
Computer Algebra 2007 Exercises III March 2007

III-1. [ Miller-Rabin ]

The Miller-Rabin test is an efficient probabilistic compositeness test: the input is an odd
integer n > 2 and the output is either a witness to the compositeness of n or the claim that
n is ‘probably prime’; in the latter case there is also an upper bound on the ‘probability’
that n is composite after all. This test is typically employed before starting a factorization
algorithm (like Pollard-ρ).

The simple test uses two facts for prime numbers n, namely Fermat’s little theorem
(stating that always an ≡ a mod n) and the fact that x2 ≡ 1 mod n only has solutions
±1 mod n. It proceeds as follows: find odd d and integer k ≥ 1 such that n − 1 = 2k · d.
Then choose a with 1 < a < n − 1 random and compute successively

b0 ≡ ad mod n;
b1 ≡ b2

0
mod n,

b2 ≡ b2

1
mod n, and so on:

bj ≡ b2

j−1
mod n

but stop as soon as one of the following cases occurs:
(A) bj ≡ 1 mod n;
(B) j = k;
(C) bj ≡ −1 mod n.

When ending in (A) with j > 0, or in (B), declare n to be composite. When ending in (C)
(with j < k) or in (A) with j = 0, declare n possibly prime; in this case, repeat the test
with a new random choice for a, and declare n probably prime with probability of error less

than 4−t if this case occurs for each of t (say 20) choices for a. It can be shown that for
n > 9 composite at least 3/4 of the possible choices for a leads to the correct declaration
of n being composite.
(i) Implement this test.
(ii) Prove that the test will never declare prime numbers to be composite.
(iii) Find some composite numbers that satisfy an−1 ≡ 1 mod n for all a coprime to n;

conclude that such number would most likely fail a weaker probabilistic test that
declares n composite if random a is found with an−1 6≡ 1 mod n.

(d) Prove the probabilty statement (with the weaker error bound 2−t).

III-2. [ Pell ]
(i) Implement an algorithm that on input an element α ∈ Q(

√
d) (for some positive

squarefree integer d > 1) returns the continued fraction expansion of α as output, in
the form of a pair of sequences containing pre-period and period of the expansion.

(ii) Use your algorithm to find some values for d with long continued fraction period
(compared to

√

(d)). item(iii) Also write a function that returns, for given d, both
the sign ǫ ∈ {−1, 1} and the smallest solution (x, y) for the equation x2 − dy2 = ǫ.



III-3. [Common continued fractions]
Implement the ‘common continued fraction’ algorithm (see attached description) that
is of (almost) linear rather than (almost) quadratic complexity.
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IV-1.
(i) When we denote the units of a ring S by S∗, prove that under the conditions for the

Chinese Remainder Theorem:

(R/m)∗ = (R/m1)
∗ × · · · (R/mk)∗.

(ii) For an integer m > 1 we define the Euler-φ function as φ(m) = #(Z/mZ)∗. Prove
that if m is an integer with prime factorization m = pe1

1
· · · pek

k (distinct primes pi and
positive exponents ei:

φ(m) = m · (1 − 1

p1

) · (1 − 1

p2

) · · · (1 − 1

pk

).

(iii) Find all m with φ(m) < 25.
(iv) For polynomials f over a finite field Fq of degree n we define Φ(f) = #Fq[x]/(f)∗,

so the number of polynomials over Fq of degree less than n coprime to f . Show that
Φ(f) = qn − 1 if f is irreducible, that Φ(f) = (qd − 1)qn−d if f is a power of an
irreducible polynomial of degree d and that

Φ(f) = qn · (1 − 1

qn1

) · (1 − 1

qn2

) · · · (1 − 1

qnk

),

if f = fe1

1
· · · fek

k is a factorization in irreducible polynomials fi of degree ni.

IV-2. [mixed radix]
Implement Garner’s algorithm for the Chinese Remainder Algorithm. Check it against
Example 5.15 from Geddes et al.


