
Chinese Remainder Theorem

Theorem Let R be a Euclidean domain with

m1, m2, . . . , mk ∈ R.

If gcd(mi,mj) = 1 for 1 ≤ i < j ≤ k then

m = m1 ·m2 · · ·mk = lcm(m1,m2, . . . ,mk) and

R/m ∼= R/m1 ×R/m2 × · · · ×R/mk;

given (r1, . . . , rk) modulo each mi we can con-

struct a representative r ∈ R/m.

Proof. Let Φ map elements from R to their

images (r1, . . . , rk) modulo each mi.

An element r ∈ R maps to 0 under Φ if and

only if it is divisible by every mi and hence by

the product m, so kerΦ = m ·R.

51

To show surjectivity we construct an element

r ∈ R with given image s1, . . . , sk. Use the

extended Euclidean algorithm to construct k

elements ei ∈ R with the property that ei ≡

1 mod mi and ei ≡ 0 mod mj for j 6= i. This is

possible since gcd(mi,m/mi) = 1. Now choose

ti ∈ R such that ti ≡ si mod mi, then

Φ(t1 · e1 + · · · + tk · ek) = (s1, . . . , sk)

as required.

Note that this is constructive, and is precisely

the Lagrange interpolation generalized to arbi-

trary Euclidean domains.

52

Mixed radix representation

A slightly different algorithm, at least in the

case that R = Z, arises from the so-called

mixed radix representation of integers. With

notation as before, suppose that Ri forms a

set of mi representatives for Z/mi. Then, if ri
ranges over Ri,

r1 + r2 ·m1 + r3 ·m1 ·m2 + · · ·+ rk ·m1 · · ·mk−1

ranges over a set R of representatives for Z/mZ,

where m is the product m1 · · ·mk of the co-

prime moduli.

Example Let m1 = 4 and m2 = 3, and take

R1 = {−1,0,1,2} and R2 = {0,1,2}. Then we

get R = {−1,3,7,0,4,8,1,5,9,2,6,10}.

In practice: use either positive set of represen-

tatives 0,1, . . . ,m− 1 for every modulus, or (if

moduli are odd) the symmetric representatives

−m−1
2 ,−m−3

2 , . . . ,−1,0,1, . . . , m−3
2 , m−1

2 .

53

Garner’s algorithm

For Garners algorithm one first computes rep-

resentatives for

γj = (m1 · · ·mj−1)
−1 mod mj,

for j = 2,3, . . . k, using the extended Euclidean

algorithm again.

Note that this step needs to be performed only

once if several applications of the Chinese Re-

mainder Theorem are required (for the same

modulus).

Given images (s1, s2, . . . , sk) modulo the mi, we

now compute the mixed radix digits r1, r2, . . . , rk.

Note: there also exists a polynomial equivalent

(univariate polynomials over a field) of Gar-

ner’s algorithm as well: Newton interpolation.

54

Application: modular determinants

See example pp 151/182.

55

Polynomial greatest common divisors

In the following slides we are interested in com-

puting greatest common divisors of polyno-

mials, in particular over factorization domains

that need not be fields. Important examples

are Z[x] and R[x1, x2, . . . , xk][x].

In principle, it is very well possible to pass

to the quotient field of the coefficient ring,

and remove possible denominators from the

result, that can now be obtained using Euclid.

However, for this we need to apply the gcd-

algorithm recursively and repeatedly, and the

coefficients tend to blow up.

56

Example

We will compare various ways of computing the

gcd of f = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5

and g = 3x6 + 5x4 − 4x2 − 9x+ 21 in Z[x].

The classical method works over a field, here

Q. The remainders for the division algorithm

become:

r2 = −5
9x

4 + 1
9x

2 − 1
3,

r3 = −117
25 x

2 − 9x+ 441
25 ,

r4 = 233150
19773 x− 102500

6591 ,

r5 = −1288744821
543589225 .

As the final remainder is a non-zero constant,

the greatest common divisor of f and g is 1.

Already in this tiny example the rationals grow

considerably: the denominators almost double

in size in every step.

57

With a slight modification that is necessary be-

cause the leading coefficient of the divisor may

not be invertible in R, we can define division

with remainder over arbitrary domains.

Proposition Let f, g ∈ R[x], with deg f = m ≥

n = deg g and g 6= 0, leading coefficient of g

being bn. There exist q, r ∈ R[x] (unique up to

units if R is a domain) such that bm−n+1
n · f =

q · g+ r and deg r < n = deg g.

Proof. Uniqueness: if q1g+ r1 = q2g+ r2 then

(q1 − q2)g = (r2 − r1); and if R then deg(r2 −

r1) ≤ deg r2 < deg g ≤ deg g + deg(q1 − q2), a

contradiction unless r2 − r1 = q1 − q2 = 0.

The existence is proven by way of an Algo-

rithm.

58

Pseudo-division

Algorithm: Pseudo-division

Input: polynomials f = amxm + · · · + a0, and

g = bnxn + · · · + b0 in R[x], with m ≥ n and

am 6= 0 6= bn.

Output: q, r ∈ R[x] such that bm−n+1
n · f =

q · g+ r with deg r < n.

q := 0;

d := m− n;

r := bd+1
n · f ;

while d ≥ 0:

c := lc(r)/bn; // leading coefficient

q := q+ c · xd;

r := r − c · xd · g;

d := deg(r) − n;

59

For termination it suffices to observe that deg r

decreases in every passage of the loop, since

the leading terms of r and of c ·xd · g are equal;

hence d decreases. The loop is executed at

most m− n+ 1 times.

For correctness, note that at the beginning of

the i-th passage through the loop the following

two identities hold:

(i) bm−n+1
n · f = q · g+ r;

(ii) bm−n+2−i
n divides r.

The first identity holds for i = 1 by definition

of q and r, while at the end of the loop q · g+ r

has been replaced by (q+c·xd)·g+(r−c·xd·g) =

q · g+ r, which hence is invariant.

60

The second identity holds by definition for i =

1. If it holds for i, then bm−n+1−i
n divides c and

therefore also r− c · xd · g, which is the r at the

beginning of the i + 1-th passage. Since the

loop is executed at most m− n+ 1 times this

shows that q and r polynomials in R[x].

Note that the actual number of times the loop

is executed may be less than m−n+1 because

the degree of r may drop by more than 1. In

that case the exponent of bn in bm−n+1
n · f =

q · g + r could be lowered accordingly. The

algorithm should be modified to prevent q and

r from picking up spurious factors bn.

61

In principle (pseudo-)division with remainder

can be used to find common divisors, as in

the ordinary Euclidean algorithm for integers.

Definition Let f, g ∈ R[x] and suppose deg f ≥

deg g. A polynomial remainder sequence for

f, g is a sequence u0 = f, u1 = g, u2, . . . , uk
for which there exist q1, q2, . . . , qk as well as

α1, α2, . . . , αk, β1, β2, . . . βk ∈ R

• αiui−1 = qiui+βiui+1, for i = 1,2, . . . , k−1;

• degui+1 < degui, for i = 1,2, . . . , k − 1;

• αkuk−1 = qkuk.

The non-zero polynomials f, g ∈ R[x] are equiv-

alent over R, denoted f ∼ g if and only if there

exist non-zero r, s ∈ R such that r · f = s · g.

Over the field of fractions of R this means pre-

cisely that f is a non-zero multiple of g.

62

Proposition Let u0, u1, . . . , uk be a polynomial

remainder sequence for f, g. Then for i =

2, . . . , k:

• ui ∼ ri, where ri is the pseudo-remainder

of ui−2 and ui−1;

• there exist γi, δi ∈ R[x] such that

β1 · β2 · · ·βi−1 · ui = γiu0 + δiu1;

more precisely, this holds with

γi = −qi−1γi−1 + αi−1βi−2γi−2
δi = −qi−1δi−1 + αi−1βi−2δi−2

β0 = 1, γ0 = 1, γ1 = 0, δ0 = 0, δ1 = 1.

63

Corollary Up to ∼ polynomial remainder se-

quences are uniquely determined by f, g.

Corollary Let R be a unique factorization do-

main; if u0, u1, . . . , uk is a polynomial remainder

sequence for f, g then uk ∼ gcd(f, g).

All this implies that there is very little choice

left in using polynomial remainder sequences

for determining greatest common divisors. Nev-

ertheless, different strategies lead to signifi-

cantly different results, as we will illustrate in

the case of Z[x]. The main complication over

Z lies in the intermediate coefficient growth:

even if both input and output are small, it may

be that intermediate results grow enormously,

if no special care is taken. In the following

example we show some ways of choosing poly-

nomial remainder sequences and their effects.

64

Example We compare various ways of con-

structing polynomial remainder sequences for

the pair of polynomials f = x8+x6−3x4−3x3+

8x2 +2x−5 and g = 3x6 +5x4−4x2−9x+21

in Z[x].

(a) classical:

The classical method works over a field and

takes αi = βi = 1 for all i. The polynomial

remainder sequences becomes, as we saw be-

fore:
u2 = −5

9
y4 + 1

9
y2 − 1

3
,

u3 = −117
25
y2 − 9y+ 441

25
,

u4 = 233150
19773

y − 102500
6591

,

u5 = −1288744821
543589225

.

65

The other choices perform operations entirely

within Z, and use αi = c
di−1−di+1
i , where ci is

the leading coefficient of ui and di = degui.

The methods differ in the choice of βi.

(b) Euclidean:

Choose βi = 1. This is the choice taking the

ordinary usual pseudo-division in each step. In

our example it determines the following re-

mainder sequence:

u2 = −15x4 + 3x2 − 9,
u3 = 15795x2 + 30375x− 59535,
u4 = 1254542875143750x− 1654608338437500,
u5 = 12593338795500743100931141992187500.

Of course the result gcd(f, g) = 1 is as be-

fore (and since f is monic), but the coefficient

growth is spectacular: u5 has 35 decimal dig-

its!

66

(c) primitive:

For this variant one takes for βi the contents of

the pseudo-remainder of ui−1 by ui; then ui+1

becomes the primitive part of that pseudo-

remainder. In our example:

u2 = −5x4 + x2 − 3,

u3 = 13x2 + 25x− 49,
u4 = 4663x− 6150,
u5 = 1.

This straightforward choice leads to the small-

est sequence of polynomial remainders. But

the price to be paid is that in every step the

contents has to be computed, which is a great-

est common divisor computation on the se-

quence of coefficients.

67

(d) reduced:

Take βi = αi−1. Here and in the next variant

the idea is to avoid gcd computations by taking

out a common factor of the pseudo-remainder

that is easily computed; it is not obvious that

αi−1 works, but it does. The result in our case:

u2 = −15x4 + 3x2 − 9,

u3 = 585x2 + 1125x− 2205,
u4 = −18885150x+ 24907500,
u5 = 527933700,

which is not bad given that no gcds are com-

puted.

68

(e) subresultant:

The choice for βi here is not obvious, and fol-

lows from subresultant consideration. Explic-

itly βi is defined recursively by

ψi = (−ci−1)
di−2−di−1ψ

1−di−2+di−1
i−1 ,

βi = −ci−1ψ
di−1−di
i with

ψ1 = −1, and

β1 = (−1)d0−d1+1

using the same notation as before. It results

in:

u2 = 15x4 − 3x2 + 9,

u3 = −65x2 − 125x+ 245,
u4 = 9326x− 12300,
u5 = −260708,

for our standard example. That is better than

the reduced case, and also avoids gcd compu-

tations. This choice seems to guarantee coef-

ficient grow that is linear at worst.

69

Modular gcd

There is an alternative method for comput-

ing greatest common divisors in Z[x]; it uses

reduction modulo prime numbers. Both this

and an algorithm for factorization of polynomi-

als over the integers will use reduction modulo

primes in the hope that over Fp the problem

will be easier, and yet informative about the

integer case. Suppose that f ∈ Z[x] factors:

f = c · d ∈ Z[x]; then clearly for the reduction

modulo p (which we will denote by ,̄ we find

accordingly: f̄ = c̄ · d̄. However, it may well be

that both sides reduce to 0, or at least that

the degree of c or d drops.

This first (easy) complication can be overcome

by avoiding some primes.

70

Lemma For all but finitely many primes p it

holds that deggcd(f̄ , ḡ) = deggcd(f, g).

If we would know a bound on the integer co-

efficients of the gcd of two polynomials in Z[x],

knowledge of the greatest common divisor mod-

ulo a sufficiently large determines the coeffi-

cients uniquely. Such a bound is provided by

the Landau-Mignotte estimate.

Put ‖f‖ =
√

∑m
i=0 |ai|

2 for f ∈ C[x].

Theorem (Landau-Mignotte) If g divides f

in C[x] then |bi| ≤
|bn|
|am|

(

n
i

)

‖f‖.

Corollary If c = gcd(f, g) ∈ Z[x], then

ci ≤M(f, g) = 2min(m,n) gcd(am, bn)min(
‖f‖

|am|
,
‖g‖

|bn|
),

for 0 ≤ i ≤ deg c, where c =
∑

i cix
i.

71

The idea behind the modular gcd algorithm

is now to combine information modulo vari-

ous primes, rather than to do the computation

modulo one very large prime. The informa-

tion is combined by application of the Chinese

remainder theorem.

One additional complication is that after re-

duction modulo p the leading coefficient can

be adapted freely, while the integer leading co-

efficient is uniquely determined (up to sign).

This problem is overcome by looking at primi-

tive polynomials only, and taking the primitive

part of the result in the end.

72

Algorithm: Modular gcd

l := gcd(am, bn); B := 2 · l ·M(f, g);
repeat

p := nextprime(p, l);
m := gcd(f̄ , ḡ);
m := l mod p · (m/mdegm);

if degm = 0 then

return 1;

P := p;
n := m;

while P ≤M do

p := nextprime(p, l);
m := gcd(f̄ , ḡ);
if degm < degn then

break; from the while loop:

go to begin of repeat loop

if degm = degn then

n := Chinese(n,m, P, p);
P := p · P ;

n := pp(n);
until n|f and n|g;
return n;

73

Remarks

The algorithm calls subroutines M , Chinese and

nextprime.

The value of M(f, g) should be the Landau-

Mignotte bound on f and g.

The function Chinese(a, b, P, p) returns a poly-

nomial c ∈ Z/(P · p)Z[x] such that c ≡ a mod P
and c ≡ b mod p, which exists and is essentially

unique by the Chinese remainder theorem.

The function nextprime(p, l) returns the first

prime not dividing l following p in some order-

ing of the primes. This ordering need not be

the usual ordering by size; in fact in practice

it is better to use primes that are fairly big,

but not too big so that the work modulo p
contributes significantly to the product P but

computations modulo p are not too expensive.

One often starts at the largest prime not ex-

ceeding the square root of a word in computer

memory, and then works downwards in size.

74

The Landau-Mignotte estimate is often much

too pessimistic. Therefore, in practice one of-

ten replaces the criterion that P > M by a

test to see if the current n considered as in-

tegral polynomial divides f and g already; if

so that polynomial is immediately returned. It

follows from the exercises that this so-called

early-abort strategy will not lead to wrong an-

swers.

75

