Some applications of LLL

a. Factorization of polynomials

As the title Factoring polynomials with ratio-
nal coefficients of the original paper in which
the LLL algorithm was first published (Mathe-
matische Annalen 261 (1982), 515-534) sug-
gests, the initial motivation was the proof of
the following result.

Theorem There exists an algorithm that fac-
tors any primitive polynomial f € Z[x] in poly-
nomial time (O(n'? 4+ n?(log|f|)3 bit opera-
tions).
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The main steps of the algorithm are

1. Use the subresultant algorithm to compute
common factors of f and f/, and replace f
by its squarefree part.

2. Find a suitable prime p and factor f mod p
in Fp[z] into irreducibles using Berlekamp's
algorithm.

3. For an irreducible factor h € Fplz] and a
suitable k use Hensel lifting modulo pk to
find a factor of f mod p*¥; now use LLL
to find the unique factor hg € Z[x] of f
such that hg = h mod p. Repeat this for
remaining factors.

An algorithm for the factorization of polyno-
mials with coefficients in a number field uses
two rounds of applications of LLL.
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b. Diophantine approximation

Another application that is found in the original
LLL-paper is to the problem of (simultaneous)
Diophantine approximation: given n € N, real
numbers aq,ao,...,anp, and 0 < € < 1, there
exist integers pq1,po,...,pn and g such that

pi —qa;l <e, 1<g<e”

Y

or
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Applying LLL to the columns of
(10 -0 —o )

O1 ---0 —Qn

O 0 ---1 —an

\o 0 .-..0 Q—H(n+1)/4€n+1)

we obtain a polynomial-time algorithm that

produces an LLL-reduced basis b1,bp,...,b,41.
Then

by| < 27/ . gt/ (nt1) —

and by construction b1 =

— 1)/4 I\NT
(p1—qo1, P2—qaia, - . ., pn—qom, -2 T 1/4ent 1T

for certain integers p;,q. Then certainly all
components are less than e and g < on(n+1)/4.—n

With n = 1 we find the (nearest integer) con-
tinued fraction convergents.
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C. Sums of squares

Every prime that is 1 mod 4 can be written as
sum of two squares. Let h € F, satisfy h? =
—1 mod p; for example

p—1
h=g¢g 4 EFp

if g is a primitive root modulo p.

Consider the lattice L in R? spanned by the

vectors vy = (g) and vo = (?) The de-

terminant of this lattice is d(L) = p. W.ith
b1 = (Z’),bg an LLL-reduced basis for the

lattice we get

b1? < (24P)? < 2,
so: u? 4+ v?2 < 2p. On the other hand, for
vectors wq,wo in the lattice it holds that the
inner product < wq,wo > is divisible by p (as it
holds for both basis vectors). Hence u? + v2 =
0 mod p. Together these imply u? + v? = p.
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d. Algebraic dependencies

Suppose that real numbers approximated by
a1,00,...,0n are given. Choose a suitably big
integer N and apply LLL-reduction to the lat-
tice spanned by the columns of

( 1 0O -+ 0
0 1 ... 0O
0 0 . 1
\Nozl Nap --- Nozn/

in R**1. Then the first vector in a reduced
basis of this lattice will be the column

(m1,mo,...,mnp, N-(miai+moas+- - +mnpan)) |

of ‘small length’, which implies that the m; are
not too large while the last component much
be close to zero: the corresponding expression
Y- m;3; for the true real numbers 3; will have
to be zero.
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Special case: minimal polynomials

In the special case that o; = o'~ 1 for i =
1,2,...,n and n is the degree of the minimal
irreducible polynomial fo, we will (most likely)
recover this!

If the degree of a is not known, we may start
with a small choice and increment until we find
a solution.

There are slightly different algorithms, devised
especially to solve this type of problem: PSLQ),
and HJLS. Using this, identities like

< 1 ( 4 2 1 1 )
T = Z - . T o T o T Ao )
7:0162 82+1 8:—4 8:+5 8:1+6
were discovered.
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e. Knapsack

For a while, cryptographic systems based on

a version of the knapsack problem have been

popular. This particular version (called the

subset sum problem) asks, for given positive

integers m1,mo,...,mpy and s for an answer to

the decision problem: do there exist z1, 2o,..., zn
in {0,1} such that s =zymq1 4+ ---+ znmn (is s

a subset sum of the m;7

In crypto applications the moduli were first
chosen superincreasing, that is, for all ¢ it holds
that m; > > ;;m;. Next this additional struc-
ture is hidden from the user by multiplication
and modular reduction.
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Now apply lattice basis reduction to the columns

[ 1 o -~ 0 0 )
0 1 0 0
0 0 .. 1 0
KN-ml N-my -+ N-mpy —Ns)

for suitable N, will produce a linear combina-
tion

21N -mq1+220-N-mo—+---4+2n-N-mp = Ns

as desired.
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f. abc

The abc-conjecture is a deep, vet easily formu-
lated, problem in number theory. For positive
integers a,b,c we define the radical rad(a,b,c)
as the product of the distinct prime factors of
a,b,c:

rad(a,b,c) = H D.

p prime
plabe

The quality q of a,b,c is

log ¢
lograd(a,b,c)
We will assume that gcd(a,b,c) = 1.

q(a’7 b? C) —

abc-Conjecture For every n > 1 there exist
only finitely many a,b,c with gcd(a,b,c) = 1
and a + b = c such that q(a,b,c) > n.
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There exist infinitely many abc-triples of quality
exceeding 1; for example 14(9"—1) = 9", then
rad(abc) = 3 - rad(b) < c.

The best known example is 2+ 310.109 = 235
(Reyssat) with ¢ = 1.629.. ..

Triples with g(a,b,c) > 1.4 are commonly called
good abc-triples.

Similarly, one can define Szpiro triples as co-
prime a, b,c with a 4+ b = ¢ for which

log abc
log rad(a, b, c)
is large. Such triples are good when p > 4.4.
The best known example was found by Nitaj
and has p=4.419....

p(a,b,c) =

13.19°9 4230 .5 =313.112.371.
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One way to search for examples systemati-
cally uses LLL. First generate (many) num-
bers A, B,C built up from large powers of rel-
atively small primes (to produce small radi-
cal) and of comparable size, Then use LLL to
find small z,y,z (in absolute value) such that
A+ yB + zC = 0.

Dokchitser observes that the smallest x,y, z
not necessarily produce the best abc triples; it
may be necessary to look at small linear com-
binations in the lattice of solutions.
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