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1. THE FAST FOURIER TRANSFORM

Overview

• The Fast Fourier Transform (FFT) is method

for fast computation of the Discrete Fourier

Transform (DFT)

• DFT is multipoint evaluation algorithm at

roots of unity

• Polynomial evaluation and interpolation are

each other’s inverse operations for convert-

ing between dense coefficient and multi-

value representations for polynomials

• Multi-value representation is important be-

cause it makes polynomial multiplication

easy

• The same ideas make integer multiplica-

tion fast (Schönhage-Strassen)
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Ring essentials

In this chapter: rings R commutative with 1.

An element u ∈ R is a unit if it is invertible, so

there exists v ∈ R with u · v = 1.

An element z ∈ R is a zero-divisor if z 6= 0 and

there exists non-zero w ∈ R with z · w = 0.

Lemma An element in R cannot be simulta-

neously a unit and a zero-divisor.

An integral domain is a ring without zero-divisors.

A field is a domain in which every non-zero el-

ement is a unit. For every domain R we can

construct a field of fractions F that contains

R as a subring.

If there exists a positive integer n such that

n · 1 = 0 in R then the smallest such n is the

characteristic of R; if it does not exist, R has

characteristic 0. A field has characteristic 0,

or p for some prime number p.
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Polynomial essentials

If f ∈ R[x] then z ∈ R is a root of f if f(z) = 0.

Furthermore, z is a root of multiplicity k if

f = (x − z)k · g for some g ∈ R[x].

Theorem Let R be an integral domain. Then

the number of roots in R of f ∈ R[x] counted

with multiplicities is at most deg f .

This uses Euclidean division (see, next chap-

ter).

A monic polynomial has leading coefficient 1.
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Interpolation

Theorem Suppose that x0, x1, . . . , xn (distinct)

and y0, y1, . . . , yn are elements from a domain

R with field of fractions F . Then there exists

a unique polynomial of degree at most n, say

f , in F [x] with f(xi) = yi for i = 0,1, . . . , n.

Constructive proof: Lagrange interpolation.

Let f = f0 + f1 + . . . + fn, where

fi = yi

n
∏

j=0
j 6=i

x − xj

xi − xj
.

Then clearly fi(xi) = yi and fi(xj) = 0 for

j 6= i, so f(xi) = yi for all i. Any g that is also

of degree at most n with the same values at xi

leads to a difference f − g of degree at most n

with at least n+1 roots in F : a contradiction.
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Evaluation and interpolation

A polynomial f = a0 + a1x + · · · + anxn ∈ F [x]
of degree ≤ n can now either be represented

by n + 1 coefficients a0, a1, . . . , an ∈ F , or by

n + 1 values y0, y1, . . . , yn at prescribed points

x0, x1, . . . , xn.

The conversion one way is that of evaluation

E : (a0, a1, . . . , an)
T 7→ (y0, y1, . . . , yn),

which is given by matrix multiplication










1 x0 · · · xn
0

1 x1 · · · xn
1... ... . . . ...

1 xn · · · xn
n











·











a0
a1
...
an











=











y0
y1
...
yn











.

The inverse map also exists (and is interpola-

tion) according to the above; so the Vander-

monde matrix must be invertible if all xi are

distinct!

Instead of over a field F we may also work

again over a domain R, provided that all xi−xj
are units.
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The importance of the value representation:

since (f+g)(xi) = f(xi)+g(xi) and (f ·g)(xi) =

f(xi)·g(xi) addition and multiplication on poly-

nomials in value representation can be done

componentwise! The main bottleneck for its

use then lies in the conversion from and to

(standard) coefficient representation.

The Fourier transforms that we will define be-

low can be seen as fast way to convert between

the representation of f by coefficients and a

representation by value vectors, using the free-

dom of choice for the points x0, x1, . . . , xn.
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Roots of unity

An element ζ ∈ R is an n-th root of unity for

a positive integer n, if ζn = 1. It is a primitive

n-th root of unity if moreover n is a unit in R

and ζn/p − 1 is neither zero nor a zero-divisor

in R, for any prime divisor p of n.

It follows easily that ζ` − 1 cannot be a zero-

divisor (or zero) for any ` with 1 < ` < n. Also

1 + ζ + ζ2 + · · · + ζn−1 = 0, and the same is

true for ζ` with 1 < ` < n.

Examples: ζn ∈ C and g
p−1

n in F∗
p when n|p −

1. Another important example is in the ring

R = Z/nZ, when n is of the particular form

n = 2s·2t−1
+ 1. Then ζ = 2s is a primitive

2t-th root of unity in R, since ζ2t−1
= −1 ∈ R.
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Discrete Fourier Transform

Suppose that ζ ∈ R is a primitive n-th root

of unity. The discrete Fourier transform is the

evaluation map D : Rn → Rn at ζ0
n, ζ1

n, . . . , ζn−1
n .

The discrete Fourier transform is given by mul-

tiplication by the Vandermonde matrix

Vζn =













1 1 · · · 1

1 ζn · · · ζn−1
n

... ... . . . ...

1 ζn−1
n · · · ζ

(n−1)(n−1)
n













.

If n is a unit in R then D−1 is

1

n













1 1 · · · 1

1 ζ−1
n · · · ζ

−(n−1)
n

... ... . . . ...

1 ζ
−(n−1)
n · · · ζ

−(n−1)(n−1)
n













=
1

n
V

ζ−1
n

.

Proof Vζn · V
ζ−1
n

= nI.
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Divide and conquer

If n = 2k is even then ζk
n = −1, so ζk+i

n = −ζi
n,

for i = 0,1, . . . , k − 1.

To evaluate f at ζ
j
n, for j = 0,1, . . . , n, write

f = f0(x
2) + xf1(x

2),

where

f0 = a0 + a2x + · · · an−2xk−1

and

f1 = a1 + a3x + · · · an−1xk−1

are the even and odd parts of f . Then

f(ζi
n) = f0(ζ

2i
n ) + ζi

nf1(ζ
2i
n ),

and

f(ζk+i
n ) = f0(ζ

2k+2i
n ) + ζk+i

n f1(ζ
2k+2i
n ) =

= f0(ζ
2i
n ) − ζi

nf1(ζ
2i
n ),

for i = 0,1, . . . , k − 1.
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Fast Fourier transform

This requires the evaluation of two polynomials

of half the degree of f , as well as k squarings

to compute ζ2i
n , k multiplications for ζi

nf1(ζ
2i
n )

and k additions and subtractions in R. Using

this idea recursively we find the following.

Theorem Let n = 2t, and ζn ∈ R. Then we

can evaluate f ∈ R[x] of degree n − 1 at the

points ζ
j
n for j = 0, . . . , n−1 in O(n logn) arith-

metic operations in R.

Proof Show by induction that the number of

arithmetic steps A(t) satisfies A(t) ≤ t2t+1.

Corollary Let n = 2t, and ζn ∈ R. Then we

can interpolate f ∈ R[x] of degree n − 1 at

the points ζ
j
n for j = 0, . . . , n − 1 in O(n logn)

arithmetic operations in R.
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Example

The fast Fourier transform in a simple exam-

ple. Let R = F17. Since 24 = 16 ≡ −1 mod 17,

the element 2 is a primitive 8-th root of unity in

F17. That means that we can multiply polyno-

mials using the fast Fourier transform as long

as the product has degree at most 7.
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To multiply, for example, f = 1+7x+3x2 and

g = −2+3x2+5x4, using the value representa-

tion we need to evaluate f and g at the powers

of 2, then multiply componentwise and trans-

form back. It turns out that (1,7,3,0,0,0,0,0)

transforms to

(11,10,9,11,14,16,4,1),

and that (−2,0,3,0,5,0,0,0) transforms to

(6,5,0,15,6,5,0,15).

Their product is

(15,16,0,12,16,12,0,15),

and for the inverse transform

8−1(1,7,10,15,10,8,1,0)

we then get

(15,3,14,4,14,1,15,0).

So the product of f and g is

15 + 3x + 14x2 + 4x3 + 14x4 + x5 + 15x6.
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Convolution

Since we sometimes identify polynomials with

coefficient vectors it is natural to define a prod-

uct on vectors (of equal length) that corre-

sponds to multiplication of the corresponding

polynomials. For a vector a ∈ Rn we let ai

denote its i-th coefficient, for i = 0, . . . , n − 1.

For i < 0 and i > n − 1 we define ai = 0. We

also define the coordinatewise product on Rm

by a ∗ b = (a0b0, a1b1, . . . , an−1bn−1).

Definition The convolution product � of two

elements a, n ∈ Rn is the element c = a � b ∈
R2n defined by

ci =
n−1
∑

j=0

ajbi−j =
n−1
∑

j,k=0
j+k=i

ajbk.
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Convolution Theorem Suppose that ζn ∈ R.

If a, b ∈ R2n with ai = bi = 0 for i ≥ n−1, then

a � b = D−1(D(a) ∗ D(b)).

Thus the convolution theorem is one way of

stating that polynomial multiplication can be

done by Fourier transformation, n multiplica-

tions in Rn, followed by inverse Fourier trans-

formation.

The problem with this is that we had to artifi-

cially blow up the size of the vectors by a factor

2 (by padding with n zeroes, because the prod-

uct of two polynomials of degree n has degree

2n in general. One way to overcome that is by

using a wrapped convolution product.
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Wrapped convolution

Definition The positive wrapped convolution

product ⊕ of two elements a, n ∈ Rn is the

element c = a ⊕ b ∈ Rn defined by

ci =
i

∑

j=0

ajbi−j +
n

∑

j=i+1

ajbn+i−j.

The negative wrapped convolution product 	
is the element c = a 	 b ∈ Rn defined by

ci =
i

∑

j=0

ajbi−j −
n

∑

j=i+1

ajbn+i−j.

If ζ2n ∈ R, we letˆdenote the transformation on

Rn given by x 7→ x̂ = (x0, ζ2nx1, . . ., ζn−1
2n xn−1).
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Wrapped Convolution Theorem Suppose that

ζ2n ∈ R and let ζn = ζ2
2n. If a, b ∈ Rn, then

(i) a ⊕ b = D−1(< D(a), D(b) >);

(ii) if d = a	 b, then d̂ = D−1(< D(â), D(̂b) >).
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We now turn to fast Fourier transforms in Z/mZ

for certain special moduli m. Namely, let m =

2s2t−1
+1; then ζ = 2s is a primitive 2t-th root

of unity in Z/mZ. In this ring we can prove

the following complexity result — in bit oper-

ations.

Theorem Let a ∈ (Z/mZ)n, with m = 2s2t−1
+

1 and n = 2t. Then D(a) and D−1(a) can be

computed in time O(n2 logn log ss).

The only operations required in Z/mZ are addi-

tions and multiplications by a power of ζ, which

is just a shift, followed by reduction modulo m.

The size of m is 2t−1 log 2s + 1 = m log 2s +

1 bits. Shifting and additions and reduction

modulo m can be done in linear time, and the

number of them is O(n logn).
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Integer multiplication

As an application we describe the Schönhage-

Strassen fast multiplication method for large

integers. The idea is to write integers u and

v of m = 2t bits in base 2l, requiring b digits,

where bl = m. To be precise we let l = 2t/2 = b

if t is even and l = 2(t+1)/2 = 2b if t is odd.

One then applies the Fourier transform to the

coefficient vectors, does the inner product mul-

tiplication on the b coefficients, (with a recur-

sive call if necessary) and transforms back, to

obtain a wrapped convolution product.

Theorem Multiplication of integers of length

n can be done in O(n logn log logn) word op-

erations.
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Continuous Fourier Transform

For 2π periodic real complex-valued functions

f :

f̂(k) =

∫ 2π

0
f(t)e−

√
−1ktdt,

for k ∈ Z.

Then

f(t) =
1

2π

∑

k∈Z

f̂(k)e
√

ikt.
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