
Transcription Factor Footprint Analysis

Sal Wolffs (s4064542)

April 19, 2017

2

Contents

1 Acknowledgements 5

2 Introduction 7
2.1 Structure of this text . 7

3 Research Problem for Biologists 9

4 Biological background 11
4.1 Caveat quantifiers . 11
4.2 Prior knowledge . 11

4.2.1 Cells . 11
4.2.2 DNA . 12
4.2.3 Chromosomes . 12
4.2.4 Genes . 12
4.2.5 Proteins . 13

4.3 Transcription factors . 13

5 Input Data 15
5.1 Process . 15
5.2 Limitations . 15
5.3 Caveat: Noise . 15
5.4 Noise mitigation . 16
5.5 Data format . 16
5.6 Acknowledgement . 16

6 Model 17
6.1 DNA sequences . 17
6.2 Transcription factors . 17

6.2.1 Motifs . 17
6.2.2 Wildcard patterns . 18
6.2.3 Advanced Motifs . 18

7 Formalised Research Problem 19

8 Algorithm 21
8.1 Justification . 21
8.2 Outline . 21
8.3 Tuning factors . 21
8.4 Strengths . 22
8.5 Weaknesses . 22
8.6 Detailed description . 22

3

4 CONTENTS

8.6.1 Reading the data . 22
8.6.2 Taking the multiset . 22
8.6.3 Noise Reduction: Minimum Occurrence Count 23
8.6.4 Minimal Spanning Tree Construction . 23
8.6.5 Choosing the distance metric . 24
8.6.6 Culling the MST . 24
8.6.7 Cutting criterion . 24
8.6.8 Collecting the MST . 24

8.7 Code . 25

9 Results 27
9.1 Reading the raw results . 27
9.2 Summary . 27

10 Discussion and reflection 29
10.1 Main conclusion . 29
10.2 Conclusion for Biologists . 29
10.3 Other considerations . 30

10.3.1 Singleton clusters . 30
10.3.2 Similarity across lengths . 30

10.4 Potential improvements . 30
10.4.1 Distance functions . 30
10.4.2 Alternative algorithms . 31
10.4.3 Dealing with different sequence lengths . 32

11 Conclusion 33

Chapter 1

Acknowledgements

I would like to thank my thesis supervisors, Wieb Bosma of the Radboud University FNWI department
for mathematics, and Colin Logie of the RIMLS FNW-Molecular biology department, for their advice,
expertise, feedback, and general guidance throughout the writing of this thesis.

I would like to thank Sadia Saeed, for her stellar work at Colin Logie’s group producing the dataset
used in this thesis, and for very generously sharing said dataset. Since this dataset is based on the
analysis of white blood cells, I would also like to thank the anonymous blood donors who consented
for their blood to be analysed for this purpose.

I would like to thank Kees Albers and Wout Megchelenbrink, for sharing their expertise and providing
valuable feedback.

I would also like to thank the various people I have discussed this thesis with in passing, many of
them at the FNWI department for computer science, most of whose names I’ve never even known, but
whose perspectives have proven valuable in writing this thesis.

Finally, I would like to thank the Genome Reference Consortium, for publicly and freely providing a
human reference genome, which, while less personal, has also been indispensable in writing this thesis.

5

6 CHAPTER 1. ACKNOWLEDGEMENTS

Chapter 2

Introduction

In this thesis, we will be looking at the mathematical formalisation of a biological problem concerning
DNA regulation, and attempt a solution. As this is a multidisciplinary thesis, we will pay rather more
attention than is customary to basic background of the subjects involved.

2.1 Structure of this text

We will first formulate our research question from a biological perspecive. Before trying to solve the
problem, we will establish some biological background and characterize the content and format of our
dataset. Based on this, we will construct a suitable model, and reformulate the research question in
terms of the formalism of our model, accessible for data scientists. The answer to the formal question
should translate trivially to an answer to the original, biological phrasing of the question. Finally, we
will describe an attempted solution, and discuss the results.

7

8 CHAPTER 2. INTRODUCTION

Chapter 3

Research Problem for Biologists

The goal of this thesis is as follows: Write a program that, given a dataset such as the one we have,
produces a list of likely common motifs explaining the dataset, with the implication that these motifs
should match the motifs recognized by the actual transcription factors active in the cell from which
the dataset arises.

9

10 CHAPTER 3. RESEARCH PROBLEM FOR BIOLOGISTS

Chapter 4

Biological background

This section will only cover common knowledge:

Biologists and those having completed any introductory course in DNA biochemistry should be able
to skip ahead to the subsection Transcription factors (and likely skip most of that).

Molecular biologists should skip ahead to [Dataset], the next major section.

4.1 Caveat quantifiers

When in mathematics we say “for all” or “there is no” (“not exists”), this is meant in an absolute sense,
much more so than is usual in common parlance. Biologists, on the other hand, do not; they mean it
as much as anyone describing the real world means it. Since we’ll be discussing the real world, we will
follow this latter convention in this chapter, except where clearly purely mathematical statements are
concerned.

4.2 Prior knowledge

We will assume the reader is familiar with biology up to the existence of cells, DNA, chromosomes,
genes and proteins. No intimate familiarity with their properties is required; such as is needed will be
noted here.

4.2.1 Cells

Cells form more or less self-contained units: they can be isolated for study without completely disrupt-
ing their behaviour (though some disruption will occur). Our model will cover a part of the processes
in one cell, averaged over all cells in a sample.

11

12 CHAPTER 4. BIOLOGICAL BACKGROUND

4.2.2 DNA

4.2.2.1 Nucleotides

DNA is a bioheteropolymer composed of nucleotides. There are 4 nucleotides used in the construction
of DNA, generally referred to as A, C, T, and G. A strand of DNA is generally represented by stringing
the letters of the involved nucleotides together in order: ACATGG refers to a single strand of DNA
containing every nucleotide, and A and G twice.

4.2.2.2 Directionality

Nucleotides are asymmetrical, having distinct ends called 5′ and 3′ (referring to the chemical numbering
of those positions in the molecule), and polymerization matches 5′ to 3′ ends, giving DNA a persistent
direction which is thought of as from 5′ to 3′, in which direction sequences are always reported. So,
ACTG is a strand with A at the 5′ end, and different from GTCA.

4.2.2.3 Complements

Each nucleotide has a complement: A complements T, C complements G. Besides polymerizing “front”
to “back”, nucleotides can weakly connect “side” to “side”, but only to their complement. This also
gives rise to complements of sequences, being the pointwise complements of their nucleotides, with one
catch: the complement has reversed orientation. Illustration: ACTG is complemented by CAGT (not
TGAC):

5'-A-C-T-G-3'
: : : :

3'-T-G-A-C-5'

In nature, all DNA strands are almost always paired up in complements, forming “double stranded”
DNA.

4.2.2.4 Pyramidines and Purines

Nucleotides vary in structure and size. A and G are “purines”, similar in structure and size and larger
than the “pyramidines” T and C, similarly similar to each other. This is relevant to note, since some
of the processes we will want to model might, e.g., only react to a rising edge (pyramidine to purine)
or falling edge in a sequence, rather than to any specific nucleotide.

4.2.3 Chromosomes

Human DNA is ordered into chromosomes, 23 pairs of extremely long double DNA strands. Each
cell has a copy, and distributed over these chromosomes are all human genes (excepting mitochondrial
DNA which we won’t get into).

4.2.4 Genes

Genes are sequences, located on chromosomes, which encode the sequence of a specific protein. The
exact nature of the encoding is not relevant here, but the 1-on-1 nature is (although some genes apply

4.3. TRANSCRIPTION FACTORS 13

tricks to encode multiple related proteins): one gene being “active” corresponds to one protein being
mass-produced.

4.2.5 Proteins

Proteins are a different kind of bioheteropolymer, forming the workhorses of living cells. The sequence
of a protein (along with some post-processing) gives rise to its functionality.

4.3 Transcription factors

Since every cell contains all genes, but no cell needs every gene, it needs to be possible to switch genes
on and off. This is accomplished by means of proteins called Transcription Factors, which bind DNA
and signal “somewhere relatively near this place is a gene which should/shouldn’t be active”.

These transcription factors attach to DNA in the right locations by recognizing (binding) specific
sequences. However, they do not bind one specific sequence. Rather, they bind any sequence which
conforms to specific properties, generally being “close enough” to some ideal recognized sequence and
identical in the most important positions.

The characterization of these families of recognized sequences, based on the dataset described below,
is the focus of this thesis.

14 CHAPTER 4. BIOLOGICAL BACKGROUND

Chapter 5

Input Data

The data we will be using have been acquired using a rather blunt approach: Rather than trying to
track the behaviour of each individual species of TF, which is quantitatively infeasible, the behaviour
of all TFs in a living cell is analysed at once, using the procedure sketched below.

5.1 Process

First, chemically “freeze” a cell with formaldehyde, instantly killing it but preserving various aspects
of its state at the moment of death, among them what DNA is bound by which proteins. However,
preserving state and observing it are not the same; the best known approach to the latter is then
using the DNA-cutting protein DNAseI to cut all unbound DNA into small pieces, then reversing the
freezing process and seeing what parts remain uncut. Each such uncut part represents a “footprint”
of a TF bound at the moment of death.

5.2 Limitations

Unfortunately, this does not reveal anything about what protein did the binding: all it reveals is what
DNA was bound. This means protein-specific information is lost, and any analysis, including this one,
can only draw conclusions “up to protein equivalence”, which does not yield protein identities.

5.3 Caveat: Noise

More unfortunately, during the writing of this thesis, a source of noise was discovered: DNAseI does
not cut all DNA sequences equally. This means that some sequences, while unbound, will still remain
uncut due to being ignored by DNAseI, giving the false impression of being bound. It has been decided
to accept this noise, since no dataset free of it is available or likely to become available.

15

16 CHAPTER 5. INPUT DATA

5.4 Noise mitigation

In various places, treshold values are used in attempt to limit the effect of this noise. While the noise
might surpass this treshold in some instances, it is hoped those instances will form clusters distinct
from legitimate clusters (i.e. those representing actual families of recognized sequences), possibly recog-
nisably so, but at worst yielding only false clusters, rather than fouling legitimate clusters. This hope
is founded in some biological properties of false and true positives, which won’t be discussed further
here.

5.5 Data format

The data have been supplied as a single file per dataset, with on each line one footprint, format-
ted as such: [chromosome ID] [start index] [end index] We cross-reference this with publicly
available reference genomes to produce the associated sequence for each footprint.

5.6 Acknowledgement

The dataset we have used has been produced by the stellar work of (Insert credits for dataset here),
who has/have our deep gratitude and without whose generosity in sharing their test results this thesis
would have been impossible.

Chapter 6

Model

6.1 DNA sequences

We will represent DNA sequences the usual way, noting only one side of a double strand.

Because the interactions we are interested in involve double strands, we will identify each sequence with
its complement (since the double strand they form is the same). This is non-trivial in implementation,
and so should be explicitly addressed in implementing any sub-algorithm which considers sequences
directly.

The distinction between pyramidines and purines, while interesting, has not been modeled due to time
constraints and difficulty using this information in algorithms not built around it. This is an area for
future work.

6.2 Transcription factors

Since we do not have any data about the individual transcription factors themselves, we will identify
only the families of recognized sequences. To do so, some notation for such a family is needed.

6.2.1 Motifs

One way to denote such a family is a motif: a sequence of probabilities of each nucleotide appearing.
For mathematicians and programmers:

Sequence : {A, C, T, G}∗

Motif :
(
[0, 1]4

)∗

t : {A, C, T, G} → [0, 1], A 7→ (1, 0, 0, 0), C 7→ (0, 1, 0, 0), etc.
i : Sequence → Motif, () 7→ (), cw 7→ t(c)i(w)

This is the notation preferred by biologists, but it strips some information (like implications “A in
position 2 requires that C be in location 5”), and implies more knowledge about the family than can
likely be gained from this dataset.

17

18 CHAPTER 6. MODEL

6.2.2 Wildcard patterns

A simpler, cruder representation can be gained by replacing the [0, 1] in the motifs above with {0, 1},
yielding values of “may appear” and “can’t appear”. Since this representation conveys less information,
it is easier to construct from indirect observation, and will be the goal of initial efforts.

6.2.3 Advanced Motifs

Noting implications such as suggested for motifs might yield very interesting results, but is a subject
for future research.

Chapter 7

Formalised Research Problem

Given the dataset and model as above, find Wildcard Patterns such that, with high likelihood, each
Transcription Factor active in the cells giving rise to the dataset matches every sequence within one
of those Wildcard Patterns, and none outside it. Additionally, no spurious wildcard patterns must be
introduced: each must correspond to at least one TF. So, there must be a surjective function f from TFs
to Wildcard Patterns, such that matches : Wildcard → P(Sequence), recognizes : TF → P(Sequence),
with the obvious interpretations, satisfy matches ◦ f = recognizes.

Note: f should exist, but doesn’t have to be known (nor could it be found in this dataset): The set of
wildcards produced should merely be such that it can exist.

19

20 CHAPTER 7. FORMALISED RESEARCH PROBLEM

Chapter 8

Algorithm

We will use an algorithm based on finding a minimal spanning tree, then strategically removing edges
to get a forest with each connected component being a cluster.

Different algorithms have been considered, but have not been implemented due to time constraints.
Some of these will be discussed in section 10.4.

8.1 Justification

In this approach, we use the fact that sequences within a motif can’t be too different; therefore, all
sequences matching a motif must fall within a fairly close edit distance of each other. Conversely,
sequences with small edit distances to each other are likely to belong to the same motif. Since MSTs
form a grouped measure of closeness, they can be used to search for a cluster.

8.2 Outline

The algorithm is rather straightforward: Convert all footprints to sequences, yielding a multiset. Take
the weighted complete graph on these sequences, with weights equal to the distance between sequences.
Construct the MST and remove the longest edges from the MST, yielding a forest. Each connected
component is now expected to correspond to a motif, which can be found or approximated as the “join”
of the sequences in the component.

8.3 Tuning factors

Decisions which need to be made in this algorithm are:

• What metric to apply to the sequences.
• How to decide how many edges to take away. This can be some constant, or based runtime on

the dataset.
• What join to use.

21

22 CHAPTER 8. ALGORITHM

8.4 Strengths

• Easy to implement
• Low computational complexity

8.5 Weaknesses

• Likely bad resolution
• Cannot tell motifs apart whose matching sequences are too close together. Actual overlap cannot

be compensated for by any amount of tuning.

8.6 Detailed description

8.6.1 Reading the data

8.6.1.1 Data format

The data consists of a list of all locations of footprints, in the format

<chromosome name> <start index> <end index>

as well as, for each chromosome name, a file containing the sequence of that chromosome in FASTA-
format, named <chromosome name>.fa

8.6.1.2 Reading Algorithm

Since the human genome is rather large (on the order of 3GB), we don’t want to open all files at once.
Therefore, we first parse the locations file into a mapping from chromosomes to lists of locations on
that chromosome. Then, for each entry in this mapping, we open the corresponding file, look up every
footprint on that chromosome, and note their sequence together with their location, before closing the
file and moving on to the next chromosome. This yields a list of all footprints with both location and
sequence known.

We now have a raw_dataset = {(lookup(l), l) | l ∈ locationfile} ⊂ Sequences × Locations where

Sequences = Nucleotides∗

Locations = Strings × N × N
Strings = AlphaNumeric∗

locationfile = (the locations of all footprints) ⊂ Locations
lookup : Locations → Sequences, location 7→ sequence at that location in the chromosome files

8.6.2 Taking the multiset

This particular algorithm doesn’t care about location (no useful metric considers it), but some possible
refinements consider how often a particular sequence occurs (for cutoff criteria, or metric tweaking).
Therefore, count occurences and discard locations, yielding a new dataset ⊂ Sequences × N

8.6. DETAILED DESCRIPTION 23

8.6.3 Noise Reduction: Minimum Occurrence Count

Since we expect noise to not produce the same sequence over and over, but do expect legitimate
footprints to do so, we apply a filter at this point: Any sequence which does not occur at least N
times is discarded, producing a high-pass filter of sorts. Since we have no algorithm to determine a
good value for N from the dataset, we ask for a value for N at run-time, and let the user determine a
good value by trial and error.

8.6.4 Minimal Spanning Tree Construction

The construction of a Minimal Spanning Tree is done by Prim’s Algorithm (as described in Tarjan
1983, 76), a standard memoized greedy algorithm which takes a set of vertices V and a weight function
w : V × V → W ⊂ R on these vertices.

By setting

V ⊂ Sequences × N

w = d for some metric d : V × V →

we can use Prim for clustering in a metric space. Since this gives us a complete graph, we will not be
using the heap-based optimization for sparse graphs (described in Tarjan 1983, 77).

NB: while metrization is possible, V, not being a ring, does not have any obvious concept of averages.
It can, however, be embedded in a join-semilattice, which we will use later.

The idea behind Prim’s algorithm is to expand the tree iteratively, calculating at each step which node
not in the tree is closest to the tree (this being the minimum distance to any node in the tree), then
adding that node to the tree, recalculating minima, and going to the next iteration until all nodes are
in the tree, at which point our tree is both spanning and minimal.

Note that in the first iteration, there is no tree yet. However, we can simply set any vertex r to be in
the tree, giving us a valid 1-vertex tree.

Pseudocode for Prim:

Prim (V, w, r ∈ V):
let W : P(V) × V → ℝ,

(A,v) ↦ min({w(a,v) | a ∈ A})
let MINFROM : P(V) × V → V,

(A,v) ↦ a ∈ A with w(a,v) = W(A,v)
let MINTO : P(V) → V,

A ↦ v ∈ V\A with W(A,v) = min({W(A,u) | u ∈ V\A})
##Note: the choices in CLOSEST and MIN are finite
##Note: we will explicitly calculate both W and MINFROM as part of
the algorithm: their definition above is for clarity and to show
correctness. Since this turns W into a lookup operation (O(1)),
MINTO can be calculated in O(|V|)
Let T[0] = {r}
We have:

W(T[0],v) = w(r,v)
MINFROM (T[0],v) = r

Let E[0] = ∅
Now inductively define:

u = MINTO(T[n])

24 CHAPTER 8. ALGORITHM

E[n+1] = E[n] ∪ {(MINFROM(u),u)}
T[n+1] = T[n] ∪ {u}
and we have:

W(T[n+1],v) = min(W(T[n],v),w(u,v))
MINFROM(T[n+1],v) = MINFROM(T[n],v) | W(T[n+1],v) = W(T[n],v)

= u | otherwise
Now T[n-1] = V, and (V,E[n-1]) forms a Minimal Spanning Tree

Given this algorithm, we run Prim(dataset,d,v ∈ dataset) and obtain an MST.

8.6.4.1 A note on complexity and choice of algorithms

An alternative approach for constructing the MST would be to use Kruskal’s algorithm, which does
not expand a single tree but simply keeps adding the shortest edges overall without forming cycles,
forming a forest which eventually merges into one tree.

However, this performs slightly worse than linear in the number of edges, while Prim’s algorithm can be
made quadratic in the number of vertices (see Tarjan 1983, 74–76). Since we’re effectively operating
on a complete graph, the number of edges is the square of the number of vertices, making Prim’s
algorithm strictly linear in the number of edges, and therefore optimal.

Several other algorithms exist, but we aren’t aware of any that perform better than linear in the
number of edges.

8.6.5 Choosing the distance metric

In this thesis, we have set d = hamming ◦π1, a simple hamming distance on the sequence, ignoring the
count. This is the simplest reasonable metric. Due to time constraints, no more sophisticated metrics
have been tried, although the code does support using custom metrics if any are available.

8.6.6 Culling the MST

The hypothesis now is that vertices that should be clustered will be close in the MST, and so cutting
longest edges will not split any true clusters. Therefore, decide on some number N of edges to cut and
remove the N longest edges from E to yield E, resulting in a forest of N + 1 components.

8.6.7 Cutting criterion

After some trial-and-error, we have concluded that cutting all edges longer than 1 is the best cutting
policy when using Hamming distances. Metrics offering a better resolution should be combined with
a more sophisticated cutting criterion.

8.6.8 Collecting the MST

Now determine the connected components by iterating over all vertices, doing a simple (depth-first)
tree traversal to discover all vertices reachable from the current vertex, marking all vertices so found,
recording them as one cluster, and skipping marked vertices in future iterations to avoid duplication.

8.7. CODE 25

8.6.8.1 Taking the join of a connected component.

At this point, we want to produce a list of motifs to answer the biological question. To do this, we embed
the sequence space Sequence (from chapter Model) into the wildcard space Wildcard := ({0, 1}4)∗ by
embedding i : A 7→ (1, 0, 0, 0), C 7→ (0, 1, 0, 0), T 7→ (0, 0, 1, 0), G 7→ (0, 0, 0, 1). Now we define a join-
semilattice on Wildcard, by defining the join of two motifs of the same length to be their pointwise
coordinatewise join:

join :{0, 1}4 × {0, 1}4 → {0, 1}4

((x1, x2, x3, x4), (y1, y2, y3, y4)) 7→ (x1 ∨ y1, x2 ∨ y2, x3 ∨ y3, x4 ∨ y4)
join :

(
{0, 1}4)∗ ×

(
{0, 1}4)∗ →

(
{0, 1}4)∗

(l, r) 7→

() if (l, r) = ((), ())
join(b, c) · join(v, w) if (l, r) = (bv, cw)
↑ otherwise

Having defined this semilattice, we can take the join of each cluster, translate the resulting may
appear/may not appear-codes back into standard IUPAC DNA ambiguity codes, and deliver these to
biologists as our best guess.

8.7 Code

The code for the algorithm described above is included in Appendix Code, as well as digitally at
[www.math.ru.nl/~bosma/Students?/????] .

26 CHAPTER 8. ALGORITHM

Chapter 9

Results

Raw output of various runs of the program are included in Appendix Data. More can be found on
[www.math.ru.nl/~bosma/Students?/????] .

9.1 Reading the raw results

Except for the dialogue setting the minimum occurence count (“cutoff”) on lines 3 and 4, the first part
of each run of output is diagnostic information. This has been introduced in the debugging phase,
and gives some insight into the state of the program during execution, facilitating potential further
development. Outside of development, it should be ignored.

Actual output starts, in each run, below the line “Press any key to continue.” After this, every line
contains one motif, formatted as

<sequence> <#(data points in cluster)> <#(unique original sequences in cluster)>

With sequences written using standard IUPAC ambiguity codes (see bioinformatics.org/sms/iupac
2017). The lists are sorted by the second column, with shorter sequences coming first in case of a tie.

All runs are performed with the same settings, except for the lower limit on the amount of identical
sequence occurences in the input dataset required before a sequence gets included as a data point for
the MST algorithm.

Runs are presented in no particular order. Runs with lower limits below 5 are excluded from the print
version, due to such settings creating excessive amounts of output. Digital plain text files for runs with
lower limits 3 and 1 (no filter) are available.

9.2 Summary

While the output of the analysis program itself is too large to include here, a summary is possible:

• The vast majority of the data is absorbed by N∗ sequences of various lengths, which accept
everything.

• For every lower bound, the data has a tail of sequences, each output sequence based on a single
input sequence (degenerate clusters).

• There are several examples of sequences which look very similar, but are of different length.

27

28 CHAPTER 9. RESULTS

Chapter 10

Discussion and reflection

10.1 Main conclusion

Based on the summary given above, the main result is negative: No useful clusters can be found in the
majority of the dataset by this algorithm. From this, we can conclude that a simple Hamming metric
is probably too coarse. The lowest non-zero distance it can create is 1, and this has been taken as the
maximum distance to relate two otherwise unrelated sequences. No stricter criterion is possible, yet
it is not strict enough to not absorb the vast majority of the data into a single cluster per sequence
length.

What this says about the dataset is that, using this metric, we can walk within sequences in the dataset
from almost any point to almost any other point without ever having a step distance greater than 1.
Intuitively, this seems to indicate that if any real clusters exist, those clusters all touch, which gives a
rather “fuzzy” view.

Alternatively, the dataset might just be too noisy. However, if this is the case, the majority of the
dataset is under the noise floor, based on trial and error with the minimum occurence count setting:
any setting which eliminates the “all” cluster leaves only a few scattered peaks, with no or nearly no
actual clustering occurring.

Note that this is a property of the dataset equipped with this metric: Other metrics might produce a
clearer view, and indeed this is likely if they have more possible values and are chosen sensibly.

The problem, however, might very well be the MST algorithm itself: it cannot distinguish overlapping
clusters at all, and such overlap is not impossible or even unlikely given the subject matter. If clusters
overlap, a more sophisticated algorithm will be required, likely designed specifically with this problem
in mind, rather than this most generic of clustering algorithms.

10.2 Conclusion for Biologists

The approach used in this thesis did not yield any directly useful results, beyond the suspicion that
motifs should not be assumed to only cover sequences of a single size.

However, the manner in which it failed does provide some insight into the shape of the dataset, the
shape of the noise, and the amount of noise. This should prove useful in formulating any alternative
approaches.

29

30 CHAPTER 10. DISCUSSION AND REFLECTION

Additionally, while our primitive clustering algorithm turned out to be mostly useless, the underlying
model is likely fine, and can be used for other algorithms without substantial biological knowledge,
said knowledge being contained in the model.

An exception is the process of taking the “join” of a cluster to extract a motif, if the cluster contains
sequences of differing lengths. The model does not define any way to do so, and it is not easily defined
without some biological knowledge. In this case, a biologist would need to be available to answer
questions, and provide some examples of the “right” motifs for some clusters with varying sequence
lengths.

In summary, while providing no direct results, this thesis can hopefully allow data scientists with-
out much biological background to develop more sophisticated algorithms, using only this thesis for
background knowledge.

10.3 Other considerations

10.3.1 Singleton clusters

The tails of singletons noted in the summary are very unlikely to actually exist as proper motifs
belonging to transcription factors, especially considering their low occurence numbers. They are almost
certainly noise, and should be ignored.

However, their existence also indicates the amount of noise in the entire dataset, including where it
might interfere with clustering algorithms. Any succesful clustering algorithm will have to handle
such noise correctly. A filter capable of removing such noise before clustering might work, but ideally,
clustering algorithms should be made inherently robust against this type of noise.

10.3.2 Similarity across lengths

In designing both the distance function and the join function, it had been assumed that all sequences
within a motif should be of the same length. Several sequences in the result seem to contradict this
assumption, including some non-trivial pairs with a length difference of 1.
Therefore, future algorithms should not make this assumption, and instead find some way to interpret
and represent similarity between sequences of different lengths.

10.4 Potential improvements

10.4.1 Distance functions

The distance function used was a simple Hamming metric, which is relatively coarse. Several refine-
ments are imaginable:

10.4.1.1 Sequence-based refinement

Not all distances between two nucleotides are equal: each nucleotide has spatial and chemical features
which are closer to or further from those of each other nucleotide. Incorporating such differences into
the distance function could increase point-wise resolution, if based on biochemical knowledge. This
would in turn increase resolution on the sequence level.

10.4. POTENTIAL IMPROVEMENTS 31

Additionally and alternatively, some features recognized by transcription factors are known to be based
not on individual nucleotides, but by the transition between them in a sequence. Thus, the metric
could be enriched by adding some similarity score if certain properties on sequential pairs of nucleotides
are equal, rather than the nucleotides themselves.

10.4.1.2 Frequency-based refinement

There is a possibility that motifs have properly disjoint “cores” which are most often seen, but also
contain less commonly seen “peripheries”, which can overlap. If so, clusters might be distinguishable
by having distances between sequences seen with low frequency be penalized (increased) compared to
distances between high-frequency sequences. This would, under the assumptions given, keep cluster
cores together while pushing the confounding peripheries apart.

10.4.2 Alternative algorithms

Constructing an MST doesn’t really leave any choices or tuning variables, so it is hard to improve
it except by choosing a better distance function. Alternative algorithms are thinkable however, so
long as one keeps in mind that the sequence space does not have meaningful averages, and so it’s not
possible to use averaging-based clustering algorithms.

10.4.2.1 Convexity-based

One very plausible hypothesis is that true clusters are (mostly) convex. This requires a generalisation
of the concept of convexity:

A subset A of a metric space X is considered convex iff ∀x, y ∈ A ∀z ∈ X d(x, z) + d(z, y) = d(x, y) ⇒
z ∈ A.

In other words, if two points are in a convex set, that set must also include all points “between” them
for which the triangle inequality is an equality. This is consistent with the notion of convexity in spaces
with weighted averages such as real and complex numbers and vector spaces.

Given such a notion of convexity, it might be possible and useful to define an algorithm based on trying
to split non-convex clusters, ideally such that as many points in the cluster but not in the dataset are
excluded from the union of the two new clusters (intuitively, split along the plane of maximum missing
datapoints in the cluster). Given an algorithm to perform such a step, apply this iteratively to the
most non-convex cluster after each step, starting with a universal cluster.

No attempt has been made here to write such an algorithm beyond formulating the concept, but
further work could include making such an attempt.

10.4.2.2 Co-occurrence based

Another possibility is to look not only at what sequences are found, but also where they are found.
Transcription factors form complexes, so often, the same motifs will always occur together, with
similar relative positioning. It is possible to base a statistical algorithm on this, with the chance of
two sequences belonging to the same motif increasing as they occur next to the same other motif. This
is a very different approach, and only vaguely sketched here, but it might detect patterns which pure
sequence-based algorithms would miss.

32 CHAPTER 10. DISCUSSION AND REFLECTION

10.4.3 Dealing with different sequence lengths

While it is relatively easy to adapt distance functions to enable comparisons on sequences of unequal
length, by replacing Hamming distances by edit distances, doing the same for joins is a greater challenge,
and we will make no attempt at a solution here.

Chapter 11

Conclusion

The dataset has turned out to not be amenable to analysis by simple MST using a Hamming metric.
Several improvements are thinkable, some of which are based on the little information which the
approach used here revealed. However, implementing such improvements is beyond the scope of this
thesis.

Albers, Kees. Letter. n.d.

bioinformatics.org/sms/iupac. 2017. “IUPAC Codes.” Accessed April 18. https://www.bioinformatics.
org/sms/iupac.html.

Logie, Colin. Letter. n.d.

Megchelenbrink, Wout. Letter. n.d.

Saeed, Sadia. Letter. n.d.

Tarjan, Robert E. 1983. Data Structurs and Network Algorithms. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9781611970265.

33

https://www.bioinformatics.org/sms/iupac.html
https://www.bioinformatics.org/sms/iupac.html
https://doi.org/10.1137/1.9781611970265

	Acknowledgements
	Introduction
	Structure of this text

	Research Problem for Biologists
	Biological background
	Caveat quantifiers
	Prior knowledge
	Cells
	DNA
	Chromosomes
	Genes
	Proteins

	Transcription factors

	Input Data
	Process
	Limitations
	Caveat: Noise
	Noise mitigation
	Data format
	Acknowledgement

	Model
	DNA sequences
	Transcription factors
	Motifs
	Wildcard patterns
	Advanced Motifs

	Formalised Research Problem
	Algorithm
	Justification
	Outline
	Tuning factors
	Strengths
	Weaknesses
	Detailed description
	Reading the data
	Taking the multiset
	Noise Reduction: Minimum Occurrence Count
	Minimal Spanning Tree Construction
	Choosing the distance metric
	Culling the MST
	Cutting criterion
	Collecting the MST

	Code

	Results
	Reading the raw results
	Summary

	Discussion and reflection
	Main conclusion
	Conclusion for Biologists
	Other considerations
	Singleton clusters
	Similarity across lengths

	Potential improvements
	Distance functions
	Alternative algorithms
	Dealing with different sequence lengths

	Conclusion

