I-1. [Horner] Polynomial evaluation by use of Horner's method proceeds as follows. Let $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be the polynomial in R[x] that we wish to evaluate at $z \in R$; then

$$f(z) = (\cdots ((a_n z + a_{n-1})z + a_{n-2})z + \cdots + a_1)z + a_0$$

How many multiplications and additions are needed to compute f(z) this way? How does this compare to the naïve algorithm, whereby one computes the consecutive powers $z^0, z^1, z^2, \ldots, z^n$ and adds up their products with the coefficients a_i ?

- **I-2.** [Exponentiation] Exponentiation (or 'powering') can be implemented by repeated multiplication and squaring. Suppose, for example, that you are given a positive integer a and a sequence of binary digits D representing the integer n (most significant bit first); decribe two algorithms for computing a^n :
 - (i) reading the bits in D right-to-left, one at a time, so obtaining the least significant bit first:
 - (ii) reading the bits in *D* left-to-right, so obtaining the most significant bit first.
- **I-3.** [Karatsuba] The algorithm of *Karatsuba* performs integer multiplication recursively. Suppose that you are given integers x and y of at most n bits each; we will suppose (for ease of presentation) that $n = 2^k$ for some positive integer k. Now write

$$x = x_0 + x_1 2^{n/2}, \quad y = y_0 + y_1 \cdot 2^{n/2},$$

- with x_0, x_1, y_0, y_1 integers of (at most) $\frac{n}{2} = 2^{k-1}$ bits. (i) Show that by using only *three* multiplications (and 6 subtractions/additions) of integers of 2^{k-1} bits you can compute the 'digits' a, b, c for $x \cdot y = a + b2^{n/2} + c2^n$. [Hint: use $x_1 - x_0$ and $y_0 - y_1$.]
- (ii) Conclude that recursive use of this trick leads to an $\mathcal{O}((2\log n)^{\ell})$ algorithm for computing $x \cdot y$, where $\ell = 2 \log 3$.
- **I-4.** [Pollard- ρ] Implement Pollard's ρ algorithm, including the optimisation indicated in the slides, for integer factorisation. As an indication of its performance, if m is a product of two primes of k and 2k decimal digits, how large can k be for your implementation to find the factorization in no more than 5 (run-time) minutes?