Hall’s Theorem and Hall’s Algorithm.

Definition 5.3.1. A continued fraction is called periodic if the quotients repeat after a while. I.e, if

x = [a0; a1, a2, a3, ...]

there are k > 0 such that for all m > 0 and n > 0

ak+n = amk+n.

Suppose that x is pericodic and k minimal, then the continued fraction of x is then denoted by

x = [a0; a1, a2, ..., am, am+1, ..., am+k].

Theorem 5.3.2. Every rational number is representable as the sum of two periodic (irreducible) con-
tinued fractions of RCF4.

Proof. Let p/q be the rational number such that (p, q) = 1. By Theorem 3.2.9 there exists x, y ∈ R such
that

x+ y =
p

q
.

This equation may be rewritten

y =
−qx+ p

p

which is a Möbius transformation with determinant N = q2. Then by Theorem 4.1.14 there exists a
canonical set C such that

x = [a0; a1, a2, ..., am−1, xm],

y = [b0; b1, b2, ..., bn−1, yn],
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x = My for some M ∈ GL2(Z) and M ∈ C. Since C is finite, m and n can be chosen large enough such
that

xm = [am; am+1, ..., am+s−1, xm+s],

yn = [an; an+1, ..., an+t−1, yn+t],

with yn+t = Mxm+s for the same Möbius transformation M . But then xm+s and yn+t have the same
quotients as xm and yn. Hence xm and yn are periodic. But then x and y are periodic too, with

x = [a0; a1, a2, ..., am−1, am, am+1, ..., am+s−1],

y = [b0; b1, b2, ..., bn−1, bn, bn+1, ..., bn+t−1].

This proves the theorem and shows a connection between Hall’s theorem and Hall’s algorithm.
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Chapter 6

Drawing Nice Pictures

Figure 6.1: CCF6(0) in the complex square [−1, 1]× [−i, i].

As seen throughout this thesis a lot of Fractals appear. Drawing these Fractals costs a lot of computation
time. In this chapter an algorithm is given for drawing these Fractals. This chapter does not contain a
lot of mathematical content, however it might be still interesting to read. The writer found GiNaC in
particular a very interesting tool to work with, someone interested in Computer Algebra would at least
have to read this section of GiNaC.
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6.1 GiNaC

GiNaC is a free computer algebra system released under the GNU General Public License. It encourages
its users to write symbolic algorithms directly in C++. Algebraic syntax is achieved in C++ through
the use of operator overloading. Therefore it is not as fast as bignum, but still much faster than other
computer algebra systems. Symbolically it can do

• multivariable polynomial arithmetic,

• factor polynomials,

• compute GCDs,

• expand series,

• compute matrices,

• symbolic integration for polynomials.

It can also work with non-commutative algebras, Clifford algebras, SU(3) Lie algebras and Lorentz ten-
sors. This makes it also an interesting tool for high energy physics.

For our purposes it is only important that GiNaC supports a very fast and clear way to work with
complex integers.

6.2 EasyBMP

EasyBMP is a simple, cross-platform, open source (revised BSD) C++ library designed for easily read-
ing, writing, and modifying Windows bitmap (BMP) image files. The library is oriented towards the
novice programmer with little formal experience, but it is sufficiently capable for anybody who desires
to do I/O and pixel operations on uncompressed 1, 4, 8, 16, 24, and 32 bpp (bits per pixel) BMP files.

It is sufficient for our purposes to draw fractals.

6.3 Source

The first part of the code is a header including all import constants.

/∗ cons tant s . h
∗/

#ifndef CONSTANTS H
5 #define CONSTANTS H

/∗ Constants ∗/
const int N = 2000 ; /∗ Height and width o f image ∗/
const unsigned long ULMAX = 100 ; /∗ Max s i z e f o r matrix elm ∗/

10 const int DEPTH = 4 ; /∗ Depth o f i t e r a t i o n ∗/

#endif /∗ CONSTANTS H ∗/

Now it is important to have a good class which supports Continued Fractions. Using templates it is
possible to have the quotients be anything.

/∗ c f . h ∗/

#ifndef CF H
#define CF H

5

#include <stdexcept>
using namespace std ;
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10
/∗ CF : Continued Fract ion c l a s s ∗/
template<class Num>
class CF
{

15 public :
CF( int l ength ) ;

˜CF( ) ;

20 Num & operator [ ] ( int index ) ;

void se tQuot i ent ( int index , Num z ) ;

Num getQuot ient ( int index ) ;
25

int getLength ( ) ;

Num foldUp ( ) ;

30 private :
Num ∗ quo t i en t s ;

int l ength ;

35 bool c a l c u l a t ed ;

Num r e s u l t ;
} ;

40
#endif /∗ CF H ∗/

And the cpp file.

/∗ c f . cpp
∗
∗ This c l a s s i s used to work with cont inued f r a c t i o n s o f a r b i t r a r y l eng t h .
∗ I t suppor t s a FoldUp func t i on which c a l c u l a t e s the element a s soc i a t ed

5 ∗ by the quo t i en t s o f the cont inued f r a c t i o n .
∗ I t works we l l wi th the c l a s s numeric from the GiNaC l i b r a r y .
∗
∗ Example :
∗ CF<numeric> c f ( 5 ) ;

10 ∗
∗ f o r ( i = 0; i < 5 ; i++)
∗ c f [ i ] = i + i ∗ I ;
∗
∗ cout << ”Continued Fract ion : ” << c f . fo ldUp () << end l ;

15 ∗/

#include ” c f . h”

/∗ I n i t i a l i z e r , l en g t h g i v e s the numer o f quo t i en t s f o r the cont inued f r a c t i o n
20 ∗/

template<class Num>
CF<Num> : :CF( int l ength )
{

i f ( l ength < 0)
25 throw r ang e e r r o r ( ”CF( length ) : negat ive l ength value ” ) ;

this−>quo t i en t s = new Num[ length ] ;
this−>l ength = length ;
this−>c a l c u l a t ed = fa l se ;

30 }

/∗ Destructor , makes sure t ha t the l i s t o f q uo t i en t s i s d e l e t e d .
∗/

template<class Num>
35 CF<Num> : :˜CF( )

{
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delete [ ] this−>quo t i en t s ;
}

40 /∗ A simple over load o f the [ ] f unc t i on . I t r e turns quo t i en t [ index ]
∗/

template<class Num>
Num & CF<Num> : : operator [ ] ( int index )
{

45 i f ( index < 0)
throw r ang e e r r o r ( ”CF[ index ] : negat ive index value ” ) ;

i f ( index >= this−>l ength )
throw ou t o f r ange ( ”CF[ index ] : index l a r g e r than range ” ) ;

50 return this−>quo t i en t s [ index ] ;
}

/∗ se tQuot i en t ( i n t index , Num z ) , s e t s quo t i en t [ index ] to z .
∗/

55 template<class Num>
void CF<Num> : : s e tQuot i ent ( int index , Num z )
{

i f ( index < 0)
throw r ang e e r r o r ( ”CF[ index ] : negat ive index value ” ) ;

60 i f ( index >= this−>l ength )
throw ou t o f r ange ( ”CF[ index ] : index l a r g e r than range ” ) ;

this−>quo t i en t s [ index ] = z ;
this−>c a l c u l a t ed = fa l se ;

65 }

/∗ getLength ( ) , r e turns the maximum number o f quo t i en t s . ∗/
template<class Num>
int CF<Num> : : getLength ( )

70 {
return this−>l ength ;

}

/∗ fo ldUp () , f o l d s up a l l the quo t i en t s and re turns a Num element . I t uses
75 ∗ a modi f ied ver s ion o f Euc l ides Extend Algorithm

∗/
template<class Num>
Num CF<Num> : : foldUp ( )
{

80 i f ( c a l c u l a t ed == true )
return this−>r e s u l t ;

int i ;

85 Num p0 , p1 , pn ;
Num q0 , q1 , qn ;

p0 = 1 ;
p1 = this−>quo t i en t s [ 0 ] ;

90 pn = this−>quo t i en t s [ 0 ] ;

q0 = 0 ;
q1 = 1 ;
qn = 1 ;

95
for ( i = 1 ; i < this−>l ength ; i++){

pn = p1∗ this−>quo t i en t s [ i ] + p0 ;
qn = q1∗ this−>quo t i en t s [ i ] + q0 ;

100 p0 = p1 ;
p1 = pn ;

q0 = q1 ;
q1 = qn ;

105 }

i f ( qn != 0)
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this−>r e s u l t = pn/qn ;
else

110 this−>r e s u l t = 0 ;

this−>c a l c u l a t ed = true ;

return this−>r e s u l t ;
115 }

Using EasyBMP it is possible to draw very fast single pixels into a file. This script makes the correct
preperations to do this.

/∗ drawBMP. cpp
∗ This i s an easy t o o l us ing EasyBMP <h t t p :// easybmp . source fo rge . net/> to turn
∗ a matrix in to a BMP p i c t u r e . I t only draws b l a c k or whi te points , but i t can
∗ be modi f ied e a s i l y to support more co l o r s .

5 ∗/

#include ”EasyBMP/EasyBMP. cpp”
#include ” cons tant s . h”
using namespace std ;

10
/∗ matrix2bmp , turns nmatrix [N] [N] with width x he i g h t in to a bmp image f i l ename
∗ o f width x he i g h t .
∗/

void matrix2bmp (char ∗ f i l ename , unsigned long nmatrix [N ] [N] ,
15 int width , int he ight )

{
BMP output ;
output . S e tS i z e ( width , he ight ) ;
output . SetBitDepth ( 2 4 ) ;

20
int i , j ;
unsigned long value ;

for ( i = 0 ; i < width ; i++)
25 for ( j = 0 ; j < he ight ; j++) {

value = nmatrix [ i ] [ j ] ;

i f ( va lue > 0) {
output ( i , j )−>Blue = 0 ;

30 output ( i , j )−>Red = 0 ;
output ( i , j )−>Green = 0 ;

} else {
output ( i , j )−>Blue = 255 ;
output ( i , j )−>Red = 255 ;

35 output ( i , j )−>Green = 255 ;
}

}

output . WriteToFile ( f i l ename ) ;
40 }

The main part. This part calculates all continued fractions with DEPTH quotients. It plots them all in
a matrix which is then written to the file fractal.bmp.

/∗ k su b s e t s . cpp
∗
∗ This f i l e draws the f r a c t a l o f Complex Continued Fract ions with
∗ bounded ( a b s o l u t e ) quo t i en t s o f l eng t h 4 or lower .

5 ∗ The k s u b i t e r and p r i n t c c f f unc t i ons draw to po in t s to a matrix
∗ pmatrix when matrix2bmp draws the pmatrix to a bmp f i l e .
∗/

10 /∗ Inc ludes ∗/

#include <iostream>

using namespace std ;
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15 #include ” g inac / g inac . h”
using namespace GiNaC ;

#include ” c f . cpp”
#include ”drawBMP. cpp”

20 #include ” cons tant s . h”

/∗ Globa l v a r i a b l e s ∗/

25 unsigned long pmatrix [N ] [N ] ; /∗ Raw matrix r ep r e s en ta t i on o f the image ∗/

/∗ I t e r a t i o n func t i ons ∗/

30 /∗ k s u b i t e r , Depth f i r s t i t e r f o r a l l combinations from l i s t wi th l eng t h
∗ depth .
∗ ( l i s t , l e n l i s t ) i s the l i s t to i t e r a t e over ,
∗ depth g i v e s the i t e r a t i o n depth ,
∗ ( elm , l en e lm ) i s a b u f f e r in which the i t e r a t i o n i s s tored ,

35 ∗ (∗ f ) ( numeric ∗ , in ) i s a func t i on which i s c a l l e d i f ( elm , l en e lm ) i s o f
∗ l e n g t h depth .
∗/

void k sub i t e r ( numeric ∗ l i s t , int l e n l i s t , int depth , numeric ∗elm ,
int l en e lm , void (∗ f ) ( numeric ∗ , int ) )

40 {
int i ;

i f ( depth == 0)
f ( elm , l en e lm ) ;

45 else

for ( i = 0 ; i < l e n l i s t ; i++) {
elm [ l en e lm ] = l i s t [ i ] ;
k s ub i t e r ( l i s t , l e n l i s t , depth−1, elm , l en e lm+1, f ) ;

}
50 }

/∗ p r i n t l i s t , p r i n t s a l i s t o f l eng t h l e n l i s t . Debug func t i on !
∗/

void p r i n t l i s t ( numeric ∗ l i s t , int l e n l i s t )
55 {

int i ;

for ( i = 0 ; i < l e n l i s t −1; i++)
cout << l i s t [ i ] << ” , ” ;

60 cout << l i s t [ l e n l i s t −1] << endl ;
}

/∗ p l o t c c f , g iven a l i s t o f q uo t i en t s i t draws a po in t in pmatrix .
∗/

65 void p l o t c c f ( numeric ∗ l i s t , int l e n l i s t )
{

int i ;
int x , y ;

70 numeric r e s ;

CF<numeric> c c f ( l e n l i s t +1);

c c f [ 0 ] = 0 ;
75 for ( i = 0 ; i < l e n l i s t ; i++)

c c f [ i +1] = l i s t [ i ] ;

r e s = c c f . foldUp ( ) ;

80 /∗ Draws one f o r t h o f the p i c t u r e . ∗/
x = ( int )N∗ r e a l ( r e s ) . to doub le ( ) ;
y = ( int )N∗ imag ( r e s ) . to doub le ( ) ;

i f (0 <= x && x < N
85 && 0 <= y && y < N
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&& pmatrix [ x ] [ y ] < ULMAX)
pmatrix [ x ] [ y]++;

}

int main ( )
2 {

int i ;

/∗ c lean matrix ∗/
for ( i = 0 ; i < N; i++)

7 pmatrix [ i ] = {0} ;

try {
/∗ Al l complex Gausians with a b s o l u t e va lue l e s s or equa l
∗ to 1 .

12 ∗/
numeric l i s t 1 [ ] = {

1 , −1, I , −I
} ;

17 /∗ Al l complex Gausians with a b s o l u t e va lue l e s s or equa l
∗ to 2 .
∗/

numeric l i s t 2 [ ] = {
1 , −1, I , −I , 1 + I , 1 − I , −1 + I , −1 − I , 2 , 2∗ I , −2, −2∗ I

22 } ;

/∗ Al l complex Gausians with a b s o l u t e va lue l e s s or equa l
∗ to 3 .
∗/

27 numeric l i s t 3 [ ] = {
1 , −1, I , −I , 1 + I , 1 − I , −1 + I , −1 − I , 2 , 2∗ I , −2, −2∗I ,
3 , 2 + I , 2 + 2∗ I , 1 + 2∗ I , 3∗ I , −1 + 2∗ I , −2 + 2∗ I , −2 + I ,
−3∗I , −2 − I , −2 − 2∗ I , −1 − 2∗ I , −3∗I , 1 − 2∗ I , 2 − 2∗ I , 2 − I

} ;
32

/∗ Al l complex Gausians with a b s o l u t e va lue l e s s e r or equa l
∗ to 4 .
∗/

37 numeric l i s t 4 [ ] = {
−4, −2∗ I − 3 , −I − 3 , −3, I − 3 , 2∗ I − 3 , −3∗ I − 2 , −2∗ I − 2 , −I − 2 ,
−2, I − 2 , 2∗ I − 2 , 3∗ I − 2 , −3∗ I − 1 , −2∗ I − 1 , −I − 1 , −1, I − 1 ,
2∗ I − 1 , 3∗ I − 1 , −4∗I , −3∗I , −2∗I , −I , I , 2∗ I , 3∗ I , 4∗ I , −3∗ I + 1 ,
−2∗ I + 1 , −I + 1 , 1 , I + 1 , 2∗ I + 1 , 3∗ I + 1 , −3∗ I + 2 , −2∗ I + 2 ,

42 −I + 2 , 2 , I + 2 , 2∗ I + 2 , 3∗ I + 2 , −2∗ I + 3 , −I + 3 , 3 , I + 3 , 2∗ I + 3 , 4
} ;

/∗ Al l complex Gausians with a b s o l u t e va lue l e s s e r or equa l
∗ to 5 .

47 ∗/
numeric l i s t 5 [ ] = {

−3∗ I − 4 , −2∗ I − 4 , −I − 4 , −4, I − 4 , 2∗ I − 4 , 3∗ I − 4 , −4∗ I − 3 ,
−3∗ I − 3 , −2∗ I − 3 , −I − 3 , −3, I − 3 , 2∗ I − 3 , 3∗ I − 3 , 4∗ I − 3 ,
−4∗ I − 2 , −3∗ I − 2 , −2∗ I − 2 , −I − 2 , −2, I − 2 , 2∗ I − 2 , 3∗ I − 2 ,

52 4∗ I − 2 , −4∗ I − 1 , −3∗ I − 1 , −2∗ I − 1 , −I − 1 , −1, I − 1 , 2∗ I − 1 ,
3∗ I − 1 , 4∗ I − 1 , −4∗I , −3∗I , −2∗I , −I , I , 2∗ I , 3∗ I , 4∗ I , −4∗ I + 1 ,
−3∗ I + 1 , −2∗ I + 1 , −I + 1 , 1 , I + 1 , 2∗ I + 1 , 3∗ I + 1 , 4∗ I + 1 ,
−4∗ I + 2 , −3∗ I + 2 , −2∗ I + 2 , −I + 2 , 2 , I + 2 , 2∗ I + 2 , 3∗ I + 2 ,
4∗ I + 2 , −4∗ I + 3 , −3∗ I + 3 , −2∗ I + 3 , −I + 3 , 3 , I + 3 , 2∗ I + 3 ,

57 3∗ I + 3 , 4∗ I + 3 , −3∗ I + 4 , −2∗ I + 4 , −I + 4 , 4 , I + 4 , 2∗ I + 4 , 3∗ I + 4
} ;

/∗ Al l complex Gausians with a b s o l u t e va lue l e s s e r or equa l
∗ to 6 .

62 ∗/
numeric l i s t 6 [ ] = {

−4∗ I − 4 , −3∗ I − 4 , −2∗ I − 4 , −I − 4 , −4, I − 4 , 2∗ I − 4 , 3∗ I − 4 ,
4∗ I − 4 , −4∗ I − 3 , −3∗ I − 3 , −2∗ I − 3 , −I − 3 , −3, I − 3 , 2∗ I − 3 ,
3∗ I − 3 , 4∗ I − 3 , −4∗ I − 2 , −3∗ I − 2 , −2∗ I − 2 , −I − 2 , −2, I − 2 ,
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67 2∗ I − 2 , 3∗ I − 2 , 4∗ I − 2 , −4∗ I − 1 , −3∗ I − 1 , −2∗ I − 1 , −I − 1 , −1,
I − 1 , 2∗ I − 1 , 3∗ I − 1 , 4∗ I − 1 , −4∗I , −3∗I , −2∗I , −I , I , 2∗ I , 3∗ I ,
4∗ I , −4∗ I + 1 , −3∗ I + 1 , −2∗ I + 1 , −I + 1 , 1 , I + 1 , 2∗ I + 1 , 3∗ I + 1 ,
4∗ I + 1 , −4∗ I + 2 , −3∗ I + 2 , −2∗ I + 2 , −I + 2 , 2 , I + 2 , 2∗ I + 2 ,
3∗ I + 2 , 4∗ I + 2 , −4∗ I + 3 , −3∗ I + 3 , −2∗ I + 3 , −I + 3 , 3 , I + 3 ,

72 2∗ I + 3 , 3∗ I + 3 , 4∗ I + 3 , −4∗ I + 4 , −3∗ I + 4 , −2∗ I + 4 , −I + 4 ,
4 , I + 4 , 2∗ I + 4 , 3∗ I + 4 , 4∗ I + 4

} ;

numeric elm [ 1 0 ] ;
77

/∗ N = 1 ∗/
cout << ” Frac ta l N = 1” << endl ;

for ( i = 0 ; i < N; i++)
82 pmatrix [ i ] = {0} ;

k s ub i t e r ( l i s t 1 , 4 , 13 , elm , 0 , p l o t c c f ) ;
matrix2bmp ( ” f r a c t a l 1 .bmp” , pmatrix , N, N) ;

87
/∗ N = 2 ∗/
cout << ” Frac ta l N = 2” << endl ;

for ( i = 0 ; i < N; i++)
92 pmatrix [ i ] = {0} ;

k s ub i t e r ( l i s t 2 , 12 , 8 , elm , 0 , p l o t c c f ) ;
matrix2bmp ( ” f r a c t a l 2 .bmp” , pmatrix , N, N) ;

97 /∗ N = 3 ∗/
cout << ” Frac ta l N = 3” << endl ;

for ( i = 0 ; i < N; i++)
pmatrix [ i ] = {0} ;

102
k s ub i t e r ( l i s t 3 , 28 , 5 , elm , 0 , p l o t c c f ) ;
matrix2bmp ( ” f r a c t a l 3 .bmp” , pmatrix , N, N) ;

/∗ N = 4 ∗/
107 cout << ” Frac ta l N = 4” << endl ;

for ( i = 0 ; i < N; i++)
pmatrix [ i ] = {0} ;

112 k s ub i t e r ( l i s t 4 , 48 , 5 , elm , 0 , p l o t c c f ) ;
matrix2bmp ( ” f r a c t a l 4 .bmp” , pmatrix , N, N) ;

/∗ N = 5 ∗/
cout << ” Frac ta l N = 5” << endl ;

117 for ( i = 0 ; i < N; i++)
pmatrix [ i ] = {0} ;

k s ub i t e r ( l i s t 5 , 76 , 5 , elm , 0 , p l o t c c f ) ;
matrix2bmp ( ” f r a c t a l 5 .bmp” , pmatrix , N, N) ;

122

/∗ N = 6 ∗/
cout << ” Frac ta l N = 6” << endl ;
for ( i = 0 ; i < N; i++)

127 pmatrix [ i ] = {0} ;

k s ub i t e r ( l i s t 6 , 80 , 5 , elm , 0 , p l o t c c f ) ;
matrix2bmp ( ” f r a c t a l 6 .bmp” , pmatrix , N, N) ;

132
} catch ( except ion &p) {

c e r r << p . what ( ) << endl ;

return 1 ;
137 }

62



matrix2bmp ( ” f r a c t a l .bmp” , pmatrix , N, N) ;

return 0 ;
142 }
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Conclusion and Further Research

In this master thesis we have seen the proof of Hall’s Theorem. This proof is then used to extend Hall’s
Theorem to NICF6 using singularisation, to CCF4 by a simple observation. Hence if x is a real number,
there are two real numbers a and b with quotients less than or equal to 4 such that x = a+ b. It is even
possible to calculate the a and b explicitly. Also, Hall’s algorithm is developed for the complex numbers,
showing that Hall’s Algorithm is really an algorithm. And it ends with a theorem which combines Hall’s
Algorithm and Hall’s Theorem.

There are also some questions which arise from this research.

• In kCCF4 = C, is k = 4 the least number possible. Can it be shown that CCF4+CCF4+CCF4 6= C?
It is not clear if this is true or not. If however CCF4 +CCF4 +CCF4 6= C, then this could maybe
be proved similar to [Div73], where it is proved that RCF3 +RCF3 6= R.

• In Chapter 4 Canonical Sets are introduced for Regular Continued Fractions. Canonical Sets also
exist for Complex Continued Fractions. Is there an easy way to compute them?

• In Chapter 5 some explicit sums are given for e,
√
2,
√
3, τ, ..., but do they contain some sort of

regularity? Because the regular continued fractions of these numbers do.
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