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1 Introduction

When taking the 2-bit binary numbers in their normal order: 00, 01, 10, 11, we see that
when we move from 01 to 10, we have to change both bits. If we, however, order them
00, 10, 11, 10, we only have to change one bit per step. Such an ordering for n-bit binary
numbers is called a Gray code, named after the inventor Frank Gray, who used it in a
patent in 1947. However due to its useful applications, it was not the first occurrence of
the code.

For instance, if you have a bunch of levers and manually want to try every combination,
using a Gray code will save you a lot of work, since you only have to pull one lever each
time. Also, in some situations it is essential that we only change one bit, since when
changing multiple bits, there might be a small moment of time where only a subset of
these bits have changed, which might cause problems. We will go into the most common
Gray code, the so called reflected Gray codes.

Now if we want to try every combination of a combination lock in an efficient way,
where we pass every combination exactly once and we only turn one wheel at each step
and this wheel we turn a minimal distance, we come to what is called the Generalized
Gray codes. These are Gray codes, where instead of an alphabet of just {0, 1}, we use
a more generalized alphabet {0, 1, ..,m}. For one of these Generalized Gray codes, the
reflected Generalized Gray codes, we will implement an algorithm which will give the
tuple that follows the input tuple. This algorithm has linear complexity, is iterative
and does not require any extra memory. We will also show an algorithm that works in
constant time, but does require extra memory.

Now if you imagine a combination lock where every wheel goes from zero to infinity,
with a set number of wheels, and we want to try every combination with minimal effort
and an extra requirement: the combinations with highest number m should be tried
before the combinations with highest number > m, you get the “half growing” Gray
code. It is called this way, because if you visualize the path, you get a Hamiltonian path
through a hypercube, where half the sides keep getting an extra layer. For this problem,
we will define a working path for which we will implement both a linear time algorithm
that does not require extra memory and a constant time algorithm that requires extra
memory the same size as the input tuple. The same problem, but where the “wheels” go
from minus infinity to infinity is called the “fully growing” Gray code. In this case the
code gives a path through a hypercube that adds an extra layer on every side. For this
problem we will give a linear algorithm for the cases with even dimensions. Sadly it is
not possible for odd dimensions. The “half growing” and “fully growing” Gray code have
useful applications, for instance they could be used to find polynomials with specific
characteristics, especially if we want to minimize the maximum value of the coordinates.

For further reading and general information on Gray codes not covered in this thesis,
I recommend Knuth’s The Art of Computer Programming 4a [2](pages 281-319) and as
a matter of fact the Wikipedia page[3] on Gray codes is an excellent introductory source
as well.

1.1 Notation

In this section we will highlight a few notations that are used throughout the thesis:

• Often tuples will be written as numbers, for example we will sometimes write abcd
for the tuple (a, b, c, d).

• When we have a tuple x = (x1, .., xd−1, xd), we will write xj
i when we want the

tuple that only contains the coordinates between i and j, (xi, .., xj). Not to be
confused with xi to the power j.
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• Generally, in computer science indices start at 0 and in mathematics indices start
at 1. This thesis is a bit inconsistent in this regard, since in Chapter 2 the indices
start at 0 and in the other chapters the indices start at 1. This is the result of a
discrepancy between a desire to resemble the actual code and a personal preference.

• Some functions are defined in such way that it may seem that the same input tuple
will be mapped to two different outputs. In this case the function actually maps
the input to the first output. For example, we might have a function defined as
follows:

(0, .., 0,m, 0) 7→ (0, .., 0,m + 1, 0)

(0, .., 0,m, a) 7→ (0, .., 0,m, a− 1) with 2|a
(0, .., 0,m, 0, a) 7→ (0, .., 0,m, 0, a− 1) with 2 - a
xd−1
1 a 7→ HG−1d−1(xd−1

1 )a with 2|a
xd−1
1 a 7→ HGd−1(xd−1

1 )a with 2 - a

Then the input tuple (0, .., 0,m, 0) coincides with both the first, second and fourth
line. In that case the output is the one given by the first line.
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2 Gray codes

2.1 Binary Gray codes

Definition 2.1. A binary Gray code of n-bit numbers is an ordering of all n-bit
binary numbers, such that two successive numbers differ in exactly one bit.

Analogously, a binary Gray code can be defined for n-tuples:

Definition 2.2. A binary Gray code of n-tuples is a bijection g : {0, 1}n →
{0, 1, ..., 2n − 1}, such that g(x)− g(y) = 1 =⇒ #{i|0 ≤ i < n, xi 6= yi} = 1.

2.1.1 Reflected Gray codes

One simple way of recursively constructing an n-bit binary Gray code, is by taking the
elements of a binary Gray code of n − 1 bits and prefixing them with a 0 and then
adding to this list the elements of the binary Gray code of n − 1 bits in the reverse
order, prefixed with a 1. If we start with the 1 bit Gray code 0,1 and repeatedly apply
the aforementioned algorithm, we will create the reflected Gray codes for n-bit
numbers.

If we start with the order 0 1, the resulting order of the 4-bit binary reflected Gray
code will become:

0: 0000 8: 1100
1: 0001 9: 1101
2: 0011 10: 1111
3: 0010 11: 1110
4: 0110 12: 1010
5: 0111 13: 1011
6: 0101 14: 1001
7: 0100 15: 1000

By convention, just like normal binary numbers, the reflected Gray code for binary
numbers “grows” to the left. That is to say that the head of the reflected Gray code for
n-bits is simply equal to the reflected Gray code for (n− 1)-bits where the elements are
prefixed with a 0. However, if we want to use tuples or arrays it makes more sense to
have the code “grow” to the right, since arrays themselves generally “grow” to the right.
In this case, we suffix the reflected Gray code of one dimension less with a 0 and we suffix
its mirror with 1. This will give us the binary reflected Gray codes for n-tuples:

0: (0,0,0,0) 8: (0,0,1,1)
1: (1,0,0,0) 9: (1,0,1,1)
2: (1,1,0,0) 10: (1,1,1,1)
3: (0,1,0,0) 11: (0,1,1,1)
4: (0,1,1,0) 12: (0,1,0,1)
5: (1,1,1,0) 13: (1,1,0,1)
6: (1,0,1,0) 14: (1,0,0,1)
7: (0,0,1,0) 15: (0,0,0,1)

2.1.2 Converting binary reflected Gray codes to binary numbers and vice
versa

There is a simple function to convert the mth binary number to the mth element of
the binary reflected Gray Code. If we model the number as a tuple, the function is
a : {0, 1}n → {0, 1}n with a((x0, .., xn−1))i = xixorxi+1, with xn = 0. In other words,
the value at index i of the output is the xor function applied to the values at indices i
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and i+ 1 of the input. The reason this works, is because of the reflective nature: Take an
arbitrary m ∈ N and let d ∈ N be the smallest natural number such that 2d > m. Then
the first d−1 bits of the mth element of the Gray code coincide with the first d−1 bits of
the (2d − 1−m)th element of the Gray code. You get the (2d − 1−m)th binary number
by complementing all the bits of the mth binary number, and when complementing all
the bits, the xor of two adjacent bits remains the same. A simple formal proof can then
be given by using induction on the size of the binary number, but has been left out in
this thesis.

The function to convert the mth binary reflected Gray Code to the mth binary number
is slightly more difficult, but still quite simple too. Again, we model the number as a tuple,
and the function is b : {0, 1}n → {0, 1}n with b((x0, .., xn−1))i = xixorxi+1xor..xorxn−1.
In other words, the value at index i of the output is the xor function applied to the
values at indices i to n−1 of the input. The validity of this function can be seen by using
the previous function and induction (once again a formal proof has been left out): By the
previous function, we know xi = b((x0, .., xn−1))ixorb((x0, .., xn−1))i+1, but then also
b((x0, .., xn−1))i = xixorb((x0, .., xn−1))i+1, by the nature of the xor operator. Then we
can use induction to prove b((x0, .., xn−1))i = xixorxi+1xor..xorxn−1, with induction
hypothesis b((x0, .., xn−1))i+1 = xi+1xor..xorxn−1.

2.2 Generalized Gray codes

In the previous section, we restricted ourselves to Gray codes of an alphabet of size two.
In this section we want to expand this definition to larger alphabets.

We can interpret a Gray code as a strict total order, here modeled as a bijection with
a subset of the natural numbers.

Definition 2.3. A Gray code of n-tuples over an alphabet A = {0, ..,m} is a
bijection g : An → {0, 1, ..., (m + 1)n − 1}, such that g(x)− g(y) = 1 =⇒ K(x, y) = 1,

where K((x0, ..xn−1), (y0, .., yn−1)) =
∑n−1

i=0 |xi − yi|.

We can also interpret a Gray code as a bijection from a set of tuples to itself, where
we get the next tuple in the code by applying this function.

Definition 2.4. A Gray code of length n over alphabet A = {0, ..,m} is a bijective
function h : An \ {xlast} → An \ {0..0}, where xlast ∈ An \ {0..0}, such that for all

x ∈ An \ {xlast}, K(x, h(x)) = 1, where K((x0, ..xn−1), (y0, .., yn−1)) =
∑n−1

i=0 |xi − yi|.

In other words, we want to order all tuples of length n with digits from alphabet
A = {0, ..,m} in such a way, that every tuple differs from the previous one in exactly 1
digit, and the difference between these two differing digits must be minimal.

2.2.1 Reflected Gray codes over an alphabet

Just like with the reflected binary Gray codes, we can use the Gray code of dimension
(n − 1) to construct a Gray code of dimension n. The result does slightly depend on
whether the size of the alphabet is even or odd, therefore we have split into two cases.

2.2.2 Recursive definition for reflected Gray codes for an even sized alpha-
bet

Let A = {0, 1, ..,m} be an alphabet of even size. Assume that the reflected Gray codes
for sizes k < n are known. Let fk : Ak \ {0..0m} → Ak \ {0..00} be the function that
takes a tuple of size k and returns the tuple that comes next in the reflected Gray code.
These functions fk are then inductively defined by the following rules:
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For tuples of length 1:

f1 : A \ {m} → A \ {0}
f1(a) = a + 1

And for fn+1, given fn:

fn+1(0..0mxn) = 0..0m(xn + 1) if 2|xn

fn+1(0..00xn) = 0..00(xn + 1) if 2 - xn

fn+1(x) = fn(xn−1
0 )xn if 2|xn

fn+1(x) = f−1n (xn−1
0 )xn if 2 - xn

where xj
i := xixi+1...xj−1xj for a tuple x = x0x1..xn.

2.2.3 A memoryless iterative algorithm for reflected Gray codes with an
even sized alphabet

In this section we will construct an iterative algorithm whose input and output acts the
same as the function defined in section 2.2.2. The intuition behind the algorithm is that
we want to find out in which direction the element at index 0 is moving. Let us say we
have the tuple x = x0x1..xn of length n + 1. When xn is even, the direction of x0 is the
same as when we would have just looked at the tuple xn−1

0 . On the other hand, when
the number at the last index is odd, the direction of x0 is switched compared to the
direction it would have had if we were just looking at the tuple xn−1

0 . The principle of
the algorithm is that we move from index n to index 1 and we count how many times
the direction switches and then change the value at index 0 accordingly. Since the value
at index 0 can not go below 0 or above m, there is a couple of cases where the algorithm
is not quite as simple. A comparison can be made with ordinary numbers: If we add 1
to an ordinary number, usually only the rightmost digit increases, unless the rightmost
digit equals 9, in which case we have a carry and change some digits on other indices
too. The difference is that with Gray codes we still only change one digit, just not the
one at index 0.

We define the auxiliary function P (x) = (
∑n

i=0 xi) mod 2, which checks if the sum
of the digits of a tuple is even or odd, also known as the parity. P is used to decide if
the direction of the remaining tuple is “forwards” or “backwards”.

An+1 : An+1 \ {0..0m} → An+1 \ {0..0} is the function given by the algorithm. This
is what the algorithm does for an input tuple of length n + 1, x = x0x1...xn:

• If P (xn
1 ) = 0 and x0 6= m: return (x0 + 1)xn

1

• If P (xn
1 ) = 1 and x0 6= 0: return (x0 − 1)xn

1

• If P (xn
1 ) = 0 and x0 = m:

– if P (x1) = 0: return x0(x1 + 1)xn
2

– if P (x1) = 1: return x0(x1 − 1)xn
2

• If P (xn
1 ) = 1 and x0 = 0: let j = min {0 < j ≤ n|xj 6= 0}

– if P (xj) = 0: return 0..0(xj − 1)xn
j+1

– if P (xj) = 1 and xj 6= m: return 0..0(xj + 1)xn
j+1

7



– if xj = m: in this case we know that j < n, since the function is not defined
for 0..0m

∗ if P (xj+1) = 0: return 0..0xj(xj+1 + 1)xn
j+2

∗ if P (xj+1) = 1: return 0..0xj(xj+1 − 1)xn
j+2

Correctness of algorithm: In order to prove the correctness of the algorithm, we
have to show that for all n ∈ Z>0 the function An, given by the algorithm, coincides
with the function fn, given by the recurrence relations in Section 2.2.2.

IB: The size of the tuple is 1: Let a ∈ A \ {m}. Since the parity of the empty tuple
is 0, A1(a) = a + 1 = f1(a). So A1 = f1.

IH: We assume that An = fn.
IS: In this part of the proof we have to check for all different cases that the algorithm

An+1 coincides with the recursive definition of fn+1. We split into four main cases given
by the parity of the tuple without the digit at index 0 and whether the digit at index 0
can be changed or not.

If P (xn
1 ) = 0 and x0 6= m: Then An+1(x) = (x0 + 1)xn

1 .

• if P (xn) = 0, then P (xn−1
1 ) = 0, so An(xn−1

0 ) = (x0 + 1)xn−1
1 . This means that

An+1(x) = An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x), by the recursive relation.

• if however P (xn) = 1, then P (xn−1
1 ) = 1, so An((x0 + 1)xn−1

1 ) = x0x
n−1
1 . This

shows us that An+1(x) = A−1n (xn−1
0 )xn = f−1n (xn−1

0 )xn = fn+1(x).

If P (xn
1 ) = 1 and x0 6= 0: Then An+1(x) = (x0 − 1)xn

1 .

• if P (xn) = 0, then P (xn−1
1 ) = 1, An(xn−1

0 ) = (x0 − 1)xn−1
1 . This means that

An+1(x) = An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x), by the recursive relation.

• if however P (xn) = 1, then P (xn−1
1 ) = 0, so An((x0 − 1)xn−1

1 ) = x0x
n−1
1 . This

means that An+1(x) = (x0−1)xn−1
1 xn = A−1n (xn−1

0 )xn = f−1n−1(xn−1
0 )xn = fn+1(x),

by the recursive relation.

If P (xn
1 ) = 0 and x0 = m: we may assume that n > 0, since f1(m) is not defined.

We will split into four cases given by the parity of x1 and xn and we may assume that
n > 1 except in the case where P (xn) = 0 and P (x1) = 0. We first split into the two
situations given by the parity of x1:

• P (x1) = 0: Then An+1(x) = x0(x1 + 1)xn
2 . We again split into two cases:

– P (xn) = 0: It is possible that n = 1, in which case x is of the form x = ma,
with a ∈ A and 2|a. The algorithm A1 gives A1(ma) = m(a + 1) which
coincides with f1(ma) = m(a + 1), where we use that ma is of the form
0...0ma with no zeroes. If however n > 1, then An(xn−1

0 ) = x0(x1 + 1)xn−1
2 ,

because x0 = m, P (xn−1
1 ) = 0 and P (x1) = 0 . This means that An+1(x) =

An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x).

– P (xn) = 1: Then An(x0(x1 + 1)xn−1
2 ) = xn−1

0 , because P ((x1 + 1)xn
2 ) = 0

and P (x1 + 1) = 1 and x0 = m. So x0(x1 + 1)xn
2 = A−1n (xn−1

0 ), and
An+1(x) = A−1n (xn−1

0 )xn = f−1n (xn−1
0 )xn = fn(x).

• P (x1) = 1: Then An+1(x) = x0(x1 − 1)xn
2 (Note that this is well-defined, since

P (x1) = 1 implies x1 6= 0). Again, split in two cases:

– P (xn) = 0: Then An(xn−1
0 ) = x0(x1 − 1)xn

2 , because P (xn−1
1 ) = 0, x0 = m

and P (x1) = 1. So An+1(x) = An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x).
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– P (xn) = 1: Then An(x0(x1 − 1)xn−1
2 ) = x0x1x

n−1
2 = xn−1

0 , because P ((x1 −
1)xn−1

2 ) = 0, since P (xn) = 1, P ((x1 − 1)) = 1 − P (x1) and P (xn
1 ) = 0,

and x0 = m. This means that An+1(x) = x0(x1 − 1)xn
2 = A−1n (xn−1

0 )xn =
f−1n (xn−1

0 )xn = fn+1(x).

If P (xn
1 ) = 1 and x0 = 0: We define j as j = min {0 < j ≤ n|xj 6= 0}.

• P (xj) = 0: Then An+1(0..0xjx
n
j+1) = 0..0(xj − 1)xn

j+1. We know j 6= n, because
then P (xn

1 ) = 0. We split into two cases:

– P (xn) = 0: In this case An(xn−1
0 ) = 0..0(xj − 1)xn

j+1, because P (xn−1
1 ) = 1

and P (xj) = 0. So, An+1(x) = An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x).

– P (xn) = 1: In this case An(0..0(xj − 1)xn−1
j+1 ) = 0..0xjx

n−1
j+1 = xn−1

0 , because

P (xj−1
1 (xj − 1)xn−1

j+1 ) = 1, x0 = 0, P (xj − 1) = 1 and P (xj − 1) 6= m. This

means that An+1(x) = A−1n (xn−1
0 )xn = f−1n (xn−1

0 )xn = fn+1(x).

• P (xj) = 1 and xj 6= m: Then An+1(0..0xjx
n
j+1) = 0..0(xj + 1)xn

j+1.

– j = n: In this case x is of the form 0..0a, with P (a) = 1. fn+1(0..0a) =
0..0(a + 1) = An+1(x).

– j < n and P (xn) = 0: An(xn−1
0 ) = 0..0(xj + 1)xn−1

j+1 , because P (xn−1
0 ) = 1,

x0 = 0, P (xj) = 1 and xj 6= m. This means that An+1(x) = An(xn−1
0 )xn =

fn(xn−1
0 )xn = fn+1(x).

– j < n and P (xn) = 1: An(0..0(xj + 1)xn−1
j+1 ) = xn−1

0 , because P (xj−1
1 (xj −

1)xn−1
j+1 = 1, x0 = 0 and P (xj + 1) = 0. This means that An+1(x) =

A−1n (xn−1
0 )xn = f−1n (xn−1

0 )xn = fn+1(x)

• xj = m and P (xj+1) = 0: We know j < n, because the algorithm is not defined on
0..0m. Then An(x) = 0..0xj(xj+1 + 1)xn

j+2. We have a couple of cases:

– j + 1 = n: x is of the form: x = 0..0m(xj+1). fn+1(x) = 0..0m(xj+1 + 1),
because 2|xj+1, so An+1(x) = fn+1(x).

– j + 1 < n and P (xn) = 0: An(0..0xjxj+1x
n−1
j+2 ) = 0..0xj(xj+1 + 1)xn−1

j+2 ,

because P (xn−1
1 ) = 1, x0 = 0, xj = m and P (xj+1) = 0. This means that

An+1(x) = An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x).

– j + 1 < n and P (xn) = 1: An(0..0xj(xj+1 + 1)xn−1
j+2 ) = 0..0xjxj+1x

n−1
j+2 ,

because P (xj
1(xj+1 + 1)xn−1

j+2 ) = 1, x0 = 0, xj = m and P (xj+1 + 1) = 1. This

means that An+1(x) = A−1n (xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x).

• xj = m and P (xj+1) = 1: Again, we know that j < n, because the algorithm is
not defined on 0..0m. Then An+1(0..0xjxj+1x

n
j+2) = 0..0xj(xj+1 − 1)xn

j+2. We
have have a couple of different cases:

– j + 1 = n: This case is actually impossible, since we know P (xj+1) = 1 , but
we also know P (xn

1 ) = 1, but the only two non-zero digits of x are m and
xj+1, which implies that P (xn

1 ) = 0.

– j + 1 < n and P (xn) = 0: An(xn−1
0 ) = 0..0xj(xj+1 − 1)xn−1

j+2 , because

P (xn−1
1 ) = 1, x0 = 0, xj = m and P (xj+1) = 1. This means that An+1(x) =

An(xn−1
0 )xn = fn(xn−1

0 )xn = fn+1(x).

– j + 1 < n and P (xn) = 1: An(0..0xj(xj+1 − 1)xn−1
j+1 ) = xn−1

0 , because

P (xj−1
1 xj(xj+1 − 1)xn−1

j+2 ) = 1, x0 = 0, xj = m and P (xj+1 − 1) = 0. This

means that An+1(x) = A−1n (xn−1
0 )xn = f−1n (xn−1

0 )xn = fn+1(x).
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With that, we have checked for all possible cases that the algorithm coincides with the
recurrence relations.

Complexity analysis: We want to look at the time it takes to calculate for a given
tuple of length n the tuple that follows. Determining the parity of the input tuple takes
linear time, since we loop through the input. Furthermore, we loop through the tuple
to determine the index of the first non-zero digit. This is also linear if implemented in
the most naive way. The remaining operations do not depend on the size of the input.
Therefore the complexity of the algorithm is O(n).

2.2.4 Recursive definition for reflected Gray codes for an odd sized alphabet

The reflected Gray codes for an odd sized alphabet are very similar to the codes for an
even sized alphabet. One major difference though, is that when the most significant digit
is maximal, m, the remaining (n− 1)-sized tuple is moving “forwards”, because in this
case m is even. In the previous case, the last tuple of size n was 0..0m. In the odd-sized
case, the last tuple of size n will be m..mm. This will have some implications for the
recursive definition and the algorithm.

Let A = {0, 1, ..,m} be an alphabet of odd size. Assume that the reflected Gray
codes for sizes k < n are known. Let fk : Ak \ {m..mm} → Ak \ {0..00} be the function
that takes a tuple of size k and returns the tuple that comes next in the reflected Gray
code. These functions fk are then inductively defined by the following rules:

For tuples of length 1:

f1 : A \ {m} → A \ {0}
f1(a) = a + 1

And for fn+1, given fn:

fn+1(m..mmxn) = m..mm(xn + 1) if 2|xn

fn+1(0..00xn) = 0..00(xn + 1) if 2 - xn

fn+1(x) = fn(xn−1
0 )xn if 2|xn

fn+1(x) = f−1n (xn−1
0 )xn if 2 - xn

where xj
i := xixi+1...xj−1xj for a tuple x = x0x1..xn.

2.2.5 A memoryless iterative algorithm for reflected Gray codes with an
odd sized alphabet

Just like the recursive definition, this algorithm is similar to the algorithm for an even
sized alphabet. The difference, once again, stems from the fact that the last tuple is
m..mm, instead of 0..0m. Another difference is that, here the maximal digit, m, does
not change the parity of the tuple, because m is even. This makes the algorithm simpler.
Overall, the principle is still that we want to find out in which direction the digit at
index 0 is moving.

This is what the algorithm does for an input tuple of length n + 1, x = x0x1...xn:

• If P (xn
1 ) = 0 and x0 6= m: return (x0 + 1)xn

1

• If P (xn
1 ) = 1 and x0 6= 0: return (x0 − 1)xn

1

• If P (xn
1 ) = 0 and x0 = m:

let j = min {0 < j ≤ n|xj 6= m}

10



– if P (xj) = 0: return xj−1
0 (xj + 1)xn

j+1

– if P (xj) = 1: return xj−1
0 (xj − 1)xn

j+1

• If P (xn
1 ) = 1 and x0 = 0:

let j = min {0 < j ≤ n|xj 6= 0}

– if P (xj) = 0: return 0..0(xj − 1)xn
j+1

– if P (xj) = 1: return 0..0(xj + 1)xn
j+1

Correctness of algorithm: The proof of this algorithm is analogous to the proof
of the algorithm in Section 2.2.3.

Complexity analysis: Determining the index of the first non-maximal digit can
be done in linear time. For the remaining part , the algorithm acts the same in terms
of complexity as the algorithm in Section 2.2.3, therefore the complexity of the entire
algorithm is also O(n).

2.2.6 Knuth’s loopless algorithm

In this section we will look at an algorithm found in Knuth’s The Art of Computer
Programming 4a [2] (Algorithm H on page 300) using a concept originally used by
Ehrlich [1] (Bitner, Ehrlich and Reingold CACM 19 (1976) 517-521). It is a very efficient
algorithm for generating the general reflected Gray codes, whose speed, apart from
initialization, does not depend on the length of the tuples, plus it does not need to
memorize all the previous tuples. It does however require an extra piece of memory the
same size as the input tuple. This piece of memory is there to keep track of which indices
should be changed next. This means that if we have just the input tuple, the algorithm
does not work in constant time, because we first have to calculate the correct values for
this auxiliary memory.

The implementation in Knuth [2] is actually a more general version of the algorithm,
since the alphabet can depend on the index: Let n be the size of the reflected Gray codes
we are generating. For all 0 ≤ j < n, the digit on index j ranges from 0 inclusive to mj

exclusive. But that is not the point of this algorithm, since the algorithm in the previous
sections can also be tweaked to work for tuples where the alphabet depends on the index.
The point of this algorithm is to show that there is a technique to calculate the next
element of the Gray code in constant time.

The algorithm is based on two principles: First of all, if we track the value of a
single digit at index j, it is either moving from 0 to mj − 1 or from mj − 1 to 0.
That is, its direction does not change until it reaches one of the extremes 0 or mj − 1.
Second of all, starting at (0, .., 0), at the kth step, we change the digit at index j, where

j = max{0 ≤ j < n :
∏j−1

i=0 mi|k}. So every time the iteration is a multiple of
∏j−1

i=0 mi,
the digit at index j changes, except after the digit at index j just reached an extreme value
0 or mj − 1. In Knuth’s terminology, after reaching an extreme value, the coordinate at j

is called passive. This means that the next time the iteration is a multiple of
∏j−1

i=0 mi, a
higher index digit gets changed instead of j, after which the coordinate j is active again.

The following section contains Knuth’s algorithm as it is written in “The Art of
Computer Programming 4a” ad verbum. The “Algorithm L” that is referred to is the
same algorithm but for binary Gray codes, i.e., ∀j : mj = 2. Note that in his notation
the coordinate at index 0 is on the right.

Knuth’s section literally: (Loopless reflected mixed radix Gray generation). This
algorithm visits all n tuples (an−1, .., a0) such that 0 ≤ aj < mj for 0 ≤ j < n, changing
only one component by ±1 at each step. It maintains an array of focus pointers (fn, .., f0)
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to control the actions as in algorithm L, together with an array of directions (on−1, .., o0).
We assume that each radix mj is ≥ 2.

H1. [Initialize.] Set aj ← 0, fj ← j, and oj ← 1, for 0 ≤ j < n; also set fn ← n.
H2. [Visit.] Visit the n tuple (an−1, .., a1, a0).
H3. [Choose j.] Set j ← f0 and f0 ← 0. (As in Algorithm L, j was the rightmost

active coordinate; all elements to its right have now been reactivated.)
H4. [Change coordinate j] Terminate if j = n; otherwise set aj ← aj + oj .
H5. [Reflect?] If aj = 0 or aj = mj − 1, set oj ← −oj , fj ← fj+1, and fj+1 ← j + 1.

(Coordinate j has thus become passive.) Return to H2.
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3 Half growing cube

3.1 The problem

With the generalized Gray codes we were given an alphabet, A = {0, ..,m}, and our task
was to order all tuples of size n in such a way that the difference between two consecutive
tuples is minimal. When you have done this for size n, you can easily suffix the tuples
with a 0 and add a new dimension and just continue generating Gray codes. This process
of adding dimensions can be continued ad finitum, so the only restriction is actually the
alphabet.

We now want to look at the situation where we restrict the dimensions and allow
the alphabet to grow indefinitely: When we list all the tuples that can be made with
alphabet Am = {0, ..,m}, we want to extend this list elegantly so it contains all the
tuples that can be made with alphabet Am+1 = {0, ..,m + 1}. Of course, here we also
want two consecutive tuples to differ in only one position and we want the difference
between the two digits on this position to be only 1.

Definition 3.1. A Half growing cube code of dimension d is a bijection
g : Nd → N, such that

g(x)− g(y) = 1 =⇒ K(x, y) = 1

and
g(x) ≤ g(y) =⇒ M(x) ≤M(y),

where K((x1, ..xd), (y1, .., yd)) =
∑d

i=1 |xi − yi| and M((x1, ..xd)) = max{x1, .., xd}.

An application of this code, is to traverse polynomials with positive coefficients of a
certain size, where we want to try the ones with minimal coefficients first and want to
minimize the changes at each step.

3.2 Modeled as a Hamiltonian path through a growing hyper-
cube

3.2.1 One dimension

This case is extremely straightforward. We simply start with 0 and at each step we add
1.

0 m− 1 m

Figure 1: The one-dimensional route.

3.2.2 Two dimensions

This case is also very straightforward. We start at 00, and at this location we have two
options, 10 and 01. If we go to 10, from here we could go to either 20 or 11. But we are
currently just using alphabet A1, so we first want to visit all the tuples we can make
with this alphabet. Thus we move to 11 and our route onwards is already decided: We
constantly move along the edge given by: Em = {ab ∈ A2

m|a = m or b = m}. Each
time we finish such an edge, there is only direction we can move in. Therefore, there
are exactly two different routes, either our first move is from 00 to 01 or from 00 to 10.
Then for each new edge, we start this edge at 0m and end in m0 or vice versa.
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0m

m0

00

10

01

11

02

22

Figure 2: The two-dimensional route.

3.2.3 Three dimensions

This is where it gets interesting. In three dimensions, we have much more freedom of
movement. After visiting all the tuples given by alphabet Am−1 = {0, ..,m−1}, we want to
visit all the tuples in the shell Sm = A3

m \A3
m−1 = {abc ∈ A3

m|a = m or b = m or c = m}.
There are many different ways to traverse this shell, so our goal is simplicity and elegance.

Similarly to the reflected Gray codes, we want to use the solutions of a lower dimension
to solve the problem. Let us look at the cube given by Am and in particular its outer
shell Sm. When we look at the slices we get by fixing the last coordinate, c, we see that
whenever 0 ≤ c < m, this slice is equivalent to the 2-dimensional edge Em, and when
c = m, this slice is equivalent to the square A2

m. Of these two shapes, we already know
how to traverse them. The idea of the algorithm is, when m is odd, the way we move
through a new shell, is that we start at 00m and move through Sm ∩ (A2

m × {m}), by
using the path used for two dimensions and then we end up in m0m. From here we step
to m0(m− 1). Next, for each c = m− 1,m− 2, .., 0, we move through Sm ∩ (A2

m × {c})
by using the path we used for Em, where we move from 0mc to m0c or vice versa. For
all c ∈ {1, ..,m− 1}, after traversing Em × {c}, we subtract 1 from the last coordinate
and enter Em × {c− 1} This way we visit all the coordinates of the shell Sm and end up
in 0m0. When m is even, we use the same path, but we go backwards, so we start from
0m0 and end up in 00m.

14



00m

m00

0m0

Figure 3: The red line depicts the route through Sm in the three-dimensional case

3.2.4 Higher dimensions

For d dimensions, we generalize the idea that we used for three dimensions: We assume
that we have a path through Ad−1

m that starts at 0..00 and ends at 0..0m0 if m is odd
and ends at 0..0m if m is even. We also assume that we have a path through the
d−1-dimensional edge Em = {x1..xd−1 ∈ Ad−1

m |max{x1, .., xd−1} = m} that moves from
0..0m to 0..m0 if m is odd and from 0..m0 to 0..0m if m is even.

The d-dimensional shell is equal to the union of a couple of disjoint sets: Sm =
{x1..xd ∈ Ad

m|max{x1, .., xd} = m} = Em×{0}∪Em×{1}∪...∪Em×{m−1}∪Ad−1
m ×{m}.

When m is odd, we start at 0..00m. We use the (d− 1)-dimensional route for traversing
Ad−1

m × {m}, where we move from 0..00m to 0..0m0m (Since the (d − 1)-dimensional
route goes from 0..00 to 0..0m0 when m is odd). At this point we move backwards
in the most significant dimension: from 0..0m0m to 0..m0(m − 1). Next, we use the
(d− 1)-dimensional edge route backwards for traversing Em × {m− 1}, where we move
from 0..0m0(m− 1) to 0..0m(m− 1). Again we move from 0..0m(m− 1) to 0..0m(m− 2).
Here we use the (d− 1)-dimensional edge route forwards to get from 0..0m(m− 2) to
0..m0(m− 2) and then move to 0..m0(m− 3). From here on out, we repeat these last
steps until we reach 0..0m0 and have visited each location of the shell Sm.

When m is even, we move from 0..0m0 to 0..00m using a route that is pretty much
the opposite of the route when m is odd.
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0030

3000

0300

0031

3001

0301

0032

3002

0302

0033

3003

0303

Figure 4: The red line depicts the route through S3 in the four-dimensional case.

3.3 Recursive definition half growing cube algorithm

As previously stated, the goal is to arrange, for a given dimension d, all elements of Nd,
in such a way that for two following elements x = x1..xd and y = y1..yd, it holds that∑d

i=1 |xi − yi| = 1. Furthermore, for every m, the first (m + 1)d elements should only
contain digits from {0, 1, ..,m−1,m}. One way of modeling this, is as a bijective function
HG from Nd to Nd \ {(0, .., 0)}, where the arrangement we get is given by starting at
element (0, .., 0) and repeatedly applying this function HG.

This function HG, corresponding to the Hamiltonian paths from Section 3.2, and its
inverse HG−1 are defined as follows:

When the dimension is d = 1:

HG1 : N→ N \ {0}
a 7→ a + 1

HG−11 : N \ {0} → N
a 7→ a− 1

When the dimension is d = 2:
Let m be the maximal digit of the input.
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HG2 : N× N→ N× N \ {(0, 0)}
When m is odd:

(m, 0) 7→ (m + 1, 0)

(m, a) 7→ (m, a− 1) with a 6= 0

(a,m) 7→ (a + 1,m) with a 6= m

When m is even:

(0,m) 7→ (0,m + 1)

(m, a) 7→ (m, a + 1) with a 6= m

(a,m) 7→ (a− 1,m) with a 6= 0

HG−12 : N× N \ {(0, 0)} → N× N
When m is odd:

(0,m) 7→ (0,m− 1)

(m, a) 7→ (m, a + 1) with a 6= m

(a,m) 7→ (a− 1,m) with a 6= 0

When m is even:

(m, 0) 7→ (m− 1, 0)

(m, a) 7→ (m, a− 1) with a 6= 0

(a,m) 7→ (a + 1,m) with a 6= m

When the dimension is d > 2:
As defined before, if x = (x1, x2, .., xd−1, xd) then xd−1

1 = (x1, x2, .., xd−2, xd−1). And
m is again defined as the maximal digit of the input, i.e., if our input is (x1, x2, .., xd),
m = max{x1, x2, .., xd}.

HGd : Nd → Nd \ {(0, .., 0)}
We now split into two cases:
m is odd:

(0, .., 0,m, 0) 7→ (0, .., 0,m + 1, 0)

(0, .., 0,m, a) 7→ (0, .., 0,m, a− 1) with 2|a
(0, .., 0,m, 0, a) 7→ (0, .., 0,m, 0, a− 1) with 2 - a
xd−1
1 a 7→ HG−1d−1(xd−1

1 )a with 2|a
xd−1
1 a 7→ HGd−1(xd−1

1 )a with 2 - a

m is even:

(0, .., 0,m) 7→ (0, .., 0,m + 1)

(0, .., 0,m, a) 7→ (0, .., 0,m, a + 1) with 2 - a
(0, .., 0,m, 0, a) 7→ (0, .., 0,m, 0, a + 1) with 2|a and a 6= m

xd−1
1 a 7→ HG−1d−1(xd−1

1 )a with 2|a
xd−1
1 a 7→ HGd−1(xd−1

1 )a with 2 - a

HG−1d : Nd \ {(0, .., 0)} → Nd \ {(0, .., 0)}
We again split into two cases:
m is odd:

(0, .., 0,m) 7→ (0, .., 0,m− 1)

(0, .., 0,m, a) 7→ (0, .., 0,m, a + 1) with 2 - a and a 6= m

(0, .., 0,m, 0, a) 7→ (0, .., 0,m, 0, a + 1) with 2|a
xd−1
1 a 7→ HG−1d−1(xd−1

1 )a with 2 - a

xd−1
1 a 7→ HGd−1(xd−1

1 )a with 2|a
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m is even:

(0, .., 0,m, 0) 7→ (0, .., 0,m− 1, 0)

(0, .., 0,m, a) 7→ (0, .., 0,m, a− 1) with 2|a
(0, .., 0,m, 0, a) 7→ (0, .., 0,m, 0, a− 1) with 2 - a
xd−1
1 a 7→ HG−1d−1(xd−1

1 )a with 2 - a

xd−1
1 a 7→ HGd−1(xd−1

1 )a with 2|a

Proof correctness of algorithm: The function HGd has to have a couple of
properties in order to be adequate. Firstly, we do not want to visit any element of Nd

more than once. We can show that no element will be visited more than once by proving
that the function HGd is bijective and the bijectivity we will prove by showing that the
HG−1d is indeed the inverse of HGd. Secondly, we want to show that at every step, only
one digit of the input is changed, and this digit is changed by plus or minus 1. Thirdly,
we want to show that all elements of {0, 1, ..,m}d are visited before the elements of
{0, 1, ..,m,m + 1}d \ {0, 1, ..,m}d. This will be done by showing that for every m, the
maximal digit will only be raised to m + 1 once and never lowered. And lastly, we want
to show that we do indeed visit each element by repeatedly applying HGd to the starting
element (0, .., 0). This will be proven after the first three properties are proven.

We repeat some auxiliary functions: M((x1, x2, .., xd)) = max{x1, x2, .., xd} and

Kd((x1, ..xd), (y1, .., yd)) =
∑d

i=1 |xi−yi|. And we will call the HG−1d function as defined
at the start of Section 3.3, HG∗d, since we have yet to prove that it is indeed the inverse.

Explicitly put, we will prove that ∀d ∈ Z>0:
(1) HG∗d ◦HGd = idNd .
(2) HGd ◦HG∗d = idNd\{(0,..,0)}.

(3) ∀x ∈ Nd Kd(x,HGd(x)) = 1 .
(4) ∀x ∈ Nd \ Vd: M(HGd(x)) = M(x) and ∀x ∈ Vd M(HGd(x)) = M(x) + 1, where,

for d > 1, Vd = {(0, .., 0,m, 0) ∈ Nd : 2 - m} ∪ {(0, .., 0,m) ∈ Nd : 2|m} and V1 = N.
Induction basis:
HG1:
(1): Take a ∈ N. HG∗1(HG1(a)) = HG∗1(a + 1) = a + 1− 1 = a.
(2): Take a ∈ N \ 0. HG1(HG∗1(a)) = HG1(a− 1) = a− 1 + 1 = a.
(3): Take a ∈ N. K1(a,HG1(a)) = K1(a, a + 1) = |a + 1− a| = 1.
(4): V1 = N. Take a ∈ V1. M(HG1(a)) = M(a + 1) = a + 1 = M(a) + 1.
HG2:
(1): HG∗2 ◦HG2:
Let m be the maximal digit of the input.
When m is odd:

(m, 0) 7→ HG∗2((m + 1, 0)) = (m, 0)

(m, a) 7→ HG∗2((m, a− 1)) = (m, a) with a 6= 0

(a,m) 7→ HG∗2((a + 1,m)) = (a,m) with a 6= m

When m is even:
(0,m) 7→ HG∗2((0,m + 1)) = (0,m)

(m, a) 7→ HG∗2((m, a + 1)) = (m, a) with a 6= m

(a,m) 7→ HG∗2((a− 1,m)) = (a,m) with a 6= 0

(2): HG2 ◦HG∗2:
Let m be the maximal digit of the input.
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When m is odd:
(0,m) 7→ HG2((0,m− 1)) = (0,m)

(m, a) 7→ HG2((m, a + 1)) = (m, a) with a 6= m

(a,m) 7→ HG2((a− 1,m)) = (a,m) with a 6= 0

When m is even:
(m, 0) 7→ HG2((m− 1, 0)) = (m, 0)

(m, a) 7→ HG2((m, a− 1)) = (m, a) with a 6= 0

(a,m) 7→ HG2((a + 1,m)) = (a,m) with a 6= m

(3): This is clear from the definition.
(4): From the definition we can see that the only times that the maximal digit of the

input changes is when m is odd and the input is (m, 0) or when m is even and the input
is (0,m). This coincides exactly with V2.

Induction hypothesis: Take d > 2, we assume that HGd−1 adheres to the four
conditions (1), (2), (3), and (4). Conditions (1) and (2) imply bijectivity. From bijectivity
and condition (3), it is also true that ∀x ∈ Nd−1 \ {(0, .., 0)}: Kd−1(x,HG∗d−1(x)) = 1.
Also, from bijectivity and condition (4) we get that ∀x ∈ Nd−1 \ V ∗d−1: M(HG∗d−1(x)) =
M(x) and ∀x ∈ V ∗d−1\{(0, .., 0)}: M(HG∗d−1(x)) = M(x)−1, where V ∗d−1 = {(0, ..0,m, 0)

∈ Nd−1 : 2|m} ∪ {(0, .., 0,m) ∈ Nd−1 : 2 - m}.
Induction step: We will look at the functions HGd : Nd → Nd \ {(0, .., 0)} and

HG∗d : Nd \ {(0, .., 0)} → Nd.
We will begin by proving conditions (1), (3) and (4), and we will prove condition (2)

afterwards.
First we look at the elements for which the maximal digit is odd: Let x ∈ Nd with

2 - M(x) and m := M(x). There are 5 cases:

• x is of the form (0, .., 0,m, 0): Then HGd(x) = (0, .., 0,m + 1, 0). We see that
Kd(x,HGd(x)) = 1 and M(HGd(x)) = M(x) + 1, which is correct, since x ∈ Vd.
HG∗d(HGd(x)) = HG∗d((0, .., 0,m + 1, 0)) = (0, .., 0,m, 0) = x, since 2|M(HGd(x)).

• x is of the form (0, .., 0,m, a) with 2|a and a 6= 0: Then HGd(x) = (0, .., 0,m, a−1).
We see that Kd(x,HGd(x)) = 1 and M(HGd(x)) = M(x). HG∗d(HGd(x)) =
HG∗d((0, .., 0,m, a− 1)) = (0, .., 0,m, a) = x, since 2 - (a− 1) and a− 1 6= m.

• x is of the form (0, .., 0,m, 0, a) with 2 - a: Then HGd(x) = (0, .., 0,m, 0, a − 1).
We see that Kd(x,HGd(x)) = 1 and M(HGd(x)) = M(x). HG∗d(HGd(x)) =
HG∗d((0, .., 0,m, 0, a − 1)) = (0, .., 0,m, 0, a) = x, since M(HGd(x)) is odd and
2|(a− 1).

• x is of the form xd−1
1 a with 2|a and xd−1

1 6= (0, .., 0,m): In that case HGd(x) =
HG∗d−1(xd−1

1 )a. xd−1
1 6= (0, .., 0,m), so by condition (4) of the IH, M(HG∗d−1(xd−1

1 ))

= M(xd−1
1 ). Since a < m, we know M(x) = M(xd−1

1 ) = M(HG∗d−1(xd−1
1 )) =

M(HG∗d−1(xd−1
1 )a) = M(HGd(x)). Also, K(x,HGd(x)) = K(xd−1

1 ,HG∗d−1(xd−1
1 ))

= 1 by (3) of the IH. Furthermore, we get HG∗d(HGd(x)) = HG∗d(HG∗d−1(xd−1
1 )a) =

HGd−1(HG∗d−1(xd−1
1 ))a = xd−1

1 a = x, where we use the fact that HG∗d−1(xd−1
1 ) 6=

(0, .., 0,m, 0) and (2) of the IH. We know HG∗d−1(xd−1
1 ) 6= (0, .., 0,m, 0), because if

it were the case then xd−1
1 = HGd−1((0, .., 0,m, 0)) = (0, .., 0,m + 1, 0) and then

M(x) 6= m = M(x).

• x is of the form xd−1
1 a with 2 - a and xd−1

1 6= (0, .., 0,m, 0) and a 6= m: Then
HGd(x) = HGd−1(xd−1

1 )a. a < m, so M(xd−1
1 ) = m. xd−1

1 6= (0, .., 0,m, 0) and
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M(xd−1
1 ) = m, so M(HGd−1(xd−1

1 )) = M(xd−1
1 ) = m, (4) of IH. Then M(HGd(x))

= max{M(HGd−1(xd−1
1 )), a} = max{M(xd−1

1 ), a} = M(x). Also, K(x,HGd(x)) =
K(xd−1

1 ,HGd−1(xd−1
1 )) = 1 by (3) of the IH. HG∗d(HGd(x)) = HG∗d(HGd−1(xd−1

1 )a)
= HG∗d−1(HGd−1(xd−1

1 ))a = xd−1
1 a = x, where we use that HGd−1(xd−1

1 ) 6=
(0, .., 0,m) and (1) of the IH. HGd−1(xd−1

1 ) can not be (0, .., 0,m), because if it were,
then xd−1

1 = HG∗d−1(0, .., 0,m) = (0, .., 0,m − 1) and then M(x) = M(xd−1
1 a) =

m− 1, but it is defined as m.

• x is of the form xd−1
1 m with xd−1

1 6= (0, .., 0,m, 0): Then HGd(x) = HGd−1(xd−1
1 )m.

xd−1
1 6= (0, .., 0,m, 0) and M(xd−1

1 ) ≤ m, so M(HGd−1(xd−1
1 )) ≤ m, by (4)

of IH. Then M(HGd(x)) = max{M(HGd−1(xd−1
1 )),m} = m = M(x). Also,

K(x,HGd(x)) = K(xd−1
1 ,HGd−1(xd−1

1 )) = 1 by (3) of the IH. HG∗d(HGd(x)) =
HG∗d(HGd−1(xd−1

1 )m) = HG∗d−1(HGd−1(xd−1
1 ))m = xd−1

1 m = x, where we use

that HGd−1(xd−1
1 ) 6= (0, .., 0) and (1) of the IH. HGd−1(xd−1

1 ) can not be (0, .., 0),
because Im(HGd−1) = Nd−1 \ {(0, .., 0)}.

Now we look at the elements for which the max digit is even: Let x ∈ Nd with 2|M(x)
and m = M(x). We split into 6 cases:

• x is of the form (0, .., 0,m): Then HGd(x) = (0, .., 0,m + 1). We see that
Kd(x,HGd(x)) = 1 and M(HGd(x)) = M(x) + 1, which is correct, since x ∈ Vd.
HG∗d(HGd(x)) = HG∗d((0, .., 0,m + 1)) = (0, .., 0,m) = x, since 2|M(HGd(x)).

• x is of the form (0, .., 0,m, a) with 2 - a: Then HGd(x) = (0, .., 0,m, a + 1). We see
that Kd(x,HGd(x)) = 1 and M(HGd(x)) = M(x), because a < m since a is odd
and a ≤ m. HG∗d(HGd(x)) = HG∗d((0, .., 0,m, a + 1)) = (0, .., 0,m, a) = x, since
2|(a + 1).

• x is of the form (0, .., 0,m, 0, a) with 2|a and a 6= m: HGd(x) = (0, .., 0,m, 0, a+ 1).
We see that Kd(x,HGd(x)) = 1 and M(HGd(x)) = M(x). HG∗d(HGd(x)) =
HG∗d((0, .., 0,m, 0, a + 1)) = (0, .., 0,m, 0, a) = x, since M(HGd(x)) is even and
2 - (a− 1).

• x is of the form xd−1
1 a with 2|a and xd−1

1 6= (0, .., 0,m, 0) and a 6= m: Then
HGd(x) = HG∗d−1(xd−1

1 )a. xd−1
1 6= (0, .., 0,m, 0), so by condition (4) of the IH,

M(HG∗d−1(xd−1
1 )) = M(xd−1

1 ), so M(x) = M(HGd(x)). Also, K(x,HGd(x)) =

K(xd−1
1 ,HG∗d−1(xd−1

1 )) = 1 by (3) of the IH. Furthermore, HG∗d(HGd(x)) =

HG∗d(HG∗d−1(xd−1
1 )a) = HGd−1(HG∗d−1(xd−1

1 ))a = xd−1
1 a = x, where we use that

HG∗d−1(xd−1
1 ) 6= (0, .., 0,m) and (2) of the IH.

• x is of the form xd−1
1 m with xd−1

1 6= (0, .., 0): Then HGd(x) = HG∗d−1(xd−1
1 )m.

M(xd−1
1 ) ≤ m, so M(HG∗d−1(xd−1

1 )) ≤ m, so M(HGd(x)) = m by (4) of the IH and

the bijectivity of HGd−1. Also, K(x,HGd(x)) = K(xd−1
1 ,HG∗d−1(xd−1

1 )) = 1 by

(3) of the IH. HG∗d(HGd(x)) = HG∗d(HG∗d−1(xd−1
1 )m) = HGd−1(HG∗d−1(xd−1

1 ))m =

xd−1
1 a = x, where we use that HG∗d−1(xd−1

1 ) 6= (0, .., 0,m) and (2) of the IH.

• x is of the form xd−1
1 a with 2 - a and xd−1

1 6= (0, .., 0,m): Then HGd(x) =
HGd−1(xd−1

1 )a. Since, xd−1
1 6= (0, .., 0,m, 0), M(xd−1

1 ) = M(HGd−1(xd−1
1 )), (4) of

IH, so M(x) = M(HGd(x)). Also, K(x,HGd(x)) = K(xd−1
1 ,HGd−1(xd−1

1 )) = 1 by
(3) of the IH. HG∗d(HGd(x)) = HG∗d(HGd−1(xd−1

1 )a) = HG∗d−1(HGd−1(xd−1
1 ))a =

xd−1
1 a = x, where we use that HGd−1(xd−1

1 ) 6= (0, .., 0,m, 0) and (1) of the IH.

We will now prove condition (2):
Again we first look at the situation where the max digit is odd: Let x ∈ Nd\{(0, .., 0)}

with 2 - M(x) and m = M(x). 6 cases:
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• x is of the form (0, .., 0,m): Then HG∗d(x) = (0, .., 0,m − 1). HGd(HG∗d(x)) =
HGd((0, .., 0,m− 1)) = (0, .., 0,m) = x, since 2|M(HG∗d(x)).

• x is of the form (0, ..0,m, a) with 2 - a and a 6= m: Then HG∗d(x) = (0..0,m, a + 1)
. HGd(HG∗d(x)) = HGd((0, .., 0,m, a + 1)) = (0, .., 0,m, a) = x, since a + 1 6= 0 and
2|(a + 1).

• x is of the form (0, .., 0,m, 0, a) with 2|a: Then HG∗d(x) = (0, .., 0,m, 0, a + 1).
HGd(HG∗d(x)) = HGd((0, .., 0,m, 0, a + 1)) = (0, .., 0,m, 0, a) = x, since 2 - (a + 1).

• x is of the form xd−1
1 a with 2 - a and xd−1

1 6= (0, .., 0,m). Then HG∗d(x) =
HG∗d−1(xd−1

1 )a. HGd(HG∗d(x)) = HGd(HG∗d−1(xd−1
1 )a) = HGd−1(HG∗d−1(xd−1

1 ))a

= xd−1
1 a = x, since M(HG∗d−1(xd−1

1 )) = M(xd−1
1 ), because xd−1

1 6= (0, .., 0,m)

and the IH, so M(HG∗d(x)) = M(x) and 2 - M(HG∗d(x)) and also HG∗d−1(xd−1
1 ) 6=

(0, .., 0,m, 0), because if it were then xd−1
1 = HGd−1((0, .., 0,m, 0)) = (0, .., 0,m +

1, 0) (IH) and then M(x) > m.

• x is of the form (0, .., 0,m,m): Then HG∗d(x) = (0, .., 0,m−1,m). HGd(HG∗d(x)) =
HGd−1((0, .., 0,m− 1))m = (0, .., 0,m,m) = x, since 2|(m− 1).

• x is of the form xd−1
1 a with 2|a and xd−1

1 6= (0, .., 0,m, 0). Then HG∗d(x) =
HGd−1(xd−1

1 )a. HGd(HG∗d(x)) = HGd(HGd−1(xd−1
1 )a) = HG∗d−1(HGd−1(xd−1

1 ))a

= xd−1
1 a = x, since 2|a, 2 - HG∗d(x) and HGd−1(xd−1

1 ) 6= (0, .., 0,m).

Now look at the situation where the max digit is even: Let x ∈ Nd \ {(0, .., 0)} with
2|M(x) and m = M(x). 5 cases:

• x is of the form (0, .., 0,m, 0): Then HG∗d(x) = (0, .., 0,m− 1, 0). HGd(HG∗d(x)) =
HGd((0, .., 0,m− 1, 0)) = (0, .., 0,m, 0) = x, since 2 - (m− 1).

• x is of the form (0, .., 0,m, a) with 2|a: In this case HG∗d(x) = (0, .., 0,m, a − 1).
HGd(HG∗d(x)) = HGd((0, .., 0,m, a− 1)) = (0, .., 0,m, a) = x, since 2 - (a− 1) .

• x is of the form (0, .., 0,m, 0, a) with 2 - a: Then HG∗d(x) = (0, .., 0,m, 0, a − 1).
HGd(HG∗d(x)) = HGd((0, .., 0,m, 0, a− 1)) = (0, .., 0,m, 0, a) = x, since 2|(a− 1).

• x is of the form (xd−1
1 a) with 2 - a and xd−1

1 6= (0, .., 0,m, 0): Then HG∗d(x) =
HG∗d−1(xd−1

1 )a. HGd(HG∗d(x)) = HGd(HG∗d−1(xd−1
1 )a) = HGd−1(xd−1

1 )a = xd−1
1 a

= x, since 2 - a and 2|M(HG∗d(x)), because M(xd−1
1 ) = m and M(HG∗d−1(xd−1

1 )) =

M(xd−1
1 ), because xd−1

1 6∈ V ∗d−1 and a ≤ m, and also HG∗d−1(xd−1
1 ) 6= (0, .., 0,m),

because if HG∗d−1(xd−1
1 ) = (0, .., 0,m), then xd−1

1 = (0, .., 0.m + 1) and then
M(x) 6= m.

• x is of the form (xd−1
1 a) with 2|a: Then HG∗d(x) = HGd−1(xd−1

1 )a. HGd(HG∗d(x)) =
HGd(HGd−1(xd−1

1 )a) = HG∗d−1(HGd−1(xd−1
1 ))a = xd−1

1 a = x, since 2|a and

2|HG∗d(x) and HGd−1(xd−1
1 ) 6= (0, .., 0,m, 0).

Now we have proven that the four conditions hold for the function HGd. What
remains is to prove that we will indeed visit all coordinates by starting at (0, .., 0)
and repeatedly applying function HGd. We will show that if we start at (0, .., 0) and
repeatedly apply HGd, if 2|m, after (m + 1)d − 1 steps, we will reach (0, .., 0,m) and
if 2 - m after (m + 1)d − 1 steps we will reach (0, .., 0,m, 0). From conditions (1) and
(2), which imply bijectivity, we can conclude that the set of elements visited, Sm, is of
size |Sm| = (m + 1)d and from condition (4) we can conclude that Sm ⊂ {0, 1, ..,m}d.
|Sm| = |{0, 1, ..,m}d| , so Sm = {0, 1, ..,m}d.

21



Induction basis: HG1: Starting at 0 after (m+ 1)1−1 = m steps we reach m. This
is what we want, because in the 1-dimensional case (0, .., 0,m) and (0, .., 0,m, 0) both
translate to m.

HG2: We will use induction over m to prove it for dimension d = 2.
IB: m = 0: It takes (0 + 1)2 − 1 = 1− 1 = 0 steps to reach (0, 0) from (0, 0).
IH: Take m > 0. Assume that if 2|(m − 1), then after m2 − 1 steps we reached

(0,m− 1) and if 2 - (m− 1), after m2 − 1 steps we reached (m− 1, 0).
IS: If 2|m: Then after m2 − 1 steps we reached (m− 1, 0). From the definition we

see: HG2((m − 1, 0)) = (m, 0), HGm
2 ((m, 0)) = (m,m) and HGm

2 ((m,m)) = (0,m), so
HG2·m+1

2 ((m− 1, 0)) = (0,m). This means that it takes m2− 1 + 2 ·m+ 1 = (m+ 1)2− 1
to get to (0,m) from (0, 0).

If 2 - m: Then after m2 − 1 steps we reached (0,m − 1). From the definition we
see: HG2((0,m − 1)) = (0,m), HGm

2 ((0,m)) = (m,m) and HGm
2 ((m,m)) = (m, 0), so

HG2·m+1
2 ((0,m − 1)) = (m, 0). This means that it indeed takes m2 − 1 + 2 ·m + 1 =

(m + 1)2 − 1 to get to (m, 0) from (0, 0).
Now we have shown that it holds for HG2.

Induction hypothesis: Let d > 2, ∀m ∈ N 2|m =⇒ HG
(m+1)d−1−1
d−1 ((0, .., 0)) =

(0, .., 0,m) and 2 - m =⇒ HG
(m+1)d−1−1
d−1 ((0, .., 0)) = (0, .., 0,m, 0).

Induction step: We use induction over m to prove that ∀m ∈ N: 2|m =⇒
HG

(m+1)d−1
d ((0, .., 0)) = (0, .., 0,m) and 2 - m =⇒ HG

(m+1)d−1
d ((0, .., 0)) = (0, .., 0,m, 0).

IB: If m = 0, (m + 1)d − 1 = 1− 1 = 0, and we start at (0, .., 0), so indeed after 0
steps we end up at (0, .., 0,m) = (0, .., 0).

IH: Let m > 0, we assume that if 2|(m− 1), HGmd−1
d ((0, .., 0)) = (0, .., 0,m− 1) and

if 2 - (m− 1), HGmd−1
d ((0, .., 0)) = (0, .., 0,m− 1, 0)

IS: First we look at the case where 2|m: After md−1 steps we reached (0, .., 0,m−1, 0),
so after md applications of HGd on (0, .., 0) we reached (0, .., 0,m, 0). We now want to
calculate how many steps it takes to get from (0, .., 0,m, 0) to (0, .., 0,m). Note that in
this case the rightmost digit of the tuple only changes at particular points, and can only
increase.

By the outer induction hypothesis, we know that, starting at (0, .., 0) we must
apply HGd−1 (m + 1)d − 1 times to reach (0, .., 0,m) and apply HGd−1 md − 1 times
to reach (0, .., 0,m − 1, 0), since (0, .., 0,m, 0) = HGd−1((0, .., 0,m − 1, 0)), it will take
(m + 1)d−1 −md−1 − 1 steps to reach (0, .., 0,m) from (0, .., 0,m, 0). Likewise, we must
apply HG−1d−1 (m + 1)d−1 −md−1 − 1 times to get from (0, .., 0,m) to (0, .., 0,m, 0). It
can be formally proven with induction, but it is also very clear from the definition
of the function HGd that for every odd 0 ≤ a < m, we will start at (0, .., 0,m, 0, a)
and reach (0, .., 0,m, a) after (m + 1)d−1 − md−1 − 1 steps and at the next step we
reach (0, .., 0,m, a + 1). And for every even 0 ≤ a < m, we will start at (0, .., 0,m, a)
and reach (0, .., 0,m, 0, a) after (m + 1)d−1 − md−1 − 1 steps and at the next step
we reach (0, .., 0,m, 0, a + 1). And the first tuple where the rightmost digit is m will
be (0, ..0,m,m). Then by the outer IH it will take (m + 1)d−1 − 1 steps to reach
(0, .., 0,m). So the total number of steps to reach (0, .., 0,m) from (0, .., 0,m, 0) is
m · ((m+ 1)d−1−md−1−1) +m ·1 + (m+ 1)d−1−1 = (m+ 1)d−md−1. The number of
steps to reach (0, .., 0,m) from (0, .., 0) will then be the sum of the number of steps to reach
(0, .., 0,m, 0) from (0, .., 0) and the number of steps to get from (0, .., 0,m, 0) to (0, .., 0,m).
Using the inner IH this sum is equal to md − 1 + 1 + (m + 1)d −md − 1 = (m + 1)d − 1,
which is what we wanted to show.

Now we look at the case where 2 - m: This is very similar to the case where 2|m.
The difference is that we want to find how many times we must apply HGd to get from
(0, .., 0,m) to (0, .., 0,m, 0). We again want to find for each 0 ≤ a ≤ m, how many steps
the rightmost digit remains this value a, and then we sum these steps. We again use the
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outer induction hypothesis to find that in dimension d−1, it takes (m+ 1)d−1−md−1−1
steps to get from (0, .., 0,m) to (0, .., 0,m, 0).

With that we have proven that our function HGd suffices.

3.3.1 Alternative half growing algorithm

In the definition in 3.3, when the most significant digit of the input tuple (x1, .., xd) is
odd, we generally apply HGd−1 to the first d− 1 digits, and when the most significant
digit is even, we generally apply HG−1d−1 to the first d− 1 digits. In other words, when
the most significant digit is odd, the direction of the rest of the tuple is “forwards” and it
is “backwards” otherwise. This is the opposite of the reflected Gray codes in 2.2, where
even implied “forwards”. The definition in 3.3 can actually easily be tweaked to have
even imply “forwards”. As a matter of fact if we keep the same recursive principles,
but in the two dimensional case move from (0, 0) to (1, 0) instead of (0, 1), this new
definition naturally follows. One major difference between these two definitions, is that
in 3.3 the path through the edge Ad

m \Ad
m−1 moves from (0, .., 0, 0,m) to (0, .., 0,m, 0) or

vice versa, and in this new definition the path through the edge moves from (0, .., 0, 0,m)
to (m, 0, .., 0) or vice versa. For the rest of the chapter, we use the definitions in 3.3, but
the algorithms could be changed to work for the other definition too.

3.4 Recursive half growing cube algorithm implementation

This recursive algorithm uses the assumption that the algorithm is already solved for
a lower dimension. The tuples of digits are modeled as lists in this algorithm. It uses
two functions, forwardsHGCube and backwardsHGCube. forwardsHGCube is the normal
algorithm: you input a list and it changes this original list to the new coordinates, a so
called in-situ algorithm. backwardsHGCube is the reverse of forwardsHGCube: you give
it a list and it changes the value of this list to the previous coordinates in the algorithm.
Furthermore, these functions take as input an index value. The use of this index value
is to indicate which part of the input list we want to look at. If we put as input the
coordinate x0x1...xn−1, but we only want to know which coordinates follow x0x1..xj−1
in the j-dimensional case, for some 0 ≤ j < n, the input of the function forwardsHGCube

is the list x0x1..xn−1 and this j.
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Algorithm 1: forwardsHGCube

Input: list,index
Output: no output

m← max(list,index)
if index = 0 then list[0]← list[0] + 1
else if index = 1 then

if 2|m then
if list[0] > 0 and list[1] == m then list[0]← list[0]− 1
else list[1]← list[1] + 1

else
if list[0] = m and list[1] > 0 then list[1]← list[1]− 1
else list[0]← list[0] + 1

else
if 2|m then

if allZeroes(list,index− 1) then list[index]← list[index] + 1
else if list[index] = m then backwardsHGCube(list,index− 1)
else if 2|list[index] then

if is00m0Shape(list,index− 1) then list[index]← list[index] + 1
else backwardsHGCube(list,index− 1)

else
if is00mShape(list,index− 1) then list[index]← list[index] + 1
else forwardsHGCube(list,index− 1)

else
if is00m0Shape(list,index) then list[index− 1]← list[index− 1] + 1
else if 2|list[index] then

if is00mShape(list,index− 1) then list[index]← list[index]− 1
else backwardsHGCube(list,index− 1)

else
if is00m0Shape(list,index− 1) then list[index]← list[index]− 1
else forwardsHGCube(list,index− 1)

The backwardsHGCube is very similar with lots of case by case situations. We make
use of the auxiliary functions is00mshape, is00m0shape and allZeroes to check if the
tuple up to the index has a 0..0m, 0..0m0 or 0..0 shape respectively. Since, in the actual
implementation, we have the list inside a struct that also has an array containing the
maximum values of the tuple up to index i, we can check if the tuple has the correct
shape in constant time.

Justification of algorithm: This implementation follows the definition of the
algorithm in 3.3 line for line and therefore is indeed an implementation of the definition.

Complexity of algorithm: The function is recursive, but each new call lowers
the index by 1. Therefore, when deciding the successor of a tuple, we have to call
forwardsHGCube or backwardsHGCube O(d) times. If we were to naively decide the
maximum value of a tuple or naively check the shape of the input, we would have to
loop through the tuple, which is O(d). This would mean that deciding the successor
takes O(d2) time. However, in the implementation we use an extra array to track the
maximum value up to index i for every i. This allows us to check the input tuple in
constant time, resulting in the total algorithm being in O(d) time. We do however have
to update this auxiliary array when we change a digit of the input. This can be done in
O(d) time, but since this only has to be done once per tuple, the total algorithm takes
O(d) time.
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3.5 Constant time half growing cube algorithm

In Section 3.4 we have a linear implementation of the path in Section 3.3. It is linear in
the size of the tuple: if the tuple is twice as long, the maximum time to determine the
next tuple is twice as long. Intuitively, you might think that a linear complexity is as
fast as we can go, since it takes linear time to even determine what the input tuple is,
but just like in 2.2.6 it is possible to make the speed not depend on the length of the
tuple. It does require some extra memory. The size of the extra memory required is
linear in the length of the tuples.

The function is designed to take a tuple and change this tuple to the one that follows
in the half growing algorithm from 3.3. For this purpose, the tuple is put inside a
class that contains attributes that help determine the next change that has to happen,
for instance the index of the digit that has to change. When we apply the function
constantHG to an instance of this class, we change the tuple accordingly and also set
the auxiliary attributes to the values necessary to determine the next change of the
tuple. An explanation of the extra attributes can be found below the pseudocode. In
this pseudocode, we do not use a class, but instead have the attributes of the struct as
input of the function.
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Algorithm 2: constantHG

Input: list,index,D,M,DM,U,indexRef
Output: no output

if index = 0 or index = 1 then
if !U[1] then

if D[index] then list[index]← list[index] + 1
else list[index]← list[index]− 1
if list[index] = M[1] then

D[index]←!D[index]
index← (index + 1) mod 2

else if list[index] = 0 then
D[index]←!D[index]
if len(list) = 2 or ( list[2] = M[2] and !( M[1] = M[2] and DM[1] ) )
then U[1]← true

else
if list[2] = M[2] then DM[1]←!(DM[1])
index← indexRef[2]
indexRef[2]← 2

else
U [1]← false
if DM[1] then M[1]← M[1] + 1
else M[1]← M[1]− 1
if list[1] ≥ list[0] then

list[1]← M[1]
if M[1] = 0 then

index← indexRef[2]
indexRef[2]← 2
U[1]← true
if list[2] = M[2] then DM[1]←!DM[1]

else index← 0

else
list[0]← M[1]
index← 1

else
if !U[index] then

if D[index] then list[index]← list[index] + 1
else list[index]← list[index]− 1
if list[index] = 0 or list[index] = M[index] then

if Upgrade next time then U[index]← true
else

indexRef[index]← indexRef[index + 1]
indexRef[index + 1]← index + 1

D[index]←!D[index]

if list[index− 1] = 0 then index← |index− 3|
else index← index− 2

else
U[index]← false
if DM[index] then M[index]← M[index] + 1
else M[index]← M[index]− 1
if list[index− 1] 6= 0 then

M[index− 1]← M[index]
list[index− 1]← M[index− 1]
index← index− 2

else
list[index]← M[index]
if M[index] = 0 then

U[index]← true
DM[index]←!DM[index]
i← index
index← indexRef[i + 1]
indexRef[i + 1]← i + 1

else index← index− 1
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Informal explanation algorithm: Let d be the dimension of the input. The input
will be of the form x = (x1, .., xd). Notice that the indices go from 1 to d, whilst in the
code the indices go from 0 to d − 1 and the digit at index i will be the digit at index
i− 1 in the code. Before we explain any further, we have to introduce some auxiliary
matrices and variables: The array of booleans D, where D[i] is True if the direction of
the digit at index i is positive and False otherwise. The array of non-negative integers
M, where M[i] contains the maximum value so far: M[i] = max{x1, .., xi}. The array of
booleans DM, where DM[i] is True if the direction of the maximum value at index i is
positive and False otherwise. The array of booleans U, where U[i] indicates whether the
next time we would change the value at index i, we change the maximum value at i and
a value at either i or i− 1. And lastly, the array indexRef, that contains a reference to a
higher index. This array has the same function as the array of focus pointers in Knuth’s
algorithm in 2.2.6

...

[0, 0, 1, 1, 3, 0]

[0, 0, 0, 1, 3, 0]

[0, 0, 0, 0, 3, 0]

[0, 0, 0, 0, 4, 0]

[0, 0, 0, 1, 4, 0]

[0, 0, 1, 1, 4, 0]

...

...

[0, 0, 1, 1, 4, 1]

[0, 0, 0, 1, 4, 1]

[0, 0, 0, 0, 4, 1]

[0, 0, 0, 0, 4, 2]

[0, 0, 0, 1, 4, 2]

[0, 0, 1, 1, 4, 2]

...

...

[0, 1, 1, 4, 0, 2]

[0, 0, 1, 4, 0, 2]

[0, 0, 0, 4, 0, 2]

[0, 0, 0, 4, 0, 3]

[0, 0, 1, 4, 0, 3]

[0, 1, 1, 4, 0, 3]

...

...

[0, 0, 0, 1, 1, 4]

[0, 0, 0, 0, 1, 4]

[0, 0, 0, 0, 0, 4]

[0, 0, 0, 0, 0, 5]

[0, 0, 0, 0, 1, 5]

[0, 0, 0, 1, 1, 5]

...

Figure 5: In the second and third example we just change the most significant digit.
In the other two examples we update the most significant digit, that is we change the
maximum value.

First we will just look at how the most significant digit, xd, behaves in the case where
d > 2, see figure 5: The most significant digit is moving from 0 to mi or from mi to 0,
depending on whether mi is odd or even. At these steps, the shape of the input is either
0..0ma or 0..0m0a. Eventually he will reach the “border”: M[i] if the direction is positive
and 0 if the direction is negative. In this case we must set U[d] to True, indicating
that next time we normally change the value at index d, we change the maximum value
at index d. This eventually happens at shape 0..0m0 or 0..0m. In the former case we
move from 0..0m0 to 0..0(m + 1)0, in the latter case we move 0..0m to 0..0(m + 1). For
the most significant maximum value, the direction always remains positive, i.e., DM[d]
remains True.

Now we look at how the second most significant digit, xd−1, behaves, where we
assume that d− 1 > 2: This digit also moves from 0 to M[d− 1] or vice versa, depending
on the direction D[d− 1]. When it reaches a border, there is a couple of possibilities: If
xd 6= M[d], we swap the direction D[d− 1] and refer to index d, which means that the
next time we would normally do something at index d− 1, we instead do something at
index d. This is similar to the reflect step in 2.2.6. If xd = M[d], we have a more difficult
situation. When xd 6= M[d], we have to visit all tuples for which atleast one of x1,..,xd−1
is equal to M[d]. When xd = M[d], this restriction does not hold, so we have to visit a
lot more possibilities for the first d− 1 digits. As a result of this, the value at index d− 1
does not just go between 0 and M[d], but we actually have to either increase M[d− 1]
from 0 to M[d] or decrease M[d− 1] from M[d] to 0, where between every step of M[d− 1]
xd−1 also moves between 0 and M[d− 1]. Eventually M[d− 1] reaches its own “border”
0 or M[d], depending on its direction, and in that situation we do refer to index d the
next time xd−1 reaches its “border”.

The definition of the algorithm in 3.3 (not this implementation) is recursive, so the
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...

[0, 4, 0, 2]

[0, 4, 0, 3]

...

[4, 0, 0, 3]

[4, 0, 1, 3]

...

[0, 4, 1, 3]

[0, 4, 2, 3]

...

[4, 0, 2, 3]

[4, 0, 3, 3]

...

[0, 4, 3, 3]

[0, 4, 4, 3]

...

...

[0, 0, 4, 3]

[0, 0, 4, 4]

...

[0, 4, 4, 4]

[0, 4, 3, 4]

...

[4, 0, 3, 4]

[4, 0, 2, 4]

...

[0, 4, 2, 4]

[0, 4, 1, 4]

...

[4, 0, 1, 4]

[4, 0, 0, 4]

...

...

[0, 4, 0, 4]

[0, 3, 0, 4]

...

[3, 0, 0, 4]

[3, 0, 1, 4]

...

[0, 3, 1, 4]

[0, 3, 2, 4]

...

[3, 0, 2, 4]

[3, 0, 3, 4]

...

[0, 0, 3, 4]

[0, 0, 2, 4]

...

...

[0, 2, 2, 4]

[0, 2, 1, 4]

...

[2, 0, 1, 4]

[2, 0, 0, 4]

...

[0, 2, 0, 4]

[0, 1, 0, 4]

...

[1, 0, 0, 4]

[1, 0, 1, 4]

...

[0, 0, 1, 4]

[0, 0, 0, 4]

...

Figure 6: All the points between [0, 4, 0, 2] and [0, 0, 0, 4] where the second most significant
digit changes, or changes its max value.

other digits behave similarly to the digit at index d− 1. The exceptions are the digits
at indices 1 and 2. This is partly because in the normal case when changing the value
at index i, we afterwards have to check the shape of the values at i − 2 and i − 1, to
determine the next index we should change. For this reason, instead of putting extra
if statements everywhere, the algorithm for changing index 1 and 2 is programmed
differently. Let m = M[2], then if we change a value at index 1 or 2, we are either in
the process of moving from m0 to 0m or vice versa. The route from m0 to 0m goes
m0,m1,m2,..,mm,(m− 1)m,(m− 2)m,..,0m. When we reach the end, we either change
a higher index digit at the next iteration, or we change the maximum value of index 1
and 2 and the corresponding digit. Note that we do not actually use M[1].

An important part of the algorithm is deciding what the next index is that should
be changed. Generally, when changing index i, x1x2..xi−1 is either of the form 0..0m or
0..0m0, where m = M[i]. In the first case, the next index to change is i− 2 and in the
second case the next index to change is i− 3. However, when changing M[i], x1x2..xi is
of the form 0..0m or 0..0m0. Then in the first case, the next index to change is i− 1 and
in the second case the next index to change is i− 2. In the special case where the M[i]
gets changed to 0, the next index to change is the one referenced to by i + 1.

Complexity analysis: When determining the successor of a tuple, the number of
commands is bounded and does not depend on the length of the tuple, therefore the
algorithm runs in constant time.
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4 Fully growing cube

4.1 The problem

The problem of the “fully growing” cube is similar to the problem of the “half growing”
cube, except for one major difference: instead of using the alphabet Am = {0, ..,m}
at step m, we use the alphabet Bm = {−m,−m + 1, ..,−1, 0, 1, ..,m − 1,m}. So for a
dimension d ∈ N>0 we want to order all tuples of size d with digits from alphabet Z, such
that the first (2 ·m+ 1)d tuples only contain digits from alphabet Bm = {−m, ..,m} and
furthermore, two consecutive tuples differ in only one index and the difference between
the two digits at this index is 1.

Definition 4.1. A fully growing cube code of dimension d is a bijection
g : Zd → N, such that

g(x)− g(y) = 1 =⇒ K(x, y) = 1

and
g(x) ≤ g(y) =⇒ M̄(x) ≤ M̄(y),

where K((x1, ..xd), (y1, .., yd)) =
∑d

i=1 |xi − yi| and M̄((x1, ..xd)) = max{|x1|, .., |xd|}.

Just like in the last chapter, an application of this code could be to traverse polynomials
of a certain size, where we want to try the ones with a minimal absolute value of the
coefficients first and want to minimize the changes at each step.

4.2 Modeled as a Hamiltonian path through a growing hyper-
cube

4.2.1 One dimension

In the one-dimensional case, it is not possible to find a path. We start at 0 and then
have the option to move to either 1 or −1. After moving to 1, for example, we are not
able to move to −1, since we would have to jump two squares.

0 1−1

Figure 7: No route exists in the one-dimensional case, since we have to jump two squares.

4.2.2 Two dimensions

We can visualize this as a square. Starting at 00, we have four options to move to: 01, 10,
−10, 0(−1). Next, we want to fill the rest of the edge E1 = {ab ∈ B2

1 : |a| = 1 or |b| = 1}.
We can fill this edge either clockwise or counterclockwise. Every time we fill an edge
Em = {ab ∈ B2

m : |a| = m or |b| = m}, we can step out towards edge Em+1 and then we,
again, have the option to fill this edge either clockwise or counterclockwise.
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m(−m)

(−m)m

(−m)(−m)

00

01

10

11

20

22

33

Figure 8: The route in the two-dimensional case. The spiral pattern resembles a snail
shell.

In our eventual algorithm that we use for higher dimensional solutions too, from 00
we move to 10 and then fill the edge clockwise. In general, we move from (m− 1)(m− 1)
to m(m− 1) and then fill the Em edge clockwise, ending in mm. This route resembles
the shell of a snail and will henceforth be called the snail path. See Figure 8.

4.2.3 Three dimensions

We can visualize this situation as a cube. The situation for alphabet B1 is a cube where
we start in the middle cube, at 000, and have to visit all the other individual cubes of
this 3× 3× 3 cube. You can try, but you will find that each time you will have at least
one unreachable cube left. Sadly, this is the case for all odd dimensions, which will be
proven in 4.2.4.

4.2.4 Chessboard argument

We will now prove that it is impossible to have a Hamiltonian path through the hypercube
{−m, .., 0, ..,m}d starting at (0, .., 0) for an odd dimension d ∈ N and m ∈ Z>0. We
define a function W : ∪n∈NZn → {−1, 1} recursively with W (()) = 1 and for d ≥ 1

W ((x1, x2, .., xd)) =

{
W ((x1, x2, .., xd−1)), if 2|xd

−W ((x1, x2, .., xd−1)), if 2 - xd

The intuition behind this function is that, if we have have the {−m, ..,m}d hypercube
and we paint the cells in this hypercube either white or black, such that (0, .., 0) is
painted white and two direct neighbours (not diagonal) always differ in color, then
W ((x1, x2, .., xd)) equals 1 if the cell is white and it equals −1 if the cell is painted black.

Another useful function is the following: G : Z>0 × N → Z with G(d,m) =∑
x∈{−m,..,m}d W (x). This gives the difference between the number of white cells and

the number of black cells in the {−m, ..,m}d hypercube.
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Theorem 4.2. If 2|d or 2|m, then G(d,m) = 1 and if both 2 - d and 2 - m, then
G(d,m) = −1 .

Proof: We will prove this with induction over the dimension d.
Induction basis: The dimension d equals d = 1. Take m ∈ N. Every even number

in {−m, ..,m} is white and every odd is black. The number of white squares is then
equal to 1 + 2 · bm/2c and the number of black squares is equal to 2 · dm/2e. This
means that if 2|m, then G(1,m) = 1 + 2 · m/2 − 2 · m/2 = 1 and if 2 - m, then
G(1,m) = 1 + 2 · (m− 1)/2− 2 · (m + 1)/2 = −1.

Induction hypothesis: We assume that ∀c < d and ∀m ∈ N, G(c,m) = 1 if 2|c or
2|m and G(c,m) = −1 if 2 - c and 2 - m.

Induction step: Let d be the dimension. Take m ∈ N arbitrarily.

G(d,m) =
∑

(x1,..,xd)∈Bd
m

W ((x1, .., xd))

=
∑
a∈Bm

∑
(x1,..,xd−1)∈Bd−1

m

W ((x1, .., xd−1, a))

=
∑
a∈Bm

∑
(x1,..,xd−1)∈Bd−1

m

(W ((x1, .., xd−1)) ·W (a))

=
∑
a∈Bm

(
W (a) ·

∑
(x1,..,xd−1)∈Bd−1

m

W ((x1, .., xd−1))
)

=
∑
a∈Bm

(W (a) ·G(d− 1,m))

= G(d− 1,m) ·
∑
a∈Bm

W (a)

= G(d− 1,m) ·G(1,m)

Now, if 2|d, then G(d − 1,m) = G(1,m), so G(d,m) = 1. If 2 - d and 2|m, then
G(d − 1,m) = 1 and G(1,m) = 1, so G(d,m) = 1. Lastly, if 2 - d and 2 - m, then
G(d− 1,m) = 1 and G(1,m) = −1, so G(d,m) = −1.

Now we know that in the hypercube Bd
m the number of white cells is one more than

the number of black cells if 2|d or 2|m However in the case where 2 - d and 2 - m, there
are more black cells than white cells, and since we start at a white cell, it is impossible
to have a Hamiltonian path without passing over some white cell twice, or making an
illegal jump. Furthermore, if the dimension is odd, every new layer either has two extra
black cells or two extra white cells, so we can not solve the problem by simply starting
at a black cell.

4.2.5 Four dimensions

We can visualize the four dimensions as a square grid, where at every point there is
another square grid. For example, in the situation where the alphabet is B2 = {−2, .., 2},
we can visualize 5 by 5 big squares, where each big square itself consists of 5 by 5 smaller
squares. For the tuple abcd, the last two digits cd indicate in which big square the
coordinate lies, and the first two digits ab indicate the location inside this big square.
When going from alphabet B1 to B2, assuming that we visited all points in B4

1, there are
two types of coordinates that get added. Firstly, we add an entire layer of big squares
that lies around the original 9 big squares. These new big squares are totally unvisited.
Secondly, around each original big square, an edge E2 = {ab ∈ B : |a| = 2 or |b| = 2}
gets added that increases the size of these big squares from 3 by 3 to 5 by 5. Of these
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9 big squares, only this new outer edge is unvisited. These new unvisited squares are
colored white in the following figures.

There are many different paths to take, so we can set some restrictions for the
algorithm. For example, we can say that we always want to end at mmmm. Another
restriction is that we first want to visit all the inner big squares and afterwards visit
all the outer big squares. In other words, we first want to visit all the elements of
(B2

m \B2
m−1)×B2

m−1 = Em×B2
m−1 and afterwards the elements of B2

m× (B2
m \B2

m−1) =
B2
m × Em. We would also like to use our solution for two dimensions as much as

possible, as using lower dimensional solutions will help us to find an algorithm for higher
dimensions.

The following algorithm, visualize in the figures, meets these requirements: First we
step out from (m − 1)(m − 1)(m − 1)(m − 1) to m(m − 1)(m − 1)(m − 1). Next, we
move to m(m− 1)00, by using the snail path backwards on the last two coefficients and
not moving in the first two coefficients. We now want to fill the rest of the edge of big
square 00. The edge filling path for the two-dimensional case first moves down from
m(m− 1) to m(m− 2) and then fills the rest of the edge and ends up in mm. We fill up
the rest of the edge of big square 00 by using this path and moving from m(m− 1)00 to
mm00. Now we move to a new big square, from mm00 to mm10. In this big square we
also need to fill the rest of the edge. We use the path for Em backwards, which goes
from mm10 to m(m− 1)10, but we already visited m(m− 1)10, so we stop on the prior
square, m(m− 2)10. Now we move through the big squares using the snail path, and
at each big square we use the path for the two-dimensional edge, alternating between
backwards and forwards. This way, we will eventually end up at mm(m− 1)(m− 1) and
the entirety of B2

m × B2
m−1 has been visited.

We now want to visit B2
m × Em. First, we move from mm(m − 1)(m − 1) to

mmm(m− 1), where we continue our snail path through the big squares. The difference
is that in big square m(m− 1), we have to visit all small squares instead of just the outer
edge. We can use the snail path backwards to move from mmm(m− 1) to 00m(m− 1).
After stepping to 00m(m− 2) we use the snail path forwards to move to mmm(m− 2).
This way we use the snail path to move through the big squares, but we also use the
snail path alternatingly forwards and backwards inside these big squares to visit all the
small squares. Finally, we end up in mmmm.
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Figure 9: The route through {−1, 0, 1}4.

Figure 10: The first step of the route through B4
m is moving from (m,m−1,m−1,m−1)

to (m,m− 1, 0, 0).
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Figure 11: Next, we move through the rest of B2
m × B2

m−1.

Figure 12: Lastly, we move through B2
m × (B2

m \ B2
m−1). We use the route through B2

from 4.2.2, alternating between forwards and backwards.
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4.2.6 Even dimensions

The algorithm for four dimensions can be generalized for the higher even dimensions.
Let d ∈ N be an even number higher than 2. For the algorithm for d dimensions, we
require some prerequisites:

• The snail path for traversing B2
m that moves from 00 to mm.

• The algorithm for the (d− 2)-dimensional case, that starts at 00..00 and ends at
mm..mm while visiting all elements in Bd−2

m .

• An algorithm for the (d − 2)-dimensional edge, so for visiting all elements of
Em = Bd−2

m \ Bd−2
m−1. This algorithm start at (m,m − 1, ..,m − 1,m − 1) and

ends at (m,m, ..,m,m), but in this case we leave out the first square, so it starts
from the second square (m,m − 1, ..,m − 1,m − 2,m − 1) and moves through
Em \ {(m,m− 1, ..,m− 1,m− 1)}.

Our first step is moving from (m− 1, ..,m− 1) to (m,m− 1, ..,m− 1). While fixing the
first d− 2 coordinates, we use the backwards snail path on the last two coordinates. This
means that our next position is (m,m − 1, ..,m − 1,m − 1,m − 2,m − 1) and we will
eventually end up in (m,m− 1, ..,m− 1,m− 1, 0, 0). Now we use the (d− 2)-dimensional
edge algorithm on the first d− 2 coordinates to move to (m,m, ..,m,m, 0, 0). Next, we
move to (m,m, ..,m,m, 1, 0) and do the backwards (d− 2)-dimensional edge algorithm
on the first d−2 coordinates to end at (m,m−1, ..,m−1,m−2,m−1, 1, 0). We use the
snail path on the last two coordinates to move from big square to big square and at each
big square we do the (d− 2)-dimensional edge algorithm either forwards or backwards.
At some point we will reach (m,m, ..,m,m,m− 1,m− 1) and from here on out we will
continue using the snail path on the last two coordinates, but on each new big square, we
will use the algorithm for the entire (d−2)-dimensional case on the first d−2 coordinates.
We will end up in (m,m, ..,m,m,m,m) after visiting all elements in Bd

m.

4.2.7 Some alternatives for odd dimensions

From section 4.2.4 we know that a path for odd dimensions does not exist if we want to
follow all the conditions of the definition. We can however make paths by allowing slight
deviations from the original definition. Without going into too much detail, some of the
amendments that allow an algorithm to exist are:

• Allowing a minimal amount of bigger jumps.

• Allowing the path to pass specific coordinates twice.

• Going in a higher layer for a few steps, before going back and finishing the current
layer.

4.3 Recursive definition fully growing cube algorithm for even
dimensions

Our goal is to arrange, for a given dimension d, all elements of Zd, in such a way that for
two following elements x = x1..xd and y = y1..yd,

∑d
i=1 |xi − yi| = 1. Furthermore, for

every m ∈ N, the first (2m + 1)d elements should only contain digits from {−m,−m +
1, , ..,m − 1,m}. We model this as a bijective function FG from Zd to Zd \ {(0, .., 0)},
where the arrangement we get is given by starting at element (0, .., 0) and repeatedly
applying this function FG. As shown in 4.2.4, the function can only be defined for even
dimensions.
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This function FG, corresponding to the Hamiltonian paths from 4.2, and its inverse
FG−1 are defined as follows:

When the dimension is d = 2:
Let m be the maximal value of the absolute values of the input, i.e., if our input is

(x1, x2, .., xd), m = max{|x1|, |x2|, .., |xd|}.

FG2 : N× N→ N× N \ {(0, 0)}

(a,m) 7→ (a + 1,m)

(−m, a) 7→ (−m, a + 1)

(a,−m) 7→ (a− 1,−m)

(m, a) 7→ (m, a− 1)

FG−12 : N× N \ {(0, 0)} → N× N

(m,m− 1) 7→ (m− 1,m− 1)

(m, a) 7→ (m, a + 1)

(a,−m) 7→ (a + 1,−m)

(−m, a) 7→ (−m, a− 1)

(a,m) 7→ (a− 1,m)

When the dimension is d = 2k > 2:
Notation: (SLShape) represents the tuple (m,m − 1, ..,m − 1,m − 2,m − 1). As

defined before, if x = (x1, x2, .., xd−1, xd), then xd−1
1 = (x1, x2, .., xd−2, xd−1).

FGd : Nd → Nd \ {(0, .., 0)}

(m, ..,m) 7→(m + 1,m, ..,m)

(m,m− 1, ..,m− 1, a, b) 7→(m,m− 1..,m− 1)FG−12 ((a, b)) with (a, b) 6= 0

and |a| 6= m and |b| 6= m

(m, ..,m, a, b) 7→(m, ..,m)FG2((a, b)) with 2|(a + b)

xd−2
1 (a, b) 7→FGd−2(xd−2

1 )(a, b) with 2|(a + b)

(0, .., 0, a, b) 7→(0, .., 0)FG2((a, b))

(SLShape)(a, b) 7→(SLShape)FG2((a, b)) with |a| 6= m

and |b| 6= m

xd−2
1 (a, b) 7→FG−1d−2(xd−2

1 )(a, b)

FG−1d : Nd \ {(0, .., 0)} → Nd

(m,m− 1, ..,m− 1) 7→(m− 1,m− 1, ..,m− 1)

(m,m− 1, ..,m− 1, a, b) 7→(m,m− 1..,m− 1)FG2((a, b)) with |a| 6= m

and |b| 6= m

(m, ..,m, a, b) 7→(m, ..,m)FG−12 ((a, b)) with 2 - (a + b)

xd−2
1 (a, b) 7→FGd−2(xd−2

1 )(a, b) with 2 - (a + b)

(0, .., 0, a, b) 7→(0, .., 0)FG−12 ((a, b))

(SLShape)(a, b) 7→(SLShape)FG−12 ((a, b)) with (a, b) 6= 0

and |a| 6= m and |b| 6= m

xd−2
1 (a, b) 7→FG−1d−2(xd−2

1 )(a, b)

Proof correctness of algorithm: For this proof, we can use the same strategy as
for the proof in 3.3. Therefore, it will not be as rigorous, but instead we will sketch the
outlines and where necessary state in which way it is similar and in which way it differs
from the proof in 3.3.

We want to prove that for a dimension d = 2k, the path given by starting at (0, .., 0)
and repeatedly applying the algorithm FG has the desired properties. These properties
are that at every step we only change one digit, and this digit changes by plus or minus

36



1, we will eventually visit every element of Zd, we will not visit the same element twice
and for every m ∈ N, the elements of {−m, ..,m}d will be visited before the elements of
{−(m + 1), ..,m + 1}d \ {−m, ..,m}d.

To show that these properties hold, we will prove for FG that ∀d ∈ Z>0 with 2|d:
(1) FG∗d ◦ FGd = idZd .
(2) FGd ◦ FG∗d = idZd\{(0,..,0)}.

(3) ∀x ∈ Nd Kd(x,FGd(x)) = 1 .
(4) ∀x ∈ Zd \ Vd M̄(FGd(x)) = M̄(x) and ∀x ∈ Vd M̄(FGd(x)) = M̄(x) + 1, with

Vd = {(m, ..,m) ∈ Zd}.
Where FG∗d is the function defined by FG−1d above (we have yet to show that

it is indeed the inverse) and we use the auxiliary functions: M̄((x1, x2, .., xd)) =

max{|x1|, |x2|, .., |xd|} and Kd((x1, ..xd), (y1, .., yd)) =
∑d

i=1 |xi − yi|.
From properties (1) and (2) it follows that FG is bijective, so when repeatedly

applying FG we will not visit the same element twice, from property (3) it follows that
only one digit changes, and this digit changes by plus or minus 1 and from property (4)
it follows that the maximal value of the absolute values of the digits does not go down
and only increases at specific points. Then it remains to show that we indeed visit every
element of Zd eventually.

Properties (1), (2), (3) and (4) can be proven with induction on dimension d, where
the base case is d = 2 and we take steps of 2. We prove the base case and induction step
by taking every type of input and manually checking that the properties hold. These
types of input generally coincide with the individual lines of the definition of FG. Here
we make extensive use of the induction hypothesis.

To prove that we visit each element when we start at (0, .., 0) and repeatedly apply
FG, we will show that for all dimensions d ∈ 2Z>0 and m ∈ N, we reach (m, ..,m)d
after (2 ·m + 1)d − 1 steps. Because we will not visit two elements twice and all the
elements we visited lie in {−m, ..,m}d, and #{−m, ..,m}d = (2 ·m + 1)d, the elements
visited is exactly equal to {−m, ..,m}d. We will prove that it takes (2 · m + 1)d − 1
steps to reach (m, ..,m) with induction over d where d starts at 2 and takes steps of 2
and then induction over m ∈ N. For a given d and m, we want to count the number of
steps to get from (m, ..,m)d to (m + 1, ..,m + 1)d. This path consists of (2 ·m + 1)d

(d− 2)-dimensional paths from (m + 1,m, ..,m,m− 1,m)d−2 to (m + 1, ..,m + 1)d−2 or
in reverse and (2 · (m+ 1) + 1)d− (2 ·m+ 1)d (d− 2)-dimensional paths from (0, .., 0)d−2
to (m + 1, ..,m + 1)d−2 or in reverse. If we add the steps to move between the outer
squares and use the induction hypothesis for dimension d− 2, we find that getting from
(m, ..,m) to (m + 1, ..,m + 1) takes (2 · (m + 1) + 1)d − (2 ·m + 1)d steps. Then we
conclude that it takes (2 · (m+ 1) + 1)d− 1 steps to get to (m+ 1, ..,m+ 1) from (0, .., 0).

4.4 Recursive fully growing Cube algorithm for even dimensions
implementation

Just like in the half growing case, our algorithm uses the assumption that we have
an algorithm for the lower dimensional case. We, again, model the tuples of digits as
lists. For practical reasons, these lists are put in classes, which contain some extra
information about the lists and some useful methods. This extra information we keep
track of, helps to lower the complexity significantly. For simplicity, we just use the lists
in the following pseudocode and not the classes. The main functions of the algorithm
are called: forwardsFGCube and backwardsFGCube, which will change an input tuple to
its successor or predecessor respectively. These functions also have an extra index as
input. The use of this index value is to indicate which part of the input list we want to
look at. If we put as input the coordinate x0x1...xn−1, but we only want to know which
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coordinates follow x0x1..xj−1 in the j-dimensional case, for some 0 ≤ j < n, the input
of the function forwardsFGCube is the list x0x1..xn−1 and this j.

Algorithm 3: forwardsFGCube

Input: list,index
Output: no output
Result: The input list will

if index = 1 then snailPath(list,index)
else

m← max(list,index)
if allM(list,index,m) then list[0]← list[0] + 1
else if !inOuterLayer(list,index) & snakeShape(list,index− 2,m) &
!(list[index− 1] = 0 & list[index] = 0 ) then
snailPathBack(list,index)

else if even(list,index) then
if allM(list,index− 2,m) then snailPath(list,index)
else forwardsFGCube(list,index− 2)

else
if allZeroes(list,index− 2) then snailPath(list,index)
else if !inOuterLayer(list,index) & snakeShapeLowTail(list,index− 2,m)

then snailPath(list,index)
else backwardsFGCube(list,index− 2)

Some of these methods will need some clarification:
snailPath(list,index): this will move the the digits at index-1 and index as in

the 2-dimensional case, see 4.2.2.
snakeShape(list,i,m): Checks if the tuple up to index i is of the form: (m,m−

1, ..,m− 1).
snakeShapeLowTail(list,i,m): Checks if the tuple up to index i is of the form:

(m,m− 1, ..,m− 1,m− 2,m− 1).
inOuterLayer(list,i): Checks if the absolute value of the value at index i or i− 1

is equal to the maximum absolute power up to index i.
By the extra information given in the class, the methods such as max and snakeShape

can be ran in constant time. This allows the algorithm to be in linear time, which will
be shown in the next section.

Justification of algorithm: Just like in 3.4 the implementation follows the defini-
tion very closely.

Complexity analysis: The function is recursive and can have O(d) recursive calls.
Per call the complexity is O(1), because the auxiliary functions are programmed to be
constant time. This does require some auxiliary arrays though, so when changing the
digit of the tuple, we also have to update these arrays. This can happen in O(d) time,
but only has to happen once per input tuple. Therefore, the total algorithm is in O(d)
time.

4.5 Constant time fully growing cube algorithm

In Section 3.5 we used a strategy to get a constant time algorithm for the half growing
problem. There is no reason to believe this can not be applied to the fully growing
problem too. However, due to time constraints, this has not been programmed in this
thesis.
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Appendix

In this section we have placed the actual python code of the implementations of the
algorithms described in this document.

Linear time memoryless Gray code implementation

Here we have the python implementation of the algorithm described in 2.2.3 and 2.2.5.

def first_non_max_index(list,alph_size):

for i in range(0,len(list)):

if(list[i]!=alph_size-1):

return i

return len(list)

def max_forwards(list,alph_size):

if(alph_size%2==0):

if(list[1]%2==0):

list[1] += 1

else:

list[1] -= 1

else:

index = first_non_max_index(list,alph_size)

if(list[index]%2==0):

list[index] += 1

else:

list[index] -= 1

def first_non_zero_index(list):

for i in range(0,len(list)):

if(list[i]!=0):

return i

return len(list)

def zero_backwards(list, alph_size):

index = first_non_zero_index(list)

if( (list[index]==alph_size-1) and (alph_size%2==0)):

if( list[index+1]%2==0 ):

list[index+1] += 1

else:
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list[index+1] -= 1

else:

if(list[index]%2==0):

list[index] -= 1

else:

list[index] += 1

def go_forwards(list):

b = True

for i in range(1,len(list)):

b ^= ((list[i]%2)!=0) # b switches only when list[i] is

odd.↪→

return b

def next(list,alph_size):

if(go_forwards(list)):

if(list[0]!=alph_size-1):

list[0] += 1

else:

max_forwards(list,alph_size)

else:

if(list[0]!=0):

list[0] -= 1

else:

zero_backwards(list,alph_size)

Linear time half growing implementation

The next code is the implementation of the linear half growing algorithm described in
3.4. The input tuple is represented as a list inside a class called Word. This class has
attributes and methods to check some properties of the list in constant time.

class Word:

def __init__(self,list):

self.list = list

self.length = len(list)

self.largest_numbers = []

largest = 0

for x in list:

if(x>largest):

largest = x

self.largest_numbers.append(largest)

self.last_index=0

self.last_dir=1

def change_ele(self, index, add):

self.last_index=index

self.last_dir=add

if(add==1):

self.list[index] += 1

else:

self.list[index] -= 1

x = self.list[index]
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if(index>0 and self.largest_numbers[index-1]>x):

return

for i in range(index, len(self.largest_numbers)):

if(self.list[i]>x):

return

self.largest_numbers[i]=x

def is_oom_shape(self,index,m):

return self.largest_numbers[index]==m and (index==0 or

self.largest_numbers[index-1]==0)↪→

def is_oomo_shape(self,index,m):

return self.list[index]==0 and self.list[index-1]==m and

(index==1 or self.largest_numbers[index-2]==0)↪→

def get_largest_number(self,index):

return self.largest_numbers[index]

def __getitem__(self, index):

return self.list[index]

def get_len(self):

return len(self.list)

def is_even(n):

return n%2==0

def forwardsHGCube(word,index):

m = word.get_largest_number(index)

if index==0:

word.change_ele(index,1)

elif index==1:

if is_even(m):

if(word[0]>0 and word[1]==m):

word.change_ele(0,-1)

else:

word.change_ele(1,1)

else:

if(word[0]==m and word[1]>0):

word.change_ele(1,-1)

else:

word.change_ele(0,1)

else:

if is_even(m):

if word.get_largest_number(index-1)==0:

word.change_ele(index,1)

elif word[index]==m:

backwardsHGCube(word,index-1)

elif is_even( word[index] ):

if word.is_oomo_shape(index-1, m):

word.change_ele(index,1)

41



else:

backwardsHGCube(word,index-1)

else:

if word.is_oom_shape(index-1, m):

word.change_ele(index,1)

else:

forwardsHGCube(word, index-1)

else:

if word.is_oomo_shape( index, m):

word.change_ele( index-1, 1)

elif is_even(word[index]):

if word.is_oom_shape( index-1, m):

word.change_ele(index, -1)

else:

backwardsHGCube(word, index-1)

else:

if word.is_oomo_shape( index-1, m):

word.change_ele(index, -1)

else:

forwardsHGCube(word, index-1)

def backwardsHGCube(word,index):

m = word.get_largest_number(index)

if m==0:

return

if index==0:

word.change_ele(index,-1)

elif index==1:

if is_even(m):

if word[1]==0:

word.change_ele(0,-1)

elif word[0]==m:

word.change_ele(1,-1)

else:

word.change_ele(0,1)

else:

if word[0]==0:

word.change_ele(1,-1)

elif word[1]==m:

word.change_ele(0,-1)

else:

word.change_ele(1,1)

else:

if is_even(m):

if word.is_oomo_shape( index, m):

word.change_ele(index-1,-1)

elif is_even( word[index] ):

if word.is_oom_shape( index-1, m):

word.change_ele(index, -1)

else:

42



forwardsHGCube(word, index-1)

else:

if word.is_oomo_shape( index-1, m):

word.change_ele(index, -1)

else:

backwardsHGCube(word, index-1)

else:

if word.get_largest_number(index-1)==0:

word.change_ele(index, -1)

elif is_even(word[index]):

if word.is_oomo_shape( index-1, m):

word.change_ele(index, 1)

else:

forwardsHGCube(word, index-1)

elif word[index]<m and word.is_oom_shape( index-1, m):

word.change_ele(index, 1)

else:

backwardsHGCube(word, index-1)

Constant time half growing implementation

The next code is the implementation of the constant time algorithm for the half growing
cube. This algorithm is described in 3.5. In this implementation all the auxiliary memory
is put inside the class Word that contains the list that represents the input tuple.

class Word:

def __init__(self, size):

self.values = [0]*size

self.dir = [False]*size

self.dir[0] = True

self.max = [0]*size

self.max[0] = -1

self.d_max = [True]*size

self.upgrade = [True]*size

self.index_ref = list(range(size))

self.index = size-1

def print(self):

print(self.values)

def print_all(self):

print("V: ",self.values)

print("D: ",self.dir)

print("M: ",self.max)

print("D_M: ",self.d_max)

print("U: ",self.upgrade)

print("index ref: ",self.index_ref)

print("next index: ",self.index)

print()

# In this function we assume we just hit a ``border" (0 or M[i]) at

index i↪→

# and we are trying to decide if next time we get to index i,
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# we should refer to a higher index

# or change the M[i]

def should_upgrade(self,i):

if( i==len(self.values)-1 ):

return True

if( self.values[i+1]==self.max[i+1] ):

if ( not (self.max[i]==0 and not self.d_max[i])

and not (self.max[i]==self.max[i+1] and self.d_max[i]) ):

return True

else:

self.d_max[i] = not self.d_max[i]

return False

return False

def next(self):

i = self.index

if( i==0 or i==1 ):

#A value at 0 or 1 gets changed

if( not self.upgrade[1] ):

if( self.dir[i] ): self.values[i] += 1

else: self.values[i] -= 1

if( self.values[i]==self.max[1] ):

self.dir[i] = not self.dir[i]

self.index = not i

elif( self.values[i]==0 ):

self.dir[i] = not self.dir[i]

if( len(self.values)==2 or

(self.values[2]==self.max[2] and↪→

not ( self.max[1]==self.max[2] and self.d_max[1] ) )

):↪→

self.upgrade[1] = True

else:

if(self.values[2]==self.max[2]):

self.d_max[1] = not self.d_max[1]

self.index = self.index_ref[2]

self.index_ref[2] = 2

# both a value at 0 or 1 gets changed and the max element of

0 and 1 gets changed↪→

else:

self.upgrade[1] = False

if( self.d_max[1] ): self.max[1] += 1

else: self.max[1] -= 1

if( self.values[1]>=self.values[0] ):

self.values[1] = self.max[1]

if( self.max[1]==0 ):

self.index=self.index_ref[2]

self.index_ref[2]=2

self.upgrade[1] = True

if(self.values[2]==self.max[2]):

self.d_max[1] = not self.d_max[1]
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else:

self.index = 0

else:

self.values[0] = self.max[1]

self.index = 1

if( self.max[1]==0 ):

self.d_max

else:

#This is the situation where we just change the value at i

if( not self.upgrade[i] ):

if(self.dir[i]): self.values[i] += 1

else: self.values[i] -= 1

#We reached a ``border" for i

if( self.values[i]==0 or self.values[i]==self.max[i] ):

if( self.should_upgrade(i) ):

self.upgrade[i]=True

else:

self.index_ref[i]=self.index_ref[i+1]

self.index_ref[i+1]=i+1

self.dir[i] = not self.dir[i]

if( self.values[i-1]==0 ): self.index = abs(i-3)

else: self.index = i-2

#This is the situation where we also change the max value at

i↪→

else:

self.upgrade[i] = False

if( self.d_max[i] ): self.max[i] += 1

else: self.max[i] -= 1

# shape 0..0m0

if( self.values[i-1] !=0 ):

self.max[i-1] = self.max[i]

self.values[i-1] = self.max[i-1]

self.index = i-2

# shape 0..0m

else:

self.values[i] = self.max[i]

if(self.max[i]==0):

self.upgrade[i]=True

self.index=self.index_ref[i+1]

self.index_ref[i+1]= i+1

self.d_max[i] = not self.d_max[i]

else:

self.index=i-1
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Linear time fully growing implementation

The last code is the implementation of the linear algorithm described in 4.4. Once again
the tuple is represented as a list inside a class.

class Word:

def __init__(self,list):

self.list = list

self.length = len(list)

self.largest_numbers = []

m= abs(list[0])

for x in list:

if (abs(x)>m):

m=abs(x)

self.largest_numbers.append(m)

j=1

while( j<len(list) and list[j] == list[1] ):

j += 1

self.flatShapeMax = j-1 #The flatShapeMax is the index j such

that 1<=i<=j => list[i]=list[1]↪→

def changeDigit(self, index, plusOne):

if( plusOne ):

self.list[index] += 1

else:

self.list[index] -= 1

newm = abs(self.list[index])

if(index==0 or self.largest_numbers[index-1]<=newm):

index2 = index

while( index2< self.length and abs(self.list[index2]) <=

newm ):↪→

self.largest_numbers[index2] = newm

index2 += 1

if( index>1 and self.flatShapeMax >= index ):

self.flatShapeMax = index-1

elif( self.flatShapeMax == index-1 or index==1 ):

index2=index

while( index2 < self.length and self.list[index2] ==

self.list[1] ):↪→

index2 += 1

self.flatShapeMax = index2-1

def max(self, index):

return self.largest_numbers[index]

def snakeShape(self, index, m):

return self.list[0]==m and self.list[1]==m-1 and

self.flatShapeMax>=index↪→

def snakeShapeLowTail(self, index, m):

if(index==1):
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return self.list[0]==m and self.list[1]==m-2

else:

return self.list[0]==m and self.list[1]==m-1 and

self.list[index-1]==m-2 and self.list[index]==m-1 and

self.flatShapeMax==index-2

↪→

↪→

def allM(self, index, m):

return self.list[0]==m and self.list[1]==m and

self.flatShapeMax>=index↪→

def all0(self, index):

return self.list[0]==0 and self.list[1]==0 and

self.flatShapeMax>=index↪→

def inOuterLayer(self,index):

m = self.largest_numbers[index]

return abs(self.list[index-1])==m or abs(self.list[index])==m

def even(self,index):

return (self.list[index-1]+self.list[index]) % 2 == 0

def newPrint(self):

print(self.list, self.largest_numbers, self.flatShapeMax)

def snailPath( word, index ):

list = word.list

m = max(abs(list[index]),abs(list[index-1]))

if(list[index]==m):

word.changeDigit(index-1,True)

elif(list[index-1]==-m):

word.changeDigit(index,True)

elif(list[index]==-m):

word.changeDigit(index-1,False)

else:

word.changeDigit(index,False)

def snailPathBack( word, index):

list = word.list

m = max( abs(list[index]), abs(list[index-1]) )

if(list[index-1]==m and list[index]<m-1):

word.changeDigit(index,True)

elif(list[index]==-m):

word.changeDigit(index-1,True)

elif(list[index-1]==-m):

word.changeDigit(index,False)

else:

word.changeDigit(index-1,False)
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def forwardsFGCube(word, index):

if(index==1):

snailPath(word, index)

else:

m = word.max(index)

if (word.allM(index, m)):

word.changeDigit(0,True)

elif( not word.inOuterLayer(index) and word.snakeShape(index-2,

m) and not (word.list[index-1]==0 and word.list[index]==0)

):

↪→

↪→

snailPathBack(word, index)

elif(word.even(index)):

if( word.allM(index-2, m) ):

snailPath(word, index)

else:

forwardsFGCube(word, index-2)

else:

if( word.all0(index-2) ):

snailPath(word, index)

elif( not word.inOuterLayer(index) and

word.snakeShapeLowTail(index-2, m) ):↪→

snailPath(word, index)

else:

backwardsFGCube(word, index-2)

def backwardsFGCube(word,index):

if(index==1):

snailPathBack(word, index)

else:

m = word.max(index)

if(word.snakeShape(index,m)):

word.changeDigit(0, False)

elif( not word.inOuterLayer(index) and

word.snakeShape(index-2,m)):↪→

snailPath(word, index)

elif( not word.even(index) ):

if( word.allM(index-2,m) ):

snailPathBack(word, index)

else:

forwardsFGCube(word, index-2)

else:

if( word.all0(index-2) ):

snailPathBack(word, index)

elif( not word.inOuterLayer(index) and

word.snakeShapeLowTail(index-2,m) and (

word.list[index]!=0 or word.list[index-1]!=0) ):

↪→

↪→

snailPathBack(word, index)

else:

backwardsFGCube(word, index-2)
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