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Paperfolding

Take a rectangular sheet of paper and fold it in half, right half over left.
Repeat the operation, and again, and again, and . . . . On unfolding the
sheet of paper we see the creases as a sequence of valleys← 1 and
ridges← 0. Then, reading from left to right, after five folds we obtain

110110011100100

1

110110001100100 . . .

We now recall that after one, two, three, four, five folds we saw

1
110
1101100
110110011100100
1101100111001001110110001100100

. . .

so we obtain an infinite paperfolding sequence by adding a new middle
fold 1 and noting that the second half of the sequence is the reverse
mirror image of the first half. This justifies my adding . . . after those
thirty-one creases.
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A Mahler Functional Equation

Aside. Is the number 0.11011001110010011101100011001001 . . .
transcendental?
Now consider subtracting the spaced out sequence from the
paperfolding sequence:

1101100111001001110110001100100111011001110010001 . . .
1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 0

we get
1000100010001000100010001000100010001000100010001 . . .

If we denote the paperfolding sequence by f1, f2, f3, . . . then we have
verified experimentally that the formal power series F (X ) =

P∞
h=1 fhX h

satisfies the functional equation F (X )− F (X 2) = X/(1− X 4) .
Once noticed, we see that this is obvious. Inserting an extra positive
fold is to replace F (X ) by F (X 2) and to add X/(1− X 4) . However, the
infinite paperfolding sequence is invariant under the addition of a
positive fold.
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Regular Binary Substitution

Next, if we pair the sequence

11.01.10.01.11.00.10.01.11.01.10.00.11.00.10.01.
11.01.10.01.11.00.10.00.11.01.10.00.11.00.10.01. . . .

and interpret the pairs as numbers in base 2, we obtain

3.1.2.1.3.0.2.1.3.1.2.0.3.0.2.1.3.1.2.1.3.0.2.0.3.1.2.0.3.0.2.1. . . .

But this is precisely the original sequence warmed up by adding 2 to
every second entry:

31.21.30.21.31.20.30.21.31.21.30.20.31.20.30.21.
31.21.30.21.31.20.30.20.31.21.30.20.30.21. . . .

Thus, experimentally at any rate, the new sequence, which I again call
(fh) , is invariant under the uniform binary substitution

θ : 0 7→ 20, 1 7→ 21, 2 7→ 30, 3 7→ 31 .
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The uniform, or regular, 2-substitution

θ : 0 7→ 20, 1 7→ 21, 2 7→ 30, 3 7→ 31 .

provides a transition map τ defined by the transition table:

τ 0 1
s3 s3 s1
s2 s3 s0
s1 s2 s1
s0 s2 s0

The transition table shows how each state si responds to the input of a
binary digit and makes plain that we are dealing with a finite state
automaton; specifically a four-state automaton; s3 is its initial state.
The automaton provides a map h 7→ fh+1 . Consider an input tape
containing the digits of h written in base 2. The automaton reads the
digits of h successively, disregarding initial zeros because they leave
the automaton in state s3 . Finally an output map replaces s3 or s1 by
1, and s2 or s0 by 0, yielding fh+1 .
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Characteristic Functions

I found the formation rule by viewing the symbols in pairs as binary
integers and noticing that the resulting sequence is self reproducing
under the substitution θ . However, let Fi(X ) =

P
fh=i X h be the

characteristic function of each of the symbols i = 0, 1, 2, and 3. It’s
not difficult to see from the defining substitution θ , that in fact

F0(X ) = F0(X 2) + F2(X 2), XF2(X ) = F0(X 2) + F1(X 2),

F1(X ) = F1(X 2) + F3(X 2), XF3(X ) = F2(X 2) + F3(X 2).

Moreover, by definition, F0(X ) + F1(X ) + F2(X ) + F3(X ) = X/(1− X ) ,
and of course F1(X ) + F3(X ) = F (X ) . In this way a trick to ‘guess’ the
Mahler functional equation

F (X ) = F (X 2) + X/(1− X 4)

is replaced by a dull and uninstructive systematic proof.
Mind you, a function F (X 2) , more generally F (X p) , seems unnatural.
One should wonder how such a function might arise naturally.
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An Algebraic Equation in Characteristic p

For a prime p , and for G any formal power series with integer
coefficients,

G(X p) ≡ (G(X ))p mod p ; equivalently G(X p) = (G(X ))p

in the ring Fp[[X ]] of formal power series over the finite field Fp of p
elements. This is plain because the Frobenius map x 7→ xp is an
additive automorphism (that is: by Fermat’s Little Theorem and
because all the multinomial coefficients other than those on the
diagonal vanish modulo p ). Hence the Mahler functional equation

(1− X 4)F (X )2 − (1− X 4)F (X ) + X = 0
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These remarks show that the paperfolding sequence (fh) is
(i) (an image of) a sequence invariant under the substitution θ and is
(ii) therefore given by limh→∞ θ

h(3) , where θ(3) = 31,
θ2(3) = θ(31) = θ(3)θ(1) = 3121, . . . .

(iii) It follows that the sequence is 2-automatic, that is there are only
finitely many distinct subsequences {f2k h+r : k ≥ 0, 0 ≤ r < 2k} ;
in the present case (fh) itself, and the purely periodic sequences
with period 0, 1, or 10.

(iv) Equivalently the corresponding transition map defines a finite state
automaton which maps h 7→ fh+1 , or, if one prefers,

(v) the substitution defines a system of Mahler functional equations
satisfied by the characteristic function of each state and therefore
such an equation satisfied by the paperfolding function.

(vi) Reduction mod 2 of that equation yields an algebraic equation for
the paperfolding function over F2(X ) .
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The Thue-Morse Sequence

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 . . .

0 1 1 0 1 0 0 1 1 0 0 1 0 1 . . .
The Thue-Morse sequence

(sh)h≥0 := 0110100110 0101101001 0110011010 0110 . . . ,

lays compelling claim to being the simplest nontrivial (non-periodic)
sequence. It is generated by the rule that sh ≡: s2(h) (mod 2) .
Here, sp(h) denotes the sum of the digits of h written in base p . The
function sp(h) crops up in real life in the following way: It is a cute
exercise to confirm that the precise power, ordp h! , to which a prime p
divides h! is ordp h! =

`
h − sp(h)

´
/(p − 1) .

More, suppose a + b = c in nonnegative integers a , b , and c . Then
s2(a) + s2(b)− s2(c) is both the number of carries required when
adding a to b in binary; and is ord2

`a+b
a

´
.
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Euler’s Identity and a Functional Equation

Fairly obviously, the sequence (sh) is invariant under the uniform
binary substitution θ : 0 7→ 01 and 1 7→ 10. Now recall Euler’s identity

∞Y
n=0

“
1 + X 2n

”
=
∞X

h=0

X h =
1

1− X
,

noting it is just a pleasant way of recalling that the nonegative integers
each have a unique representation in base 2. It will then also be fairly
obvious that

T (X ) :=
∞Y

n=0

“
1− X 2n

”
=
∞X

h=0

(−1)shX h ;

and that plainly T (X ) =
P∞

h=0(−1)shX h satisfies the Mahler functional
equation

(1− X )T (X 2) = T (X ) .
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An Algebraic Equation

The function S(X ) =
P∞

h=0 shX h therefore satisfies

(1− X 2)(1− X )S(X 2)− (1− X 2)S(X ) + X = 0 .

Exercise. Show that for an arbitrary sequence (ih) , with ih ∈ {0, 1} ,
one has

P
(−1)ihX h = (1− X )−1 − 2

P
ihX h , and hence confirm the

“therefore” above.
Hence, reducing modulo 2, we see that over the finite field F2 we have

(1 + X )3S2 + (1 + X )2S + X = 0 ,

showing that S is quadratic irrational over the field F2(X ) .
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A Counter-example in Analysis

I claim that, whatever the choice of signs ± ,

max
0≤θ≤1

|
n−1X
h=0

±e2πihθ| ≥
√

n.

Indeed, by well known orthogonality relations,Z 1

0

˛̨̨n−1X
h=0

±e2πihθ
˛̨̨2

dθ = n.

But what is min±max0≤θ≤1 |
Pn−1

h=0±e2πihθ|?
After suitable statistical incantations, almost surely

min
±

max
0≤θ≤1

|
n−1X
h=0

±e2πihθ| = O(
√

n log log n).

Perhaps the correct question is: What choices (i0, . . . , in−1) minimise

max
0≤θ≤1

|
n−1X
h=0

(−1)ihe2πihθ| ?
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The Shapiro Sequence

Consider, the Shapiro sequence (rh) , which counts mod 2 the number
of occurrences of the pair 11 of digits in the binary expansion of h .

0001001000 0111010001 0010111000 1000010010 0001110111 . . .
0 1 0 2 0 1 3 1 0 1 0 2 3 2 0 2 0 1 0 2 0 1 3 1 3 . . .

0102013101 0232020102 0131323101 3101020131 0102320232 . . .

0001001000 0111010001 0010111000 1000010010 0001110111 . . .

Here the blue sequence is the result of an ingenious pairing; the brown
sequence then recognises that (rh) is given by the regular binary
substitution θ : 0 7→ 01, 1 7→ 02, 2 7→ 31, 3 7→ 32.
The intermediate symbols {0, 1, 2, 3} represent the four states
{s0, s1, s2, s3} of a binary automaton.

So, the Shapiro sequence is
generated by the automaton defined by the transition table given by θ
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A Remark on the Shapiro Function

Separating the even and odd placed elements of (rh) , we see that

0001001000 0111010001 0010111000 1000010010 0001110111 . . .
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 . . .
0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 . .

This same/different rule makes it surprisingly easy to write the
sequence from scratch. The second row is (r2h) . Remarkably, it
coincides with the original sequence, illustrating that rh = r2h . The
third row is (r2h+1) . With careful attention, we see that r4h = r4h+1 but
r4h+2 6= r4h+3 . Setting P(X ) =

P
(−1)rhX h , these observations

amount to the functional equation

P(X ) = P(X 2) + XP(−X 2) .

By an earlier exercise, and some pain, the function R(X ) =
P

rhX h

satisfies the functional equation

2X (1− X 4)R(X 4) + (1− X 4)(1− X )R(X 2)− (1− X 4)R(X ) + X 3 = 0 .

Does the algebraic equation over F2(X ) already define the function?
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Transcendence of Automatic Numbers

In the eighties, John Loxton and I proved transcendence results on
values of Mahler functions giving strong support for the belief that the
decimal expansion (more generally the base b expansion) of an
irrational algebraic number cannot be generated by a finite automaton.
For instance, it is a theorem that in any base b the paperfolding
number 0.110110011100100111011000110 . . . is transcendental.
In consequence the matter of the transcendence of irrational automatic
numbers became known in the trade as the conjecture of Loxton and
van der Poorten.
But our results did not cover all cases and had significant exceptions
skew to the motivating problem and plainly caused by technical
difficulties inherent in our methods.
Fortunately, a much more appropriate argument has now been found
by Boris Adamczewski and Yann Bugeaud (Strassbourg).
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Complexity of a Sequence

Given an infinite string, denote by p(n) the number of its distinct
subwords of length n . Almost all numbers (in base b ) have p(n) = bn ;
but sequences generated by a finite automaton have only a miserable
complexity p(n) = O(n) .
Not all that long ago, BORIS ADAMCZEWSKI, YANN BUGEAUD, AND

FLORIAN LUCA, ‘Sur la complexité des nombres algébriques’, C. R.
Acad. Sci. Paris, Ser. I 336 (2004), applied Schlickewei’s p -adic
generalisation of Wolfgang Schmidt’s subspace theorem (which is itself
a multidimensional generalisation of Roth’s theorem) to proving that for
the base b expansion of an irrational algebraic number

lim inf
n→∞

p(n)/n = +∞.

A more detailed paper usefully generalising the earlier announcement:
‘On the complexity of algebraic numbers’, by BORIS ADAMCZEWSKI

AND YANN BUGEAUD, has now appeared in Annals of Math.
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Algebraicity and Automaticity

The phenomena we have just now noticed
1 automaticity
2 algebraicity in characteristic p
3 Mahler functional equation
4 regular p -substitutions

are equivalent.
It is a theorem of Giles Christol, Teturo Kamae, Michel Mendès France,
and Gérard Rauzy that the Taylor coefficients of a power series defined
over a finite field of characteristic p provide a p -automatic sequence if
and only if the power series represents an algebraic function.
Remarks of Loxton and mine add the identification with Mahler
functions in characteristic zero.
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Comments on the Proof

The best proof (in my opinion) is due to Jan Denef and Leonard
Lipshitz and relies on studying formal power series in many variables
with coefficients from a finite field, say Fp .
Given polynomials P and Q in just two variable x and y , and with
Q(0, 0) 6= 0, suppose one were forced to look at the series expansion

P(x , y)/Q(x , y) =
∞X

n=0

∞X
m=0

anmxnym.

It is arguably natural to recoil in fright and to insist on following a
suggestion of Furstenberg to study just its diagonal

P∞
n=0 annxn .

It turns out to be not hard to prove that the complete diagonal of a
rational function in two variables always is an algebraic function.
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But for expansions over the complex numbers C , the complete
diagonal of a power series of a rational function in more than two
variables is in general not algebraic.
It is a beautiful fact that it is, however, a G -function, a power series inter
alia satisfying a linear differential equation with polynomial coefficients.
However, for expansions over a finite field, say Fp , diagonals of a
rational function always are algebraic. Conversely, every algebraic
power series in n variables is a diagonal of a rational function in at
most 2n variables.
More, the Taylor coefficients of such an algebraic power series are
readily shown to satisfy congruence conditions which amount to the
sequence plainly being generated by a p -automaton. I might remark
that those congruences also were noticed independently by Pierre
Deligne, some years after the CKMR proof. Indeed, Denef and Lipshitz
tell me they developed their arguments after giving up on trying to
understand Deligne’s proof.
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Power Series in Several Variables

R[[x ]] is the ring of formal power series in x = (x1, . . . , xn) .

I write a series f (x) ∈ R[[x ]] as f (x) =
P

ai1···inx i1
1 · · · x

in
n =

P
aνxν

where ν = (ν1, . . . , νn) is a multi-index and xν = xν1
1 · · · x

νn
n .

Below, R is usually the finite field Fp of p elements or the ring of
p -adic integers Zp .
One says that f (x) ∈ R[[x ]] is algebraic if it is algebraic over the
quotient field of the polynomial ring R[x ] . I say that f (x) ∈ Zp[[x ]] is
algebraic mod ps if there is an algebraic g(x) ∈ Zp[[x ]] with f ≡ g
mod ps .
Given f (x , y) =

P
aijx iy j it is natural to refer to the series

Ixy f =
P

aiix i as its diagonal .

Given f (x) =
P

ai1···inx i1
1 · · · x

in
n we define its diagonal I12f by

I12f =
P

ai1i1i3···inx i1
1 x i3

3 · · · x
in
n ; generally, for k 6= l , the other Ikl are

defined correspondingly. By a diagonal we mean any composition of
the Ikl s. The complete diagonal is If =

P
aii···ix i

1 .
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Diagonals and Hadamard Products

The Hadamard product of series f (x) =
P

aνxν and g(x) =
P

bνxν

is the student product
f ∗ g(x) =

X
aνbνxν .

Diagonals and Hadamard products are connected by:
f ∗ g(x) = I1,n+1 . . . In,2nf (x1, . . . , xn)g(xn+1, . . . , x2n) ;

I12f = f ∗
` 1

1− x1x2

nY
j=3

1
1− xj

´
.

If a ring of power series is closed under one of the two operations of
taking diagonals or Hadamard products then it is closed under the
other operation. Over C , the diagonal is also given by the integral

I12f (t , x3, . . . , xn) =
1

2πi

I
x1x2=t

f (x1, . . . , xn)
dx1 ∧ dx2

dt

=
1

2πi

I
|y |=ε

f (t/y , y , x3, . . . , xn)dy/y .
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is the student product
f ∗ g(x) =

X
aνbνxν .

Diagonals and Hadamard products are connected by:
f ∗ g(x) = I1,n+1 . . . In,2nf (x1, . . . , xn)g(xn+1, . . . , x2n) ;

I12f = f ∗
` 1

1− x1x2

nY
j=3

1
1− xj

´
.

If a ring of power series is closed under one of the two operations of
taking diagonals or Hadamard products then it is closed under the
other operation. Over C , the diagonal is also given by the integral

I12f (t , x3, . . . , xn) =
1

2πi
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A Theorem of Furstenberg

It follows that the diagonal of a rational function f (x , y) of two variables
is an algebraic function. Indeed,

(If )(t) =
1

2πi

I
|y |=ε

f (t/y , y)
dy
y

=
1

2πi

I
|y |=ε

P(t , y)

Q(t , y)
dy .

Writing Q(t , y) =
Q`

y − yi(t)
´

, where the yi(t) are algebraic, and
evaluating the integral by residues verifies the claim.
In fact, every algebraic power series of one variable is the diagonal of a
rational power series of two variables and, indeed, every algebraic
power series in n variables is the diagonal of a rational power series in
2n variables.
Below I sketch a proof showing that every diagonal of a rational
function defined over a finite field is algebraic. However, in
characteristic zero diagonals of rational functions in more than two
variables do not generally yield algebraic functions.
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As said, in characteristic zero, neither diagonals, nor Hadamard
products, preserve algebraicity. For the latter, the standard example is

(1− 4X )−1/2 =
X“2h

h

”
X h ; but

X“2h
h

”2
X h

is not algebraic. The first remark is just the useful identity“2h
h

”
= (−4)h

“−1/2
h

”
Facts such as this are of interest to logicians.Then, introductory
calculus shows the latter series is given by the integral

2
π

Z π/2

0

dtq
(1− 16X sin2 t)

.

This is a complete elliptic integral well known not to represent an
algebraic function.



29

As said, in characteristic zero, neither diagonals, nor Hadamard
products, preserve algebraicity. For the latter, the standard example is

(1− 4X )−1/2 =
X“2h

h

”
X h ; but

X“2h
h

”2
X h

is not algebraic. The first remark is just the useful identity“2h
h

”
= (−4)h

“−1/2
h

”
Facts such as this are of interest to logicians.Then, introductory
calculus shows the latter series is given by the integral

2
π

Z π/2

0

dtq
(1− 16X sin2 t)

.

This is a complete elliptic integral well known not to represent an
algebraic function.



29

As said, in characteristic zero, neither diagonals, nor Hadamard
products, preserve algebraicity. For the latter, the standard example is

(1− 4X )−1/2 =
X“2h

h

”
X h ; but

X“2h
h

”2
X h

is not algebraic. The first remark is just the useful identity“2h
h

”
= (−4)h

“−1/2
h

”
Facts such as this are of interest to logicians.Then, introductory
calculus shows the latter series is given by the integral

2
π

Z π/2

0

dtq
(1− 16X sin2 t)

.

This is a complete elliptic integral well known not to represent an
algebraic function.



29

As said, in characteristic zero, neither diagonals, nor Hadamard
products, preserve algebraicity. For the latter, the standard example is

(1− 4X )−1/2 =
X“2h

h

”
X h ; but

X“2h
h

”2
X h

is not algebraic. The first remark is just the useful identity“2h
h

”
= (−4)h

“−1/2
h

”
Facts such as this are of interest to logicians.Then, introductory
calculus shows the latter series is given by the integral

2
π

Z π/2

0

dtq
(1− 16X sin2 t)

.

This is a complete elliptic integral well known not to represent an
algebraic function.



29

As said, in characteristic zero, neither diagonals, nor Hadamard
products, preserve algebraicity. For the latter, the standard example is

(1− 4X )−1/2 =
X“2h

h

”
X h ; but

X“2h
h

”2
X h

is not algebraic. The first remark is just the useful identity“2h
h

”
= (−4)h

“−1/2
h

”
Facts such as this are of interest to logicians.Then, introductory
calculus shows the latter series is given by the integral

2
π

Z π/2

0

dtq
(1− 16X sin2 t)

.

This is a complete elliptic integral well known not to represent an
algebraic function.



30

A Beautiful Transcendence Argument

For general odd k the question of the transcendence of the Hadamard
powers

Fk (X ) =
X“2h

h

”k
X h

had long been open, until delightfully settled by a remark of Sharif and
Woodcock.
On the one hand, one views Fk as defined over Fp , so that certainly
F p

k = Fk and plainly Fk has degree dividing p − 1. However, it is easy
to see that given any lower bound r there are infinitely many odd
primes p so that p − 1 is divisible only by 1, 2, and primes greater
than r .
Exercise. One also confirms fairly readily that Fk is neither rational nor
of degree 2 over Fp for infinitely many p .
On the other hand, if Fk defined over Q were algebraic, say of degree
r , then obviously its reduction mod p also is algebraic of degree at
most r .
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Breaking Up in Characteristic p

The following breaking up procedure is fundamental below:
{xα = xα1

1 · · · x
αn
n : α ∈ S} is a basis for Fp[[x ]] over

`
Fp[[x ]]

´p .
Hence if y(x) ∈ Fp[[x ]] and S = {0, 1, . . . , p − 1}n then, for α ∈ S ,
there are unique yα(x) ∈ Fp[[x ]] such that y(x) =

P
α∈S xαyp

α(x) .
If y(x) ∈ Fp[[x ]] is algebraic then y satisfies an equation of the shape

sX
i=r

fi(x)ypi
= 0 ,

with r , s ∈ N , the fi ∈ Fp[x ] and fr 6= 0 . In fact, we may take r = 0 ,
for if r > 0 then writing fi =

P
α xαf p

iα we get thatX
α

xα
` sX

i=r

fiα(x)ypi−1´p
= 0 .

Hence
Ps−1

i=r−1 fi+1,α(x)ypi
= 0 and some frα 6= 0 .
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Algebraic power series in characteristic p

Thus if y ∈ Fp[[x ]] is algebraic, y satisfies an equation of the shape

f (x)y =
sX

i=1

fi(x)ypi
= L
`
yp, . . . , yps´

,

where L is linear with coefficients polynomials in x . After multiplying
by f p−1 , breaking up y and the coefficients of L , and then taking p -th
roots, we get equations

f (x)yα1 = Lα1

`
y , yp, . . . , yps−1´

.

Now multiplying by f p−1 and substituting for f (x)y on the right yields

f pyα1 = Lα1(f
p−2L(yp, . . . , yps

), f p−1yp, . . . , f p−1yps−1
) ,

which again is linear in yp ,. . . , yps . This brings us back, more or less,
to the start and shows that iterating the process described leads to
equations of the shape

f (x)yα1...αe = Lα1...αe

`
y , yp, . . . , yps−1´

.

If, during this procedure, we keep track of the (multi-) degree in x of
Lα1...αe we see that degree remains bounded.
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Algebraic power series in characteristic p

Thus if y ∈ Fp[[x ]] is algebraic, y satisfies an equation of the shape

f (x)y =
sX

i=1

fi(x)ypi
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`
yp, . . . , yps´
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where L is linear with coefficients polynomials in x . After multiplying
by f p−1 , breaking up y and the coefficients of L , and then taking p -th
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Hence, since Fp is finite, there are only a finite number of distinct
yα1...αe and we have a result of Christol, Kamae, Mendès France, and
Rauzy, here proved by the elegant independent methods of Jan Denef
and Leonard Lipshitz.
Theorem. If y =

P
aνxν is algebraic then

(F) there is an e such that for every (α1, . . . , αe) ∈ Se there is an
e′ < e and a (β1, . . . , βe′) ∈ Se′ such that

yα1...αe = yβ1...βe′ ;

(A) equivalently, there is an e such that for all j = (j1, . . . , jn) with the
ji < pe there is an e′ < e and a j ′ = (j ′1, . . . , j

′
n) with the j ′i < pe′

such that
apeν+j = ape′ν+j ′ for all ν .

Conversely, if y satisfies (F) then taking yβ1...βe′ and breaking it up
e − e′ times, we see that the yα1...αe satisfy a system of the form

yα1...αe =
X

xγype−e′

β1...βe
.

By an easy lemma it follows that the yα1...αe , and hence y , must be
algebraic.
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Suppose the series
P

aνxν is generated by a finite automaton M .
Choose e so large that every state that M enters in the course of any
computation is entered in a computation of length less than e . Then
the aν satisfy version (A) of the Theorem.
Conversely, if the aν satisfy (A) one can construct a finite automaton
M that generates

P
aνxν .

M will be equipped with a table detailing the identifications (A) and an
output list of the values of the aj for j = (j1, . . . , jn) with the ji < pe .
The automaton M computes as follows: It reads e digits from each
tape. Then it uses the table (A) to replace those e digits by e′ digits. It
reads a further e − e′ digits and iterates. At each stage it outputs the
appropriate value from its output list.
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So we have:
Theorem.

P
aνxν ∈ Fp[[x ]] is algebraic if and only if it is generated by

a finite automaton.
Corollary. And so: Let f , g ∈ Fp[[x ]] be algebraic. Then

(i) Every diagonal of f is algebraic, as is every off-diagonal.
(ii) The Hadamard product f ∗ g is algebraic.
(iii) Irrelevance of symbols: Each characteristic series f (i) =

P
aν=i xν

is algebraic.

We have already noted that the situation in characteristic zero is very
different.
Indeed, in characteristic zero there is a theorem of Polyá –Carleson by
which a power series with integer coefficients and radius of
convergence 1 is either rational or has the unit circle as a natural
boundary. Thus the Mahler functions mentioned here all are
transcendental functions.
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The Lifting Theorem

Looking carefully, one sees that every algebraic power series in Fp[[x ]]
is the reduction of an algebraic power series in Zp[[x ]] .
Conversely there is an surprising lifting theorem (Loxton and vdP)
whereby every algebraic power series in Fp[[x ]] is found to lift to a
series in Z[[x ]] which is a solution of a system of functional equations.
Note the example of the Shapiro sequence, where

2X (1− X 4)R(X 4) + (1− X 4)(1− X )R(X 2)− (1− X 4)R(X ) + X 3 = 0 ,

in characteristic zero, is the lifting of

(1 + X )5R2 + (1 + X )4R + X 3 = 0

in characteristic two.
By a theorem of Cobham, a sequence generated by both an r and an
s automaton is rational if r and s are multiplicatively independent. It
follows that a non-rational formal power series, such as R , that makes
sense in any characteristic is algebraic in at most one interpretation
and transcendental in all others.
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Diagonals of Rational Functions

Now consider the class of power series in Q[[x ]] which occur as the
diagonals of rational functions f (x) = P(x)/Q(x) with Q(0) 6= 0 .
Every algebraic power series is the diagonal of a rational power series,
and every such diagonal is algebraic mod ps for all s and almost all p .
The complete diagonals of rational power series have many other
interesting properties:
Theorem. If f (x1) is the diagonal of a rational power series over Q

(i) f has positive radius of convergence rp at every place p of Q and
rp = 1 for almost all p .

(ii) for almost all p the function f is bounded on the disc
Dp(1−) = {t ∈ Cp : |t | < 1} , where Cp is the completion of the
algebraic closure of the p -adic rationals Qp and, for almost all p ,
sup{|f (t)| : t ∈ Dp(1−)} = 1 .

(iii) f satisfies a linear differential equation over Q[x1] ; and
(iv) this equation is a Picard-Fuchs equation.
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Whilst (i) and (ii) are reasonably straightforward, (iii) and (iv) are more
difficult and are proved by Deligne using resolution of singularities.
Dwork has given a proof which avoids resolution.
An elementary proof of (iii) and its generalisations is given by Lipshitz:
Leonard argues so as to show D -finiteness is retained under the taking
of diagonals: roughly speaking, the vector space generated by the
partial derivatives of an algebraic power series remains finite
dimensional. I conclude by mentioning Grothendieck’s Conjecture: If a
linear homogeneous differential equation with coefficients from Q[x1] ,
and of order n , has, for almost all p , n independent solutions in
Fp[[x1]] then all its solutions are algebraic.
This has been proved in a number of special cases (for example, for
Picard-Fuchs equations) by Katz. Some results have also been
obtained by elementary methods by Honda.
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