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Chapter 1

Introduction

Wang’s Hypothesis

In 1961, Hao Wang introduced square tiles with colored edges in computability theory,
now known as Wang tiles. We may place these tiles next to each other only when the
adjacent sides match their colors. This is called a tiling. In a tiling, we may use one tile
any number of times. However, we are only allowed to use a finite number of different
tiles.

With these constraints, some natural questions arise. For example: can we tile the
plane? Can we tile the plane periodically: in such a way that the tiles create a repeating
pattern? Can we tile the plane, but in a way that the pattern never repeats?

These questions are the foundation of this thesis. Wang himself already asked these
questions. In his work, he even conjectured the following:

Wang’s hypothesis: If the plane can be tiled by a finite set of Wang tiles, then it can
also be tiled periodically by that same set of tiles [15].

Rotations and reflections

Though one may be tempted to think about tiles as physical objects, there are rules in
place for Wang tiles wherein a subtlety becomes clear. In particular: we are not allowed
to rotate tiles. Were we to allow rotations, the problem stated in the previous section
would become trivial: with any one tile and its 180◦ rotation, we can tile the plane and
even do so periodically. This is illustrated in Figure 1.1, with a random tile with ‘colors’
n, e, s and w on the top, right, bottom and left edges respectively. The 2-by-2 block of
tiles can be repeated to fill the plane.

For the same reason, we do not allow tiles to be reflected: we can tile the plane period-
ically with any one tile and its three reflected variants (reflected horizontally, vertically
and both horizontally as well as vertically), as shown in Figure 1.2. Alternatively, we
could use only the original tile and the variant reflected both horizontally and vertically
to get the situation of Figure 1.1 again.
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Figure 1.1: A random Wang Tile and its 180◦ rotated variant. Together they can form
a 2-by-2 repeatable block.
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Figure 1.2: A Wang Tile and its reflected variants. Together they can form a 2-by-2
repeatable block. (H. and V. abbreviate ‘Horizontally’ resp. ‘Vertically’)

Dimension 1

To get a feel for working with Wang tiles, let us briefly consider a slightly simplified
scenario: a 1-dimensional setting. In this setting, we are dealing with ‘tiles’ with 2 sides:
dominoes. We will consider a domino as a unit interval and represent it with (w, e), if
it has colors w and e on the left and right edge respectively.

We will (informally) prove that Wang’s hypothesis is true in this setting.

Proposition 1.1. Let D be a finite set of Wang dominoes. If we can tile the real line
by D, then we can do so periodically.

Proof. Let D be a finite set of Wang dominoes and assume there is a tiling of Z by
D. As D is finite, there must be a tile (w, e) ∈ D that appears at least twice, say on
positions i and j (with i < j).

Note that the color of the right side of the domino at position j − 1 must be the same
as the color on the left side of the domino at position j. Thus, the block of dominoes
starting at i and ending at j − 1 is repeatable, as the color of the left side at i is the
same as the color on the right side at j − 1: w. (Illustrated in Figure 1.3)

By repeating this block, we can obtain a periodic tiling of Z by D.

This construction of a repeatable block will prove to be useful and a similar, though
more involved strategy will be applied in the proofs for Lemma’s 2.9 and 6.8.
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Figure 1.3: 1-dimensional tiling by some set of Wang dominoes D. Repeatable block
highlighted. Unknown colors left blank.

Related Work

We have seen Wang’s hypothesis is true for a 1-dimensional setting. However, this is
not the case for the 2-dimensional setting. Already a few years after the formulation
of the hypothesis, a counterexample was found by Wang’s student Robert Berger. He
constructed a set of 20,426 Wang tiles that could tile the plane, but could not do so
periodically [2].

Berger’s creation spawned a series of attempts to obtain smaller aperiodic sets. Berger
himself reduced his set to only 104 tiles. Other examples include 56 tiles by Robinson
[14] and (an adaptation of) 16 tiles by Ammann [8]. In 1995, Kari constructed an
aperiodic set of 14 Wang tiles [11]. The same year, Culik constructed an aperiodic set
of 13 tiles with a construction inspired by Kari’s set [5]. In this thesis, this last set will
be of special interest to us.

In 2011, Jeandel and Rao constructed an aperiodic set of 11 Wang tiles using 4 colors
[10]. Using an exhaustive computer program, they prove there does not exist a smaller
aperiodic set, meaning that no set of Wang tiles using fewer tiles or fewer colors will be
aperiodic. Proofs that no set of tiles using 2 or 3 colors can be aperiodic were given by
When-Guei Hu et al. in [9] and [3] respectively.

The construction of aperiodic sets is hardly the only interesting theoretical problem
involving Wang tiles, though it is the one this thesis will focus on. Other problems may
involve complexity. For example, the question whether a set of Wang tiles can tile the
plane is proven to be undecidable [2]. Other problems again may involve the relation of
Wang tiles to Turing machines.

Wang tiles see practical use too. For example, they are used in texture generation by
computers [4]. Another example is modelling quasicrystals [12].

Thesis Overview

In this thesis, we will construct an aperiodic set of Wang tiles, inspired by the con-
structions of Kari and Culik [11, 5]. In Chapter 2, we will discuss basic definitions and
formalize concepts already introduced in this introduction.

In Chapters 3 and 4, we will explore two constructions used to prove our set to be
aperiodic: balanced number sequences and sequential machines.

In Chapter 5, we will construct a set of Wang tiles and prove it is aperiodic.

Finally, in Chapter 6, we will extend our definitions to a 3-dimensional setting, discuss
some intricacies this extra dimension brings and create an aperiodic set of Wang cubes
based on cellular automata theory and our aperiodic set of Wang tiles constructed in
Chapter 5. This is again inspired by a construction of Kari and Culik in [7].
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Chapter 2

Wang Tiles

In this chapter, we will introduce the concepts that are fundamental to this thesis. We
will start with definitions for (Wang) tiles and (Wang) tilings, but will also explore some
basic lemmas to familiarize ourselves with the introduced concepts.

By the end of this chapter, we will not only have gotten a feel for Wang tiles and their
properties, but we will also be able to formulate the problem and goal that are leading
in the bulk of this thesis.

2.1 Tiles and tilings

Definition 2.1. A tile is a unit square. A Wang tile is a tile where each side is marked
with a color. If the left, top, bottom and right edges are colored w, n, s and e respectively,
we will denote the tile as (w, n, s, e).

There are many definitions of tiles. We use one that suits our needs. Also, these tiles
are not physical objects, so the behaviour of the borders is not terribly important to us.
Still, for completion we say that only the borders on the left and bottom side belong to
the tile, as well as the bottom-left corner. We also say the corners of a Wang tile remain
colorless, as to not cause confusion when edges colored differently meet.

The notation (w, n, s, e) may seem unnatural. However, we will justify this seemingly
arbitrary order in Chapter 4.

w

n

s

e w

s

3

Figure 2.1: Three examples of Wang tiles.

In Figure 2.1, three Wang tiles are shown. Left, traditional colors are used, but in a
mathematical sense, any marking can suffice as a color. For example, letters are used
in the middle tile of Figure 2.1. Finally, the right Wang tile illustrates that we can
use different ‘types’ of colors. We will often use numbers as colors to be able to make
calculations using Wang tiles. Later in this thesis, we will explore how this can be
achieved.
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Definition 2.2. Let T be a finite set of tiles and R ⊆ Z2. A tiling of R by T is a
function f : R → T . If T consists of Wang tiles and f is a tiling by T such that the
adjacent sides of all tiles match their color, f is called a Wang-tiling.

Remark 2.3. As a tiling is a function, it only assigns a tile to each point of its domain.
As we would like these tiles to fill the whole plane, we must decide how a tile is placed
on each point (x, y). We use the convention of the bottom-left corner being placed on
(x, y).

As the definitions of tilings are used often, there is some conventional terminology: in
this thesis, we will mostly concern ourselves with tilings of Z2, and we will simply say
‘f is a tiling by T ’ if that is the case. Also, in the case of Wang-tilings, the requirement
that adjacent sides must have the same color is often left implicit. If f is a Wang-tiling
of a set of Wang tiles T , we simply refer to it as a tiling by T .

We can make the requirement that adjacent sides have the same color more formal. This
approach is more technical then needed for the majority of this thesis, but we will use
it on occasion. First, some notation:

Notation 2.4. Let T be a finite set of Wang tiles and f a tiling of some subset R ⊆ Z2

by T . Let C be the set of colors used in the tiles of T . We denote by fn the function
R→ C that tells us the color of the top edge of the tile used on a point of R. Similarly
we denote by fw, fe, fs the color functions for the left, right and bottom edges.

With this notation, we can restate the requirement of matching colors. For a tiling of
R by a set of Wang-tiles to be a Wang-tiling, the following must hold for any point
(x, y) ∈ R:

• if (x− 1, y) ∈ R: fw(x, y) = fe(x− 1, y)

• if (x, y + 1) ∈ R: fn(x, y) = fs(x, y + 1)

• if (x, y − 1) ∈ R: fs(x, y) = fn(x, y − 1)

• if (x+ 1, y) ∈ R: fe(x, y) = fw(x+ 1, y)

The way these are stated, it is clear that diagonal adjacency is of no importance to
us.

1 2 3

1

2

3

Figure 2.2: A tiling of a small portion of Z2

In Figure 2.2, we can see a tiling of a small portion of Z2 by one tile. Note that Definition
2.2 does not speak of rotations: we are not allowed to rotate tiles. One can easily see
how the tiling of Figure 2.2 can expand to the whole of Z2: the tile can always be placed
next to itself, as rotations are not allowed.
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We can also see that the tiling creates a repeating pattern. This motivates to following
definition:

Definition 2.5. Let T be a finite set of Wang tiles and f a tiling by T . f is called
periodic with period (a, b) ∈ Z2 \ {(0, 0)} if for all (x, y) ∈ Z2: f(x, y) = f(x+ a, y + b).
f is called aperiodic if f is not periodic. In other words: we cannot find a and b such
that the equality holds for all (x, y) ∈ Z2.

One can image a periodic tiling as being able to shift the tiles in such a way that the
tiling remains the same. Of course, one should be cautious with the periods: if we’re
tiling a subset R ⊆ Z2, we must not escape R. In practice however, this is rarely an
issue. In any case, we will concern ourselves with tilings of Z2 only, hence the omission
of R in Definition 2.5.

An example of a periodic tiling is the tiling of Figure 2.2 expanded to Z2. It is easy to
see that it is periodic with period (1, 1), for example.

To help us get familiar with periodic tilings, we will look at the following small lemma.
This lemma lets us use a positive horizontal or vertical period, without losing general-
ity.

Lemma 2.6. Let T be a finite set of Wang tiles and f a tiling by T with period (a, b).
Then f is also periodic with period (−a,−b).

Proof. We know from assumption: f(x, y) = f(x+a, y+b). Substituting x−a and y−b
for x and y respectively, we see that f(x− a, y − b) = f(x− a+ a, y − b+ b) = f(x, y)
also holds for any x, y ∈ Z.

2.2 Doubly periodic tilings

By definition of periodic tilings, the horizontal and vertical period a and b come in a
pairs. We will now introduce a special kind of periodic tilings that provide us with more
information about the tiling without the need of additional requirements on the set of
tiles. We will prove this claim after the definition.

Definition 2.7. Let T be a finite set of Wang tiles, f a tiling by T and a, b ∈ Z\{0}. f
is called doubly periodic with horizontal period a and vertical period b is for all (x, y) ∈
Z2 : f(x, y) = f(x+ a, y) = f(x, y + b).

Remark 2.8. By a simpler version of Lemma 2.6, we may assume both horizontal and
vertical periods of a doubly periodic tiling to be positive.

In other words, a doubly periodic tiling is a tiling for which we would only need to shift
the tiles either horizontally or vertically to get the same pattern. It is important to note
that this is a property of the set of tiles, not the tiling: the doubly periodic tiling may
bear no resemblance to the standard periodic tiling!

In Figure 2.3, we see (parts of) two tilings by the same set of three Wang tiles. The
left tiling is clearly (a, a)-periodic: the pattern remains the same, were we to shift all
tiles both a horizontally as well as a vertically. It is clear that this tiling is not doubly
periodic: we cannot shift only horizontally or vertically.

However, the tiling to the right is clearly doubly periodic. This is a trivial example: all
tiles are the same! Thus, we see that this same set of tiles can tile Z2 both periodically
and doubly periodically.
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Figure 2.3: A periodic but not doubly periodic tilings and a doubly periodic tiling by
the same set of 3 Wang tiles.

The example in Figure 2.3 raises the question whether there always exists a doubly
periodic tilings by some set of tiles T if there also exists a periodic tiling by T and vice
versa. We will now prove that this is indeed the case.

Lemma 2.9. Let T be a a finite set of Wang tiles. Then there exists a periodic tiling
of Z2 by T if and only if there exists a doubly periodic tiling by T .

Proof. From right to left, the proof is trivial: say f is a doubly periodic tiling with
horizontal period a and vertical period b, then it is clear that f is a also periodic tiling
with, for example, period (a, 0).

From left to right, the proof is not as straightforward. Let f be a tiling by T with period
(a, b). Note that by definition, (a, b) 6= (0, 0). We consider 3 cases:

i) a 6= 0 and b = 0.

ii) a = 0 and b 6= 0 .

iii) a 6= 0 nor b 6= 0.

We prove case (i) first: by Lemma 2.6, we may assume a > 0. As T is finite, there are
only finitely many ways to tile an a-by-1 segment. As a consequence, there must be a
segment originating at some point (xS , yS) with an identically tiled segment above it:
There exists k ∈ N>0 such that for all i ∈ {0, . . . , a− 1} the following holds

f(xS + i, yS) = f(xS + i, yS + k)

We can consider the segments between the identically tiled segments with addition of
the lower of those segments as an a-by-k block (see Figure 2.4) that can be repeated:
the above equality shows that it can be repeated vertically with period k. By the (a, 0)-
periodicity of f , the block can be repeated horizontally with period a. We can formalize
this with a function:

g : Z2 → T : (x, y) 7→ f(xS + (x mod a), yS + (y mod k))

g is indeed a doubly periodic tiling. It has horizontal period a:

g(x, y) = f(xS + (x mod a), yS + (y mod k))

= f(xS + (x+ a mod a), yS + (y mod k))

= g(x+ a, y)

10



. . .
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. . .

a

k

(xS , ys) (xS + a, ys)

Figure 2.4: a-by-k block of tiles visualized. Outlined strips represent identically tiled
segments. Gray tone used to color tiles outside of the a-by-k block.

And g has vertical period k:

g(x, y) = f(xS + (x mod a), yS + (y mod k))

= f(xS + (x mod a), yS + (y + k mod k))

= g(x, y + k)

As f is a tiling by T , all sides indeed match color. This proves case (i).

Case (ii) is proven analogously, but using Lemma 2.6 to get positive vertical period and
by creating a block of size k′-by-b (for some k′ ∈ N>0).

Now for case (iii). Let us assume a > 0. We will use a similar approach as used for
case (i), but with a-by-|b| segments instead of a a-by-1 strip (we must use |b|, as b can
still be negative). As T is finite, there are only finitely many ways such a segment
can be tiled, so there must be an a-by-|b| segment originating at some point (xS , yS)
with an identically tiled segment above it: there exists k ∈ N>0 such that for any
i ∈ {0, . . . , a− 1}, j ∈ {0, . . . , |b| − 1} the following holds

f(xS , yS) = f(xS + i, yS + j + bk)

This is illustrated in Figure 2.5. In this Figure, every square represents an a-by-b square.
Squares numbered the same are tile identically. This is an immediate consequence of f
being (a, b)-periodic.

Again, this gives us a block that ‘we can place next to itself’ to create a doubly periodic
tiling. The block is of size ak-by-|b|k. We can again formalize this in a function g:

g : Z2 → T : (x, y) 7→ f(xS + (x mod ak), yS + (y mod bk))

11
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Figure 2.5: ak-by-bk block of tiles visualized (b positive in this example). Each square
represents an a-by-b segment of tiles. Squares with the same number represent identically
tiled segments. White and gray tones are used to distinguish blocks. Would b be
negative, then the figure would be similar, just growing downwards.

It is again easy to check this function is doubly periodic:

g(x, y) = f(xS + (x mod ak), yS + (y mod bk))

= f(xS + (x+ ak mod ak), yS + (y mod bk))

= g(x+ ak, y)

g(x, y) = f(xS + (x mod ak), yS + (y mod bk))

= f(xS + (x mod a), yS + (y + bk mod bk))

= g(x, y + bk)

This proves case (iii). So, all cases are proven. This covers all possibilities for (a, b), so
this proves the lemma.

One may wonder why one would use the notion of periodicity at all, if we could just
as well use doubly periodic tilings. There are some reasons. For starters, periodic
and aperiodic tilings are nice counterparts. More importantly however, the notion of
(doubly) periodic tilings extends nicely to higher dimensions, but the claim that the
existence of a periodic tiling implies the existence of a multi-periodic tiling does not!
We will see an example in a later chapter (Example 6.5 and Lemma 6.7). So, it is still
relevant to think about periodic and multi-periodic tilings separately.
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Figure 2.6: A tiling that is periodic (left) and not periodic (right) by the same set of 4
Wang tiles.

2.3 Aperiodic sets of Wang tiles

By paying special attention to periodic tilings, the reader may have intuitively figured
that not all tilings need to be periodic. It is not hard to come up with an example.
However, one must remember that only a finite number of different tiles may be used.
We can now see why this requirement was imposed: were we to allow infinitely many
colors, we can make tilings that are not periodic by constantly introducing new colors.
Thus, we want to use a finite number of colors. This has the immediate consequence
of the set of possible tiles being finite. Vice versa: a finite set of tiles only uses a finite
number of colors.

An example of a tiling that is not periodic is shown in Figure 2.6 (right). This Figure
also shows that the same 4 tiles can be used in a periodic tiling. One may wonder if
this is the case for any set of tiles T : if T can tile the Z2, can it do so periodically? As
seen in the introduction, Wang hypothesised that this is indeed the case.

The following definition is now motivated:

Definition 2.10. A finite set of Wang tiles T is aperiodic if there exists a tiling of Z2

by T , but no tiling is periodic.

Again, it is important to note that Definition 2.10 describes a property of the set of tiles.
The set of 4 tiles in Figure 2.6 is not an example of an aperiodic set of tiles. Generally,
it is very hard to give a convincing example of an aperiodic set of Wang tiles.

Aperiodic tilings are of special interest to us. Theoretically, they are interesting as their
behaviour is inherently chaotic and thus gives rise to some hard to answer questions, like
‘is there an aperiodic tileset that only uses 4 colors?’. Practically, this chaotic nature
has seen several use cases, for example in texture generation. Though the practical side

13



may be compelling, we will limit ourselves to the theoretical side in this thesis.

Another theoretical challenge is proving a set of Wang tiles T to be aperiodic. From the
definition, it is clear a proof would consist of two parts:

• Prove there exists a tiling by T

• Prove no tiling can be periodic

We will do exactly that to prove in Chapter 5 a specific set of Wang tiles, T13, is
aperiodic. The next chapters will be dedicated to the tools needed for this proof.
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Chapter 3

Balanced Numbers

To tile the plane, we would need to define a tiling function f on the whole of Z2.
However, as this domain is rather large, it can be a difficult task to define f by making
local constraints while still making it adhere to the requirement that adjacent sides of
all tiles match in color.

One strategy to define f would be to first fix one row of tiles. Based on that row, we
determine the rows above and below it. We repeat this process until we have tiled the
plane. Of course, it is not as straightforward as simply choosing tiles at random, as the
adjacent sides must match in color.

In this chapter, we will introduce balanced number representations. These are special
sequences that will provide us with a nice way to fix a row of the tiling: we will use
the numbers from such a sequence as the colors on the bottom and top edges of the
tiles.

Definition 3.1. A bi-infinite sequence of elements of a set S is a function x : Z → S.
Often, we denote x(i) as xi. The name ‘bi-infinite sequence’ explains itself by noticing
that x can be viewed as the sequence (xi)i∈Z.

Some examples:

x : Z→ Z : z 7→ 2z defines the bi-infinite sequence {. . . ,−4,−2, 0, 2, 4, . . . }
x : Z→ Z : z 7→ z2 defines the bi-infinite sequence {. . . , 4, 1, 0, 1, 4, . . . }

In 1926, Samuel Beatty described a problem (Problem 3173) which led to the creation
of a special kind of bi-infinite sequences: Beatty sequences [1]. We will first introduce
some useful notation.

Definition 3.2. For a real number α, we denote by bαc the integer part of α: the
greatest integer z such that z ≤ x. We denote by {α} the fractional part of α: {α} =
α− bαc.

Again, some examples:

Real number α integer part bαc fractional part {α}
3 3 0

4.2 4 0.2
−4.2 −5 0.8

15



Definition 3.3. The Beatty sequence A(α) of a real number α is the bi-infinite sequence
given by A(α)i = bi · αc.

As an example, we can look at A(π):

. . . ,−16, −13, −10, −7, −4, 0, 3, 6, 9, 12, 15, 18, 21, 25 . . .

Beatty sequences let us relate real numbers to bi-infinite sequences. As (bi ·αc)i∈N is an
unbounded sequence, there will definitely not be a finite number of entries in the Beatty
sequence of any real number that is not 0. However, recall our goal: we want these
sequences to determine a row of tiles. Thus, we want to use the entries from bi-infinite
sequences as colors in our set of tiles. As by Definition 2.2, a tiling must be a function
to a finite set of tiles. So, Beatty sequences do not provide us with the desired tools
still!

However, using Beatty sequences, we can construct another type of bi-infinite sequences
that will turn out to have the desired properties:

Definition 3.4. The balanced representation B(α) of a real number α is the bi-infinite
sequence given by B(α)i+1 = A(α)i+1 −A(α)i.

We can again look at α = π. B(α) is then the bi-infinite sequence:

. . . , 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, . . .

Let us look at another example, with each step explicitly written down. If we take
α = 2

3 . The bi-infinite sequence (i · α)i∈Z looks like this:

. . . , −4, −3 1
3 , −2 2

3 , −2, −1 1
3 , −

2
3 , 0, 2

3 , 1 1
3 , 2, , 2 2

3 , 3 1
3 , 4, . . .

Which means de Beatty sequence A( 2
3 ) looks like:

. . . , −4, −4, −3, −2, −2, −1, 0, 0, 1, 2, 2, 3, 4, . . .

And thus, the following is the balanced sequence B( 2
3 ):

. . . , 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .

We will now prove that for any α, the balanced representation B(α) contains a fi-
nite number of different entries, only 2 in fact, making them better suited for our set-
ting.

Lemma 3.5. For any real number α, the bi-infinite sequence B(α) contains at most 2
different numbers: if k ≤ α < k + 1 for some k ∈ Z, then B(α)i ∈ {k, k + 1} for all
i ∈ Z.

Proof. First, we note that any entry of A(α) must be an integer, as each entry is the
integer part of some number. Thus, any entry of B(α) must be an integer as well, as it
is the difference of entries of A(α).

Moreover, note that if k ≤ α < k + 1, then k = bαc, by definition of the integer part.

Due to the previous remarks, it is sufficient to prove bαc ≤ B(α)i+1 ≤ bαc + 1 for all
i ∈ Z. We will do this by proving the inequalities separately.
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• bαc ≤ B(α)i+1

bαc = bi · αc+ bαc − bi · αc
≤ bi · α+ αc − bi · αc
= A(α)i+1 −A(α)i

= B(α)i+1

• B(α)i+1 ≤ bαc+ 1

B(α)i+1 = A(α)i+1 −A(α)i

= bi · α+ αc − bi · αc
≤ i · α+ bαc − bi · αb
≤ i · α+ bαc − (i · α− 1)

= bαc+ 1

So indeed, for any i ∈ Z we have bαc ≤ B(α)i+1 ≤ bαc + 1. Thus, we conclude that
B(α) contain at most 2 different numbers.

Balanced number representations have another nice property that lets us easily relate
balanced numbers to real numbers: the average value of finite subsequences of B(α)
converges to α. We will now formalize and prove this property:

Lemma 3.6. Let α be a real number and i an integer. Then the average value of
the subsequence Si,n = (B(α)i+1, . . . , B(α)i+n) of length n ∈ N converges to α as n
increases.

Proof. Let α be a real number and i an integer and n a natural number. Let Si,n =
(B(α)i+1, . . . , B(α)i+n). Our approach will be as follows: we will calculate the average
value vi,n of Si,j in terms of i and n and then show limn→∞ v − α = 0.

We first calculate the sum of entries of Si,n:

n∑
m=1

B(α)i+m =

n∑
m=1

B(α)i+m

=

n∑
m=1

A(α)i+m −A(α)i+m−1

=

n∑
m=1

A(α)i+m −
n∑

m=1

A(α)i+m−1

=

n∑
m=1

A(α)i+m −
n−1∑
m=0

A(α)i+m

= A(α)i+n −A(α)i

So, the average value of entries of S is:

vi,n =
A(α)i+n −A(α)i

n
=
b(i+ n)αc − biαc

n
=
b(i+ n)αc

n
− biαc

n
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To prove limn→∞ vi,n−α = 0, we use the squeeze theorem. Notice that for n sufficiently
large we have (i+ n)α− 1 ≤ b(i+ n)αc ≤ (i+ n)α+ 1, so:

(i+ n)α− 1

n
≤ b(i+ n)αc

n
≤ (i+ n)α+ 1

n

When the right-hand side is substituted, we see that there is indeed convergence to 0:

lim
n→∞

(i+ n)α+ 1

n
− biαc

n
− α = lim

n→∞

iα

n
+
nα

n
+

1

n
− biαc

n
− α

= lim
n→∞

iα

n
+ α+

1

n
− biαc

n
− α = 0

Similarly, for the left-hand side:

lim
n→∞

(i+ n)α− 1

n
− biαc

n
− α = lim

n→∞

iα

n
+
nα

n
− 1

n
− biαc

n
− α = 0

By the squeeze theorem, we can conclude limn→∞ vi,n−α = 0, which proves the lemma.

In this chapter, we have introduced balanced number sequences. They are bi-infinite,
and contain at most 2 different numbers. Our aim is to use them as ‘input’ to the tiling:
we let a balanced number sequence determine the first row of our tiling while using a
set of tiles that has the numbers contained in this sequence as colors on the bottom
edge.

To make a proper Wang tile, we would need the tile to have colors on the left, right
and top edges as well. In the next chapter, we will introduce sequential machines, a
tool that can help us represent Wang tiles another way. In particular, we can determine
suitable colors for the left and right edges. Sequential machines will also enable us to
make multiplications on bi-infinite sequences, which will help us determining a tiling
from a fixed row of tiles.
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Chapter 4

Sequential Machines

In the previous chapter, we have introduced special bi-infinite sequences. In this chapter,
we will introduce sequential machines, machines that take such sequences as input and
produce another bi-infinite sequence as output. Recall that we will use balanced number
sequences to fix a row of tiles. We will use sequential machines to determine the rows
above and below it.

Finite-state machines are models of computation consisting of a finite number of states
and transitions between them. If the finite-state machine uses an input and output tape,
it is called a finite-state transducer. They are divided into two categories: deterministic
machines and non-deterministic machines. If at most one transition is possible, given
a state and an input symbol, then the machine is said to be deterministic. If not, it is
non-deterministic. We will use non-deterministic machines.

The machine just described is formalized in Definition 4.1. As not to defer from the
convention in the literature (e.g., [5]), we refer to this machine as a sequential ma-
chine.

Definition 4.1. A sequential machine M is a non-deterministic finite-state transducer
where the output of a transition depends on a combination of state and input. Mathe-
matically, M is a 4-tuple (S,Σ,Λ, T ) with:

• S the set of states

• Σ the set of input characters

• Λ the set of output characters

• T ⊆ S × Σ× Λ× S the set of transitions. Each t = (w, n, s, e) ∈ T is a transition
from state w to state e, with input n and output s.

We deviate slightly from the traditional definition: as we work on bi-infinite sequences,
there is no need for initial states and final states. Convention is to let w0 = 0 if (wi)i∈Z
is a bi-infinite sequence of states and 0 is a state.

A finite-state machine can be represented as a state diagram. Circles represent states and
arrows transitions. For sequential machines, the transitions are labeled in the following
manner: n | s, n being the input and s the output. An example of a sequential machine
is shown in Figure 4.1

We are now ready to examine the connection between sequential machines and Wang
tiles. We have actually formulated our sequential machines in such a way that the Wang

19



−2 −1 0

1 | 2

1 | 1

1 | 2

0 | 1 0 | 1

0 | 2

Figure 4.1: The state diagram of the sequential machine M3

tiles are easily distilled: any transition (w, n, s, e) ∈ T corresponds to a tile with colors
w, n, s and e on the left, top, bottom and right edge respectively. This is why the order
(w, n, s, e) was chosen in Definition 2.1: it is the natural way to interpret a transition

w
n|s−−→ e.

An example of a sequential machine and the corresponding set of tiles is shown in Figure
4.2.

0 1

a | b

b | a

0

a

b

1 1

b

a

0

Figure 4.2: A sequential machine (left) and the corresponding set of tiles (right)

Finite-state machines can be used to compute relations between bi-infinite sequences of
characters from the input and output alphabet. This is done by running over the input
and recording the output. In our case, we say that bi-infinite sequences (ni)i∈Z and
(si)i∈Z are in the relationship ρ(M) of a sequential machine M if and only if there is a
bi-infinite sequence of states (wi)i∈Z such that for all i: (wi−1, ni, si, wi) ∈ T . In other
words: for any i ∈ Z, there is a transition from wi−1 to wi labeled ni | si. We will use
these relation to multiply balanced numbers.

4.1 Construction of Mq

Now that we have discussed the definitions concerning sequential machines and their
relation to Wang tiles, we will look at the manner in which specific sequential machines
can be constructed: machines that multiply. In the following, we assume all colors are
numbers, so that it is sensible to talk about multiplication.

Let q = x
y be a positive rational number, x, y ∈ Z and y 6= 0. We say a Wang tile (thus,

a transition) (w, n, s, e) multiplies by q if and only if w+qn = s+e. We say a sequential
machine multiplies by q if every transition multiplies by q and denote it with Mq (though
it is not unique in general, it is unique for chosen input and output alphabets). We
have already seen one such machine: M3 in Figure 4.1, which can multiply by 3. In
Proposition 4.5, we will see that the term ‘multiplication’ is justified.
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We will now examine how such a machine Mq can be constructed. This is relevant to
us, as it shows there are sets of tiles that multiply a balanced number by q.

• The states of Mq represent the possible values qbrc − bqrc for r ∈ R. Why?
This represents the difference between qbiαc (direct multiplication of input) and
bqiαc (what we expect to see as output). These values are necessary to ensure
multiplication of balanced numbers, which is what we are after.

We must verify there are only finitely many such values, as a sequential machine
is a finite-state machine.

Notice the following inequality:

qbrc − 1 ≤ qr − 1 < bqrc ≤ qr < q(brc+ 1)

Multiply by −1 and we get:

−qbrc+ 1 > −bqrc > −q(brc+ 1)

Add qbrc:
1 > qbrc − bqrc > −q

As q = x
y , 1 = y

y and qbrc − bqrc must be a multiple of 1
y (as brc and bqrc are

both integers), we see that the set of possible states S is the following:

S =

{
−x− 1

y
,−x− 2

y
, . . . ,

y − 2

y
,
y − 1

y

}
• We want any transition (w, n, s, e) to adhere to the equality w + qn = s + e. So,

we say there is a transition from w to w+ qn− s exactly when such a state exists.

There is a subtlety: for any states w and e, there will be an infinite number of
pairs n and s such that w + qn = s + e is satisfied. Thus, the transitions of Mq

are determined by the input and output alphabets. These are generally chosen so
suit a certain domain. In the case of M3 (Figure 4.1), we’ve chosen input alphabet
{0, 1} and output alphabet {1, 2}. Due to Lemma 3.5, this means we can multiply
any number α by 3 using M3 if 0 ≤ α ≤ 1 and 1 ≤ 3α ≤ 2. In other words, if
α ∈ [ 13 ,

2
3 ].

We will now look at a lemma that may look daunting, but is actually quite simple. It
states that the sum of colors on the top edges equals the sum of colors on the bottom
edges in a strip of length a of a tiling by tiles generated by Mq. This is exactly the
property we have been looking for in our introduction of sequential machines. This
lemma will be essential in the proofs of the next chapter.

In the lemma, we use a ‘periodic tiling on Z × {i}’. In Definition 2.5, we have only
defined 2-dimensional periodic tilings on the whole of Z2. However, for one row of tiles,
we can easily the top and bottom edges are of no importance to the color-matching
requirement. Thus, the periodicity of a tiling of a single row is intuitively inherited from
the 1-dimensional setting.

Lemma 4.2. For q ∈ Q, let Tq denote the set of Wang-tiles generated by Mq and let
f be a tiling by Tq of Z × {i} with horizontal period a (i, a ∈ Z, a 6= 0). Then for any
x ∈ Z:

q ·
a−1∑
k=0

fn(x+ k, i) =

a−1∑
k=0

fs(x+ k, i)

(Here, fn and fs are used as introduced in Notation 2.4)
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n
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f(x, i) f(x+ a− 1, i)

a

Figure 4.3: A strip of length a in a a-periodic tiling. Unknown colors left blank.

Proof. We may assume a to be positive (a simpler version of Lemma 2.6). As each tile
is generated by Mq, we know the following equality must hold for any x:

fw(x, i) + q · fn(x, i) = fs(x, i) + fe(x, i) (4.1)

We know fe(x, i) = fw(x+ 1, i). In particular, as f has horizontal period a, fw(x, i) =
fe(x+ a− 1, i) for any x (see Figure 4.3). So we see:

a−1∑
k=0

fw(x+ k, i) = fw(x, i) +

a−1∑
k=1

fw(x+ k, i)

= fw(x, i) +

a−2∑
k=0

fw(x+ k + 1, i)

= fe(x+ a− 1, i) +

a−2∑
k=0

fe(x+ k, i)

=

a−1∑
k=0

fe(x+ k, i)

Thus, using equation (4.1) again, we see:

a−1∑
k=0

(fw(x+ k, i) + q · fn(x+ k, i)) =

a−1∑
k=0

(fs(x, i) + fe(x+ k, i))

a−1∑
k=0

fw(x+ k, i) + q ·
a−1∑
k=0

fn(x+ k, i) =

a−1∑
k=0

fs(x, i) +

a−1∑
k=0

fe(x+ k, i)

q ·
a−1∑
k=0

fn(x+ k, i) =

a−1∑
k=0

fs(x+ k, i)

We will now prove a similar result but for the whole sequence: it states that we can
indeed multiply balanced numbers with sequential machines. This is a nice justification
for the use of these machines.

Proposition 4.3. Let α ∈ R and let Mq = (S,Σ,Λ, T ) be a sequential machine as
described ealier (q ∈ Q). If α ∈ R such that for all i ∈ Z: B(α)i ∈ Σ and B(qα)i ∈ Λ,
then Mq can calculate B(qα) as output when given B(α) as input.
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Proof. Let α and Mq be as stated in the lemma and i ∈ Z. We make the following
observation:

(qb(i− 1)αc−b(i− 1)qαc) + q(biαc−b(i− 1)αc)− (qbiαc−biqαc) = biqαc−b(i− 1)qαc

In other words:

(qb(i− 1)αc − b(i− 1)qαc) + qB(α)i − (qbiαc − biqαc) = B(qα)i

The terms between brackets are exactly of the form of the states of Mq (recall Mq’s
construction). This lets us define wi = qb(i− 1)αc− b(i− 1)qαc and ei = qbiαc− biqαc.
By substituting i+ 1 for i, we see wi+1 = ei.

As B(α)i and B(qα)i are elements of the input and output alphabets respectively, and

because wi and ei are states, there is a transition wi
B(α)i|B(qα)i−−−−−−−−−→ ei present in Mq.

Because wi+1 = ei, we can chain these transitions for any i, thus reading input sequence
B(α) and producing output sequence B(qα).

Remark 4.4. There is a caveat to Proposition 4.5: it does not prove Mq must multiply
by q. This is not needed for our goal of constructing an aperiodic set of Wang tiles, but
will be a subtle problem in Chapter 6.

However, proving Mq must multiply by q is not trivial at all. An example is given
in Figure 4.4. Here, the input sequence B( 1

2 ) is used. The top figure illustrates the
transitions (in tile form) as described in the proof of Proposition 4.5. The bottom figure
illustrates that the same input can be accepted using entirely different transitions.

In this example, the output sequence of the bottom figure is just a shifted version of
B(qα), which would not be problematic in any case (the 0-index of a bi-infinite sequence
is arbitrary). However, it is not obvious these are the only possible outputs when reading
B(α).

. . . −1

1

2

0 0

0

1

−1 −1

1

2

0 0

0

1

−1 −1

1

2

0 . . .

. . . −2

1

1

0 0

0

2

−2 −2

1

1

0 0

0

2

−2 −2

1

1

0 . . .

Figure 4.4: Two ways M3 can read input B( 1
2 )

We finish this chapter by another Lemma that is another desirable property sequential
machine Mq regarding multiplication: when given input sequence B(α), the average
value of the output sequence does converge to qα. This still is not enough to counter
Remark 4.4 however.

Proposition 4.5. Let α ∈ R and let Mq = (S,Σ,Λ, T ) be a sequential machine as
described earlier (q ∈ Q). If α ∈ R such that for all i ∈ Z: B(α)i ∈ Σ, then the average
value of entries of the output sequence of Mq given B(α) as input converges to qα.
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Proof. We can view this calculation as a single row of tiles generated by Mq, with B(α)
used as input. We will denote the tile at step i ∈ Z with (wi, ni, si, ei). Thus, we aim to
prove the bi-infinite sequence (si)i∈Z is the same sequence as B(qα), modulo indexing
(i.e., there exists j ∈ N such that si = B(qα)i+j for all i ∈ Z).

We will first look at a subsequence
∑N
m=0 si+N and prove the average converges to qα.

We apply a similar strategy as in the proof given for Lemma 4.2. Recall the property
that was given to each transition:

wi + qni = si + ei

We can use that in the following manner:

si = wi − ei + qni

Using ei = wi+1, we can now easily calculate the summation:

N∑
m=0

si+m =

N∑
m=0

(wi − ei + qni)

= wi − ei+N + q

N∑
m=0

ni+m

Now, we can calculate the average value as N approaches infinity by using that the
average value of ni converges to α (as per Lemma 3.6)

lim
N→∞

1

N

N∑
m=0

si+m = lim
N→∞

1

N

(
wi − ei+N + q

N∑
m=0

ni+m

)

= lim
N→∞

wi
N
− ei+N

N
+

q

N

N∑
m=0

ni+m

= qα

So indeed, the average value of entries of the output sequence converges to qα, which
proves the lemma.

In this chapter, we have introduced sequential machines and explored the connection
to Wang-tiles. We examined a was of constructing sequential machines in such a way
that we can use balanced number sequences as input and have the machine produce a
multiple of the input as output.

In the next chapter, we will use balanced numbers and the construction from this chap-
ter to generate a specific tileset that we will prove to be aperiodic using the acquired
tools.
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Chapter 5

An aperiodic set of Wang
Tiles

In the previous chapters, we have introduced Wang-tiles, Wang-tilings, balanced number
sequences and sequential machines. In this chapter, we will focus on a specific tileset,
T13, and prove it is aperiodic.

Recall that by Definition 2.10, a set of tiles is aperiodic if two conditions are met: there
exists a tiling of Z2 by the set, but no tiling is periodic. After we have generated the
tileset, we will do exactly that in two separate propositions.

We will define the tileset T13. The way we introduced the concepts of earlier chapters
reflect our approach with this set of tiles: we first generate tiles using sequential machines
that multiply bi-infinite sequences. We then fix a row of tiles by means of a balanced
number sequence. We will then determine all other rows by multiplication.

5.1 Construction of T13

We start by generating the tilesets T3 and T 1
2

by sequential machines M3 and M 1
2
, see

Figures 5.1 and 5.2 respectively.

There is one implicit choice already made before the generation of these tiles: the input
and output alphabets used in the construction for the machines. The importance of this
step cannot be overstated, choosing alphabets that are unfit could result in different
results. For example, were the output of one machine totally different from the input
for the other, we would not be able to alternate between them at all!

For M3, we have chosen input alphabet {0, 1} and output alphabet {1, 2}, allowing us
to use input sequences B(α) with α ∈ [ 13 ,

2
3 ].

For M 1
2
, we have chosen input alphabet {0, 1, 2} and output alphabet {0, 1}, allowing

us to use input sequences B(α) with α ∈ [0, 2].

We will see that these intervals suit us nicely. We can take the interval [13 , 2] and note
that there is some overlap with the previous intervals (it is not an intersection, so that
both multiplication with 3 and division by 2 are still possible within this interval).
Moreover, upon further inspection we can see that when α ∈ [ 13 ,

2
3 ] we can multiply by

3 so that 3α is in the interval associated with M 1
2
, while we can multiply by 1

2 when
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α ∈ [1, 2] to get 1
2α to be in the interval associated with M3. This will enable us to

repeatedly multiply by 1
2 and 3.

−2 −1 0

1 | 2

1 | 1

1 | 2

0 | 1 0 | 1

0 | 2 −2

1

1

0

−2

1

2

−1 −1

1

2

0

−1

0

1

−2

0

0

2

−2

0

0

1

−1

Figure 5.1: State diagram of machine M3 (left) and the tileset T3 it generates (right).
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2

0
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2

Figure 5.2: State diagram of machine M 1
2

(left) and the tileset T 1
2

it generates (right).

We will want to iterate rows with tiles from T3 and rows with tiles from T 1
2

in a way
that no tiling can have a vertical period b < 3. We can already see rows with tiles from
T3 can’t be stacked on top of each other. To prevent us using tiles from two machines
in the same row and to prevent us stacking more that 2 rows of tiles from T 1

2
on top of

each other, we will adapt this machine slightly, as shown in Figure 5.3. We call the set
of tiles created by this machine T ′1

2

. We calculate with 0′ in the same manner we would

calculate with 0.

Remark 5.1. Notice that for input in the interval [1, 2], we must use tiles from the 5 tiles
of T ′1

2

with either a 1 or a 2 on the top edge (a consequence of Lemma 3.5). Of these

tiles, there is only one tile with 0’ on the bottom edge, (0′, 1, 0′, 12 ) and one with 0 on
the bottom edge, (0′, 1, 0, 12 ). As they have the same colors on all other edges, we may
‘choose’ whether we want an output sequence using 0 or 0’ when the input sequence is
in [1, 2].

Definition 5.2. We define the sequential machine M to be the union of machines M3

and M ′1
2

(by simply joining the both sets of states, alphabets and transitions). We define

T13 to the tileset generated by M : the union of tiles from T3 and T ′1
2

.
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Figure 5.3: State diagram of machine M ′1
2

(left) and the tileset T ′1
2

it generates (right).

5.2 Proving aperiodicity

We will now separately prove the two requirements for T13 to be aperiodic: the existence
of a tiling by T13 and the aperiodicity of any tiling by T13.

Proposition 5.3. There exists a tiling of Z2 by T13

Proof. Let α0 ∈ [ 13 , 2]. Then B(α0) is a valid input for M , and M can calculate B(3α)
if α ∈ [ 13 ,

2
3 ] and B(α2 ) if α ∈ [ 23 , 2] (Proposition 4.5). We may assume that our initial

choice of α0 uses 0 entries and no 0′ entries in B(α).

By remark 5.1, we can ‘choose’ whether we create an output sequence using 0 or 0′ when
using tiles from T ′1

2

when the input is in the interval [1, 2]. Choosing 0′ however, forces

us to multiply by 1
2 again, as the color 0′ is not present on the top edges of tiles from

T3.

To prove there is a tiling possible, we will show that M can be iterated in both ways.
That is: we will show the output of the current row can be used as input for the next
row as well as the input of the current row being the output of some previous row. We
will denote with αi the input of row i and with αi−1 the output of row i. Forward use
of M thus means growth downwards.

• For forward use of M , we make a case distinction on αi:

– If αi ∈ [ 13 ,
2
3 ], we can multiply B(αi) by 3 by using tiles from M3. The output

sequence is B(3αi), so αi−1 = 3αi resides in the interval [1, 2] ⊂ [ 12 , 2].

– If αi ∈ ( 2
3 , 1

1
3 ), we can multiply B(αi) by 1

2 by using tiles from M ′1
2

. By

the remark above, we can choose tiles so that the output sequence has no 0’
entries. The output sequence is B( 1

2αi), so αi−1 = 1
2αi resides in the interval

( 1
3 ,

2
3 ) ⊂ [ 13 , 2].

– If α ∈ [1 1
3 , 2], we can multiply B(αi) by 1

2 by using tiles from M ′1
2

. By

the remark above, we can choose tiles so that the output sequence has no 0
entries. The output sequence B( 1

2αi) so αi−1 = 1
2αi resides in the interval

[ 23 , 1]. Thus, we can multiply by 1
2 again by using tiles from M ′1

2

, this time

choosing an output with no 0’ entries. The output sequence is B( 1
4αi), so

αi−2 = 1
4αi and it resides in the interval [ 13 ,

1
2 ] ⊂ [ 13 , 2].

These cases cover all options for the interval [ 13 , 2]. By using these instructions,
we can start with our chosen α0 to tile a first row and determine all rows below it.
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• For the backward use of M , we work in a similar fashion, but reversed. Again, a
case distinction on αi:

– If B(αi) contains 0′ entries, then αi ∈ [ 13 , 1]. Thus, 2αi ∈ [ 23 , 2] ⊂ [ 13 , 2]. So
M ′1

2

applied to B(2αi) has B(αi) as possible output (Remark 5.1) and we can

use αi+1 = 2αi.

– If B(αi) does not contain 0 entries and αi ∈ [ 13 , 1], then 2αi ∈ [ 23 , 2] ⊂ [ 13 , 2].
So, M ′1

2

applied to B(2αi) has B(αi) as possible output (Remark 5.1) and we

can use αi+1 = 2αi.

– If αi does not contain 0 entries and αi ∈ (1, 2], then 1
3αi ∈ ( 1

3 ,
2
3 ] ⊂ [ 13 , 2]. So,

M3 applied to B( 1
3αi) has B(αi) as output and we can use αi+1 = 1

3αi.

These cases are exhaustive. By using these instructions, we can start with our
chosen α0 to tile a first row and determine all rows above it.

So, we can choose α0 ∈ [ 13 , 2] for the input sequence of the row 0 and iterate M forwardly
and backwardly to obtain a tiling of Z2 by tiles from T13.

Proposition 5.4. There is no periodic tiling of Z2 by T13.

Proof. We will give a proof by contradiction: assume there is a periodic tiling by T13.
By Lemma 2.9, there exists a doubly periodic tiling f too, say with horizontal period a
and vertical period b. We may assume them to be positive (Remark 2.8).

Note that b ≥ 3 by construction (we can verify by eye that b = 1 or b = 2 is not possible).
Also note that we cannot have tiles from T3 and T ′1

2

in the same row. Without loss of

generality, we may assume the first row (that of (0, 0)) is tiled by tiles from T3.

Define ni as the sum of colors on the top edges of a strip of tiles of length a, starting at
(0, i):

ni =

a−1∑
k=0

fn(k, i)

Using Lemma 4.2, we make the following observation:

ni−1 = qini with qi =

{
3 if row i consists of tiles from T3
1
2 if row i consists of tiles from T ′1

2

(Of course we could do this with strips starting at any (x, i), but starting at (0, i) will
be sufficient)

Now, as b is the vertical period of f , we see that n0 = nb = qb−1qb−2 . . . q0 · n0. As the
first row is tiled by T3, n0 6= 0 (it is clear we cannot have repeated zeroes on the top
edges). Thus we must have: qb−1qb−2 . . . q0 = 1. However, no non-empty product of 3
and 1

2 is 1, so b = 1. But we already saw b ≥ 3. This is a contradiction, so a periodic
tiling of Z2 by T13 cannot exist.

Theorem 5.5. T13 is an aperiodic set of Wang tiles.
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Proof. There are two conditions to be met for a set of Wang tiles to be aperiodic: there
needs to exists a tiling and no tiling can be periodic. These conditions are proven for
T13 in Proposition 5.3 and Proposition 5.4 respectively.

Corollary 5.6. There exists an aperiodic set of 13 Wang tiles using 5 colors.

Proof. Recall we may not rotate Wang tiles. Thus, we can use the same set of colors for
the horizontal and vertical edges. We see that there are 4 colors used for the horizontal
edges of T13 (0′, 0, 1 and 2) and 5 for the vertical edges (−2,−1, 0, 0′ and 1

2 ). So we can
easily use the set of 5 colors for the horizontal edges too, for example by replacing each
instance of 1 with −1 and 2 with −2.

An example of a different coloring of the described tileset using 5 colors is shown in
Figure 5.4

Figure 5.4: An aperiodic tileset of 13 tiles using 5 colors

5.3 Minimal sets and Wang’s Hypothesis

The result of Theorem 5.5 is quite nice. Still, it is a natural question to ask whether
we actually need all tiles present in T13. Such a question motivates the following defini-
tion.

Definition 5.7. A finite set of Wang tiles T is called minimal if there exists a tiling of
Z2 by T , but there does not exists a tiling of Z2 by any strict subset of T .

The question whether T13 is minimal has yet to be answered. However, there is an
example of minimal set: the one with 11 tiles using 4 colors shown in [10]. We refer to
it by T11. This tileset was proven to be aperiodic using an extensive computer program
too elaborate to discuss here.

Not only is T11 minimal in the sense that no subset of it is an aperiodic set of Wang
tiles, it is also minimal in a more broad sense: it is impossible for a set with fewer tiles
or using fewer colors to be aperiodic.

Proofs that sets of Wang tiles using only 2 or 3 colors cannot be aperiodic require
different strategies than discussed in this thesis. We refer to [9] and [3] for the proofs
for 2 and 3 colors respectively.

An alternate way of formulating this would be: Wang’s hypothesis is true for 2 and 3
colors. For 4 colors, it is false, as was also proven by us (Corollary 5.6).
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Chapter 6

Wang Cubes

Until now, we have worked in a 2-dimensional setting: we have tiled portions of Z2. In
this chapter, we will expand to a 3-dimensional setting and use the construction of T13
to create a set of aperiodic Wang Cubes.

Adding a third dimension to Wang tiles is a quite natural desire. Not only does it
raise interesting questions of theoretical nature (are aperiodic tilings possible? Do the
results from the 2-dimensional setting generalize to a 3-dimensional setting?), but it is
also useful on a practical level. For example, Wang cubes have been used in volume
illustration [13].

6.1 Extension of familiar concepts

Definition 6.1. A Wang cube is a unit cube where each side is marked with a color. If
the left, back, front, right, top and bottom faces are colored w, n, s, e, t and b respectively,
we will denote the tile as (w, n, s, e, t, b).

We make a remark for completeness: similar to Definition 2.1, we say that only the
borders that meet in the front-left-bottom corner are part of the cube. However, this is
of little importance to us.

One should pay special attention to the notation of a Wang cube and the relation it
has to a Wang tile. In extending tiles to cubes, the vertical faces of the cubes will be
used to ‘represent’ the 2 original dimensions, while the horizontal faces are ‘new’. This
is illustrated in Figure 6.1.

We will now adapt some other basic definitions to a three-dimensional setting.

Definition 6.2. Let C be a finite set of Wang cubes and R ⊆ Z3. A Wang-tiling of R
by C is a function f : R→ C such that adjacent faces of all cubes match.

Recall that we were able to make the requirement for matching colors more formal by
introducing color functions in Notation 2.4. We can naturally extend this formalism by
adding color functions ft and fb for the top and bottom colors respectively. (And, of
course, using functions on Z3) Again, it should be clear we are not allowed to rotate or
reflect cubes.

As we will only be dealing with Wang-tilings, we will often abbreviate this simply to
‘tiling’. By omitting R and just saying f is a tiling by C, we mean to say the subset
R ⊆ Z3 is the whole of Z3.
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Figure 6.1: A Wang Tile (w, n, s, e) (left) and a Wang cube (w, n, s, e, t, b) (right)

Definition 6.3. Let C be a finite set of Wang cubes and f a tiling by C. f is called
periodic with period (a, b, c) with (a, b, c) ∈ Z3 \ {(0, 0, 0)} if for all (x, y, z) ∈ Z3 :
f(x, y, z) = f(x+a, y+ b, z+ c). f is called aperiodic if it is not periodic for any period.

It is obvious that there exist periodic tilings on Z3. For example, Z3 can be tiled
periodically by the singleton set containing the tile (w, n, n, w, t, t) (shown in Figure
6.2), as opposing sides have the same color. This tiling would have, for example, period
(1, 1, 1).

w

n

n

w

t

t

Figure 6.2: A single Wang cube that can be used to periodically tile Z3

Definition 6.4. A finite set of Wang cubes C is aperiodic if there exists a tiling of Z3

by C, but no tiling is periodic.

As with the 2-dimensional case, it is not at all obvious such an aperiodic set of cubes
exists. One may intuitively try to stack aperiodic 2-dimensional tilings on top of each
other, but it is not clear how this should be done to force aperiodicity.

Example 6.5. We could construct the following set of Wang cubes:

C13 = {(w, n, s, e, w,w) | (w, n, s, e) ∈ T13}
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Every layer of this tiling is aperiodic (as it necessarily corresponds to a 2-dimensional
tiling by T13), but as we can stack the same layer on top of itself, we could easily create
a tiling with period (0, 0, 1). Moreover, we can see the only way a tiling can be created
is by repetition of one layer.

6.2 Triply periodic tilings

Before we will turn our attention to aperiodic sets of Wang cubes, we will explore a
subtle difference between tilings in 2 and 3 dimensions. The goal is to illustrate that
the transition is not seamless and emphasize we must carefully construct a set of cubes
for it to be aperiodic.

In the 2-dimensional setting, we introduced a variant to periodic tilings: doubly periodic
tilings (Definition 2.7). Though we have proven that a set of Wang tiles having a doubly
periodic tiling is not a stronger property than regular periodicity (Lemma 2.9), it has
still been a useful tool to us.

The notion of double periodicity can be extended to the 3-dimensional setting: a tiling
is periodic over 2 axes. There is also a 3-dimensional ‘equivalent’, concerning all 3
axes:

Definition 6.6. Let C be a finite set of Wang cubes, f a tiling by C and a, b, c ∈ Z\{0}.
f is called triply periodic with first period a, second period b and third period c if for
all (x, y, z) ∈ Z2 : f(x, y, z) = f(x+ a, y, z) = f(x, y + b, z) = f(x, y, z + c)

From the definition, a triply periodic tiling may seem like the 3-dimensional variant
to doubly periodic tilings and thus sharing the same properties. However, there is a
difference in behaviour. Recall that in the 2-dimensional setting, the existence of a
periodic tiling implied the existence of a doubly periodic tiling. This property is not
carried over to the 3-dimensional equivalent: the existence of a periodic tiling does not
imply the existence of a triply periodic tiling. The following lemma is a reformulation
of this claim, which we will prove with a counterexample.

Lemma 6.7. Let C be a finite set of Wang cubes and f a periodic tiling of Z3 by C,
then there need not exist a triply periodic tiling of Z3 by C.

Proof. Recall the example given in Example 6.5. As stated, there exist periodic tilings
by this set. Assume there also exists a triply periodic tiling f with first, second and third
periods a, b and c: for all (x, y, z) ∈ Z holds f(x, y, z) = f(x+ a, y, z) = f(x, y+ b, z) =
f(x, y, z + c).

Now, by fixing a value on the third axis, we can construct a 2-dimensional tiling g : Z→
T13 with the following definition:

g(x, y) = (w, n, s, e) ⇐⇒ f(x, y, 0) = (w, n, s, e, s, s)

By the triple periodicity of f , we see that for g holds: g(x, y) = g(x+a, y) = g(x, y+ b),
making g a doubly periodic tiling. In particular, g is periodic. However, g is a tiling by
T13, contradicting Theorem 5.5. By contradiction, we have proven the claim.

From this result, it should be clear that the 3-dimensional setting is more intricate than
the 2-dimensional setting we’ve explored so far. However, there is nice property that
3-dimensional tilings do have:

Lemma 6.8. Let C be a finite set of Wang cubes. If there exists a doubly periodic tiling
of Z3 by C, then there also exists a triply periodic tiling of Z3 by C.
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a

b

k

Figure 6.3: An a-by-b-by-k repeatable block(white). a-by-b layer of gray colored blocks
is the same as bottom a-by-b layer.

Proof. Let C be a finite set of Wang cubes and f a doubly periodic tiling of Z3 by C, with
periods a and b. We may assume f is periodic in the first and second axes, the strategy
will be analogous otherwise: for all (x, y, z) ∈ Z3 holds f(x, y, z) = f(x + a, y, z) =
f(x, y + b, z).

We may also assume a, b > 0 (if not, we can mirror our approach in the appropriate
axis)

Similar to the proof of Lemma 2.9, we will construct a block of several cubes that can
be placed next to and stacked on top of itself. Because C is finite, there are but finite
ways to tile a section of a-by-b cubes. Thus, there must be a section of a-by-b cubes
(starting at some (xS , yS , zS) ∈ Z3) with a copy of the section lying some k ∈ N above
it (see Figure 6.3). This lets us create a repeatable a-by-b-by-k block.

We finish the proof by constructing an explicit triply periodic tiling g from f :

g : Z3 → C : (x, y, z) 7→ f(xS + (x mod a), yS + (y mod b), zS + (z mod k))
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We can now see that g is indeed triply periodic:

g(x, y, z) = f(xS + (x mod a), yS + (y mod b), zS + (z mod k))

= f(xS + (x+ a mod a), yS + (y mod b), zS + (z mod k))

= g(x+ a, y, z)

The other arguments are analogous. We conclude that indeed, if there exists a doubly
periodic tiling of Z3 by C, there also exists a triply periodic tiling of Z3 by C.

6.3 The XOR-automaton

We will now take a brief look at cellular automata. Though there is a vast body of
literature regarding cellular automata theory, we will only state that which is relevant
to us, even limit ourselves to one automaton. For a more precise and in-depth discussion
of this automaton, we refer to Culik and Dube’s ‘Fractal and Recurrent Behaviour of
Cellular Automata’ [6].

Cellular automata are used to model complex systems with local interactions. They
consist of a grid of cells, a set of possible states and local rules. Each cell is assigned a
state. Using the cell’s neighbourhood, its current state and the rules, a new state can
be assigned to a cell. This is simultaneously done to all other cells. This process can be
repeated, each iteration called a ‘step’.

Step 1: 1
Step 2: 1 1
Step 3: 1 0 1
Step 4: 1 1 1 1
Step 5: 1 0 0 0 1
Step 6: 1 1 0 0 1 1

Figure 6.4: An XOR pattern

Figure 6.4 shows a pattern that may be familiar. It is often used to describe a XOR or
modulo 2 pattern. We will now describe the XOR-automaton, that aims to capture this
behaviour in a formal way.

• The set S = {0, 1} represent the possible states

• The grid of cells is a bi-infinite strip. This can be viewed as a function g : Z→ S
which assigns a state to each position.

• Let gi : Z→ S denote the grid at step i (i ∈ N). The interaction rule is as follows:

gi+1(z) = gi(z)⊕ gi(z + 1)

Here, the symbol ⊕ is the XOR symbol, which in this case behaves like mod2.

By placing the consecutive steps below each other, a pattern can be spotted. This is
illustrated in Figure 6.5. The relation to Figure 6.4 can be seen by ‘tilting’ the pattern
and ‘ignoring’ excess 0s.

In these figures, input 1 is used, meaning that one random cell was in state 1 in the first
step. Other input sequences (words of 0s and 1s) can be used too. The XOR-automaton
has an important property related to its input, which is formulated in Lemma 6.9.
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Step 1: . . . 0 0 0 0 0 0 0 0 1 0 . . .
Step 2: . . . 0 0 0 0 0 0 0 1 1 0 . . .
Step 3: . . . 0 0 0 0 0 0 1 0 1 0 . . .
Step 4: . . . 0 0 0 0 0 1 1 1 1 0 . . .
Step 5: . . . 0 0 0 0 1 0 0 0 1 0 . . .
Step 6: . . . 0 0 0 1 1 0 0 1 1 0 . . .
Step 7: . . . 0 0 1 0 1 0 1 0 1 0 . . .
Step 8: . . . 0 1 1 1 1 1 1 1 1 0 . . .

Figure 6.5: First steps of the XOR-automaton with input 1

Lemma 6.9. Let w be a finite sequence of 0s and 1s, and let n be the smallest power of 2
greater than or equal to the length of w. Let wn denote the sequence of length n that is w
with 0s appended to the left. Given input sequence . . . 00wn00 . . . , the XOR-automaton
produces the sequence . . . 00wnwn00 . . . in no fewer steps than n.

We will not prove this property, but refer to Culik and Dube’s work in [6]. We can verify
the property for the example shown in 6.5: input wn = 1 is repeated after 1 step, input
wn = 0101 is repeated after 4 steps, etc. (We use wn so that any sequence w can be
used)

One should note: the row of cells from the XOR-automaton is a bi-infinite sequence as
introduced in Definition 3.1. Were we to put the rows of cells from the XOR-automaton
below each other, the resemblance to Z2 becomes clear. This motivates a new question:
can we capture the behaviour of this automaton using Wang tiles? Just like we did
using balanced number sequences, the sequences of cell-states can encode the colors of
the top and bottom edges of tiles. The colors on the left and right edges can be chosen
to our liking.

We claim the set of 4 Wang tiles X = {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1)}, shown
in Figure 6.6, captures the behaviour of the XOR-automaton.

0
0

0
0 0

0

1
1 1

1

1
0 1

1

0
1

Figure 6.6: The tiles of the set of Wang tiles X

To show X captures this behaviour, we must show that given any sequence of 0s and
1s, we can choose tiles such that this sequence can be read on the top edges and the
next step can be read on the bottom edges. It is sufficient to show we can capture the
behaviour for a sequence of 1s of arbitrary length bordered by a 0 on the left and show
these segments of tiles can be placed next to each other, because any configuration of
the XOR-automaton is a sequence of such sequences.

Our approach is as follows: let 01n denote the sequence starting with a 0 followed by
n ∈ N 1s.

• If n = 0: use tile (0, 0, 0, 0)

• If n > 0: use tile (0, 0, 1, 1), followed by n − 1 (1, 1, 0, 1) tiles, followed by a
(1, 1, 1, 0) tile. This is illustrated in Figure 6.7.

It is easy to verify that this is the only possible way these inputs can be converted to
tiles (for each combination of top and bottom color, we have but one tile). Additionally,
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Step i: 011. . . 11

Step i+ i: 100. . . 01
1 0 0 0 1

0 1 1 1 1

0 1 1 1 . . . 1 1 0

Figure 6.7: The sequence 01n converted to tiles. A different visualization of Wang tiles
is used to emphasize the relation the input sequences.

as each strip has a 0 on the leftmost and rightmost edges, these strips of tiles can be
placed next to each other.

This shows that X is indeed a suitable choice: any input for the XOR-automaton
determines a unique tiling.

It must be noted that we can applyX backwards in analogous manner to obtain ‘negative
steps’ of the automaton.

6.4 Construction of C21

In Example 6.5, we saw the following set of Wang cubes:

C13 = {(w, n, s, e, w,w) | (w, n, s, e) ∈ T13}

We could tile Z3 periodically using these cubes, but periodicity would only be possible
in one direction (the vertical direction). We will adapt this set in a way that forces
aperiodicity along the vertical axis.

In Figure 6.1, the relation between Wang tiles and cubes was illustrated: the vertical
dimension is ‘added’ to the tiles. However, we could also see a Wang cube as a combi-
nation of two (or more) 2-dimensional tiles. For a Wang cube (w, n, s, e, t, b), we refer
with ‘the horizontal cut’ to the tile from original two dimensions: (w, n, s, e). With the
‘vertical cut’ we refer to (w, t, b, e). This is illustrated in 6.8.

t

e

b

w

n

e

b

w

Figure 6.8: The vertical (left) and horizontal (right) cuts of a Wang cube (w, n, s, e, t, b)

So, when expanding the set C13 from Example 6.5 so that aperiodicity along the vertical
axis is forced, we will need to adapt the vertical cut of the cubes. We will achieve this
by ‘merging’ the tiles related to the XOR-automaton (seen in Figure 6.6) to C. Merging
can be achieved by converting the colors on the faces of the vertical cut to pairs of colors.
We will do this in such way that the tiles from T13 with a 2 on the top edge (i.e. cubes
with a 2 on the back face) simulate the XOR-automaton. We will see in the next section
why these are suited to do this.
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We will now construct the set of Wang Cubes C21, which we will prove to be aperiodic
in the following section.

Let T9 denote the set T13 \{(0′, 2, 1, 0′), ( 1
2 , 1, 1, 0

′), ( 1
2 , 2, 1,

1
2 ), (0′, 1, 0, 12 )} . Now, define

C21 := CT ∪ CX ∪ CZ , with:

• CT = {((w, 1), n, s, (e, 1), (1, 1), (1, 1)) | (w, n, s, e) ∈ T9}

This set contains 9 cubes that simulate the regular behaviour of (the associated 9
tiles of) T13 along the horizontal cuts. Again, the pairs of colors are a result of the
merging of two sets of tiles. The second bits of the cubes of CT are all 1, which
results in them not being restricted by the vertical cut, only the horizontal cut.

• CX = {((w, x), 2, 1, (w, y), (1, x), (1, x⊕ y)) | w ∈ {0′, 12}, x, y ∈ {0, 1}}

This set contains 8 cubes, representing the tiles from T13 with a 2 on the top edge
(4 cubes for each tile). The second bits of the faces of the vertical cut exactly
represent the tiles from the set X shown in Figure 6.6 (one copy of X for each T13
with a 2 on the top edge).

• CZ = {(( 1
2 , 1), 1, 1, (0′, x), (0, 1), (0, 1)), ((0′, 1), 1, 0, ( 1

2 , x), (0, 1), (0, 1)) | x ∈ {0, 1}}

This set contains 4 cubes. Note that these are the only cubes with 0s as first bit
on the top and bottom faces, with the result that cubes from CZ can be stacked
on top of each other. As a consequence, every horizontal layer must have the
same horizontal cut. This justifies a change we’ve made compared to C13 (from
Example 6.5): we do not need the w-colored horizontal faces anymore to force the
tiling to have the same horizontal cuts on every level. This is a desirable change,
as it reduces the number of colors used.

Of course, we must ensure these cubes are actually used in the tiling to use this
property. We will see this is the case in Remark 6.11.

6.5 Proving aperiodicity

In proving C21 is aperiodic, we need a yet unproven property of T13. The following
lemma formulates this property: it states that in any tiling by T13, there are sequences
of tiles with 2’s as color on the top edge of arbitrary length.

Lemma 6.10. Let f : Z2 → T13 be a tiling and N ∈ N a natural number. Then there
exists a sequence of N tiles f(x, y), f(x+ 1, y), . . . , f(x+N − 1, y) (x, y ∈ Z2) all with
2 as color of the top edge.

Proof. In this proof, we closely follow the one given for the same lemma in [7].

Let f : Z2 → T13 be a tiling of Z2 by T13. In this proof, we assume every tiling by T13 is
indeed of the form described in the proof of Proposition 5.3. More on this assumption
after this proof.

For i ∈ Z and N ∈ Z, let nN,i denote the sum of colors on the upper edges of the
sequence f(1, i), f(2, i), . . . , f(N, i):

nN,i =

N∑
k=1

fn(k, i)
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(Here we use the notation introduced in Notation 2.4) Moreover, let qi = 3 when row i
is tiled with tiles from T3 and let qi = 1

2 when row i is tiled with tiles from T ′1
2

. We first

make three observations:

• Observation 1: |nN,i − qinN,i+1| ≤ 2

This is due to the following: for every k ∈ Z:

fw(k, i) + qifn(k, i) = fe(k, i) + fs(k, i)

Summation gives us:

N∑
k=1

fw(k, i) + qifn(k, i) =

N∑
k=1

fe(k, i) + fs(k, i)

Using fw(k, i) = fe(k + 1, i), we see:

fw(1, i) + qi

N∑
k=1

fn(k, i) = fe(N, i) +

N∑
k=1

fs(k, i)

As the differences of vertical colors in T13 are at most 2, we see:

|qi
N∑
k=1

fn(k, i)−
N∑
k=1

fs(k, i)| = |fe(N, i)− fw(1, i)| ≤ 2

So using fn(k, i) = fs(k, i − 1) and the definition of nN,i, we see this observation
holds:

|nN,i − qinN,i+1| ≤ 2

• Observation 2: as the bound of the interval are 2 and 1
3 , the factor between two

numbers in that interval is at most 2/ 1
3 = 6. Thus, any product of qi’s is bounded

by 6: for any i, j ∈ Z:
qiqi+1 . . . qi+j ≤ 6

• Observation 3: Combining Observations 1 and 2, we see that for any N,m ∈ N>0:

|nN,0−q0q1 . . . qm−1nN,m| ≤ 2(1+q0 +q0q1 + · · ·+q0q1 . . . qm−1) ≤ 2(m ·6) = 12m

Let ε ∈ R>0 be an arbitrarily small number. We will show that for N sufficiently large,
there exists m such that

nN,m

N > 2− 14ε. This would be sufficient to prove this Lemma.

First, another observation:

• Observation 4: log2 3 is an irrational number. As a consequence, the set {m log2 3 mod
1 | m ∈ Z} is dense in the interval [0, 1].

For a subinterval I ⊂ [0, 1], we then see there exists M ∈ N such that for any
x ∈ R there exists m ∈ Z with 0 < m < M such that x+m log2 3 mod 1 ∈ I.

In other words: ‘for any x, we need fewer than M steps of size log2 3 to arrive
from x mod 1 in I’

(This observation is a consequence of the equidistribution theorem, for example
proven in [16])
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Now, we will choose I,N,M and x.

Let us use I = [log2(2 − 13ε), log2(2 − 12ε)] and M as described above. Let N ∈ N
with N > 12M(1 + log2 3)/ε and N large enough such that N > 1

3 − ε. This is possible
as there can never occur three consecutive 0’s as top colors of tiles from T13 ( 1

3 is the
minimum input).

For x, we use x = log2

(nN,0

N

)
. Then using Observation 4, there is m ∈ Z, 0 < m < M

such that x+m log2 3− k ∈ I (with k ∈ Z>0 and k < M log2 3). We will want m and k
to represent the number of times we multiply with 3 resp. 2

Due to the bound of our interval I, we thus see:

2− 13ε ≤ nN,0
N
· 3m

2k
≤ 2− 12ε

It must be that q0q1 . . . qm+k−1 = 3m

2k
. We will show this by contradiction:

• Assume it is not, then the product would be between 3m−1

2k+1 (division by 6) and
3m+1

2k−1 (multiplicaition by 6) as we must alternate between multiplying with 3 or

(twice) 1
2 . This would mean

nN,0

N q0q1 . . . qm+k−1 is smaller than 1
3 − 2ε or greater

than 12− 78ε.

Because m < M and k < M(1 + log2 3), we see m+ k < M(1 + log2 3). Combined
with Observation 3, we know that:∣∣∣nN,m+k

N
− q0q1 . . . qm+k−1

nN,0
N

∣∣∣ ≤ 12(m+ k)

N
< ε

So, we would have one of two options:

– Either
nN,m+k

N < 1
3 − ε, a contradiction

– Or
nN,m+k

N < 12− 79ε, a contradiction if ε is small.

We conclude that, indeed, q0q1 . . . qm+k−1 = 3m

2k
. Thus, we conclude the Lemma with

the consequence:

2− 13ε ≤ nN,0
N
· 3m

2k
=
nN,m+k

N
≤ 2− 12ε

Remark 6.11. There are but two tiles from T13 with 2 on the top edge: (1
2 , 2, 1,

1
2 ) and

0, 2, 1, 0. As these clearly cannot be placed side by side, each strip of tiles with 2’s on
the top edge is a strip of either one of these tiles. Note that these are exactly the tiles
used for the generation of the cubes from set CX .

By the this remark, cubes from CX must be used in tilings by C21, which in turn means
cubes from CZ must be used, as the cubes from CT cannot have a 0 as second bit on
the right face.

Remark 6.12. As stated in the proof, we have assumed any tiling by T13 to be one that
multiplies balanced number sequences in the interval [ 13 , 2]. However, it is not obvious
this is the case. There are two subtleties:

• As noted in Remark 4.4, we have not proven a sequential machine Mq (and thus,
tiles Tq) must multiply by q.
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• Moreover, we have not proven that any input sequence that is not a balanced num-
ber from the the interval [ 13 , 2] cannot produce a valid tiling. Sequential machines
are not restricted to reading balanced numbers as input only (for example, M ′1

2

can read the sequence . . . 00200 . . . )

Remark 6.12 describes a subtle, though fundamental gap in the proof. At this time, we
have not been able to give the proofs necessary to fill this gap. In the following, we will
use Lemma 6.10, but one should bear in mind this assumption.

We will now prove C21 is aperiodic. Again, we need to prove the existence of a tiling and
prove no tiling can be periodic. This time, we will prove these not in separate lemmas,
but in one theorem. For convenience, we denote the cubes of C21 again:

• CT = {((w, 1), n, s, (e, 1), (1, 1), (1, 1)) | (w, n, s, e) ∈ T9}

• CX = {((w, x), 2, 1, (w, y), (1, x), (1, x⊕ y)) | w ∈ {0′, 12}, x, y ∈ {0, 1}}

• CZ = {(( 1
2 , 1), 1, 1, (0′, x), (0, 1), (0, 1)), ((0′, 1), 1, 0, ( 1

2 , x), (0, 1), (0, 1)) | x ∈ {0, 1}}

Theorem 6.13. C21 is an aperiodic set of Wang cubes.

Proof. Again, we closely follow the proof given for the same theorem in [7]. We also
work with the assumptions of Remark 6.12.

For the existence of a tiling, we note the following: recall the set of cubes C13 from
Example 6.5: a horizontal layer can obviously be tiled as we would tile the 2-dimensional
plane with T13. As noted before, each layer must have the same horizontal cut. As the
horizontal faces encode an input sequence for the XOR-automaton, which can accept
any input, a tiling is possible.

Now we prove no tiling can be periodic. We have seen that in any tiling by T13, there
are sequences of arbitrary length of tiles with 2s on the top edge (Lemma 6.10). As each
horizontal layer in tilings by C21 is a tiling of Z2 by T13 (via the horizontal cuts), there
are also sequences of 2s (on the back faces) present in any tiling by C21. The cubes with
2s must all come from CX . On the left side of such sequences, there must be a cube
from CZ , as it is impossible to place CT tiles there due to those cubes not having 0s as
second bits on the left faces.

By construction of C21, the XOR-automaton is simulated on the sequences with 2s on
top of each other, bordered on the left by a vertical strip of cubes from CZ (as noted,
these can only be stacked on top of each other), forcing all layers to have the same
horizontal cut.

Lemma 6.9 states that the XOR-automaton always repeats its input in no fewer steps
than the length of the input. We can see that it would be impossible for all layers to
have a sequence of only 0s as second bits on the top side, so there is a layer that can
serve as step 1. The length of the input sequence is determined by the length of sequence
of 2s. We have seem there are sequences of 2s of arbitrary length, meaning no period
will work. This ensures aperiodicity along the vertical axis. (Note that the behaviour
of the XOR-automaton upwards from the row with the input sequence is irrelevant to
this conclusion)

Aperiodicity along the horizontal axes are ensured as the horizontal cut of a layer is
associated with a tiling by T13. This proves a tiling of Z3 by C21 cannot be periodic.

In conclusion: C21 is an aperiodic set of Wang cubes.

Corollary 6.14. There exists an aperiodic set of 21 Wang cubes using 7 colors.
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Proof. Since T13 uses 4 colors on the top and bottom edges of its tiles, C21 uses 4 colors
on its front and back faces.

For the top and bottom faces, we use only 3 colors: (1, 1), (1, 0) and (0, 1).

For the left and right faces, we use 7 colors: the original 5 colors from T13 (originating
from the 5 states of M3 and M ′1

2

), 2 of which have been split into 2 (0′ and 1
2 ) with the

addition of the second bit.

As cubes may not be rotated or reflected, we can use the largest of these numbers, 7,
for the other faces too. This creates an aperiodic set of 21 Wang cubes using 7 colors.

The results of Theorem 6.13 and Corollary 6.14 disprove Wang’s hypothesis for 3 di-
mensions, when working with the assumptions formulated in Remark 6.12.
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