
Radboud University Nijmegen

Faculty of Science

Probabilistic Model of Traversing Trees
A simplified view on Elliptic Curve Prime Proving

Name:
Student number:
Study:
Supervisors:

Vincent Koppen
4076028

Bachelor Mathematics
Dr. W. Bosma

Prof. dr. E.A. Cator

25 August 2014

Contents

1 Preface 3

2 Elliptic Curve Prime Proving 4
2.1 Elliptic Curves . 4

2.1.1 Definition . 4
2.1.2 Addition on elliptic curves 5
2.1.3 Elliptic curves and (finite) groups 8

2.2 Application of ECPP . 8
2.2.1 Prerequisites . 8
2.2.2 Proof of primality . 9
2.2.3 Optimizing . 10

3 Simplified model 12
3.1 The model . 12
3.2 Links between the model and ECPP 14
3.3 Results . 14

3.3.1 Everything fixed except for µ 14
3.3.2 Importance of n . 16
3.3.3 Cost vector and the perfect µ 17

4 Estimated cost 20
4.1 Some definitions . 20
4.2 Expected values . 20

4.2.1 Pi . 20
4.2.2 E(Yi) . 21
4.2.3 E(Xi) . 23

4.3 Expected cost . 25
4.4 Results . 26

4.4.1 First test . 26
4.4.2 Z-score . 26
4.4.3 Perfect µ . 28
4.4.4 Limits of K . 29

4.5 Influence of n . 30

References 31

5 Appendix 32
5.1 Appendix 1: Code for the model 32
5.2 Appendix 2: Code for the expected cost 34
5.3 Z-score test . 36

2

1 Preface

Ever since elliptic curves were briefly mentioned during the Cryptography course
I was interested in what they exactly were and what they could be used for.
Therefore when one of the proposal subjects for the bachelor thesis included
elliptic curves, I was immediately interested. Elliptic curves have all kind of
applications of which cryptography is one. For instance, by using elliptic curves
it is possible to offer the same security as RSA but with a much smaller key.
In this thesis we will take a look at prime proving using elliptic curves, El-
liptic Curve Primality Proving (ECPP), which currently is the fastest known
algorithm to test the primality of general numbers. Gyöngyvér Kiss, a Ph.D.
student under supervision of Wieb Bosma and Antal Járai, has made her own
implementation of this algorithm. This thesis tries to find a possible optimiza-
tion for her implementation.

At first we looked at the implementation of ECPP. Unfortunately we came
to the conclusion that it was probably too hard to make an actual model for this
implementation and we switched to a somewhat simplified model. This model
still had ties with the actual implementation, since in this model certain costs
are given to actions in the implementation of ECPP. We want to minimize the
total cost. To accomplish this, we made a script in R that calculated this cost
for different starting parameters and thereby gave us insight in the behavior of
the cost. But since probability was involved in calculating the cost, the results
could vary quite a bit for the same starting parameters. We therefore wanted
to determine the expected cost instead, which would lead to even more insight
into the behavior of the cost. With help from Henk Don, Post-doc in the Ap-
plied Stochastics group, we managed to get a very promising expected cost and
can thereby, for given starting parameters, give an clear answer to what choice
should be made.

This thesis will first take a look at what elliptic curves are and what they
are used for in Elliptic Curve Primality Proving. However, since we switched
to a simplified model in which elliptic curves aren’t involved anymore, this part
will be somewhat superficial. After that we will take a look at our simplified
model, first by actually calculating the cost and the results this gives. Lastly
we will describe how to calculate the expected cost.

3

2 Elliptic Curve Prime Proving

In this section some insight is given into Elliptic Curve Prime Proving (ECPP).
However some proofs will be left for the reader, because we switched to a dif-
ferent model and the proofs would be too much of a detour.

2.1 Elliptic Curves

This subsection makes use of [1].

2.1.1 Definition

The analyzed program is an application of ECPP. Therefore some knowledge
about elliptic curves is needed. An elliptic curve E over a field K is given by
a formula of the form:

y2 = x3 + ax+ b

with a, b ∈ K. Its discriminant, ∆, is given by:

∆ = 4a3 + 27b2

and should not be equal to zero. The final requirement is that E contains a
point O “at infinity”. It’s now possible to define the set of points on E over K:

E = {(x, y) : x, y ∈ K, y2 = x3 + ax+ b} ∪ {O}.

Example 2.1.1. E : y2 = x3 − 2x+ 2 over R

x

y

4

Notation 2.1.1. E : y2 = x3 + ax + b is the elliptic curve represented by
y2 = x3 + ax + b, this means that E = {(x, y) : y2 = x3 + ax + b} ∪ {O}.
Therefore E = {(x, y) : y2 = x3 − 2x+ 2} ∪ {O} in example 2.1.1.

2.1.2 Addition on elliptic curves

The pointO is needed to define addition on elliptic curves. Let P = (x1, y1), Q =
(x2, y2), P,Q 6= O, be points on an elliptic curve E. Then P ⊕Q = (x3, y3) can
be determined algebraically:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
where λ is given by:

λ =
y2 − y1
x2 − x1

At first this doesn’t look very straightforward, but drawing gives a much
better impression. P ⊕Q can be determined by drawing the line through P and
Q, that will (almost) always intersect with E in a third point, which we denote
by P ∗Q. Then P ⊕Q is the reflection of P ∗Q in the x-axis.

Example 2.1.2. Addition of P,Q ∈ E, with E : y2 = x3 − 2x over R. (Notice
that the shape is different from example 2.1.1, but the method will work for
both.)

y2 = x3 − 2x

x

y

P •

Q•

•P ∗Q

•P ⊕Q

5

As said before, the line through P and Q will almost always intersect a third
time. But sometimes it won’t, namely when the line through P and Q is parallel
to the y-axis. Take for example the points P ∗Q,P ⊕Q from example 2.1.2. It’s
clear that the line through P ∗Q and P ⊕Q won’t intersect with E for a third
time (algebraically we see that λ isn’t defined in this case, because we divide by
zero). So we say that this line intersects with E in the point O,which can be
seen as a point “at infinity”.

Another visually strange case is P ⊕ P , because a line through P isn’t
uniquely defined. It is however possible to determine P ⊕Q for points Q with
d(P,Q) < ε for all ε > 0. Now let ε go to zero, then the line through P and
Q will converge to the tangent to E at P . This line will cross E in exactly
one point (remember that P ⊕ P = O if the line is parallel to the y-axis). The
construction of P ⊕ P is now done the same as before.

Example 2.1.3. P ⊕ P with E : y2 = x3 − 2x over R.

y2 = x3 − 2x

x

y

P •

P ∗ P•

P ⊕ P•

In the next section we make use of the fact that the points on an elliptic
curves form a group together with the addition defined above. However we first
need to check if the group properties are indeed true for the addition on elliptic
curves.

Theorem 2.1.2. The following equations hold for the addition on elliptic curves:

1. P ⊕O = O ⊕ P = P (Identity)

2. P ⊕ (−P) = O (Inverse)

6

3. P ⊕ (Q⊕R) = (P ⊕Q)⊕R (Associativity)

4. P ⊕Q = Q⊕ P (Commutativity)

where −P = (x,−y) if P = (x, y).

Proof. I will not really prove those equalities, but make them plausible using
the visual interpretation of addition on elliptic curves over R.

1. (Identity)
Think of O as the point vertically above P at y = ∞. Then the line
through those two points will intersect with E in −P . So reflecting this
in the x-axis gives us P , hence O ⊕ P = P . Later we will see that the
addition is commutative which gives: P ⊕O = O ⊕ P = P .

2. (Inverse)
This is precisely how −P is defined, because −P is the reflection of P in
the x-axis. So the line through P and −P will we parallel to the y-axis,
hence P ⊕ (−P) = O.

3. (Associativity)
Let’s use E from example 2.1.2. Choosing P,Q,R as below gives the
following result:

y2 = x3 − 2x

x

y

Q•

P•

R
•

−(P ⊕Q⊕R)•

−(P ⊕R)
•

(P ⊕R)
•

•−(Q⊕R)

•Q⊕R

Because of the choice of P,Q,R ∈ E, it follows that Q = P ⊕ Q ⊕ R.
Clearly P ⊕ (Q ⊕ R), the intersection of the blue line with E, is equal

7

to (P ⊕ Q) ⊕ R, the intersection of the red line with E. They both
deliver the same −(P ⊕ Q ⊕ R), thus also give the same P ⊕ Q ⊕ R. So
P ⊕ (Q⊕R) = (P ⊕Q)⊕R.

4. (Commutativity)
The line through P and Q stays the same in both cases, thus P ∗Q = Q∗P .
Hence it immediately follows that P ⊕Q = Q⊕ P .

2.1.3 Elliptic curves and (finite) groups

From the results above, it’s clear that the points of an elliptic curve together
with the addition form an abelian group with unit element O.

Theorem 2.1.3. Let L ⊂ K be a field and suppose that an elliptic curve E
over K is given by an equation of the form E : y2 = x3 + ax+ b with a, b ∈ L.
Let E(L) denote the set of points of E with coordinates in L, i.e.

E(L) = {(x, y) ∈ E : x, y ∈ L} ∪ {O}.

Then E(L) is a subgroup of E over K, thus E(L) ≤ E(K).

Corollary 2.1.4. Suppose p is prime. Then Fp is a finite field with p elements.
Suppose E : y2 = x3 +ax+b over K, then E(Fp) is equal to E : y2 = x3 +ax+b
mod p, which makes E(Fp) a finite subgroup of E(K).

Example 2.1.4. This corollary tells us that if

E1 : y2 = x3 + x+ 1 mod 37

then E1 = E(F37) is a subgroup of E, where E : y2 + x+ 1, over R.

2.2 Application of ECPP

This subsection is based on results from [2].

2.2.1 Prerequisites

Before the specific application of the ECPP can be explained, we need some
theorems.
Remark: Suppose we have n ∈ N and E : y2 = x3 + ax + b mod n. If n
is prime, then E = E(Fn) is a group. However if n is not prime, then we are
looking at an elliptic curve over a ring (instead of a field). Luckily it’s possible
to define a ”pseudo-addition” over such a elliptic curve that behaves the same as
the normal addition, but the points now won’t form a group. Therefore E(Zn)
doesn’t have to be a group if n not prime.

8

Theorem 2.2.1. Let n0 ∈ N with gcd(n0, 6) = 1. Let E be an elliptic curve
over Zn0 , where gcd(n0,∆(E)) = 1, and let m,n1 ∈ N with n1|m. Suppose
that for every prime factor q of n1 there exists P ∈ E such that mP = 0E and
m
q P 6= 0E . Then for all prime factors p of n0 we have #E[Z/pZ] ≡ 0 mod n1.

Corollary 2.2.2. Suppose that the hypotheses of Theorem 2.2.1 are satisfied.
Then:

n1 > (n
1
4
0 + 1)2 ⇒ n0 is prime.

This means that n1 has to be slightly bigger then
√
n0. The importance of this

corollary will become clear in the next section.

Miller-Rabin primality test In this test a certain a is chosen, which has to
meet some requirements. It is proven that for an odd composite number n at
least 3

4 of all the possible a prove that n is indeed composite. So in other words if
you run the Miller-Rabin primality test once for an odd n and it doesn’t prove
that n is composite, there is a probability of at most 1

4 that n is composite.
Running this test again for a different a will decrease this probability to 4−2.
Running the test k times means the probability that n is composite is at most
4−k. So n will become “more probably“ prime every time the Miller-Rabin
primality test is done for different a.

2.2.2 Proof of primality

Suppose we want to proof that a probable prime N is indeed prime. This can
be done using elliptic curves. The method that is used works recursively. The
starting point is a probably prime N = n0 and the endpoint is a nk that’s certain
to be prime, for example because it’s in a list of known primes. The method used
gives a sequence n0, n1, . . . , nk such that ni, ni+1 fulfill corollary 2.2.2 (replace
n0 and n1 with respectively ni and ni+1), which proves that N = n0 is indeed
prime (this still needs some work, but won’t be discussed here).

Recursive step The recursive step is the most important to understand and
will be described below. Note however that a lot of details are left out.

Suppose that we are at level i, this means that we already have found
n0, n1, . . . , ni, such that every pair of consecutive numbers fulfill the conditions
of corollary 2.2.2 and are all probably prime. We now want to find ni+1, such
that ni, ni+1 fulfill corollary 2.2.2 and ni+1 is probable prime.
First we need to make a list of primes up to some upper bound s = s(i), next
make a list of elliptic curves modulo ni with a discriminant up to a certain bound
d = d(i), where all the discriminants must factor into a product of primes from
the prime list. All those elliptic curves represent finite subgroups of order mj .
So for different elliptic curves, we get different m. All these m are however
bounded by: n0 − 2

√
n0 ≤ m ≤ n0 + 2

√
n0. Let’s say there is a list of these m:

m1,m2, . . . ,ml. We now hope that at least one of those mj factors in a special
way, namely b · ni+1,j = mj , where b will factor into the product of primes

9

from the prime list and ni+1,j a probable prime according to the Miller-Rabin
primality test.

Example 2.2.1. Visual view of the process. In this case m1,m4,m6 appeared
to factor as wanted. All the other mj did not.

ni

m11m10m9m8m7m6

ni+1,6

m5m4

ni+1,4

m3m2m1

ni+1,1

The next step is to choose one of the ni+1,j and add it to the list as ni+1.
We now have a list n0, n1, . . . , ni, ni+1 and are at level i+ 1.

2.2.3 Optimizing

Even when describing the process without too much detail, a lot of variables /
choices appear. To name a few:

s = s(i)
This is one of the clearest variables. Much depends on this upper bound
for the primes. Not only is it important for the discriminants we use, but
it also plays a big role in determining the next ni+1. If s is very big, there
will (probably) be a lot more ni+1,j to chose from. Yet it will take much
longer to find the factor b. Choosing s small will be quicker to check for
a factor b, however it will also become unlikelier to find a ni+1,j .

d = d(i)
For d it’s almost the same as with s. Choosing d big would mean checking
a lot of elliptic curves, choosing d small would result in just a few m and
a small chance of finding a ni+1,j that fits the conditions.

Choice of ni+1

As seen in example 2.2.1 there can be more than one candidate. So we
need to determine which of the possibilities is the best. The most straight-
forward choice would be to pick the smallest ni+1,j . However it’s not clear
if maybe some numbers make better choice than others. It is also possible
that all the ni+1,j are almost as big as ni. In this case we should ask
ourselves whether we choose such a ni+1,j or decide to keep searching to
find a better candidate.

10

No ni+1,j

It’s also possible that no suitable ni+1,j are found. In this case there is an
important choice to make. There are two possibilities:

More effort One of the possibilities is to make more effort to find a
suitable ni+1,j . This can be done by make s bigger or trying different
elliptic curves, thus making d bigger. This will however result in some
sort of new upper bound, because it isn’t possible to keep changing
s and d. This new bound should be the real upper bound. If this
bound is reached s and d won’t change and we have to backtrack, as
explained below.

Backtrack Instead of trying it for this ni, it’s also possible to go back.
Suppose that originally there were three ni,j and we chose one of
those as ni. It’s possible to go back and select one of the ni,j that
hasn’t been tried yet. For the chosen ni,j we may find a suitable
ni+1,j , without the need of changing s, d.

This choice is very important in the complete process and not straightfor-
ward. It could vary a lot depending on the situation, but it’s hard to get
data that would give insight in this decision.

Probable prime
Every ni for 0 ≤ i ≤ k is a probable prime. However we need to decide
how certain we want to be that ni is indeed probable prime. Is running
the Miller-Rabin primality test a few times enough or do we have to run
is atleast a thousand times?

Data
One of the biggest problems was the lack of data. In the best case scenario,
we would know the complexity order of specific parts in the process. For
instance the order of the Miller-Rabin test is known, but it appeared
that this order was the biggest of them all (while in reality it’s a (fairly)
quick test). So while order does say something about the time it takes to
complete a certain task, it’s not the best way to determine what part of
the process will actually take the longest.

11

3 Simplified model

3.1 The model

This model will, like the application of ECPP viewed before, work recursively.
The end result of this model will be a tree that reaches a certain level.

Example 3.1.1. This is a possible output of the model. This tree reaches level
6.

•

•••

•

••

•••

•

•

•

•

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

In the following there will be referred to (the number of) children on
level i; this is the same as the number of nodes on a certain level in the tree.
So in the example above level 0 has 1 child, level 1 has 4 children, level 2 has 2
children, etc.

Starting point The starting step of this model is one child at level 0, the
model will stop if level n is reached. This n has to be set at the beginning and
in our model will almost always be n = 300.

Recursive step Suppose level i has k children, with k > 0. Let xi denote
the number of unused children, thus xi = k. To reach level i + 1, we need to
pick one of the children on level i. This child can be used to reach level i + 1.
A child on level i can create xi+1 children on level i+ 1, where xi+1 ∼ Poiss(µ)
and µ given. So now xi = k − 1, because one child is used to determine xi+1.
Suppose xi+1 > 0, then level i+1 is reached and we are done with the recursive
step. If xi+1 = 0 we will need to backtrack.

12

Backtracking Suppose that we are on level i with xi ≥ 1 and we choose one
of the children. This child will now create xi+1 children on level i+ 1. However
if xi+1 = 0 we can’t continue to level i + 1, because there aren’t any children
there. Now that xi ≥ 0 there are two possibilities:

xi > 0
While xi > 0, there are still unused children on level i. So we can pick one
of those unused children and determine xi+1 for this child. If xi+1 > 0,
then we reached level i + 1. If xi+1 = 0 again, then try again if xi > 0,
else xi = 0 as below.

xi = 0
Since all the children are used on level i, there is no other choice than to go
back to level i− 1. Since xi−1 ≥ 0, there are again the same possibilities.
So if xi−1 > 0, then try to reach level i + 1 again by determining xi and
xi+1, if xi > 0. If however also xi−1 = 0, then go back to level i − 2.
Repeat this process until some xj > 0, with 1 ≤ j ≤ i, or until level 0 is
reached. In the last case, the tree is exhausted: xi = 0 for all 0 ≤ i ≤ n.
So we will have to start over by setting x0 = 1 and try again to reach level
n.

Optimizing Instead of optimizing the run-time of this model, there are cer-
tain costs assigned to different parts of the model and the goal is to get some
insight in how this cost behaves for different µ.

Definition 3.1.1.

� K is the cost for making a child. So every child, used or not, will cost K.

� C is the cost that has to be paid to go to the next level.

So in example 3.1.1 the step from level 2 to level 3 will cost: C + 2 · K.
Note that during backtracking it could happen that the tree was completely
exhausted and we had to start over. The cost made until then will however be
remembered. If µ ≈ 1 then there will be a lot of backtracking, so in this case C
will play an important role in the total cost. If µ > 3, almost no backtracking
will be involved, since for µ = 3:

P (xi = 0) =
e−µ · µ0

0!
= e−µ ≈ 0.05.

On the other hand, there will be many unused children that all cost K, so in
this case K will be a big influence for the total cost.

Remarks

� Since there are only two cost variables, the actual value of C,K aren’t
that important. Instead we can look at the ratio C : K. Therefore from
now on we set C = 1 and K will vary to see the influence of different
ratios.

13

� We will only look at 1 ≤ µ ≤ 5 because µ < 1 will almost never reach level
300, so the cost will be very high except for some really absurd ratios. The
same goes for µ > 5, there will be too much unused children, so except if
K ≈ 0 it will not be useful to look at.

� If there are multiple children on a certain level, we will have to choose one
of those. We will always pick from left to right.

� The code for the model is written in R and can be found in appendix 5.1.

3.2 Links between the model and ECPP

This new model is of course not chosen at random, there still are a lot of links
between the two. The most obvious is the level structure, both work in a
recursive way. It is however good to notice that in the model the levels are all
of the same size, while in the application of ECPP this isn’t true, as already
explained. The children on level i of course correspond to the ni,j found using
ECPP, we use the Poisson distribution to determine xi. We actually don’t know
for sure if this really is the case, but since there was no real data we had to
choose something. The cost we chose represents different parts of the recursive
step in the application of ECPP. Globally speaking K symbolizes the time it
takes to find the new ni,j from the mj , and C the time it takes to find the right
elliptic curves to test.

3.3 Results

It’s good to mention that the actual cost for one specific µ isn’t important, but
the difference between the costs for different values of µ is. Thus the results
below will always be for multiple µ at the same time.

3.3.1 Everything fixed except for µ

The simplest case is where we simulate the cost with parameters C = 1,K =
15, n = 300 and 1 ≤ µ ≤ 5.

14

Figure 1: Simulated cost for C = 1,K = 15, n = 300 and 1 < µ < 5.

Some remarks about this plot

1. There are µ with cost zero. This of course isn’t true, because the cost is
atleast n · (C +K). The µ with cost zero are actually the most expensive
of them all. Their value is changed to zero to make the scale of the plot
better. If they weren’t set to zero, the cost-axis would have a much bigger
scale and a lot of detail would be lost as can be seen below:

Figure 2: The upper plots show the results without editing the expensive points,
while the lower plot is made after editing.

Without editing the plot looks almost like a constant line. Rescaling the

15

figure through editing actually shows that this is wrong, since the cost
at µ = 5 appears to be almost twice the cost at µ = 1.5. It is of course
possible to remove those points completely from the plot, but it is still of
some use to know how many points are too expensive and for what µ they
appear.

2. It is clear that the cheapest µ is somewhere between 1 < µ < 2. If µ ≈ 1
the cost varies too much because of all the backtracking, while µ ≈ 2 is
too expensive because of all the unused children.

3. For µ > 2 the plot looks like a straight line, which is somewhat to be
expected. As said before there won’t be much backtracking if µ > 2, so
C will be paid n times. Every level has an expected value of µ children
which all cost K. So this results in:

cost(µ) = n · (C +K · µ).

Plotting this line confirms that this line is approached as µ increases.

Figure 3: Same plot as figure 2, in which the red line, given by cost(µ) =
n(C +Kµ), is added.

3.3.2 Importance of n

Now that the base worked I was interested in what kind of difference n makes.
Usually we set n = 300 in our model, because this seemed like a good estimate
of levels in the real program. However it’s good to know what the consequences
are of changing n.

16

Figure 4: C = 1,K = 15, 1 ≤ µ ≤ 5.

For small n we see a lot of scattering and it’s not really obvious what the best
µ is, however for n = 100, n = 300 and n = 1000 the differences are smaller. It
is nevertheless clear that for bigger n the plot becomes less scattered, especially
for 1 ≤ µ ≤ 2. But since ECPP works for big primes and situations in which
the conditions of corollary 2.2.2 are satisfied, n will probably never be under
100. If the actual level to be reached appears to be bigger than n = 300, then it
will only become clearer what value of µ is perfect. However if the actual level
is smaller then n = 300, it will become harder to give a clear answer to what
the best µ is. All in all the shape of the plot doesn’t really change, so while it
might become less accurate it’s still possible to make some educated guess.

3.3.3 Cost vector and the perfect µ

As said before, it isn’t really clear what the influence is of certain choices in the
application of ECPP. So until now the ratio between the costs C and K were
fixed, yet there is no real reason why this should be a ratio of 1 : 15. So instead
of looking at a fixed ratio, we will look at a vector K which entries are different
values of K, where we have chosen 0.1 ≤ K ≤ 20. This will result in different
ratios. Of course, this can still be plotted, but the image won’t give us that
much information.

17

Figure 5: C = 1 , 0.1 ≤ K ≤ 20, 1 ≤ µ ≤ 3.

The colors are added to make it somewhat more visually attractive, but they
still don’t show what the best µ is for different K.

Best µ Luckily, the program now has a matrix with the costs for all µ and K.
Therefore it’s possible to select the cheapest µ for all elements of K. Plotting
those µ gives a much better understanding how µ changes for different K.

Figure 6: Plot of the cheapest µ for every value that can appear in K.

It’s now clear that K has a big influence on the best µ. Therefore it may
be possible to optimize the application of ECPP a bit, if we obtain some more
insight about the ratio between C and K. But since the model and ECPP vary
quite a bit, we don’t know this for sure. Before we can actually say something,

18

it would be much better to have an estimate of the cost instead of actually
having to calculate the cost every time. Not only is this faster, but it gives a
good estimate. Because sometimes one µ is “lucky” and is very cheap to reach
level 300, while normally it’s more expensive. So this could influence finding the
best µ quite a bit, which could result in picking a µ that normally takes very
long to reach level 300. This will be discussed in the next section.

19

4 Estimated cost

4.1 Some definitions

Before we can determine the estimated cost, we need some new definitions.

Definition 4.1.1. A tree is said to reach level n, if there is only one root needed
to get to level n. So the tree will never be completely exhausted before level n
is reached.

Now that we have this definition, it’s possible to define two type of trees.
These type of trees will play a very important role in estimating the cost.

Definition 4.1.2. A tree is said to be an Xi-tree if it reaches level i. If it does
not reach level i, it’s called a Yi-tree.

Notation 4.1.1. From now on E(Yi) will denote the expected cost for a Yi-tree,
likewise E(Xi) the expected cost for an Xi-tree.

Notation 4.1.2. We will denote the expected number of children on level i that
are Xi-trees with xi. Likewise yi will denote the expected number of children
on level i that are Yi-trees.

Both xi−1 and yi−1 will depend on whether they are in an Xi-tree or a Yi-
tree. We assume that being on the root of a tree that reaches level n is the same
as saying that that root will get at least one child that reaches level n, therefore
x1 ≥ 1 in that case.

Definition 4.1.3. The probability for picking an Xi-tree the first time is de-
noted by Pi. The probability for picking a Yi-tree the first time is denoted by
Qi. Note that Qi = 1− Pi.

Suppose that Pi can be calculated and there are good estimates for the cost
of an Xi- and Yi-tree, then it’s possible to give a good estimate for the costs of
reaching level i. So it’s important to say something about all those values.

4.2 Expected values

4.2.1 Pi

It is easier to determine Qi and calculate Pi with Pi = 1−Qi.

Theorem 4.2.1. Let µ be the expected value for the number of children, then:

Qi =

{
0 if i = 0

e−µeµ·Qi−1 else

Proof. We distinguish two cases:

i = 0
Q0 is the probability of picking a tree that doesn’t reach level 0. However,
since every tree starts at level 0 this probability is equal to 0. So Q0 = 0.

20

i > 0
If i > 0, then i = 1 or i > 1.

i = 1
If i = 1, then a tree is a Y1-tree if it doesn’t have any children on level
1, because otherwise it would reach level 1. The probability of not
getting any children is e−µ, so Q1 = e−µ, since there is always exactly
one child on level 0. And this gives the same Q1 as the formula does:

Q1 = e−µ · eµ·Q0 = e−µ.

So the formula is true for i = 1

i > 1
For i > 1 we also look at the starting point of a Yi-tree. The child on
level 0 is now allowed to get children on level i− 1, however all these
children should be Yi−1-trees. The probability of getting j children

that are all Yi−1-trees is equal to e−µ·µj
j! · Qji−1. Summing over all

possible values j will give us Qi:

Qi =

∞∑
j=0

e−µµj

j!
·Qji−1

= e−µ ·
∞∑
j=0

(µ ·Qi−1)j

j!

= e−µ · eµ·Qi−1 .

The formula for Qi also holds for i > 1, which means that it’s true
for all i ∈ N.

Using this theorem it’s possible to calculate both Qi and Pi, which will be
often used later on.

4.2.2 E(Yi)

To determine the estimated cost for a Yi-tree, it’s important to say something
about xi, yi. Since a Yi-tree will never reach level i, the root of such a Y − i-tree
will never get a Xi−1-tree as child, so xi−1 = 0. It can however get a Yi−1-tree
as child, if i > 1, which means yi−1 doesn’t have to equal zero. It’s easily seen
that xj = 0 for 0 ≤ j < i, however yj can be bigger than zero as long as j > 1.
So it’s important to determine yj given the fact that we are in a Yi-tree.

Theorem 4.2.2. It holds that yi = Qi · µ.

Proof. There are µ children to be expected on level i and the probability of such
a child being a Yi-tree is Qi. Therefore yi = Qi · µ.

21

Let’s look at an example of a Y3-tree and determine its cost.

Example 4.2.1. Possible Y3-tree

Y3-tree

Y2-tree

∅

Y2-tree

Y1-tree

∅

Y2-tree

Y1-tree

∅

Level 0

Level 1

Level 2

Level 3

The cost can be determined by looking at the cost per level:
Level 0→ Level 1: C + 3 ·K
Level 1→ Level 2: 3 · C + 2 ·K
Level 2→ Level 3: 2 · C
Total cost: 6 · C + 5 ·K.

It’s possible to generalize this example to estimate the cost of a random
Yi-tree. The cost can be determined recursively: the total cost is the cost to
reach level i + 1 from level i, C, plus K times the number of children on level
i + 1 plus the cost of all those individual children on level i + 1. Generalizing
this with the expected cost results in the following theorem:

Theorem 4.2.3.

E(Yi) =

{
C if i = 1

C + yi−1 ·K + yi−1 · E(Yi−1) else

Proof. There are two cases:

1. i = 1
A Y1-tree doesn’t get any children, since Q0 = 0. So C will have to be
paid to check if there are indeed no children, but that’s all.

2. i 6= 1
It’s possible for the child on level 0 to get children on level 1 if i 6= 1,
however all those children have to be Yi−1-trees. So the cost made are C
to move one level down, K times the expected children, yi−1, and yi−1
times the expected cost of an Yi−1-tree, E(Yi−1). Combining these costs
we obtain

E(Yi) = C +K · yi−1 + yi−1 · E(Yi−1)

as desired.

22

4.2.3 E(Xi)

The starting point of an Xi-tree can get both tree-types as children, so there
is some more to be done in comparison with the Yi-tree. Notice that one of
the children of the starting point in an Xi-tree, should be an Xi−1-tree, which
means xi−1 ≥ 1. Theorem 4.2.2 still holds for yi.

Example 4.2.2. Possible X3-tree.

X3-tree

Y2-treeX2-treeX2-tree

X1-tree

X0-tree

Y1-treeY1-tree

Level 0

Level 1

Level 2

Level 3

Note that an Yi-tree will only add to the cost, except for the K that every
child costs, if it’s on the “left” from the first Xi-tree on level i. So the Y2-tree
on level 1 in example 4.2.2 is “free”, because the program reached level 3 before
that child was needed. However the two Y1-trees on level 2 aren’t free, because
they both are on the left side of the first X1-tree.

Yi-trees inside an Xn-tree Suppose that we are on a level i and of all the
children x are Xi-trees and y are Yi-trees. The possible places for a Yi-tree are:
left of all Xi-trees, between two Xi-trees or right of all the Xi-trees. So in total
there are x+ 1 possible places of which one is to the left of all the Xi-trees. So
we are interested in

E
(

1

1 + xi
: xi ≥ 1

)
.

23

Theorem 4.2.4.

E
(

1

1 + xi
: xi ≥ 1

)
=

1

λi−1
− 1

eλi−1 − 1

where λi = Pi · µ.

Proof. Without the requirement that xi ≥ 1, we would expect xi = Pi · µ
(similar to Theorem 4.2.2. So the expected value for xi, without the condition
that xi ≥ 1, is λ. Therefore:

E
(

1

1 + xi
: xi ≥ 1

)
=

E
(

1
1+xi

∩ xi ≥ 1
)

E(xi ≥ 1)

=

∑∞
j=1

1
1+j ·

e−λλj

j!

1− e−λ

=
e−λ

1− e−λ
· 1

λ
·
∞∑
j=1

λj+1

(j + 1)!

=
e−λ

1− e−λ
· 1

λ
·
∞∑
k=2

λk

k!

=
e−λ

1− e−λ
· 1

λ
· (eλ − λ− 1)

=
e−λ(eλ − 1)

1− e−λ
· 1

λ
− e−λ

1− e−λ

=
1

λ
− 1

eλ − 1
.

Now that we have this estimation it’s possible to estimate the cost of all the
trees that don’t make it to the desired level inside a tree that is certain to reach
this level. This cost is

yi−1 ·
(

1

Pi−1 · µ
− 1

ePi−1·µ − 1

)
· E(Yi−1)

since we expect yi−1(1
Pi−1·µ −

1
ePi−1·µ−1) Yi-trees before the first Xi-tree.

Expected number of Xi-trees per level We now know everything that we
need about the Yi-trees, but we still need to determine the expected number of
Xi-trees per level. Normally this would be equal to Pi · µ. Since xi ≥ 1 we will
have to look at the conditional probability.

Theorem 4.2.5. Suppose xi ∼ Poiss(µ), λ = Pi · µ, then

E(xi : xi ≥ 1) =
λ

1− e−λ
.

24

Proof.

E(xi : xi ≥ 1) =
E(xi ∩ xi ≥ 1)

E(xi ≥ 1)

=
1

1− e−λ
·
∞∑
i=1

i · e
−λλi

i!

=
e−λ

1− e−λ
· λ ·

∞∑
i=1

λi−1

(i− 1)!

=
e−λ

1− e−λ
· λ · eλ

=
λ

1− e−λ
.

This gives us all the information we need to make an estimate for the cost
of an Xi-tree.

Expected cost Xi-tree Combining everything described above gives the fol-
lowing theorem:

Theorem 4.2.6.

E(Xi) =

0 if i = 0

C +K ·
(

λi−1
1− e−λi−1

+ yi−1

)
+ yi−1 ·

(
1

λi−1
− 1

eλi−1−1

)
· E(Yi−1)

+ E(Xi−1)

else

where λi = Pi · µ.

Proof. We actually don’t have to prove anything, since this theorem combines
the facts already proven above. The key idea is that we need to pay C to go
one level down, K times the number of expected children, pay all the Yi−1-trees
at the left of the first Xi−1-tree and pay the Xi-tree.

4.3 Expected cost

Number of Yn-trees before first Xn-tree The number of Yi-trees before the
first Xi-tree can be determined using the geometric distribution. This will tell
us the number of failures before the first success. In this case failure is picking
a Yn-tree, while success is picking an Xn-tree. The probability for picking an
Xn-tree is Pn, so using the geometric distribution we expect to succeed in 1

Pn

times. So there are 1
Pn
− 1 Yn-trees to be expected before the first Xn-tree.

25

The estimated cost Combining everything results in the following formula
for the expected cost:1

cost =

(
1

Pn
− 1

)
· E(Yn) + E(Xn).

4.4 Results

4.4.1 First test

So now that we can calculate the expected cost, it is much easier to pinpoint
a cheap µ for different K. However first we wanted to see if the estimate is
actually any good. Therefore we did the following:2

� Determine the expected cost for a given µ.

� Actually calculate the cost a thousand times for this µ.

� Compare the mean of the thousand calculated costs with the expected
cost.

Some of the results are printed below. This gives a good first impression
whether the estimate is of any use.

µ = 1.1
Mean 5330.8
Expected 5326.506

µ = 1.6
Mean 1961.437
Expected 1959.728

µ = 2.1
Mean 1896.248
Expected 1897.026

µ = 2.6
Mean 2055.302
Expected 2055.296

µ = 3.1
Mean 2279.561
Expected 2281.08

µ = 3.6
Mean 2537.95
Expected 2537.344

4.4.2 Z-score

Now we would like to look a bit more precisely at how good the estimation
actually is. Therefore we use the Z-score, which can be calculated as below:

Z =
√
r · cost− E(Xn)

σ(cost)
.

Herein r denotes how many times the cost is calculated for this µ (thus r = 1000
in the results above), cost is the average cost of those r calculations and σ(cost)
the standard deviation of all the calculated costs.

Calculating multiple Z-scores for the same µ should show if the Z-scores
behave as one then expects. We tested this by calculating a thousand Z-scores

1For the actual implementation of the code, see Appendix 5.2.
2For the actual implementation of the code, see Appendix 5.3.

26

for µ = 1.7, where r = 1000 as above. It’s possible to test if our hypothesis, i.e.
that E(Xn) is indeed the expected cost, holds for these Z-scores.

Our hypotheses are:

� H0: E(Xn) = cost.

� H1: E(Xn) 6= cost.

If H0 is true, then the Z-scores calculated as above would approximate the
standard normal distribution very closely. This follows from the fact that all the
costs are calculated independently of each other and we can therefore apply the
Central Limit Theorem. Making a histogram of all the Z-scores and comparing
with the standard normal distribution shows that is indeed the case:

Figure 7: Histogram of all the Z-scores and the standard normal distribution

Figure 7 gives us no reason to rejectH0. Thus we’re confident enough to continue
with E(Xn) as the expected cost.

27

4.4.3 Perfect µ

Since the expected cost E(Xn) seems to be a very good estimate for the cost,
we can now determine the cheapest µ for given C,K, n. If we take n = 300, we
can improve figure 4 quite a bit.
Remark: Cheapest µ is defined as the µ with the lowest expected cost for given
parameters C,K, n.

Figure 8: Plot of the cheapest µ for different K, 1 < µ ≤ 4

There is quite some difference between figure 4 and figure 8, most notably
the minimal value µ takes on. In figure 4 we see that µ goes as low as µ = 1.2,
however in figure 8 this isn’t true and we have µ > 1.75 for all K. This difference
is not that hard to explain, although the “limit” of µ = 1.75 is bigger than we
expected at first.
Figure 4 is created by simulating actual costs to reach a level, so it’s possible
that one µ ≈ 1.2 is very lucky and reaches level 300 very cheaply, thus this µ
becomes the cheapest µ (This was somewhat covered by repeating the simulation
and taking an average over the cheapest µ, but this apparently wasn’t enough).
There are of course also µ ≈ 1.2, that are unlucky and reach level 300 at a rather
high cost. Figure 8, on the other hand, shows the estimated cost to reach level
300. So while indeed there can be a cheap µ ≈ 1.2, there are also very expensive
µ ≈ 1.2. It’s therefore in general better to take µ > 1.75, even for really large
K.

28

4.4.4 Limits of K

K to infinity
As can be seen in figure 8, the cheapest µ doesn’t really change that much
for K > 200; it looks like there is some kind of asymptote. Apparently
for µ < 1.75, there are too much expected Yi-trees that cost too much
together.

K to zero
If K → 0, then it seems that µ→∞. This can be seen in figure 8, as for
K < 1 we see that µ→ 4. It’s even more obvious in the figure below:

Figure 9: Cheapest µ for K → 0.

However for K really small, K ≈ 10−10, the difference becomes really
small for µ > 30. Thus while in theory the cheapest µ will (probably)
go to infinity, in practice the difference between µ = 35 and µ = 100 is
hardly noticeable (even default precision in R isn’t high enough to notice
the difference).

29

4.5 Influence of n

Lastly we will take a look at the influence of n on the cheapest µ. Below is a
table of the cheapest µ for different n and K.

K = 0.01 K = 1 K = 100
n = 10 4.7313 1.146 1
n = 100 4.7383 2.01 1.751
n = 300 4.7388 2.015 1.757
n = 1000 4.7389 2.016 1.759

Notice that we put an extra decimal in the column of K = 0.01, to emphasize
the small changes happening if K → 0. As we have seen before, the difference
between n = 10 and n = 100 is big, but the differences between n = 100, n = 300
and n = 1000 are quite small. So it seems that we took a good default value
with n = 300, since we expect 100 < n < 5000 in the real case. So even though
n = 300 is a guess, the values for the cheapest µ probably won’t change that
much in a real situation.

30

References

[1] Joseph H. Silverman, An Introduction to the Theory of Elliptic Curves,
Brown University and NTRU Cryptosystems, Inc., 2006 <http://www.
math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf>

[2] Wieb Bosma, Antal Járai, Gyöngyvér Kiss, Better paths for elliptic curve
primality proofs, Radboud University Nijmegen, July 2009 <http://www.
math.ru.nl/~bosma/pubs/reportfinal.pdf>

31

5 Appendix

5.1 Appendix 1: Code for the model

#Parameters
C=1
K=15 #Can be a vector
n=300 #level to be reached
mu=2 #Can be a vector
active_level=1

#Needed variables

#Matrix to count all the number of children
#Set to 1 on the first row , the rest equals -1
tree=matrix(

c(rep(N_start ,length(mu)),rep(-1,(n-1)*length(mu))),
nrow=n,
ncol=length(mu),
byrow=TRUE)

#Matrix to remember the cost for all K and mu
cost=matrix(

c(rep(0,length(mu)*length(K))),
nrow=length(K),
ncol=length(mu),
byrow=TRUE)

##############
##THE MODEL##
##############

#Continue until level n is reached
while (active_level < n){

#Pick a child and continue to the next level
tree[active_level ,]= tree[active_level ,]-1
active_level=active_level + 1

#Determine the number of children on the next level
for (j in 1: length(mu)){

tree[active_level ,j]=rpois(1,mu[j])

#Determine the cost made per mu for every K
for (k in 1: length(K)){

cost[k,j]=cost[k,j]+C #Determine the cost
cost[k,j]=cost[k,j]+K[k]*tree[active_level ,j]

}
}

#Check if backtracking is needed
for (j in 1: length(mu)){

#Continue until there are children on the active level for this mu
while (tree[active_level ,j] == 0){

#Set new termperary "active level" i
i=active_level

#Go a level up as long as there are no unused children available
while (tree[i,j]==0 && i>1) {i=i-1}

#Start again if the tree is exhausted
if (tree[i,j]==0) {tree[1,j]=1}

32

#A unused child is found , try to reach the active level again
else{

#Used child and determine its children (and the costs)
tree[i,j]=tree[i,j]-1
i=i+1
tree[i,j]= rpois(1,mu[j])
for (k in 1: length(K)){

cost[k,j]=cost[k,j]+C #Determine the cost
cost[k,j]=cost[k,j]+K[k]*tree[active_level ,j]

}

#Continue to the next level as long there are children and active level isn ’t reached yet
while (tree[i,j]>0 && i<active_level){

tree[i,j]=tree[i,j]-1
i=i+1
tree[i,j]= rpois(1,mu[j])

for (k in 1: length(K)){
cost[k,j]=cost[k,j]+C
cost[k,j]=cost[k,j]+K[k]*tree[active_level ,j]

}
}

}
}

}
}

#Make empty plot
plot(x=NULL ,xlim=c(mu[1],mu[length(mu)]),ylim=c(0,10*median(cost)),xlab="mu",ylab="cost")

#Plot lines in different colors.
for (i in 1: length(K)){

if(i < .2*length(K)){
lines(loess.smooth(mu,cost[i,]),col="red")

}
else if (i < .4*length(K)){

lines(loess.smooth(mu,cost[i,]),col="blue")
}
else if (i < .6*length(K)){

lines(loess.smooth(mu,cost[i,]),,col="yellow")
}
else if (i < .8*length(K)){

lines(loess.smooth(mu,cost[i,]),col="green")
}
else{

lines(loess.smooth(mu,cost[i,]))
}

}

33

5.2 Appendix 2: Code for the expected cost

#Parameters
C=1
K_vector=c(seq (0 ,0.1 ,0.005),seq (0.2 ,2 ,.05),seq (2 ,10 ,0.1),seq (10 ,50 ,.5),seq

(50 ,100 ,1),seq (100 ,1000 ,10)) #Vector of values for K
mu=seq (1.1 ,4 ,.01) #Can be a vector
n=300 #end level of the tree
minmu=vector ()
mincost=vector ()

#Needed variables
Q_matrix <<-matrix(rep(0,length(mu)*(n+1)),nrow=n+1,ncol=length(mu),byrow=

TRUE)

##############################
##Functions for the estimate ##
##############################

#Function that calculates Q_i for given mu and end level n
#Input:
mu (expected children for every level)
n (the desired end level)
#Output:
Matrix Q_matrix with all the Q_i for 0 <= i <= n

Q <- function(mu,n){
if(n == 1){

Qn=exp(-mu)
}
else{

Qn=exp(-mu*(1-Q(mu,n-1)))
}
Q_matrix[n+1,]<<-Qn
return(Qn)

}

#Function to estimate the cost of a Y-tree
#Input:
C (cost for going one level down)
K (cost per child)
mu (expected amount of children)
n (the desired end level for this Y-tree)
#Output:
Cost of an Y_n-tree

Y <- function(C,K,mu,n){
if(n ==0)

Yn=0
else

Yn=C+K*mu*Q_matrix[n,] + Q_matrix[n,]*mu*Y(C,K,mu ,n-1)
return(Yn)

}

34

#Function to estimate the cost of a X-tree
#Input:
C (cost for going one level down)
K (cost per child)
mu (expected amount of children)
n (the desired end level for this X-tree)
#Output:
Cost of an X_n-tree

X <- function(C,K,mu,n){
if (n == 0)

Xn=0
else{

Pn=1-Q_matrix[n,]
Xk=(Pn*mu)/(1-exp(-Pn*mu))
Yk=Q_matrix[n,]*mu
Xn=C+K*(Xk+Yk)+Yk*(1/(Pn*mu) -1/(exp(Pn*mu) -1))*Y(C,K,mu,n-1) + X(C,K,mu,n

-1)
}
return(Xn)

}

#####################
##Estimate the cost##
#####################

#Calculate the expected cost for different K
for (i in 1: length(K_vector)){

#Calculate the cost for all mu at once
estimate =(1/(1-Q(mu,n)) -1)*Y(C,K_vector[i],mu ,n)+X(C,K_vector[i],mu,n

)

#Determine which mu was the cheapest
minmu[i]=which(estimate ==min(estimate),arr.ind=TRUE)

}

35

5.3 Z-score test

#Parameters
C=1
K=2
mu_vector=seq (1.1 ,4 ,.05) #Can be a vector
n=300 #end level of the tree
repetitions =50000 #Number of actual cost calculations

#Needed variables
Q_matrix <<-matrix(rep(0,(n+1)),nrow=n+1,ncol=1,byrow=TRUE)
cost=matrix(rep(0, repetitions*length(mu_vector)),nrow=length(mu_vector),byrow

=TRUE)
estimate <-vector ()
average <-vector ()
z_score <-vector ()

##############################
##Functions for the estimate ##
##############################

#Function that calculates Q_i for given mu and end level n
#Input:
mu (expected children for every level)
n (the desired end level)
#Output:
Matrix Q_matrix with all the Q_i for 0 <= i <= n

Q <- function(mu,n){
if(n == 1){

Qn=exp(-mu)
}
else{

Qn=exp(-mu*(1-Q(mu,n-1)))
}
Q_matrix[n+1,]<<-Qn
return(Qn)

}

#Function to estimate the cost of a Y-tree
#Input:
C (cost for going one level down)
K (cost per child)
mu (expected amount of children)
n (the desired end level for this Y-tree)
#Output:
Cost of an Y_n-tree

Y <- function(C,K,mu,n){
if(n ==0)

Yn=0
else

Yn=C+Q_matrix[n,]*K*mu + Q_matrix[n,]*mu*Y(C,K,mu ,n-1)
return(Yn)

}

36

#Function to estimate the cost of a X-tree
#Input:
C (cost for going one level down)
K (cost per child)
mu (expected amount of children)
n (the desired end level for this X-tree)
#Output:
Cost of an X_n-tree

X <- function(C,k,mu,n){
if (n == 0)

Xn=0
else{

Pn=1-Q_matrix[n,]
Xk=(Pn*mu)/(1-exp(-Pn*mu))
Yk=Q_matrix[n,]*mu
Xn=C+K*(Xk+Yk)+Yk*(1/(Pn*mu) -1/(exp(Pn*mu) -1))*Y(C,K,mu,n-1) + X(C,K,mu,n

-1)
}
return(Xn)

}

#Calculate Z-score for (different) mu
for (i in 1: length(mu_vector)){

mu=mu_vector[i]

#####################
##Estimate the cost##
#####################
estimate[i]=(1/(1-Q(mu,n)) -1)*Y(C,K,mu,n)+X(C,K,mu ,n)

##################
##Calculate cost##
##################

#Since the index starts at 1, starting point is level 1 instead of level 0
#So the end level should also be increased
n=n+1
for (j in 1: repetitions){

level=1 #because of index
tree=c(1,rep(0,n)) #tree with 1 child at level 1, 0 on other levels

#Continue until end level is reached
while (level < n){

#Start again if tree is exhausted
if(level ==1 && tree[level]==0){

tree[level]=1
}

#Choose a child , determine it ’s children and calculate the cost
tree[level]=tree[level]-1
tree[level +1]= rpois(1,mu)
cost[i,j]=cost[i,j]+K*tree[level +1]
cost[i,j]=cost[i,j]+C

#See if the next level has any children.
#Else go back to the highest level that still has unused children
level=level +1
while(tree[level]==0 && level!=1){

level=level -1
}

}
}

37

#########################
##Determine the z-score##
#########################

#Determine the averages and the z-score
average[i]=mean(cost[i,])
z_score[i]=sqrt(repetitions)*(average[i]-estimate[i])/sd(cost[i,])

#Print out the result
cat("Repeat: ",repetitions)
cat("\nMu: ",mu)
cat("\nMean: ",mean(cost[i,]))
cat("\nVerwacht: ",estimate[i])
cat("\nSd: ",sd(cost[i,]))
cat("\nZ: ",z_score[i])
cat("\n\n")

#Decrease n again , needed if mu_vector indeed a vector
n=n-1

}

38

