Computer Algebra

Wieb Bosma

Radboud Universiteit Nijmegen

Spring 2010

PART 1
INTRODUCTION

What is Computer Algebra?

e NO generally accepted definition

— Algorithms for algebraic objects
— EXxact vs Approximative
— Symbolic vs Numerical Computing

e [his course:

— Algorithms central
— Practical usage in mind: complexity!

e In summary:

— what can be computed with modern com-
puter algebra systems, and
— how is it done?

Computational domains

Rough outline of the scope:

algorithms to compute with combina-
torial objects (like graphs), and in those
groups, rings, fields, and their associ-
ated modules, algebras, etc. for which
the objects can be represented and tested
for equality on a computer, and for which
the operations can be performed effec-
tively.

Z, Q, Qa), Qp

7/nZ, Fp, Ty

Rlz], Rlz]/(f), R(z),
Rl[z1,29,...,2n], Rlz1,20,...,z0l/1,
Hom(V, W), R[[z]], R((z))

Representation of Objects

Objects stored as a finite number of bits. The
Size of an object is the number of bits. Objects
may have several distinct representations, be-
tween which we may have to do conversions.
But within a fixed representation, objects may
have more than one representation: a normal
form is desirable.

For example:

integers in g-adic representation, or fully fac-
tored in primes

polynomials dense (coefficient vectors) or sparse
(coefficient, exponent pairs)

permutations cycles, image lists, products of
transpositions

Computational tasks

e Perform the arithmetic operations in the
computational domains

Addition, multiplication, inversion, pow-
ering, composition, actions

e Normal form computation, conversion be-
tween representations

Basis representation, factorization
e Membership and equality testing
Conversion, comparison
e Structural computation, mappings

Generators and relations

Many of the most important tasks can be inter-
preted as conversion between representations!

Computational models

Tasks are executed by way of algorithms on
multitape Turing machine operating on strings
of bits. Computational complexity is measured
in number of bit operations.

Sometimes we express operations in a higher
level algebraic model of computation, where
steps are elementary algebraic operations.

Example Multiplication of f,g € R[x], where
degf = m and degg = n can be done with
(m—41)(n4+1) multiplications and m-n additions
in R.

Note that the complexity depends on the rep-
resentation!

Asymptotics

Complexity functions: partial f : R —- RU o0
that is defined and non-negative for all integers
n > N.

f=0(9):
3C >0, NeN:Ve>N: f(x) <C-g(x)

f=(9):
3C >0, NeN:Ve>N: f(x) >C-g(x)

f=0(9):
f=0(g) and f=%(g)

f=o0(g):
f(n)/g(n) - 0 when n — oo

Complexity classes

P

the class of algorithms with deterministic poly-
nomial time complexity: the complexity is (’)(a:d
for some d € N

N\’

NP

the class of algorithms with non-deterministic
polynomial time complexity: the complexity of
verifying the correctness of a solution (pro-
vided by some oracle, say) is O(z%) for some
d € N: finding the correct solution may not be
possible in polynomial time

Sometimes trade-offs between time and space
complexity

The true picture of easy versus hard problems
may be much more complicated!

Some general techniques

probabilistic rather than deterministic meth-
ods (gives to expected running times)

Ex: Pollard p algorithm (below)

iterative and recursive methods: divide and
conquer

Ex: Karatsuba algorithm (exercise)

homomorphism methods: mapping to eas-
ier structure combined with bounds

Ex: modular methods (polynomial factor-
ization)

rewriting

Ex: Grobner basis algorithm

Elementary Algorithms

integer addition and subtraction in O(logn)
integer multiplication and division in O((logn)?)
exponentiation (powering) by repeated squar-
ing and multiplication

polynomial evaluation: Horner's method

10

First Example: Pollard-p

Pollard’'s p method for integer factorization is
based on the ‘birthday paradox’:

taking a random sample of size O(1/n) of a set
of cardinality n is expected to give a collision

choosing a random f : Z/nZ — Z/nZ and x1,
then z1,20 = f(z1),2z3 = f(f(z1)) = f(=2),...
mod p will behave randomly in Z/pZ, for any
prime divisor p of n. Hence a collision z; =
z; mod p is expected after O(4/p) steps! Since
r; = x; mod N is unlikely (especially if p <
n), we detect the unknown p by computing
gcd(z; — x4, n).

f(z) =22+ 1 mod n, with 1 = 2 is standard

11

An optimisation

By the pigeonhole principle the sequence mod
p Will become periodic after say s+t steps, so
that z,41 = 24,4441 Mmod p, and the ‘p’ has a
‘tail’ of length s and a ‘cycle’ of length ¢.

Instead of comparing any two entries Tjy T, the
same result can be achieved more efficiently
by noting that for some m one gets x5, =

xm Mod p, the least such m being the smallest
multiple of t exceeding s.

Pollard’s p method runs heuristically in expected
time essentially /p to find the prime factor p

12

An Overview of Algorithms to Follow

e [he Fast Fourier Transform
and consequences for fast multiplication
e [he Euclidean Algorithm

in many incarnations with many appli-
cations

e [he Gaussian Elimination Algorithm

for solving systems, finding matrix in-
verses and determinants

e [he Lenstra-Lenstra-Lovasz algorithm

with surprising applications for short vec-
tors

e Hensel and Newton iteration

and other methods for root isolation,
separation etc.

e Grobner Basis Algorithm
again with various applications
e (towards) the Risch Algorithm

13

