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Preface

In this thesis I have studied the spread of infection diseases within popu-
lations. In reality, populations contain many social structures. The degree
of intimacy of a contact has a strong influence on the rate of transmission.
This has inspired the construction of two mathematical models which take
the degree of intimacy into account. At the same time, the models needed
to be tractable for mathematical analyses. I have found it interesting to
encounter the strength and limitations of mathematical analyses in the field
of epidemiology.

To accomplish this thesis, my own social circle was essential. During my
study, the most important part of this circle was based in Nijmegen. I
started to enjoy mathematics even more because of the good atmosphere at
the mathematics department of the Radboud University. I want to thank
my dear fellow students for a wonderful study time. Some of you became
very good friends. I have really enjoyed discovering the exiting places in
Nijmegen and sharing our struggles and enthusiasm for mathematics.
I also want to thank the staff members, in particular Ronald Kortram, Wim
Veldman, Klaas Landsman, Mai Gehkre and Wieb Bosma, for the valuable
and personal conversations. You have been a great support for me, also in
difficult times.
In the last couple of years I got inspired by the lectures of Ronald Meester.
This has led me to choose to leave the warm nest of Nijmegen for the big city
of Amsterdam. Ronald and Pieter I would like to thank you for being my
supervisors and to introduce me to the field of stochastics and epidemiology.
Ronald, you have shown me that is essential for a mathematician to be very
precise, even if you know the result intuitively. I am grateful for all that I
have learned from you. Pieter, from the start you gave me the confidence
I needed. You were always there to discuss my progress, doubts and ideas.
Even after your move to Stockholm, you were closely involved and you have
been a great support. Wieb Bosma was my second reader and advisor from
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Nijmegen. Thank you for your willingness to stay informed, and for the pep
talks I really needed at times.
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Chapter 1

Introduction

A basic stochastic model for the spread of an infectious disease is the stan-
dard SIR, “Susceptible → Infectious → Removed”, epidemic model. In this
model one assumes a closed homogeneous population, which means that the
population is not influenced from outside and that the disease has the same
effect on each person. In reality, some individuals have higher infectivity or
are more susceptible than others. This heterogeneity of a population has
been modeled by Meester and Trapman [10] and by Diekmann and Heester-
beek [5], among others. Another important assumption in the standard SIR
model is uniform mixing between the individuals, which means that all in-
dividuals meet each other at equal rate. In this thesis, we will drop the
assumption of uniform mixing and consider populations which contain a so-
cial structure.
The social structure in a population consists of subgroups such as house-
holds, schools, workplaces and sports clubs. These social networks overlap
and the rate of disease transmission between two individuals depends on the
subgroup they both belong to. For instance, you could imagine that a boy
and a girl in the same household are more likely to infect each other than
people who meet at most once a week in the pub.
Within subgroups, there still is homogeneous mixing. However, if we inter-
link these structures, a different situation arises. The spread of a disease
within a school can then be influenced by the contacts that pupils have at
their football club or in their households. How do these local structures con-
nect? And what is the influence on the global spread of a disease? These
questions have been the motivation for this thesis.

The first addition is the so-called household model, where only one type
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of subgroups is taken into account. Much work has already been done on
this [1] [2] [3] [4]. The authors have investigated how household contacts
facilitate the global spread of infection.
In this thesis we will consider two social levels, households and schools,
where every individual is part of precisely one household and goes to pre-
cisely one school. This model can particularly be used to model the spread
of childhood diseases, such as measles, rubella and mumps.
There are different ways to interlink the households and schools. We will
consider the Hierarchical versus the Random network model.

• Hierarchical : In this model, all children in each household go to the
same school. Hence the name Hierarchical: households are fully con-
tained in schools. The relations between the subgroups and their in-
dividuals can be represented by a tree, see figure 1.1. The lowest level
represents the individuals of the population. On top of this, there is
the level of households, and these households are contained in the level
of schools.

• Random: Here, every household member goes independently of his or
her sibling to an arbitrary school. Even though this is far from reality,
it contrasts with the Hierarchical model. In addition, because of the
uniform distribution, we have the mathematical tools to analyze this.

In both models, there is also a possibility for individuals to meet outside
of their households and schools. For instance in the library, or out on the
street. We call this highest level the community, and assume that all in-
dividuals are equally likely to meet each other via global contact. This is
especially relevant for the Hierarchical model, because there it is the only
way to transmit a disease from school to school.

Andersson has also described the Random model for different levels of sub-
groups in [1], but proofs are not included. We will treat the model more
rigorously. The Hierarchical model has received less attention. In [13], the
Hierarchical model is proposed as an important extension of the simple ho-
mogeneously mixing SIR model, because the hierarchical structure captures
the basis framework of how the human population is organized and at the
same time, the model remains tractable to analyze. However, their mathe-
matical analysis is very limited.
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Figure 1.1: This picture shows an example of how individuals can be clas-
sified in the Hierarchical and the Random model. In this diagram schools
consists of 6 individuals and households are of size 2, but this is only illus-
trative. The upper part shows the rigid structure of the Hierarchical model
(H). In the bottom part, the dashed lines of the Random model (R), indicate
that the individuals are uniformly random distributed over the schools.

Overview

In this thesis we will analyze the Hierarchical versus the Random household-
school model and compare some of their outbreak characteristics such as the
expected final size, the probability of extinction and the reproduction number.
Here the final size is the total number of individuals infected during a large
outbreak of a disease. The expected final size shall be determined given
that a large outbreak will occur. The probability that the spread of one
initial infection does not lead to a large outbreak, is called the extinction
probability. The reproduction number R∗ is defined as the expected direct
infections by one infectious individual.

To compute these outbreak characteristics for large populations, we will
observe the spread of a disease in a slightly different way than the original
epidemic process evolves. We could let the time dynamics out of considera-
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tion, which enables us to approximate the epidemic processes by branching
processes. These approximate results are shown to be exact as the popu-
lation size tends to infinity. We have compared both models on their main
characteristics heuristically by proving that in the start of the epidemic, the
Hierarchical model is stochastically dominated by the Random model.

In the next chapter, we will first consider infection outbreak characteris-
tics in the standard SIR model. We will see that in a randomly mixing
population, the number of infectious individuals grows exponentially in the
beginning. We will introduce the branching process and show the relation
to SIR models.
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Chapter 2

Branching processes

Branching processes, first formulated by Galton and Watson (1874), are
used to model the reproduction of a population from generation to genera-
tion. Galton and Watson have designed this model to study the extinction
of family names. The evolution of a population is represented by a tree
(ordered network without loops) where individuals give birth according to
a fixed ‘offspring distribution’, independent of each other. The initial set of
individuals is the ‘0-th generation’, their children are called the ‘first gen-
eration’, and so on. One of the main questions in the theory of branching
processes is: what is the probability that a population dies out after a cer-
tain finite number of generations?

Define µ as the expected number of children of each individual and q as
the probability that the population dies out (the extinction probability).
When studying the development of an infinitely large random tree network,
one can observe a sharp phase transition when µ exceeds the critical number
of one. We can formalize this in the following theorem.

Theorem 2.0.1. When µ ≤ 1, the branching process dies out with proba-
bility one (q = 1), except in the case where every individual produces one
child with certainty. When µ > 1, the branching process grows forever with
positive probability (q < 1).

(For a proof of this theorem we refer to [9]).

Note that the trivial case where every individual gives birth to exactly one
child with probability 1, is a deterministic process and is not interesting for
our analysis. So from now on we leave this trivial case out of consideration.
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In epidemiology, we are interested in the probability that an infection dies
out quickly in a large population. How does this phase transition for µ
relate to an epidemic process? The vertices in the branching tree can be
interpreted as the infected individuals of the population in the epidemic
process, and the edges as the direct infections. We will make use of the
terminology of branching processes; we call the set of individuals infected
by an infectious individual x0 the ‘offspring’ (or ‘descendants’ or ‘children’)
of x0.

2.1 Relation with randomly mixing populations

When the population is very large and randomly mixed, the probability that
an infective individual contacts an already infected individual during the first
stage of the epidemic is very small. So the beginning of the epidemic process
can be approximated by a branching process and the reproduction number
R∗ has the same threshold behavior as µ. In the following Theorem we will
make this ‘first stage’ more formal by giving a lower bound as function of
the population size n.

Theorem 2.1.1. Consider a sequence of uniformly mixing populations grow-
ing in their size. For each δ > 0 and 0 < ε < 1

2 , there exists a n, such that,
within a population of size n, if the total number of infected individuals is
less than n1/2−ε , then the probability that a loop appears is at most δ. So
the start of an epidemic behaves with high probability as a branching process.

Proof. First we will prove that the probability of no loops in the first k
infections is equal to

k−1∏
i=1

(
1− i

n− 1

)
The initial infectious individual of the population makes his first contact
with a susceptible individual with probability one, since all the others are
susceptible in the beginning of the process. Now there are two infectious
individuals. The event that the next contact that one of them makes is with
a susceptible has probability 1− 1

n−1 , since only one of the other individuals
is not susceptible anymore. In the same way, we can show that if the first
k − 1 contacts were all with susceptibles (these contacts result in exactly k
infected individuals), then the probability that the k-th contact is with an
susceptible, given that this k-th contact occurs, is equal to 1− k−1

n−1 . So the
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joint probability that all the first k contacts are with susceptibles is

1 ·
(

1− 1

n− 1

)
·
(

1− 2

n− 1

)
· . . .

(
1− k − 1

n− 1

)
=

k−1∏
i=1

(
1− i

n− 1

)
Furthermore, we can prove by induction that

k−1∏
i=1

(
1− i

n− 1

)
≥ 1−

k−1∑
i=1

(
i

n− 1

)

However,
∑k−1

i=1

(
i

n−1

)
= k(k−1)

2(n−1) . So if k < n1/2−ε for 0 < ε < 1
2 , then k(k−1)

2(n−1)

converges to zero as n goes to ∞. We can conclude that for k < n1/2−ε,

k−1∏
i=1

(
1− i

n− 1

)
→ 1, n→∞

2.2 Generating functions

It will be very convenient to represent the probability distribution of a ran-
dom variable in a power series, the so called Probability generating function.
This one-to-one correspondence provides an alternative way for computa-
tions with random variables. Below, we will show how this generating func-
tion plays a leading role in the proof of Theorem 2.1 in [9], especially for
finding the extinction probability. In chapter 6, we will use this tool to cal-
culate some basic outbreak characteristics of the household-school models.

Definition The generating function of a discrete random variable X is de-
fined as

fX(s) := E[sX ] =
∞∑
k=0

P[X = k]sk

where s is a real variable between 0 and 1.

This function could be used to calculate the mean and the variance of X as
follows:

E[X] = f ′X(1)

Var[X] = E[X2]− E[X]2 = f ′′X(1) + f ′X(1)− f ′X(1)2
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Let Zn be the number of infectious individuals in the n-th generation. The
probability generating function of the random variables Zn can be repre-
sented by

fZn(s) =
∞∑
k=0

P[Zn = k]sk

In a branching process, it is assumed that Z0, Z1, Z2, . . . form a Markov
chain: the size of n-th generation only depends on the (n−1)-st generation,
not on the sizes of generations preceding the (n−1)-st. Branching processes
have the extra property that the individuals in a particular generation do
not interact with each other. So Zn could be written as a random sum of in-
dependent identically distributed (“i.i.d.”) random variables X1, . . . , XZn−1 ,
all with a common generating function fX . A proof by induction will show
that fZn is the n-th iterate of fX : (Discovered by Watson in 1874 [6])

fZn(s) = E[sZn ]

= E
[
E[sZn |Zn−1]

]
= E

[
E[sX1+X2+...+XZn−1 ]

]
= E

[
E[sX1sX2 . . . sXZn−1 ]

]
= E

[
E[(sX)Zn−1 ]

]
= E

[
E[sX ]Zn−1

]
= E[fX(s)Zn−1 ]

= fZn−1(fX(s))

By induction we get fZn(s) =

n times︷ ︸︸ ︷
fX(fX(. . . (fX(s)) . . .)). This iterative relation

tells us everything about Zn: if we know fX then fZn is determined. By
using this relation it is also possible to prove the exponential growth (or
decrease) of the expected final size of a branching process.

Theorem 2.2.1. If E[X] = µ, then E[Zn] = µn

Proof.

E[Zn] = f ′Zn(1) = (f ◦ fZn−1)′(1)

= f ′(fZn(1))f ′Zn−1
(1)

= f ′(1)f ′Zn−1
(1)

= µE[Zn−1]

8



Applying the iteration gives us the desired result.

Hence, if the expected number of new infected individuals µ is larger than
one, the expectation value of infected individuals grows forever. If it is
smaller than one it decays to zero. This statement is consistent with Theo-
rem 2.0.1, but to actually prove a phase transition for the extinction prob-
ability, more work is needed [9], see the example below.

Definition By extinction we mean the event that the sequence {Zn} con-
sists of zeros for all but a finite number of n and this means that Zn → 0.
Because {Zn = 0} is a monotonously increasing event, we have that

q := P[Zn → 0] = limn→∞P[Zn = 0].

Example Consider a Markov process {Zn} with the following conditional
probability distribution:

P[Zn = 0|Zn−1 = 0] = 1

P[Zn = 0|Zn−1 = n− 1] = 1−
√
n− 1√
n

P[Zn = n|Zn−1 = 0] = 0

P[Zn = n|Zn−1 = n− 1] =

√
n− 1√
n

.

If we start with Z1 = 1 then the marginal probability distribution for Zn is
given by

P[Zn = 0] = 1− 1√
n

and P[Zn = n] =
1√
n
.

One can observe that the expectation of this sequence tends to infinity while
the extinction probability tends to 1, as n→∞.

The generating function plays an important role in computations of the ex-
tinction probability. We make the following observation: if the population of
all descendants of a single infectious individual x0 goes extinct, then either
x0 does not produce new infectious individuals at all, or each of the popula-
tions formed by the ‘children’ of x0 goes extinct. Note that the number N
of ‘children’ per individuals is an i.i.d. random number, with common gen-
erating function fN . These arguments can be summarized in the following
equation

q =
∞∑
k=0

P[N = k]qk = fN (q). (2.1)
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Observe that q = 1 will always fit, since
∑∞

k=0 P[N = k] = 1. In the proof
of Theorem 2.1 in [9] it is shown that the extinction probability is equal to
the smallest non-negative root of the equation above.

2.3 Multi-type branching processes

A generalization of the single-type branching process is a process that in-
volves several types of individuals. This multi-type branching process can
still be described by a Markov process with no interaction between the in-
dividuals and some results of the ordinary branching process can easily be
extended. The theory of branching processes is comprehensively described
in [6]. For completeness, in this subsection we will provide a basic struc-
ture of this topic that will be used in chapter 6 for analyzing the Random
household-school model.

Suppose we have an appropriate classification of k different types such that
every individual produces new types of individuals following a fixed offspring
distribution. The states of the Markov process can be denoted in vector no-
tation, using a bold font. Let Zin be the vector with for each type the number
of individuals of that type in generation n infected by an individual of type
i, and interpret Zijn as the j-th component of this vector i.e. the number
of individuals of type j infected by an individual of type i. When it is as-
sumed that the start of the process is the non-random unit-vector ei, then
the probability mass function of the random variable Zi1 can be represented
by the generating function:

f i(s1, . . . , sk) =

∞∑
r1,...rk=0

P[Zi1 = (r1, . . . , rk)]s
r1
1 . . . srkk , 0 ≤ ‖s‖∞ ≤ 1.

If Zn−1 = (r1, r2, . . . , rk) then Zn can be written as the sum of r1 + . . .+ rk
random variables, where all rj random variables are identically distributed.
Together they give a family of generating functions (f1

n−1, . . . f
k
n−1) yielding

a similarly iterative relation as before:

f in(s) = f i(f1
n−1(s), . . . , fkn−1(s)). (2.2)

The mean number of new infectious individuals of type j infected by one
individual of type i defines a k × k reproduction matrix M [6] with
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Mij := E[Zij1 ] =
∂fi(1, . . . , 1)

∂sj
i, j = 1, . . . k.

By the Perron-Frobenius theorem we know that if the matrix M is positive
regular (i.e. there exists a N > 0 such that all entries in MN are strictly
positive) then there exists a positive real eigenvalue ρ of this matrix M such
that all other eigenvalues λ are strictly smaller in absolute value |λ| < ρ.
By iteration we have that ρN is the largest eigenvalue of MN . The positive
regularity assumption means in our case that we have to assume that for
every i there exists a j such that P[Zij1 = 0] > 0.
This eigenvalue ρ has the same threshold behavior as µ has in the single-
type branching process: if ρ ≤ 1 then all eigenvalues are smaller than or
equal to one and the epidemic dies out, if ρ > 1 then there is at least one
direction, i.e. the direction of the eigenvector associated with ρ, in which the
epidemic grows forever with a probability larger than zero. By direction we
mean the scalar multiples of the particular vector. We conclude that ρ is a
valid threshold measure and we will use it as reproduction number for the
multi-type branching process.

The extinction probability for the multi-type branching process can be de-
rived similarly to equation (2.1). Let q(i) be the probability that the epi-
demic dies out given that the initial infective individual is of type i and
let f = (f1, . . . fk) be the generating function. From Theorem 7.1 in [6]
we know that q = (q(1), . . . q(k)) is the solution of f(s) = s with smallest
Euclidean norm. Similar to Theorem 2.0.1: if ρ > 1, then q(i) < 1 for all i
and if ρ ≥ 1, then q(i) = 1 for all i.
The mean extinction probability value can then easily be computed by a
weighted average over the different types:

q̄ =
k∑
i=0

P[Z0 = ei]q(i). (2.3)
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Chapter 3

Set-up for the
household-school models

In the previous chapter we briefly discussed the relationship between branch-
ing processes and the spread of epidemics within uniformly mixing popula-
tions. In this chapter we will give a formal set-up of the household-school
models, where individuals are not uniformly mixed anymore. To analyze
the progress of an epidemic across these structures, figure 1.1 is not prac-
tical, therefore we will introduce a multi-layered graph representation. By
doing percolation on the different levels of these graphs, we will show that
the Hierarchical and the Random model both can be approximated by a
(multi-type) branching process. Let us start with a formal description of
the standard simple SIR model.

3.1 Standard SIR model

The standard stochastic SIR model assumes a closed population (no births,
deaths and migration are considered) that is homogeneous, randomly mix-
ing. The individuals in the population are at first ‘susceptible’ and after
they get infected they remain ‘infectious’ for some period of time. During
their infectious period, each infected individual makes contact with a given
individual at the time points of a Poisson process with rate β

n−1 , where n
is the size of the population and β is called the infection rate. In a large
population, this rate can also be interpreted as the mean number of ikndi-
viduals an infectious individual will infect during a certain time frame, say
one time unit. Contact between an infectious and a susceptible individual
always results in transmission of infection. When the infectious period has
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terminated, the individual remains immune to the infection for the rest of
his life and is considered as removed, he or she is not part of the epidemic
process anymore. The epidemic ceases if all the infectious individuals are
removed. Hence the name SIR (Susceptible, Infectious, Removed).

3.2 Household-school models

We consider a population of n individuals, organized in a social network of
households and schools, where each individual belongs to exactly one house-
hold and also to exactly one school. We assume that the school size, denoted
by nS , and household size, denoted by nH , are relatively small compared to
n. They are held fixed when n → ∞. For ease of presentation we assume
that the epidemic is initiated by one infectious child x0 and that the other
n− 1 are initially susceptible. We also assume that the infectious period I
is constant and the same for every individual, say I = 1 [time unit], such
that the analyses become much more convenient.
The infectious contacts take place following the time points of a Poisson
process. In the household-school models, the individuals may transmit the
disease at three different levels. They make household contact with a given
sibling at a Poisson rate βH , school contact with a given schoolmate at a
Poisson rate βS . Finally, each individual can infect all n− 1 other individ-
uals by global contact in the community. This rate between an infectious
and a given individual is set βG

n−1 in order to keep the total contact rate
βG independent of the population size. All of these contacts between an
infectious and a susceptible individual always result in immediate infection
transmission and the rates are defined per pair of individuals. In Theorem
2.1.1 we have seen that for a large homogeneous population, the probability
of contacting a given individual more than once tends to zero, as n goes
to infinity. So for large n, βG can be interpreted as the mean number of
globally infected individuals, infected by one infectious individual. However
this is not true for the contact rates within the households and schools.
Since their sizes are relatively small compared to n, there is a substantial
probability that within these subgroups an infectious individual contacts an
already infected individual such that the disease will not transmit by this
contact. From now on we will make a difference in terminology: a “contact”
made by an infectious individual will only result in infection transmission if
the receiver is susceptible. When it is given that the receiver is susceptible,
we say that the infectious individual “infects” this individual and we call
this an “infectious contact”.
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By definition of a Poisson process, the waiting time between two contacts is
exponentially distributed. The cumulative exponential distribution function
with rate β and waiting time X is defined as: P[X ≤ t] = 1 − e−tβ. We
just assumed that one infectious contact is enough to transmit the infec-
tion. Therefore, by the assumption that the infectious period I = 1, the
probability that an infectious individual infects a given individual within
his household (resp. school and community) is given by p̄H := 1 − e−βH

(resp. p̄S := 1− e−βS , p̄G := 1− e−
βG
n−1 ). So if we consider the spread of the

disease restricted within the subgroups, we assume that the individuals are
still randomly mixed. However, we are interested in how the spread of the
disease behaves if we interlink these overlapping networks.

We will model the progress of an epidemic across a merged graph consist-
ing of three different layers, where the edges represent the possible contacts
or connections between the individuals within the different subgroups, see
figure 3.1. A complete green graph represents the connections within the
community. Households are represented by complete subgraphs with red
edges and schools are represented by complete blue subgraphs. Notice that
only the color of the graph, not its geometric distance, determines the rate
of infection. To determine the basic characteristics of an epidemic, like the
reproduction number R∗, the final size T and the extinction probability q,
we are not interested in the precise time evolution, but only in the final
outcome of the epidemic. Therefore, we could model the epidemic spread
by a (bond) percolation model. Here, the time dynamics have been dropped
and only the static cluster of infected individuals is considered. Since we as-
sumed a fixed infectious period, the infections made by the same individual
are independent. We will describe this model below.

Percolation model

In a bond (resp. site) percolation model on an infinite network structure,
edges (resp. vertices) are open with probability p and closed with probability
1 − p, independently of each other. An open edge means in our case that
the connection could be used for transmitting infection. Such an edge will
stay part of the network and a closed edge will be deleted. Typical ques-
tions that can be answered in percolation theory are: does the remaining
graph of open edges have an infinitely large connected subgraph (also called
infinite component)? And what is the critical value 0 ≤ pc ≤ 1 such that
the probability of an infinitely large component, called the survival proba-
bility, is 0 if p < pc, and strictly larger than 0 for p > pc? If there exists an
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infinitely large component of open edges with probability greater than zero,
then what is the probability that our initial infectious individual x0 is part
of it? Like the reproduction number R∗, this phase transition pc is an im-
portant threshold measure. Percolation theory works on infinite networks to
obtain sharp phase transitions. However, in real life, structures are always
of finite size. Therefore, we are interested in the asymptotic behavior of
sequences of finite graphs where the population size n grows to infinity. In
chapter 5, we will study this limiting behavior in more detail. The relation
between epidemiology and percolation theory was earlier described in [12]
[11] and gives us an important tool for modeling the spread of a disease.

We want to describe a procedure that builds a connected component of
infectious individuals. In the bond percolation model we can construct such
a component along the way. We start with examining all edges of different
colors that are connected to our initial infectious vertex x0. Each edge is
open with a corresponding edge probabilities p̄G, p̄S or p̄H , depending on
the subgroup where it belongs to. The green (resp. blue, red) edge from x0

to a given individual w is drawn if and only if x0 will infect w by global
(resp. household, school) contact during its infectious period. In this way,
it is possible that w is connected to his sibling x0 by a red, blue and green
edge as well, for example. The initial infectious individual itself (x0) is called
‘generation 0’. The other endpoints of the open edges connected to x0 are
called ‘generation 1’. In the next iteration, we move on to one of the infected
vertices in the first generation, say x1. Explore all the edges connected to
x1 and repeat the procedure for those edges. All the endpoints of the newly
explored edges with one endpoint in generation 1, are called ‘generation 2’,
except for those vertices of previous generations (they were already infected
before). Continuing these steps for every generation results in a final set of
the epidemic represented by a directed cluster. Note that this cluster has a
tree structure if and only if any individual will be at most infected once.

Fixed versus random infectious period

In general, we have to perform percolation on a directed graph since the
state of each edge depends on the infectious period of its starting point.
However, throughout this thesis, we shall assume a constant infectious pe-
riod. In this case it does not matter whether the edges are directed or not,
because the event that the edge from v to w is open is independent of the
‘state’ of all the other edges, in particular it is independent of the state of
the edge from w to v [12]. Here, the edges v → w and w → v are open
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with the same probability This means that during the exploration of the
cluster, if v becomes infected earlier than w then we only have to explore
the edge from v to w, and visa versa. So for a fixed infectious period we
could drop the direction of the edges without any consequence for size of the
percolation cluster. The proofs in chapter 4 and 5 will essentially be based
on the criteria that the network is undirected.

Until so far, the household-school models were described together. How-
ever, how the three layers are mixing up is different for the Random and
the Hierarchical model, so from now on we shall treat them separately. In
the next chapter we will see how we the final size within the schools and
households could be determined in both models. The resulting distributions
of the final subgroup sizes shall be used in chapter 6 to approximate the
overall epidemic spread.
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Figure 3.1: This is almost the same situation as in figure 1.1 but here the
Hierarchical structure is shown from another perspective. Each green con-
nection between two different schools represents the 36 global connections
between all pairs of individuals at these two schools. For simplicity, only
blue edges are shown, where there also is a green connection. To obtain the
Random model from this picture, you can think of an arbitrary formation
of households. In this example these households are of size two.

17



Chapter 4

The final size within small
finite groups

In this chapter, we will calculate the exact, albeit implicit, probability distri-
bution of the final epidemic size within a (small) finite population, using the
recursive formula of Theorem 2.2 in [2]. We shall give a probabilistic proof of
this formula for a randomly mixing population, which will be needed for the
Random model in chapter 6. Note that for large finite sets, the calculations
become computationally hard. In our household-school model, the largest
finite subgroups are schools, so we have to assume them not to be larger
than say fifty pupils. Secondly, we will give a rather similar proof for a gen-
eralized equation, stated in chapter 6 of [2], and we will apply this formula
to the hierarchical household-school structure. Note that the calculations
can also be used for an epidemic with random infectious period, but then
the proofs are less intuitive.

4.1 Random model final size

Theorem 4.1.1. Consider a standard SIR epidemic model, starting with a
population of size n + 1 where one individual is infectious and the other n
are initially susceptible. We assume that the infectious period is fixed. We
define p as the infection probability and Pnk as the probability that the final
size of the epidemic is equal to k, 0 ≤ k ≤ n. Note that the final size does
not include the initial infectious individual. Then for each l, 0 ≤ l ≤ n
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Pnl =
(

(1− p)(n−l)(l+1)
)(n

l

)
−

l−1∑
k=0

Pnk

(
(1− p)(n−l)(l−k)

)(n− k
l − k

)
(4.1)

Proof. We model the progress of an epidemic across a complete graph of
size n+1, where every pair of vertices (individuals) is connected by an open
(resp. closed) edge with probability p (resp. 1 − p). The final set of the
epidemic, denoted by T, could be compared with the percolation cluster of
the initial infectious individual x0. We stress that here the final set T does
not include the initial infectious individuals.

The proof is based on a specific way of counting. Denote by N the total
set of individuals excluding x0. Number the individuals of N by {1, . . . , n}
and consider the event that the final set of the epidemic is equal to L =
{1, 2, . . . , l}. The probability on this event will be denoted by PnL . Since
the population is homogeneous and uniformly mixed, there are

(
n
l

)
ways to

choose a set of l elements. So we have that Pnl =
(
n
l

)
PnL , and it is suffices

to show that

PnL = (1− p)(n−l)(l+1) −
l−1∑
k=0

Pnk

[
(1− p)(n−l)(l−k)

](n− k
l − k

)
/

(
n

l

)
(4.2)

First we remark that {T = L} occurs, if and only if the following two events
will occur:

B: All of the l + 1 elements of set L ∪ {x0} fail to infect any of the other
individuals in set N\L. We will call this a closed border of L.
C: All individuals of L become infected: L ⊆ T.

So
PnL = P[B ∩ C] = P[B]− P[B ∩ Cc]

We observe that B has probability (1 − p)(n−l)(l+1) since all (n − l)(l + 1)
connections between the two subsets are closed with probability (1 − p),
independently of each other, because a fixed infectious period is assumed.
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Secondly, we write

B ∩ Cc = B ∩ (∪l−1
k=0 ∪Sk⊂L {T ∩ L = Sk})

where we have taken the union over all possible sub-epidemics of size k
within L, for all 0 ≤ k ≤ l − 1, and Sk represents a particular (proper)
subset of size k.
To express P[Cc] in Pnk , we recall that Pnk represents the probability that
the final set of the epidemic within the total population is of size k. We are
only interested in the probability that the final k infectious individuals are
all within set L. Because all individuals have equal probability to become
infected we have to multiply by a fraction

(
l
k

)
/
(
n
k

)
: there are

(
l
k

)
ways to

choose k elements within L, divided by the total number of ways to choose
k elements, so only a fraction

(
l
k

)
/
(
n
k

)
of sets of size k are a subset of L.

However, this fraction is exactly the same as
(
n−k
l−k
)
/
(
n
l

)
, only the way of

choosing l and k is reversed. Here, we first fix a set Sk and next we choose
the other l − k elements such that Sk ⊂ L, divided by the total number of
possible ways of choosing l elements. So

(
n−k
l−k
)
/
(
n
l

)
is the fraction of sets of

size l which contain subset Sk.

Hence, for a given k, the probability that the epidemic results in a final
set of k elements that are contained in L, is given by

Pnk

(
n− k
l − k

)
/

(
n

l

)
(4.3)

Notice that now there automatically is a closed connection between these k
elements and the elements of N\L: it is included in the probability Pnk . To
determine the probability that B ∩ Cc occurs, we need a closed connection
between all elements of L and N\L. The probability that the other l − k
edges of the border of L are closed is given by

(1− p)(n−l)(l−k) (4.4)

Since the infectious period is fixed, connections are closed independently
of each other. Hence, we can multiply (4.3) by (4.4) to obtain the desired
result.

Theorem 2.2 in [2] is an immediate result of Theorem 4.1.1.
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Corollary 4.1.2.

l∑
k=0

(
n− k
l − k

)
Pnk /[(1− p)(n−l)(k+1)] =

(
n

l

)
(4.5)

Proof.

l∑
k=0

(
n− k
l − k

)
Pnk /

(
(1− p)(n−l)(k+1)

)
=

l−1∑
k=0

(
n− k
l − k

)
Pnk /

(
(1− p)(n−l)(k+1)

)
+ Pnl /

(
(1− p)(n−l)(l+1)

)
=

l−1∑
k=0

(
n− k
l − k

)
Pnk /

(
(1− p)(n−l)(k+1)

)
+

(
n

l

)
−

l−1∑
k=0

(
n− k
l − k

)
Pnk /

(
(1− p)(n−l)(k+1)

)
=

(
n

l

)

4.2 Hierarchical model final size

In the Hierarchical structure, the individuals within schools do not mix uni-
formly at random anymore. Remember that the spread of infection within
a given school can be modeled across a graph with two different layers, de-
picted in figure 3.1: one layer consists of a complete blue graph with edge

probability pS = 1− e−βS+
βG
n−1 representing the school and global contacts,

on top of this there are red edges between every pair of siblings, open with
probability p̄H := 1− e−βH .
We will subdivide the school-population into different types of individuals,
called a type assignment, such that the infection probability between any in-
dividual of type i and type j, denoted by pij , is the same. Since we assume
a fixed infectious period, pij and pji are automatically the same.

First, in Theorem 4.2.1, we will introduce the final size distribution for a
general subgroup divided in different types. We will use the vector notation:
let v ≤ n mean vi ≤ ni for all i ≤ k,(

n

v

)
=

k∏
i=1

(
ni
vi

)
and

v∑
u=0

=

v1∑
u1=0

· · ·
vk∑

uk=0
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Theorem 4.2.1. Consider a population, subdivided into k different types,
of size n = (n1, . . . , nl + 1, . . . nk), where one individual of type l is initially
infectious and the other individuals of the population are initially susceptible.
Denote by pij the infection probability matrix and by Pu the probability that
the final size of the epidemic is equal to u = (u1, . . . , uk), 0 ≤ u ≤ n. The
δl-function indicates the initial infectious individual, δl(i) = 1 if and only
if i = l, otherwise δl(i) = 0. Note that the final size does not include the
initial infectious individual. Then for each v, 0 ≤ v ≤ n:

v∑
u=0

(
n− u

v − u

)
Pv/

k∏
i=1

 k∏
j=1

(1− pij)(nj−vj)

ui+δl(i)

=

(
n

v

)
(4.6)

We will prove this theorem for the two level-mixing case where we have
schools of size nS and households of size 2. One can imagine that it is not
difficult to generalize this to larger household sizes and to more levels of
mixing subgroups, only the computations will become more tedious, so we
will not deal with this in this thesis. Below, we shall define an appropriate
type assignment for the case of households of size 2.

Type assignment

In the Hierarchical model, individuals can make contact both at school and
at home, each with a certain probability. To make the appropriate type
assignment, we have to distinguish the events where siblings make household
contact and where they do not. By household contact we mean that if one
of the siblings will be infected, he or she will automatically infect his or her
sibling. Specifically, before we explore the actual spread of a disease across
the network, we can first perform percolation only on the red graph. Here,
an open red edge between two siblings indicates that household contact will
occur and these events are independent of the possible school-infections.
Based on this percolation we can define the different types of individuals.
Individuals of type 2 make household contact with their household member,
individuals of type 1 do not. However, this definition will not result in an
appropriate type assignment: if an individual of type 2 is infectious, then
he will infect his sibling (also of type 2) with probability one but other
individuals of type 2 with probability pS . Therefore, we have to observe
households of type 2 instead of individuals of type 2, while we observe
individuals of type 1. By this type assignment we are able to define a contact
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probability matrix pij , where the infection spreading still only depends on
transmission within school. Observe that between all pairs of households of
type 2 there are 4 blue connections through which it is possible to transmit
the disease, between each pair of individuals of type 1 and households of
type 2 there are 2 blue connections and between two individuals of type 1
there is only one way to transmit. Together, this results in the following
matrix:

p11 = pS := 1− e−βS

p12 = 1− (1− pS)2 = 2pS − p2
S

p21 = 2pS − p2
S

p22 = 1− (1− pS)4

Proof of Theorem 4.2 in the case of two different types. Consider a school of
size nS . Denote by n1 (resp. n2) the random number of individuals (resp. house-
holds) of type 1 (resp. 2). As we have mentioned above, we perform percola-
tion on the red graph to obtain a certain type partition. This is a binomial
process, where we have nS

2 number of red edges (=number of households)
and each edge is closed with probability p̄H , independently of each other.
So n1 ∼ 2 · bin(n/2, 1− p̄H) and n2 ∼ bin(n/2, p̄H)

Consider a given realization (n̄1, n̄2) of these binomial processes, and sup-
pose that our initial infectious individual is of type 1. We construct a new
complete graph where the vertices of a graph can be distinguished in three
different sets: the set of individuals of type 1 (excluding the initial infec-
tive) denoted by N1, the set of households of type 2 denoted by N2, and
the initial infective of type 1. The edge probabilities are determined by the
contact probability matrix as defined above.
We number the individuals of type 1 and define for each v1 ≤ n̄1, the subset
V1 ⊂ N1 to be the set {a1, . . . , av1}. We can do the same for households
of type 2 and define for each v2 ≤ n̄2, the subset V2 ⊂ N2 to be the set
{b1, . . . , bv2}. Since there are

(
n̄1

v1

)(
n̄2

v2

)
ways to choose v1 elements out of n̄1

and v2 elements out of n̄2, we have P(v1,v2) =
(
n̄1

v1

)(
n̄2

v2

)
P(V1,V2)

We could argue in the same way as for the homogeneous case, and gen-
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eralize equation (4.2) to the hierarchical setting described above.

P(V1,V2) =
(
qn1−v1

11 qn2−v2
12

)v1+1 (
qn1−v1

21 qn2−v2
22

)v2 −(
v1−1∑
u1=0

v2∑
u2=0

P(u1,u2)

(
qn1−v1

11 qn2−v2
12

)u1−v1 (qn1−v1
21 qn2−v2

22

)u2−v2
·
(
n1 − u1

v1 − u1

)
/

(
n1

v1

)
·
(
n2 − u2

v2 − u2

)
/

(
n2

v2

))
−

v2−1∑
u2=0

P(v1,u2)

(
qn1−v1

21 qn2−v2
22

)u2−v2
· 1/
(
n1

v1

)
·
(
n2 − u2

v2 − u2

)
/

(
n2

v2

)

Here, the border of V1∪V2 is closed with probability (qn1−v1
11 qn2−v2

12 )v1+1(qn1−v
21 qn2−v2

22 )v2

since the set N\(V1 ∪V2) splits up into two smaller sets: the individuals
of type 1 and the households of type 2. Further, we have again subtracted
all events where the final set of size (u1, u2) is a sub-epidemic of (V1,V2).
We have assumed that the initial infectious individual is of type 1, but we
could repeat the argument for the case that the initial infectious is of type
2, except that the final size will then be at least one.
It is now straightforward to complete the proof.

By using Theorem 4.2.1 and 4.1.1 we can solve the final size probabilities in
the subgroups recursively. In figure 4.1, we have plotted these probabilities
for the Hierarchical model, where we have chosen a specific school size and
infection rates. One can see that either a few individuals or a considerably
large part of the school population becomes infected. This bimodal behavior
[2] becomes more evident as n grows large, and we will prove this in the next
chapter.

24



0 5 10 15 20 25 30

0

0.02

0.04

0.06

0.08

0.10

Final epidemic size

Pr
o

b
ab

ili
ty

Figure 4.1: The final size distribution within a Hierarchical school of size 30
where households are of size 2. In this example, the contact-per-pair rates
are βH = 1.4 and βS = 0.1
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Chapter 5

Asymptotic behavior

One of the advantages of considering the limit of an epidemic spread within
large populations that grow in size, is that only two possible scenarios can
occur: the number of new infections in generation n either goes to 0 with
extinction probability q or it goes to ∞ with probability 1− q. However, in
reality, an infectious disease spreads within a finite population. For large
finite populations, exact computations such as in chapter 4 are intractable,
so we are interested in the asymptotic behavior of sequences of finite network
structures that grow in size. We shall see that the sharp phase transition
we observe in the limit of a sequence of randomly mixing populations, is
a good indication for the phase transition in those large finite populations.
Furthermore, we will see how the extinction probability and the final size
are related to each other.

5.1 Intuitive introduction

In Theorem 2.1.1 we have seen that a homogeneously mixing population can
be approximated by a branching process until at most n1/2−ε (for ε > 0)
individuals are infected and removed. But what can we say about the fi-
nal epidemic size, what happens after the branching approximation breaks
down? In this chapter we will show that the survival probability of the
disease (one minus the extinction probability) within a large finite homo-
geneously mixing population converges to the survival probability of the
corresponding branching process. Moreover, we will show that when the
reproduction number is larger than one, the proportional final size will also
converge to that survival probability. The proofs are based on the lecture
notes of Van der Hofstad [7].
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In section 3 we have constructed the final set of the epidemic by explor-
ing the percolation cluster step by step, starting with the initial infectious.
However, we could also do this the other way around: we start with perco-
lation on the whole network, and after that choose one node uniformly at
random as starting point of the epidemic and call this vertex x0. Since we
assume a fixed infectious period, the distribution of the final cluster size is
independent of its starting point. So we can choose our starting point uni-
formly at random. We denote the cluster of a node v by C(v), and its size
by |C(v)|. In the literature, performing percolation with edge probability
p on the complete network of size n can be viewed as the same stochastic
process as the Erdös Rényi graph with parameters (n, p). One remark on
terminology is that cluster and component will have the same meaning.

Relation between final size and extinction probability

The main theorem of this chapter can informally be stated as: when the
Poisson infection rate β is larger than one, then the component of maxi-
mum size, denoted by Cmax, is of order n with high probability, and the
other clusters are much smaller, they will be at most of order log(n). Van
der Hofstad has also presented a proof that if β < 1 then Cmax is of order
log(n), but this proof is not included in this thesis.

For β > 1, the result of the main theorem directly implies a relation be-
tween the final size and the extinction probability. Because we choose our
starting point of the epidemic uniformly at random, and because the con-
nected ‘large’ component of order n is unique, we have that the probability
on a ‘large’ outbreak is exactly |Cmax|

n , i.e. the probability that we choose x0

in Cmax. We conclude that for β > 1, the proportion of removed (i.e. even-
tually infected) individuals converges to the survival probability (= 1 − q),
as n goes to ∞.

New perspective on branching and epidemic processes

It is common to study the descendants of a branching process from gener-
ation to generation, but for our purposes in this chapter, it will be more
convenient to construct a branching process by sequentially exploring the
number of children of each member of the population [7]. We will describe
it formally.
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Consider a branching process {Xt} with a Poisson-β offspring distribution.
In the sequential construction, each individual can have three possible sta-
tuses: neutral, active and inactive (compare these with the epidemic labels,
susceptible, infectious and removed). These statuses will change during the
exploration of the connected component.
We will use St to denote the number of active vertices at time t. We start
at t = 0 with a single initial infectious individual. This individual is called
active, all other individuals are initially neutral. This means that S0 = 1.
We explore the children of this initial infectious individual, denoted by X1.
At t = 1, the initial infectious individual is set to the inactive status, since
he is already explored, we thus have S1 = X1. In the next time step we move
on to one of the active individuals, and increase t by 1. Then we explore his
children, denoted by Xt+1. This means that after t time steps, we have St
active and t inactive individuals (t individuals are explored). We can repeat
this procedure until no active individuals are left over, then the epidemic is
extinguished. By induction we get the following formalization:

Definition Let X1, X2, . . . be a sequence of independent Poisson-β random
variables. Define the number of active vertices at time t as

St := St−1 +Xt − 1 = X1 + . . . Xt − (t− 1).

Then the total offspring of the branching process is given by

T = min{t : St = 0} = min{t : X1 + . . . Xt = t− 1}.

Within a randomly mixing population of size n, an epidemic process with
contact rate β can also be described sequentially. The only difference is
that the sequence of X1, X2, . . . is not i.i.d. anymore, where Xi represents
the individuals infected by the i-th explored active individual. At each
‘exploration time’ t, the number of new infections Xt depends on the number
of susceptible (neutral) individuals, denoted by Nt. Note that Nt = n −
St−1 − (t − 1). As mentioned in section 3.2, when the infectious period is
assumed to be constant, the probability that an infectious individual infects

a given susceptible is given by p := 1 − e
β
n−1 . Therefore, conditionally on

St−1 we have:
Xt = bin(n− St−1 − (t− 1), p). (5.1)

Recalling Theorem 2.1.1, we have that the sequence X1, X2, . . . is almost
i.i.d. as long as the number of infectious (active) and removed (explored)
individuals is not too large.
Further, we can see that Nt is binomial distributed as well, but with another
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success parameter. Intuitively, every individual except the first infectious
one, has independently of all other vertices, a probability (1 − p)t to stay
susceptible in the first t explorations which results in:

Nt = bin(n− 1, (1− p)t). (5.2)

By using St + (t − 1) + Nt = n − 1, we have that the complement of Nt is
also binomial distributed:

St + (t− 1) = bin(n− 1, 1− (1− p)t). (5.3)

The formulation of an epidemic process in a set of binomial distributed
random variables turns out to be helpful in the proof below.

5.2 Formal proof of bimodal behavior

In this chapter we will prove the following main theorem:

Theorem 5.2.1. Fix β > 1. Then for every ν ∈ (1
2 , 1), there exists a

δ(ν, β) > 0 such that

P[||Cmax| − nθβ| ≤ nν ] ≥ 1− n−δ.

We start by investigating the number of vertices in connected components
of size at least K log(n) =: kn, denoted by

Z≥kn =
∑
v

1{|C(v)|≥kn}.

First we will show that Z≥kn contains at least a positive fraction of the pop-
ulation as n goes to infinity. In particular, this fraction will converge to the
survival probability of the corresponding branching process.
Secondly, we will see that the points in Z≥kn are in fact in the same unique
giant component, i.e. a connected subgraph that contains the majority of
vertices of the entire graph.

In lemma 5.2.2 we will evaluate the expected size of Z≥kn . This lemma
can also be interpreted as an extended formulation of the branching ap-
proximation. Earlier we have shown that until

√
n individuals are infected

and removed, the epidemic process behaves like a branching process, with
high probability. Lemma 5.2.2 tells us that the bound of

√
n is not so tight

but could be replaced by a more general function kn, where kn/n → 0 and
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kn ≥ K log(n), as n→∞ and K is ‘large enough’.

Consider a randomly mixing population of size n. We fix a Poisson-β con-
tact rate β > 1, and a constant infectious period I = 1, yielding an edge

probability p = 1 − e−
β
n , as mentioned in section 3.2. We denote by Pβ

(resp. Pn,p) the probability measure on the epidemic process where contacts
are made according to a Poisson-β (resp. Binomial(n, p)) distribution. Note
that for large n, these Poisson-β and Binomial(n, p) distributions are close
to each other. When the context is clear, we will omit the subscripts. Let θβ
be the survival probability of the corresponding branching process (with the
same model parameters and probability measure denoted by P∗β and P∗(n,p)).
Recall that θβ is the probability that a given node is part of an infinitely
large cluster and that it is equal to 1− qβ.

We will use the big O notation to describe the limiting behavior as n goes
to infinity. Formally, f(n) = O(g(n)) as n → ∞ if and only if there exists
a positive real number M and a real number N such that for all n > N ,
|f(n)| ≤M |g(n)|.

Lemma 5.2.2. For a large randomly mixing population as described above,
growing to infinity, there exists a K, such that for all kn ≥ K log(n) and for
every node v:

Pβ[|C(v)| ≥ kn] = θβ +O

(
kn
n

)
. (5.4)

Proof. First we will prove that the final size of an epidemic process is
stochastically dominated by the final size of a branching process (with the
same infection rate) yielding a sharp upper bound on Pβ[|C(v)| ≥ kn]. Sec-
ondly, we will prove that until kn individuals are infected and removed an
epidemic process can be bounded from below by a branching process with
an infection rate which depends on kn. We emphasize that the processes are
non-spatial, which means that every individual has the same probability to
be infected, independently of its geometric distance to the infectious indi-
viduals.

Upper bound :
Recall the sequential construction, mentioned in chapter 3. Let Xi and X∗i
denote the stochastic offspring of i-th explored individual in the epidemic
process and branching process respectively. We can write

X∗i = bin(n−(Si−1+(i−1)), p)+bin(Si−1+(i−1), p) = Xi+bin(Si−1+(i−1), p).
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Consider a realization X̄1, X̄2, ... of the epidemic process with starting point
x0, and for each i add extra active individuals to X̄i following a bin(Si−1 +
(i − 1), p) distribution. The resulting offspring sequence X̄∗1 , X̄

∗
2 , ... can be

viewed as realization of the bin(n, p)-branching process. By this construc-
tion we have {|C(v)| ≥ kn} ⊆ {T ≥ kn} such that we can conclude that
Pβ[|C(v)| ≥ kn] ≤ P∗β[T ≥ kn].

Furthermore, we note that

P∗β[T ≥ kn] = P∗β[T =∞] + P∗β[kn ≤ T ≤ ∞].

So it is suffices to show that P∗[kn ≤ T ≤ ∞] = O
(
kn
n

)
:

P∗[kn ≤ T ≤ ∞] ≤
∞∑
t=kn

P∗[S∗t = 0]

=

∞∑
t=kn

P∗[X∗1 + . . .+X∗t = t− 1]

≤
∞∑
t=kn

P∗[X∗1 + . . .+X∗t ≤ t].

Where in the first inequality we have used that T = t implies that St = 0. By
using the Markov inequality, we can give an upper bound on P∗[X∗1 +. . . X∗t ≤
t], also known as the Chernoff bound. Note that the sequence X∗1 , X

∗
2 , . . .

is i.i.d. and that E∗[X∗i ] = β > 1.
For every s ≥ 0 we have:

P∗[X∗1 + . . .+X∗t ≤ t] ≤ P[es
∑t
i=1X

∗
i ≤ est]

≤ e−stE[es
∑t
i=1X

∗
i ]

= e−st
(
E[esX

∗
1 ]
)t

=
(
e−s+log(E[esX

∗
1 ])
)t

≤ e−t sups≥0(s−log(E[esX
∗
1 ])).

In the second inequality, we have used the Markov inequality. Minimizing
the right hand side over all s ≥ 0, results in an upper bound which is
exponentially decreasing in t, and this is precisely what we want to obtain.
Since X∗1 is Poisson-β distributed we have

E∗[esX
∗
1 ] =

∞∑
n=0

e−β
βn

n!
esn = eβ(es−1). (5.5)
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Hence,
sup
s≥0

(s− log(E[esX1 ])) = β − 1− log(β) =: Iβ > 0.

Now, we can complete the upper bound. For all kn > (Iβ)−1 log(n) we have

P∗[kn ≤ T ≤ ∞] ≤
∞∑
t=kn

e−tIβ

≤ e−knIβ

1− e−Iβ
≤ Ce− log(n) = O

(
1

n

)
.

Lower bound :
We will again use a coupling argument to obtain a lower bound on P[|C(v)| ≥
k]. For each k, we could couple the epidemic process until k individuals are
infected, to a branching process with a bin(n − k, p) offspring distribution,
where the total offspring is denoted by TL. The big difference with above is
that this coupling explicitly depends on k.

First, we will show that for all k, {TL ≥ k} ⊆ {|C(x0)| ≥ k}:
Consider percolation on the complete graph. We will explore the connected
component of an epidemic process and a bin(n− k, p) branching process si-
multaneously. Recall that in the epidemic process the individuals can have
three possible statuses: neutral, active and inactive. For this coupling we
will need an extra status, some neutral vertices will be classified as forbid-
den. In the branching process we will not explore the edges connected to
these forbidden individuals, such that we can held the number of allowed
vertices fixed to n − k, where the allowed vertices are the neutral vertices
that are not forbidden. Note that this can be realized until k individuals are
active and inactive, then we stop the exploration and know that the event
{|C(x0)| ≥ k} occurs.
Number the individuals of the population, and start with one active vertex
x0. Initially, classify the vertices {n− k+ 2, . . . , n} =: F1 as forbidden, such
that |F1 ∪ {x0}| = k. For the epidemic process we explore all edges con-
nected to the neutral vertices, where every edge is independently occupied
with probability p. For the branching process we exclude the edges that
are connected to the forbidden vertices. Every time that a neutral vertex is
found to be occupied, we make the forbidden vertex with the largest index
neutral. This keeps the number of allowed vertices fixed to n− k, such that
the number of children of a given individual is bin(n− k, p) distributed. By
this construction, as long as the number of active and inactive vertices is at
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most k, the branching cluster contains less points then the epidemic cluster.
So we can conclude that {TL ≥ k} only occurs if {|C(x0)| ≥ k} occurs, and
this proves the claim.

Consider the bin(n − kn, p) branching process, where p is defined by p :=

1− e−
β
n . This process can be approximated by a Poisson-branching process

with infection rate βn := β
n(n− kn) and survival probability θβn .

We have that for all kn > I−1
β log(n) > I−1

βn
log(n):

P∗[|C(v)| ≥ kn] ≥ P∗[TL ≥ kn]

= θβn + P∗[kn ≤ TL ≤ ∞]

= θβn +O
(
e−knIβn

)
= θβn +O

(
kn
n

)
.

We claim that qβn = qβ + O
(
kn
n

)
which automatically implies θβn = θβ +

O
(
kn
n

)
and this completes the proof.

The claim can be proved by the mean value theorem: In Corollary 3.17 of
[7] is shown that for β > 1, the extinction probability qβ is continuously dif-
ferentiable. This means that the derivative of qβ is bounded on the bounded
interval (βn, β). Furthermore, for n large enough, for all β∗n ∈ (βn, β) we
have β∗n > 1, hence

qβn = qβ +O(βn − β) = qβ +O

(
kn
n

)
This completes the proof.

As a direct consequence of Lemma 5.2.2, we can evaluate the expected value
of Z≥kn :

E[Z≥kn ] = nP[|C(v)| ≥ kn] = nθβ +O(kn), (5.6)

since all points in the undirected network have the same probability to be
contained in a given connected component.

By using the Chebyshev inequality and bounding the variance of Z≥kn , we
will show that with high probability, the real value of Z≥kn is ‘close’ to its
mean value. More precise:

Lemma 5.2.3. For all ν ∈ (1
2 , 1), kn = K log(n) and sufficiently large n,

there exists a δ > 0 such that

P[|Z≥kn − nθβ| ≤ nν ] ≥ 1− n−δ.
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The proof of this lemma is based on the following observations.

Using (5.6) we get for sufficiently large n

P[|Z≥kn − nθβ| ≤ nν ] ≥ P [|Z≥kn − E[Z≥kn ]| ≤ nν/2] .

By applying the Chebyshev inequality we get:

P[|Z≥kn − E[Z≥kn ]| ≤ nν/2] ≥ 1− 4
Var[Z≥kn ]

n2ν
.

Note that the Chebyshev inequality gives in general a relatively poor bound,
like the Markov inequality, but in this case it will proved to be enough since
ν > 1

2 and Var[Z≥kn ] = O(n) as will shown below.

Lemma 5.2.4. For every n and k < n,

Var[Z≥k] ≤ (βk + 1)χ<kn,

where
χ<k := E[|C(v)|1{|C(v)|<k}] ≤ k.

Proof. By definition we have

Var[Z≥k] = Var[n− Z<k] = Var[Z<k].

So it is suffices to compute Var[Z<k] := Var
∑

v 1{|C(v)|<k}.

Var[Z<k] ≤ E[Z2
<k]− E[Z<k]

2

= E

∑
i,j

1{|C(i)|<k}1{|C(j)|<k}


−E

[∑
i

1|C(i)|<k

]
· E

∑
j

1|C(j)|<k


=

n∑
i,j=1

(P[|C(i)| < k, |C(j)| < k]− P[|C(i)| < k]P[|C(j)| < k]) .

The following natural step is to split P[|C(i)| < k, |C(j)| < k] depending on
whether i ←→ j or not. Since i ←→ j automatically implies that |C(i)| =

34



|C(j)|, one part is relatively easy to compute:

n∑
i,j=1

P[|C(i)| < k, |C(j)| < k, i←→ j] =

n∑
i,j=1

E
[
1{(|C(i)|<k,i←→j)}

]
=

n∑
i

n∑
j

E
[
1{(|C(i)|<k}1{i←→j)}

]

=
n∑
i

E

 n∑
j

1{(|C(i)|<k}1{i←→j)}


=

n∑
i

E
[
1{(|C(i)|<k}|C(i)|

]
= nχ<k.

For the second part, we write for all l < kn:

P[|C(i)| = l, |C(j)| < k, i= j] =

= P[|C(j)| < k||C(i)| = l, i= j] · P[|C(i)| = l, i= j] ≤
≤ P[|C(j)| < k||C(i)| = l, i= j] · P[|C(i)| = l].

Together we get

Var[Z<k] = nχ<k +

+
k−1∑
l=1

n∑
i,j=1

P[|C(i)| = l] · (Pn,p[|C(j)| < k||C(i)| = l, i= j]− P[|C(j)| < k]) .

Observe that when |C(i)| = l and i = j, the conditional probability dis-
tribution of |C(j)| in a population of size n is equal to the unconditional
probability distribution of |C(1)| in a population of size n− l, both with the
same edge probability p. In formula, using the subscript notation, we get:

Pn,p[|C(j)| < k||C(i)| = l, i= j] = Pn−l,p[|C(1)| < k].

Before we can compare the events {|C(1)| < k}n−l,p and {|C(1)| < k}n,p, we
have to define them on the same probability space. Consider a realization of
the epidemic process within a population of size n− l, starting with one ini-
tial infectious individual. To extend this to an epidemic within a population
of size n, we add l extra points {n− l+ 1, . . . , n} := V, and for every v ∈ V
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we draw a connection to each of the other n − 1 points with probability p,
independently of each other.
With this coupling back in mind, we will bound the probability that {|C(1)| <
k}n−l,p and {|C(1)| ≥ k}n,p both happens.
This event can only happen if at least one of the vertices in V is connected to
the component of 1 within the population of size n− l, denoted by C(1)n−l.
By using Boole’s inequality [7] twice, we get:

Pn−l,p[|C(1)| < k]− Pn,p[|C(1)| < k] ≤ P[∪a∈V ∪b∈C(1)n−l a←→ b]

≤
∑
a∈V

∑
b∈C(j)

P[a←→ b]

≤ lkp.

Now we can complete the proof by using p := 1− eβ/n ≤ β/n

Var[Z<k] ≤ nχ<k +

k−1∑
l=1

n∑
i,j=1

P[|C(i)| = l]lkp

= nχ<k + kp
∑
j,i=1

k−1∑
l=1

P[|C(i)| = l]l

= nχ<k + kp
∑
j,i=1

E
[
|C(v)|1{|C(v)|<k}

]
= nχ<k + kpn2χ<k ≤ nχ<k + kβnχ<k = (βk + 1)χ<kn.

Proof. To finish the proof of lemma 5.2.3 we note that for sufficiently large
n, and any ν ∈ (1

2) there exists a δ < 1− 2ν such that

P[|Z≥kn − nθβ| ≤ nν ] ≥ 1− 4n1−2ν(βk2
n + kn) >= 1− n−δ,

since kn = K log(n).

Up to now, we have shown that the clusters with size at least kn together
contain approximately a fraction θβ of all vertices. But what can we say
about the maximal cluster? Before moving to the main theorem we state
the following lemma:
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Lemma 5.2.5. Fix kn = K log(n), β > 1 and for all α < θβ, then for all
vertices v, there exists a J = (α, β) such that

P[kn ≤ |C(v)| ≤ nα] ≤ Ce−knJ ,

where C := (1− e−J)−1.

Corollary 5.2.6. Fix kn = K log(n) and α < θβ. Then for K sufficiently
large, with high probability there are no clusters with size in between kn and
θβ.

By using the Markov inequality and the fact that for all vertices u, v, P[|C(v)| <
k] = P[|C(u)| < k], we have:

P[∃v : kn ≤ |C(v)| ≤ αn] = P[Z≥kn − Z≥αn+1 ≥ 1]

≤ E[(Z≥kn − Z≥αn+1]

= nP[kn ≤ |C(v)| ≤ α]

≤ Cne−knJ = Cn1−JK .

The following theorem shows a sharp bound on the distribution of the de-
viation between a binomial variable and its mean value.

Theorem 5.2.7. Let X ∼ bin(n, p) and let E[X] = β. Then

P[X ≥ E[X]− t] ≤ exp(− t
2

2β
).

A proof of this theorem can be found in [7] (Theorem 2.18).

Proof of lemma 5.2.5. Fix α < θβ. Recall the sequential construction and
note that for each t ∈ (0, n]:

P[|C(v)| = t] = P[St = 0 ∩ St−1 6= 0] ≤ P[St = 0].

So,

P[kn ≤ |C(v)| ≤ α] ≤
αn∑
t=kn

P[St = 0] ≤
αn∑
t=kn

P[St ≤ 0].

By equation (5.3) of paragraph 5.1 we have for p = 1−e−
β
n and t = γn with

γ ∈ [kn/n, α]:

P[St ≤ 0] = P[bin(n− 1, 1− (1− p)t) ≤ t− 1]

≤ P[bin(n− 1, 1− e−γβ) ≤ γn− 1]

≤ P[bin(n, 1− e−γβ) ≤ γn].
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To bound this probability we will use Theorem 5.2.7. Write X ∼ bin(n, 1−
e−γβ). By using (2.1) combined with (5.5), we have

θβ = 1− e−βθβ .

For α < θβ we have α < 1− e−βα. Then for all γ ∈ [kn/n, α] there exists an
ε such that

E[X] = n(1− e−γβ) ≥ n(1 + ε)γ. (5.7)

Using Theorem 5.2.7 and (5.7) gives for every t := γn ≤ αn

P[St ≤ 0] ≤ P[X ≤ E[X]− γεn] ≤ e−t2ε2/2β ≤ e−tε2/2β.

Define J(α, β) as J := ε2/2γ. Now we can complete the proof

P[kn ≤ |C(v)| ≤ α] ≤
αn∑
t=kn

P[St ≤ 0] ≤
αn∑
t=kn

e−Jt ≤ [1− e−J ]−1e−knJ .

We are now ready to combine the results in the main theorem of this Chap-
ter:

Proof of Theorem 5.2.1. Fix ν ∈ (1
2 , 1). Choose δ < 2ν − 1, then fix kn =

K log(n) such that δ < KJ − 1. By Corollary 5.2.6 and Lemma 5.2.3, we
have for all α < θβ

P[An] ≥ 1− n−δ,

where

An := {@v : kn ≤ |C(v)| ≤ αn} ∩ {|Z≥kn − nθβ| ≤ nν}.

Furthermore, {|Z≥kn − nθβ| ≤ nν} implies that when n is sufficiently large,
there exists at least one cluster of size larger than kn. This means that
|Cmax| ≤ Z≥kn .

On the other hand, An also implies that are no more than two connected
components of size larger than kn. This can be argued by contradiction:
Suppose there are at least two components with size at least kn. When
α > θβ/2 and An occurs, there are no connected components of size in be-
tween kn and αn, so Z≥kn ≥ 2αn > (θ + ε)n. But when n is large enough
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this is in contradiction with Z≥kn ≤ θβn + nν , since ν < 1. So together we
conclude that |Cmax| = Z≥kn . This gives

P[||Cmax| − nθβ| ≤ nν ] ≥ P[{||Cmax| − nθβ| ≤ nν} ∩ An] ≥ P[An] ≥ 1− nδ.

The result of Theorem 5.2.1 could be compared with the weak law of large
numbers that says that the average of a sequence of n random variables
converges in probability to the expected value. Here, for β > 1, the sample
average is equal to the proportional final size T ∗n of a disease that spreads
through a population of size n, which is the same as the probability that an
average individual is part of the epidemic. Then the expected value is equal
to the survival probability of a given individual within an infinite popula-
tion, denoted by θβ, where the spread of the disease behaves as a branching
process. We could reformulate Theorem 5.2.1 as:

For all ε ∈ (0, 1
2), there exists a δ > 0 such that

P[|T ∗n − θβ| ≤ n−ε] ≥ 1− nδ.

Van der Hofstad [7] also shows a Central Limit Theorem for the proportional
final epidemic size:

√
n(T ∗n − θβ)

d−→ Z.

Here the sequence converges in distribution, denoted by
d−→ to a Normal

random variable Z with mean 0 and variance σ2
β =

θβ(1−θβ
(1−β+βθβ)2

. Theorem

5.2.1 plays an essential role in the proof. In some sense you could say that
the Central Limit Theorem implies the weak Law of Large Numbers, except
that convergence in distribution is a weaker convergence than convergence
in probability.
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Chapter 6

Model comparison for large
populations

In the previous chapter we have proven a limit on the final epidemic size for
sequences of finite randomly mixing populations, with probability tending
to one as n→∞. In this chapter we will use this limit to approximate the
basic characteristics of the Hierarchical and the Random household-school
models for large finite populations that grow in size in the appropriate way.
Since we are not interested in the precise time evolution, we can consider the
spread of an epidemic in a slightly different way than we described in chapter
3, while the number of eventually infected individuals remains the same. By
this modification we can show that both models can be approximated by
a certain branching process. We will compare the models (i.e. branching
approximations) on their main characteristics numerically and moreover, we
will prove a strong relation between the expected final epidemic sizes of the
two models. Furthermore, we will discuss the strengths and limitations of
the reproduction number.

6.1 Hierarchical model

Branching approximation

In our household-school models, Theorem 2.1.1 is no longer valid. Because
of the strong connections within the relatively small subgroups, there is al-
ways a substantial probability that an already infected individual will be
infected again by an infectious member of his own household or school. The
event that the contact made by an infectious individual results in infection
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transmission, depends on the status of the receiver. By these correlations
in the small subgroups, the precise time evolution of the epidemic is more
complex to analyze. However, we are only interested in the final outcome of
the epidemic. So we could reconstruct the percolation cluster such that the
spread of an epidemic in the beginning can be approximated by a branch-
ing process, in some sense. Andersson and Ball et al. have used a similar
argument for the household model in [1] [3]. Below, we shall extend this
argument for the Hierarchical model.

Consider a large population of size n represented by the Hierarchical household-
school graph (like figure 3.1) with corresponding edge probabilities as defined
in section 3.2. We will construct a percolation cluster of infected individuals
in a slightly different way as described in section 3.2, and we shall call this
the modified cluster.
First we consider the epidemic spreading only within the school (which auto-
matically includes the households) of the initial infective, this is what we call
a local epidemic. By our assumption of a fixed infectious period, every indi-
vidual makes global contacts following the same distribution, independently
of each other. Furthermore, until n1/2−ε individuals are infected and re-
moved (we will cal this the beginning of the epidemic), these global contacts
are with high probability made with individuals on previously uninfected
schools. The proof of this statement is similar to the proof of Theorem 3.2,
because the school sizes are held fixed as n goes to infinity. So in the begin-
ning of the epidemic, the offspring of global infections made by the eventually
infected individuals of this local epidemic are all dispersed across different
unexplored schools. We move on to the newly infected schools and consider
them in the same manner. We conclude that until n1/2−ε individuals (or
schools) are infected and removed we could, with high probability, replace
each school by one vertex such that the process could be approximated by
a branching process, where the offspring of each school corresponds exactly
to the set of globally infected children produced by all eventually infected
individuals within that particular school. We will call this a school-to-school
branching approximation.

Reproduction number

In epidemiology, the reproduction number is a relevant quantity for practi-
cal purposes and easy to evaluate. Recalling the definition, R∗ is the mean
number of infections caused by one infectious individual. It is an important
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threshold function that indicates whether a large outbreak will occur or not.
Because of its critical behavior around 1, the reproduction number can be
used to prevent a major epidemic: for a reproduction number of R∗ > 1,
a proportion 1 − 1

R∗ of the infective contacts must be blocked to halt the
growth of an epidemic. Here, we mean only the contacts which will certainly
result in new infectious. In a well mixed population, it would be enough to
make a fraction 1 − 1

R∗ of the population immune against the infection, if
a vaccine is available. This intervention reduces the number of infected in-
dividuals in the next generation by a factor 1

R∗ . This will result in a new
reproduction number R∗ = 1, and thus the epidemic will eventually die out.
In a Hierarchically structured population we will use the ‘school reproduc-
tive number’ RS , defined as the expected number of schools infected by
an infectious school. Obviously, in this hierarchical model, RS caries other
information than R∗. However, both reproduction numbers are epidemic
thresholds and they exceed 1 for the same model parameters. This is be-
cause, if an epidemic dies out on school level, this also happens on individual
level, and vice versa. So comparable to the individual situation, temporarily
closing a fraction 1− 1

RS
of all schools will halt the epidemic spread.

To calculate the actual offspring distribution of the school to school branch-
ing process, we have to incorporate the final size of the local epidemic. Con-
sider a sequence of populationsH(n), n→∞, where all schools are of size nS
(not growing with n) and all individuals are equally likely to meet each other
outside school. Number the individuals of a school S by s0, s1, s2, . . . , snS−1

where s0 is the initial infective within the school. For each n, let Ci be the
number of global neighbors infected by individual si, in case if si is infected
by the initial infectious individual s0. As we have mentioned earlier, for large
n, these globally infectious contacts are with high probability all in distinct,
previously uninfected households. So C0, . . . , CnS−1 are mutually indepen-
dent and identically Poisson distributed, “i.i.d.”, with mean βG. Therefore,
we get

RS = E[C0 +

T∑
i=1

Ci] = E[(T + 1)Ci] = (E[T ] + 1)βG.

where T is the final size of the within household-school epidemic not includ-
ing the initial infective, which can be computed by equation (4.6) of chapter
4. In chapter 5, we have seen that for large n, in the beginning of the epi-
demic it becomes clear whether a large outbreak will occur or not, with high
probability. Therefore, this reproduction number is a good approximation
for the threshold measure of an epidemic within a finite population.
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Extinction probability

Again, we consider a sequence of populations H(n) with the appropriate
structure, growing in n. The extinction probability on a school level corre-
sponds to that on an individual level, as we have seen earlier. So by Theorem
5.2.1, we can approximate the extinction probability of the epidemic process
by the extinction probability of the corresponding school-to-school branch-
ing process. We use the same notation as above where Ci is the number
of globally infected individuals caused by an infectious individual i, and let
T be the final size of the local school-epidemic. Conditioned on the final
size, C1, C2, . . . , CT are mutually independent and Poisson (βG) distributed.
The offspring distribution between schools can be described by the following
generating function by using equation (2.1) from chapter 2:

fS(s) = E
[
E
[
s
∑T
i=1 Ci |T

]]
= fT (fC1(s)) =

nS−1∑
i=0

P[T = i]

(
n−1∑
k=0

P[C1 = k]sk

)i+1

.

The extinction probability qS is equal to the lowest root of fS(s) − s, and
can be evaluated numerically.

6.2 Random model

Branching approximation

We will show that until n1/2−ε individuals of the population are infected
and removed, the epidemic spread within the Random model can be ap-
proximated by a multi-type branching process.
Similar to above, we first consider the epidemic spreading only within the
school and household of the initial infective x0. However, other than in the
Hierarchical model, we claim that in the beginning of the epidemic, siblings
are with high probability, member of different previously uninfected schools.
This claim can be proved in the same way as Theorem 2.1.1, since the house-
hold and school size are held fixed as n goes to infinity. So we determine
final school and household epidemic separately, and assign all eventually
infected individuals of this household and school epidemic to x0. Notice
that by the assumption of a fixed infectious period, this rearrangement of
the original percolation cluster will not influence the total final set of the
epidemic. In the next step, we explore the global contacts made by x0, and
we recall that all of these individuals, in the beginning of the epidemic, are
member of different, previously uninfected schools. Then we move on to one
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of the individuals in the next generation and we consider them in the same
manner, and so on. By this modification, self loops and parallel edges will
be avoided, while the set of finally infected individuals remains the same.
Now, we could label the infected individuals such that each individual of a
certain type has the same fixed multi-type offspring distribution, with high
probability. We stress that during this labeling, we only consider the in-
fected individuals, susceptible individuals are not taken into account. We
say that an individual is of type H (resp. type S or type G) if it has become
infected via an edge of color red (resp. blue or green). Notice that individ-
uals of type H or S will not infect any individual of its own type, since all
eventually infected individuals of the local epidemic are already assigned to
the initial infectious. The precise offspring distributions for each type will
be further explained below.

Reproduction number

We will define a reproduction matrix Rij , as mentioned in section 2.3 and
like Andersson has done in [1]. Recall, Rij is the mean number of infected
individuals of type j infected by one individual of type i. Recall that in
the early stages of the epidemic, infected individuals are seldom part of the
same household and school, especially for large n.
By the randomly mixing property of the community level we know that each
individual, regardless its type, infects on average βG individuals of type G.
Furthermore, for large n, an individual of type G is with high probability
the initial infectious individual of his own household and school. He will on
average infect a number of E[TH ] and E[TS ] members of his own household
and school, where TH and TS are the household and school final epidemic
size, not including the initial infective. The final local sizes can be calculated
by equation 4.1 of chapter 4. Finally, recall that an individual of type H or
S will not produce any individuals of his own type. We could summarize
these observations in the following matrix:

R :=

 βG E[TS ] E[TH ]
βG 0 E[TH ]
βG E[TS ] 0

 .

This matrix R is positive regular, so we will use its largest eigenvalue Rρ as
an epidemic threshold value for the Random model, see section 2.3. Rρ, the
largest root of g(x) = det(R − xI), has no easy explicit expression, so we
will calculate it numerically for different model parameters (βH , βS , βG).
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Extinction probability

Similar to the Hierarchical model, we know that the extinction probability
vector q = (qH , qS , qG) of the corresponding multi-type branching process, is
a good indication for the extinction probability within a large finite popula-
tion. The proof of this statement is slightly different as the proof in chapter
5, but the details are not included in this Thesis. Note that the epidemic
dies out with probability 1 if and only if q = 1, i.e. for all i, qi = 1. Also, if
there exists an i for which qi < 1 then for all j 6= i, qj < 1.

Recall that by assumption, an individual of type S or H will never infect
an individual of its own type. Furthermore, for large n, an individual of a
certain type will infect individuals of different types independently of each
other. These observations lead to the following set of equations, using the
generating functions stated in paragraph 2.3:

q = (qH , qS , qH) = f(q) = (fH(q), fS(q), fG(q)).

If Z0 is of type H, then ZH1 will have the following generating function:

fH(q) =
∞∑

aH ,aS ,aG=0

PH [Z1 = (aH , aS , aG)](qH)aH (qS)aS (qG)aG

=
∞∑

aG=0

nS∑
aS=0

PH [ZS1 = aS ]PH [ZG1 = aG](qS)aS (qG)aG ,

where PH [Z1 = (aH , aS , aG)] is the probability that an individual of type H
will infect aH individuals in its own household, aS in its own schools and
aG individuals on global level. The random variable ZG1 is Poisson(βG)-
distributed and the distribution of ZS1 can be evaluated by equation 4.1 of
chapter 4. In the same way we can compute the generating functions fS

and fG.

It is not possible to obtain an explicit expression for qH , qS and qR, so we will
determine them numerically. In the next paragraph we will compare both
models in different settings, using the same parameter values (βH , βS , βG).

So in the Random model, the characteristics are determined on individ-
ual level, while in the Hierarchical model we have computed them on school
level. For the reproduction numbers, this means that these cannot directly
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be compared, because they contain different information. However, regard-
less of the level on which the reproduction number is determined, the number
does indicate whether there is a probability larger than 0 that a large epi-
demic outbreak will occur. So, the proportional final size on individual and
school level is the same. In section 5.1 we have shown a direct relation
between the extinction probability and the final size, given that a large out-
break occurs. Therefore, these characteristics can well be compared between
the Hierarchical and Random model. For practical purposes, the reproduc-
tion number is used more often, because it is easier to compute. But for our
purposes, the reproduction number is only useful as a threshold value.

6.3 Coupling argument and numerical results

We want to investigate how the configuration of a social network influences
the spread of an epidemic. We have tried to make a direct comparison be-
tween the Hierarchical and the Random model by holding their subgroup
sizes identical. However, in the beginning of the epidemic, this directly im-
plies an unequal number of neighbors for each individual in both models,
where neighbors are the direct connections in the corresponding graphs. In
the Random model every individual has with high probability nH−1+nS−1
local connections since all siblings of each individual are in the beginning
members of different schools, while in the Hierarchical model every indi-
vidual is always connected to nS − 1 local neighbors since here siblings are
automatically schoolmates as well. Mainly because of this difference in num-
ber of neighbors, we could prove a strong relation between the final results
of an epidemic in the Hierarchical and the Random model.

Theorem 6.3.1. For all δ > 0 there exists a n such that for all ε > 0 and
k < n1/2−ε

P[TH(n) ≤ k] + δ ≥ P[TR(n) ≤ k],

where TH(n) and TR(n) are the final epidemic sizes within a population of
size n for the Hierarchical and Random model respectively, with schools of
size nS, households of size nH , and transmission per pair rates denoted by
( βG
n−1 , βS , βH).

Proof. We want to describe a procedure that builds a cluster of infected
individuals in the Hierarchical model and in the Random model simultane-
ously, starting with the initial infectious x0, in such a way that with high
probability in the beginning of the epidemic, the number of infected and
removed individuals in the Hierarchical model is smaller or equal than the
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number of infected and removed individuals in the Random model.

Let An be the event that, up to n1/2−ε are infected and removed within
a population if size n, the siblings of each infectious individual in the Ran-
dom model, are all members of different, previously uninfected, schools.

Let Bn be the event that, up to n1/2−ε are infected and removed within a
population if size n, the global contacts in the Hierarchical and the Random
model, are made with members of different, previously uninfected, schools.

Fix δ > 0 and ε > 0. Similar to Theorem 2.1.1, we know that there ex-
ist a n1 and a n2 such that P[An1 ] ≥ 1 − δ and P[Bn2 ] ≥ 1 − δ. This
is because the school and household size held fixed as the population size
grows and because the siblings are paired uniformly at random.
If we choose n = max(n1, n2) and define Dn := An∩Bn, then P[Dn] ≥ 1− δ.

Since

P[TR(n) ≤ k] = P[{TR(n) ≤ k} ∩ Dn] + P[{TR(n) ≤ k} ∩ Dcn]

≤ P[{TR(n) ≤ k} ∩ Dn] + δ,

it is suffices to prove that for all k < n1/2−ε

P[TR(n) ≤ k ∩ Dn] ≤ P[TH(n) ≤ k ∩ Dn].

But this is only true if and only if

P[TR(n) ≤ k|Dn] ≤ P[TH(n) ≤ k|Dn].

We are going to prove this latter statement. We start by considering the
local epidemic spread within the school of x0. This means that we explore
the percolation cluster on the blue subgraph starting with x0 and using the
infection probability p̄S := 1− e−βS , as described in section 3.2. Each time
a blue edge in the Random model is marked as open or closed we will give
the same mark to the corresponding edge in the Hierarchical model. Note
that by construction, these blue clusters in both models are of the same size
and we give the same mark (number) to corresponding vertices.
Secondly, we explore the household infections made by the already infected
individuals. Obviously we only have to explore those vertices in the blue
cluster of the Hierarchical model, who have at least one susceptible sibling.
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This set of vertices will be denoted by X0. Choose x ∈ X0. We let the
susceptible siblings of x in the Hierarchical model correspond to arbitrarily
chosen siblings of x in the Random model by marking them with the same
number. These siblings in the Random model are always susceptible. This
is because when we condition on An, we have for each k < n1/2−ε that,
up to k individuals are infected and removed (we call this the beginning
of the epidemic), siblings in the Random model are member of previously
uninfected schools. On the other hand, siblings in the Hierarchical model
are always member of already infected schools. Note that the other siblings
of x in the Random model will not be examined. Each time an explored red
edge is marked as open or closed in the Random model we will give the same
mark to the corresponding red edge in the Hierarchical model. After that,
we remove the labels of those individuals who remain susceptible during
these household infections. Now, two vertices in the different models with
corresponding labels will also have the same number of departing edges.
Then, we explore the school infections made by one of those new infected
siblings of x. Start with sibling y and let the susceptible schoolmates of y
in the Hierarchical model correspond to arbitrary schoolmates of y in the
Random model, which are automatically susceptible. Couple the school in-
fections in the same way as described above, and finally remove the labels of
those individuals who remain susceptible during this local school infection.
Then we move on to one of the other unexplored siblings of x and we repeat
the marking procedure, and so on.

In the next iteration we define a new set of infected vertices who are still
not explored and whose siblings are still susceptible. We denote this set by
X1. We choose an individual x1 ∈ X1 and we let the cluster initiated by
x1 in the Hierarchical model, correspond to a cluster in the Random model
in the same manner as described above. We could follow this procedure t
iterations, where t is the first moment that Xt is empty.

Up to now, we have the local epidemic in the Hierarchical model, caused
by school and household infections, initiated by x0 (denoted by C0), cou-
pled to an epidemic cluster in the Random model. In figure 6.1 you can
see that infectious individuals in the Random model are dispersed across
different schools while in the Hierarchical model, this cluster is restricted to
the school of x0. The actual local cluster in the Random model could be
larger, since not all edges were explored in this model.

Now we examen the global connections departing from the individuals con-
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Figure 6.1: In this picture, the cluster of school and household infections in
the Hierarchical model (H) C0, initiated by x0, is coupled to a cluster of the
same size in the Random model (R). This is an example where the schools
are of size 18 and the households are of size 3. Each infected individual is
assigned by a number which indicate its corresponding vertex and also, it is
the order of exploration.
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tained in C0, all open with probability p̄G independently of each other. Each
time a green edge between a vertex in C0 and one of its neighbors is marked
as open or closed in the Random model, we give the same mark to the cor-
responding green edge in the Hierarchical model. Since we condition on Bn,
all endpoints of these green edges are in the beginning of the epidemic, mem-
bers of previously uninfected school. Start with considering one endpoint,
say xi. We could explore the local epidemic Ci in the Hierarchical model,
initiated by xi, and we couple this to a cluster in the Random model in the
same way as described above. We repeat this procedure for all endpoints
xj . The newly infected individuals in the obtained clusters Cj could make
global connections on their turn, and so on. So we conclude that for all
k < n1/2−ε, P[TH(n) ≤ k|Dn] ≥ P[TR(n) ≤ k|Dn].

Corollary 6.3.2. Let qH and qR be the extinction probabilities for corre-
sponding branching processes and let E[TH(n)] and E[TR(n)] be the expected
final size within a population of size n, for the Hierarchical and the Random
model respectively. For all transmission rates ( βG

n−1 , βS , βH), we have

qH ≥ qR

and
lim
n→∞

E[TH(n)] ≤ lim
n→∞

E[TR(n)].

Proof. By Lemma 5.2.2, we know that in a randomly mixing population
with infection rate β, there exists a K such that the probability that the
epidemic cluster will not be larger than Klog(n) tends to the extinction
probability of the corresponding branching process, as n goes to infinity.
We could apply this lemma directly to the Hierarchical model, since there
we have uniform mixing on school level. For Random model, Lemma 5.2.2
have to be generalized to the multi-type uniform mixing case, but the proof
is not included in this thesis.
For the randomly mixing case, we fix a N and ε > 0, such that for all
n > N , Klog(n) < n1/2−ε. So by Lemma 6.3.1, when we choose k ∈
(Klog(n), n1/2−ε) and we let n grow to infinity, we get qH ≥ qR. Fur-
thermore, we have seen in Theorem 5.2.1 that, given that a large out-
break occurs, the proportional final size converges to the corresponding sur-
vival probability. So, when we generalize the results of chapter 5 to the
multi-type case, the inequality for the extinction probabilities implies that
limn→∞ E[TH(n)] ≤ limn→∞ E[TR(n)].

The strong relation between both models is also explicitly shown in figure
6.2 and 6.3 for a finite population of size 100, where we have calculated

50



the reproduction number and the extinction probability for some model
parameters. In these two examples we have held the relation between the
transmission parameters βH : βS : βG fixed. In figure 6.2 one can see that
for all (βH , βS , βG) the red line is below the blue line and this is consistent
with Corollary 6.3.2. Remember that Rρ contains different information than
RS , so it is of little use to compare their exact values, hence the intersection
in graphic 6.3 has less meaning. However, Rρ and RS both serve as an
epidemic threshold, and they exceed the critical value 1 for the same model
parameters as the extinction probabilities become below 1.
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6.4 Comparison with equal number of neighbors

The strong relation we have proven in Theorem 6.3.1, gives rise to a com-
parison of a Hierarchical model and a Random model where the number of
neighbors for each individual are the same in the start of the epidemic. We
could for instance consider a Hierarchical model with schools of size nS and
households of size 2 and a Random model where the schools are of size nS−1
and household of size 2. It is difficult to compare these models exactly, but
we will explain their difference intuitively.
Firstly, we remark that although each individual in both models is connected
to (nS − 1) + 1 individuals, in the Hierarchical model one of these neighbors
has a higher probability to become infected. This is the sibling, which can
be infected here by school and household contact as well. It seems that this
observation implies that the Hierarchical model will spread the epidemic
more easily. However, we still have not taken into account that there is also
a probability that newly infected individuals were already infected before.
Especially, in Hierarchical structure this will be more often the case. Re-
member that in the Random model, sibling are with high probability mem-
ber of previously uninfected schools, while in the Hierarchical model house-
hold infection remains within the schools. In the Hierarchical model, infec-
tion transmission from school to school is only possible via global contact.
By this reasoning, we could expect that for large βH the Random model will
spread the disease more quickly while for small βH the Hierarchical model
is more friendly for the epidemic spread. Note that a larger household size
will only strengthen this effect.
These observations are also confirmed in the graphics below, see figure 6.4.
We have plotted the reproduction numbers for the Hierarchical and Random
model for three different values of βH . In particular, look at the different
values of βS for which the red ‘Rand3’ lines intersect the base line. These
intersections indicate the phase transitions in the models.

6.5 Further research

In Theorem 6.3.1 we have proved that in the start of an epidemic, when
the number of new infected individuals can be approximated by a branching
process, the Hierarchical model is in the limit stochastically dominated by
the Random model. However, it is not clear whether this strong comparison
still holds after the branching approximation breaks down. In this case,
the coupling we described above will fail: it is possible that individuals
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infected via household contact or global contact were already infected before
in the Random model while these ‘same’ individuals were still susceptible in
Hierarchical model. In order to prove a comparison (if it exists) between the
eventually epidemic sizes in both models, a creative way of coupling between
the epidemic processes have to be constructed.
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Figure 6.4: You see the reproduction numbers varying with βS for a Random
(resp. Random, Household) model where schools are of size 3 (resp. 4 , 4)
and households are of size 2, called ‘Rand3’ (resp. ‘Rand4’, ‘Hierar4 ’). In
the second plot we have tuned βH = 0.22 such that ‘Rand3’ and ‘Hierar4’
has a phase transition for the same βS . Here, βG = 0.3, which is rather
arbitrary. 55



Chapter 7

Discussion

In this chapter we will present some remarks on the assumptions we have
made in the previous chapters.

For ease of presentation we have assumed that the schools (resp. households)
in the Random and Hierarchical model are all of the same size. To obtain a
model closer to reality we can easily generalize our results by incorporating
unequal subgroup sizes [3] [4]. We can then do similar computations as in
Chapter 6, but the set of different types will become much larger. Individu-
als in the Random model will then not only be labeled according to whether
they are infected by household, school or global contact, but the labels will
also have to indicate the size of the subgroup they belong to. In the Hierar-
chical model, the spread from school to school should then be approximated
by a multi-type branching process, where the schools are labeled according
to the number of households of different sizes which it contains.

Another assumption we have made, was that all individuals are infectious for
a fixed period of time. Although in reality, the infectious period is different
for each individual, it is proven [8] [10] that by assuming a fixed infectious
period, the actual final epidemic size will be overestimated. So the vacci-
nating strategies we have proposed in chapter 6 will at least be sufficient to
halt the spread of an epidemic. This is because when we assume a fixed in-
fectious period, our model corresponds to the bond percolation model where
the infections made by the same individual are independent. Meester and
Trapman have presented a proof (based on Kuulasmaa [8]) that the bond
percolation model corresponds to a worst case scenario, in the sense that
the probability of an individual being part of an infinitely large cluster is
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maximal, with respect to epidemics with other (random) infectious periods.
See Theorem 1.1 of [10] where the susceptibility of all individuals W̄ = 1.

Finally we remark that in [1], [12], [4], and other research, the underlying
social network for the spread of an epidemic via global contacts is described
by random graphs (e.g. Erdös Rényi graphs) instead of by a complete graph
as we have used. Because in reality it is unlikely that an individual will meet
all other individuals during his or her lifetime, the random graph is used to
approximate the actual social network stochastically. In the Erdös Rényi
graph, the i-th and the j-th individual are neighbors of each other with a
certain probability pc (i.e. they are connected by an edge in the network),
and this probability is the same for each pairs of individuals. Secondly, to
model the spread of global infections across the resulting network, there is an
additional probability pβ (independent of pc) that the infection will actually
transmit from i to j when i becomes infective earlier than j, or visa versa.
However, in the Hierarchical and Random model, we have combined these
two processes into one process. Here, the contact probability pG could be
viewed as a product of these independent ‘neighbor’ and ‘infection’ (‘close
contact’ in literature) probabilities pc and pβ.
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