
Some applications of LLL

a. Factorization of polynomials

As the title Factoring polynomials with ratio-

nal coefficients of the original paper in which

the LLL algorithm was first published (Mathe-

matische Annalen 261 (1982), 515–534) sug-

gests, the initial motivation was the proof of

the following result.

Theorem There exists an algorithm that fac-

tors any primitive polynomial f ∈ Z[x] in poly-

nomial time (O(n12 + n9(log |f |)3 bit opera-

tions).
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The main steps of the algorithm are

1. Use the subresultant algorithm to compute

common factors of f and f ′, and replace f

by its squarefree part.

2. Find a suitable prime p and factor f mod p

in Fp[x] into irreducibles using Berlekamp’s

algorithm.

3. For an irreducible factor h ∈ Fp[x] and a

suitable k use Hensel lifting modulo pk to

find a factor of f mod pk; now use LLL

to find the unique factor h0 ∈ Z[x] of f

such that h0 ≡ h mod p. Repeat this for

remaining factors.

An algorithm for the factorization of polyno-

mials with coefficients in a number field uses

two rounds of applications of LLL.
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b. Diophantine approximation

Another application that is found in the original

LLL-paper is to the problem of (simultaneous)

Diophantine approximation: given n ∈ N, real

numbers α1, α2, . . . , αn and 0 < ǫ < 1, there

exist integers p1, p2, . . . , pn and q such that

|pi − qαi| ≤ ǫ, 1 ≤ q ≤ ǫ−n,

or

|pi

q
− αi| ≤

1

qn+1
.
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Applying LLL to the columns of
















1 0 · · ·0 −α1
0 1 · · ·0 −α2
... ... . . . ...
0 0 · · ·1 −αn

0 0 · · ·0 2−n(n+1)/4ǫn+1

















we obtain a polynomial-time algorithm that

produces an LLL-reduced basis b1, b2, . . . , bn+1.

Then

|b1| ≤ 2n/4 · d1/(n+1) = ǫ,

and by construction b1 =

(p1−qα1, p2−qα2, . . . , pn−qαn, q·2−n(n+1)/4ǫn+1)T,

for certain integers pi, q. Then certainly all

components are less than ǫ and q ≤ 2n(n+1)/4ǫ−n.

With n = 1 we find the (nearest integer) con-

tinued fraction convergents.
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c. Sums of squares

Every prime that is 1 mod 4 can be written as

sum of two squares. Let h ∈ Fp satisfy h2 ≡
−1 mod p; for example

h = g
p−1
4 ∈ Fp

if g is a primitive root modulo p.

Consider the lattice L in R2 spanned by the

vectors v1 =

(

p
0

)

, and v2 =

(

h
1

)

. The de-

terminant of this lattice is d(L) = p. With

b1 =

(

u
v

)

, b2 an LLL-reduced basis for the

lattice we get

|b1|2 ≤ (2
1
4
√

p)2 < 2p,

so: u2 + v2 < 2p. On the other hand, for

vectors w1, w2 in the lattice it holds that the

inner product < w1, w2 > is divisible by p (as it

holds for both basis vectors). Hence u2 + v2 ≡
0 mod p. Together these imply u2 + v2 = p.
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d. Algebraic dependencies

Suppose that real numbers approximated by

α1, α2, . . . , αn are given. Choose a suitably big

integer N and apply LLL-reduction to the lat-

tice spanned by the columns of
















1 0 · · · 0
0 1 · · · 0
... . . . ...
0 0 · · · 1

Nα1 Nα2 · · · Nαn

















in Rn+1. Then the first vector in a reduced

basis of this lattice will be the column

(m1, m2, . . . , mn, N ·(m1α1+m2α2+· · ·+mnαn))
T

of ‘small length’, which implies that the mi are

not too large while the last component much

be close to zero: the corresponding expression
∑

miβi for the true real numbers βi will have

to be zero.
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Special case: minimal polynomials

In the special case that αi = αi−1 for i =

1,2, . . . , n and n is the degree of the minimal

irreducible polynomial fα, we will (most likely)

recover this!

If the degree of α is not known, we may start

with a small choice and increment until we find

a solution.

There are slightly different algorithms, devised

especially to solve this type of problem: PSLQ,

and HJLS. Using this, identities like

π =
∞
∑

i=0

1

16i

(

4

8i + 1
− 2

8i − 4
− 1

8i + 5
− 1

8i + 6

)

,

were discovered.
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e. Knapsack

For a while, cryptographic systems based on

a version of the knapsack problem have been

popular. This particular version (called the

subset sum problem) asks, for given positive

integers m1, m2, . . . , mn and s for an answer to

the decision problem: do there exist z1, z2, . . . , zn

in {0,1} such that s = z1m1 + · · · + znmn (is s

a subset sum of the mi?

In crypto applications the moduli were first

chosen superincreasing, that is, for all i it holds

that mi >
∑

j<i mj. Next this additional struc-

ture is hidden from the user by multiplication

and modular reduction.
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Now apply lattice basis reduction to the columns
















1 0 · · · 0 0
0 1 · · · 0 0
... . . . ... ...
0 0 · · · 1 0

N · m1 N · m2 · · · N · mn −Ns

















for suitable N , will produce a linear combina-

tion

z1 · N · m1 + z2 · N · m2 + · · · + zn · N · mn = Ns

as desired.
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f. abc

The abc-conjecture is a deep, yet easily formu-

lated, problem in number theory. For positive

integers a, b, c we define the radical rad(a, b, c)

as the product of the distinct prime factors of

a, b, c:

rad(a, b, c) =
∏

p prime
p|abc

p.

The quality q of a, b, c is

q(a, b, c) =
log c

log rad(a, b, c)
.

We will assume that gcd(a, b, c) = 1.

abc-Conjecture For every η > 1 there exist

only finitely many a, b, c with gcd(a, b, c) = 1

and a + b = c such that q(a, b, c) > η.
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There exist infinitely many abc-triples of quality

exceeding 1; for example 1+(9n−1) = 9n, then

rad(abc) = 3 · rad(b) < c.

The best known example is 2+310 ·109 = 235

(Reyssat) with q = 1.629 . . ..

Triples with q(a, b, c) > 1.4 are commonly called

good abc-triples.

Similarly, one can define Szpiro triples as co-

prime a, b, c with a + b = c for which

ρ(a, b, c) =
log abc

log rad(a, b, c)

is large. Such triples are good when ρ > 4.4.

The best known example was found by Nitaj

and has ρ = 4.419 . . .:

13 · 196 + 230 · 5 = 313 · 112 · 31.
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One way to search for examples systemati-

cally uses LLL. First generate (many) num-

bers A, B, C built up from large powers of rel-

atively small primes (to produce small radi-

cal) and of comparable size, Then use LLL to

find small x, y, z (in absolute value) such that

xA + yB + zC = 0.

Dokchitser observes that the smallest x, y, z

not necessarily produce the best abc triples; it

may be necessary to look at small linear com-

binations in the lattice of solutions.
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