
Computer Algebra

Wieb Bosma

Radboud Universiteit Nijmegen

6 February 2007



PART I

INTRODUCTION

1



What is Computer Algebra?

• No generally accepted definition

– Algorithms for algebraic objects

– Exact vs Approximative

– Symbolic vs Numerical Computing

• This course:

– Algorithms central

– Practical usage in mind: complexity!

• In summary:

– what can be computed with modern com-

puter algebra systems, and

– how is it done?

2



Computational domains

Rough outline of the scope:

algorithms to compute with combina-
torial objects (like graphs), and in those
groups, rings, fields, and their associ-
ated modules, algebras, etc. for which
the objects can be represented and tested
for equality on a computer, and for which
the operations can be performed effec-
tively.

Z, Q, Q(α), Qp

Z/nZ, Fp, Fq

R[x], R[x]/(f), R(x),

R[x1, x2, . . . , xn], R[x1, x2, . . . , xn]/I,

Hom(V, W ), R[[x]], R((x))

Sym(n), Kn

3



Representation of Objects

Objects stored as a finite number of bits. The

size of an object is the number of bits. Objects

may have several distinct representations, be-

tween which we may have to do conversions.

But within a fixed representation, objects may

have more than one representation: a normal

form is desirable.

For example:

integers in g-adic representation, or fully fac-

tored in primes

polynomials dense (coefficient vectors) or sparse

(coefficient, exponent pairs)

permutations cycles, image lists, products of

transpositions

4



Computational tasks

• Perform the arithmetic operations in the

computational domains

Addition, multiplication, inversion, pow-

ering, composition, actions

• Normal form computation, conversion be-

tween representations

Basis representation, factorization

• Membership and equality testing

Conversion, comparison

• Structural computation, mappings

Generators and relations

Many of the most important tasks can be inter-

preted as conversion between representations!

5



Computational models

Tasks are executed by way of algorithms on

multitape Turing machine operating on strings

of bits. Computational complexity is measured

in number of bit operations.

Sometimes we express operations in a higher

level algebraic model of computation, where

steps are elementary algebraic operations.

Example Multiplication of f, g ∈ R[x], where

deg f = m and deg g = n can be done with

(m+1)(n+1) multiplications and m·n additions

in R.

Note that the complexity depends on the rep-

resentation!

6



Asymptotics

Complexity functions: partial f : R → R ∪ ∞
that is defined and non-negative for all integers

n ≥ N .

f = O(g):

∃C > 0, N ∈ N : ∀x > N : f(x) ≤ C · g(x)

f = Ω(g):

∃C > 0, N ∈ N : ∀x > N : f(x) ≥ C · g(x)

f = Θ(g):

f = O(g) and f = Ω(g)

f = o(g):

f(n)/g(n) → 0 when n → ∞

7



Complexity classes

P

the class of algorithms with deterministic poly-

nomial time complexity: the complexity is O(xd)

for some d ∈ N

NP

the class of algorithms with non-deterministic

polynomial time complexity: the complexity of

verifying the correctness of a solution (pro-

vided by some oracle, say) is O(xd) for some

d ∈ N; finding the correct solution may not be

possible in polynomial time

Sometimes trade-offs between time and space

complexity

The true picture of easy versus hard problems

may be much more complicated!

8



Some general techniques

• probabilistic rather than deterministic meth-

ods (gives to expected running times)

Ex: Pollard ρ algorithm (below)

• iterative and recursive methods: divide and

conquer

Ex: Karatsuba algorithm (exercise)

• homomorphism methods: mapping to eas-

ier structure combined with bounds

Ex: modular methods (polynomial factor-

ization)

• rewriting

Ex: Gröbner basis algorithm

9



Elementary Algorithms

• integer addition and subtraction in O(logn)

• integer multiplication and division in O((logn)2)

• exponentiation (powering) by repeated squar-

ing and multiplication

• polynomial evaluation: Horner’s method

10



First Example: Pollard-ρ

Pollard’s ρ method for integer factorization is

based on the ‘birthday paradox’:

taking a random sample of size O(
√

n) of a set

of cardinality n is expected to give a collision

choosing a random f : Z/nZ → Z/nZ and x1,

then x1, x2 = f(x1), x3 = f(f(x1)) = f(x2), . . .

mod p will behave randomly in Z/pZ, for any

prime divisor p of n. Hence a collision xi ≡
xj mod p is expected after O(

√
p) steps! Since

xi ≡ xj mod N is unlikely (especially if p �
n), we detect the unknown p by computing

gcd(xi − xj, n).

f(x) = x2 + 1 mod n, with x1 = 2 is standard

11



An optimisation

By the pigeonhole principle the sequence mod

p will become periodic after say s + t steps, so

that xs+1 ≡ xs+t+1 mod p, and the ‘ρ’ has a

‘tail’ of length s and a ‘cycle’ of length t.

Instead of comparing any two entries xi, xj, the

same result can be achieved more efficiently

by noting that for some m one gets x2m ≡
xm mod p, the least such m being the smallest

multiple of t exceeding s.

Pollard’s ρ method runs heuristically in expected

time essentially
√

p to find the prime factor p

12



Second Example: baby-step giant step

The Discrete Logarithm Problem asks, for given

finite abelian group G, and elements g, h ∈ G

to decide whether g = hm for some m ∈ Z≥0,

and if so, to find m = logh g.

It will be assumed that group operations in G

can be performed efficiently. Also, un-equality

testing is necessary; unique representation of

group elements and efficient equality testing

preferable.

Note that the representation of group elements

is important for the discrete logarithm prob-

lem: in the additive group Z/nZ the problem is

trivial, and any finite cyclic group is isomorphic

to some Z/nZ.

13



Determining the order of a (sub)group is a

closely related problem, as we will see.

The discrete logarithm logh g is only determined

modulo the order n = nH = #H of H.

Important special case: H = G, so G is cyclic

and h is a generator; the decision problem is

trivial.

The trivial discrete logarithm algorithm pro-

ceeds by computing 1 = h0, h = h1, h2, . . . until

either hm = g and m = logh g or hk = 1 for

some k ≥ 1, in which case g /∈ H. In any

case the algorithm takes O(nH) operations in

G. Note that in the second case the order

nH = #H has been determined (if equality

testing easy).

14



The following baby-step giant-step algorithm

finds discrete logarithms in O(
√

nH lognH) mul-

tiplications and comparisons in G; we require

storage for O(
√

nH) elements.

Let B be an upper bound on logh g; take B =

nH if it is known, and otherwise one tries B =

21,22,23, . . . in succession.

Put b = d
√

Be. If g ∈ H then logh g < b2, and

so there exist 0 ≤ i, j < b such that g = hib+j,

that is, logh g = ib + j. Compute a sorted (or

hashed) lookup table of hj for j = 0,1, . . . , b−1

which takes O(b log b) group operations. Next

compute g · h−ib for i = 0,1, . . . , b − 1 until a

match in the lookup table is found, so g ·h−ib =

hj, and therefore g = hib+j.

If g /∈ H no match will be found.

The order of H can be found by taking g = 1

(and excluding i = 0 = j).

15



An Overview of Algorithms to Follow

• The Fast Fourier Transform

and consequences for fast multiplication

• The Euclidean Algorithm

in many incarnations with many appli-

cations

• The Gaussian Elimination Algorithm

for solving systems, finding matrix in-

verses and determinants

• The Lenstra-Lenstra-Lovász algorithm

with surprising applications for short vec-

tors

• Hensel and Newton iteration

and other methods for root isolation,

separation etc.

• Gröbner Basis Algorithm

again with various applications

• (towards) the Risch Algorithm

16


