2. THE EUCLIDEAN ALGORITHM

More ring essentials
In this chapter: rings R commutative with 1.

An element b € R divides a € R, or b is a divisor
of a, or a is divisible by b, or a is a multiple of
b, if there exists ¢ € R such that a = b - c.
Elements a and b in R are associates if there
exists a unit u € R such that a =4 -b (SO a is
a multiple of b and b is a multiple of a).

The element b is a proper divisor of a € R if
b is neither a unit nor an associate of a. AN
element is irreducible in R if it has no proper
divisors in R, other wise it is reducible. Note
that units are irreducible. The zero element is
irreducible if and only if R is a domain.
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Primes

A prime element is a non-unit m € R with the
property that if w divides a - b then = divides a
or b.

Lemma If R is a domain then: w &€ R prime
implies m is irreducible in R.

For, if m = o - 3, with o, non-units, then =«
divides o - 8, but if w divides a then a-8-v = «
for some ~, so 3-v—1 = 0, contrary to 8 being
non-unit.

Converse is false in general (z in Clz, vy, 2] /(22—

zy), or 2 in Z[\/—5]).
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Unique factorization domains

A unique factorization domain (UFD) is a do-
main in which every non-zero non-unit can be
written as a product of irreducible non-units in
a way that is unique up to order and associates.

Lemma If R is a UFD then every irreducible
element o« in R is prime.

For, if o divides a -b but neither a nor b (non-
units), then a-b would have two factorizations
into irreducibles, one containing (an associate
of) «, the other not.

Examples of unique factorization domains:

(i) Z

(ii) any field F

(iii) any principal ideal domain

(iv) DJ[z] for any UFD D, hence D[xq1,x>,...,ZTn]
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Common divisors

A greatest common divisor ¢ = gcd(S) of a
finite set S of elements in a domain R is an
element g that divides every element of S and
has the property that if ¢ also divides every
element of S then ¢ divides g.

Two elements a,b are called relatively prime
(or coprime) if gcd(a,b) = 1.

In a UFD every finite set S has a greatest
common divisor. Not true in general (6 and

2 4+ 2+/-5 in Z[v/—5] have no gcd), and not
necessarily unique.

32



Euclidean domains

A domain R is called Euclidean if there exists
a Euclidean function ¢ : R\ {0} — N such that
for all a,b € R with b # 0

(i) ¢(a) < ¢(a-b) and
(ii) there exist ¢q,r € R (quotient and remain-
der) such that a = ¢-b+r, with eitherr =0

or ¢(r) < ¢(b).

Proposition Every Euclidean domain is a prin-
cipal ideal domain

Given an ideal I, choose an element x in it
minimizing ¢(x). Then (x) C I. But if a € I
then a =q-x + r with » = 0 by minimality of
o(x), sincer=a—q-x €1. Hence a € (x).

Converse not true (Z[1+V2_19]).
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Examples
(i) Z, with ¢(n) = |n|;

(ii) F[x] for any field F, with ¢(f) = deg f.
(iii) Z[v—=1], with ¢(u + v/—=1) = u? + v=2.
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Euclidean algorithim

An efficient procedure for finding greatest com-
mon divisors is Euclid’'s famous algorithm.

Input: a,b %0
Output: d = gcd(a,b)

while b # O:
r.=a—aq-b,
a:=b, b:=m,

return a;

Correctness: if a = g b+ r, then gcd(a,b) =
gcd(b,r).

Termination: 0 < ¢(r) = ¢(a —q-b) < ¢(b), so
»(b) decreases.
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Extended Euclidean algorithm

With a little more bookkeeping it is possible to
obtain multipliers.

Input: a,b %0
Output: d = gcd(a,b), and multipliers s, t such
thatd=s-a+4+1t-b

s1:=1;, t1:=0;
s> :=0; to:=1,;
while b # O:
sg ‘= s1, to =11,
81 := 89, t1 = to,
r.=a—q-b,
a .= b; =7
$p =80 —¢q-s1, lo:=1g—q-t1,
return a, s1,t1;

Termination and correctness as before.
At the beginning of the while loop: s1a+4t1b =

a.
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Application: modular inverses

Proposition Let R be a Euclidean domain,
S = R/mR. Then a € S is a unit if and only
if gcd(a,m) = 1, and extended Euclidean algo-

rithm produces a 1.

a IS unit <—
there exists s € R with a-s=1 mod m <—
there exist s,te Rwitha-s+m-t=1 <=

gcd(a,m) =1 and s =a 1.

Hence inverses in

(i) Z/mZ

(ii) finite fields Fp = Z/pZ
(iii) finite fields F j = Fy[z]/ fFp[a]
(iv) number fields Q[x]/gQ][z].
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Continued fractions

The Euclidean algorithm is closely related to
the continued fraction expansion of rational
numbers. If we let a and b be positive integers
with a > b, the Euclidean algorithm determines
positive integers q;,r; with a = qgb + 9,

b= qiro+ 71,

ro = gqoT1 + T2,

Tk—> = qETL—1, SO T = 0. But then

a 70 1 1
EZQO‘F?:C]O‘I'?:QO"' T
_ q1 + —
70 0
— q0 N 1
q1 N 1
q2 1
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An expansion of the kind on the right is called a
(finite) regular continued fraction, and is usu-
ally denoted by [q0; q1, - - - q%].

The positive integers q; are called partial quo-
tients; note that g > 1. Conversely, it is clear
that every such continued fraction determines
a rational number. The main importance of fi-
nite continued fractions lies in the possibility to
generalize to expansions of arbitrary real num-
bers, by allowing infinite expansions [qo; q1, - . .].
Such an infinite expansion can be obtained
from a positive real = by setting g = x and
q; = _azij, where Ti4+1 = 1/(:1:2 — qz-), for : > 1.
It can be shown that the rational numbers
cr. = lgo; q1,--.,q,] form a sequence of increas-
ingly good rational approximations to x, con-
verging to z; the ¢, are called the convergents
to z. Right now we will only use infinite contin-
ued fraction in a worst case analysis of Euclid’s
algorithm, for which purpose it suffices to look
at one special case.
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Lemma Let ¢ be the positive real root of f =
2—gz—1,50¢p=Y2L Then¢=[1;1,1,..]
and the convergents to ¢ are the rational num-
bers cy, = Fi41/Fy, where Fy, is the k-th Fi-
bonacci number, given by Fop = F1 = 1, and
F;=F;_ 1+ F;_» for j > 2. Moreover

Fp = %wk“ _ g,

where ¢ = # is the conjugate of ¢.

Proof Since ¢ is a root of z2 — z — 1, we have
$-(d—1) =1, hence (¢ — 1)~ = ¢. But since
f(1))=—-1<0<1=f(2)weseethat 1 < ¢ <
2, so for the continued fraction development
we find zg = ¢, gp =1 and z1 = 1/(xzg— 1) =
xg. I hat proves the first part. For the second
assertion one proceeds by induction: clearly
co=1,¢c4 =2 and

1 Fy._ F. + Fi._ F
Cz‘+1=1‘|‘—=1‘|‘k1: k k=1 _ Yk+1
C; Fk Fk Fk
The final statement follows easily by induction,
using that ¢ and ¢ satisfy 2" = z"~1 4 z"—2,
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Theorem The Euclidean algorithm on input
a,b less than N takes at most [log(v/5N)] — 2
division steps.

Proof The maximum number of division steps
occurs when a = Fp and b = F, 1 with n max-
imal such that Fj,; 7 < N. The result follows
from the expression for Fj. in the Lemma, using
that ¢ < 1.
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