
2. THE EUCLIDEAN ALGORITHM

More ring essentials

In this chapter: rings R commutative with 1.

An element b ∈ R divides a ∈ R, or b is a divisor

of a, or a is divisible by b, or a is a multiple of

b, if there exists c ∈ R such that a = b · c.

Elements a and b in R are associates if there

exists a unit u ∈ R such that a = u · b (so a is

a multiple of b and b is a multiple of a).

The element b is a proper divisor of a ∈ R if

b is neither a unit nor an associate of a. An

element is irreducible in R if it has no proper

divisors in R; other wise it is reducible. Note

that units are irreducible. The zero element is

irreducible if and only if R is a domain.
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Primes

A prime element is a non-unit π ∈ R with the

property that if π divides a · b then π divides a

or b.

Lemma If R is a domain then: π ∈ R prime

implies π is irreducible in R.

For, if π = α · β, with α, β non-units, then π

divides α ·β, but if π divides α then α ·β · γ = α

for some γ, so β ·γ−1 = 0, contrary to β being

non-unit.

Converse is false in general (z in C[x, y, z]/(z2−
xy), or 2 in Z[

√
−5]).
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Unique factorization domains

A unique factorization domain (UFD) is a do-

main in which every non-zero non-unit can be

written as a product of irreducible non-units in

a way that is unique up to order and associates.

Lemma If R is a UFD then every irreducible

element α in R is prime.

For, if α divides a · b but neither a nor b (non-

units), then a · b would have two factorizations

into irreducibles, one containing (an associate

of) α, the other not.

Examples of unique factorization domains:

(i) Z

(ii) any field F

(iii) any principal ideal domain

(iv) D[x] for any UFD D, hence D[x1, x2, . . . , xn]
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Common divisors

A greatest common divisor g = gcd(S) of a

finite set S of elements in a domain R is an

element g that divides every element of S and

has the property that if c also divides every

element of S then c divides g.

Two elements a, b are called relatively prime

(or coprime) if gcd(a, b) = 1.

In a UFD every finite set S has a greatest

common divisor. Not true in general (6 and

2 + 2
√
−5 in Z[

√
−5] have no gcd), and not

necessarily unique.
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Euclidean domains

A domain R is called Euclidean if there exists

a Euclidean function φ : R \ {0} → N such that

for all a, b ∈ R with b 6= 0

(i) φ(a) ≤ φ(a · b) and

(ii) there exist q, r ∈ R (quotient and remain-

der) such that a = q ·b+r, with either r = 0

or φ(r) < φ(b).

Proposition Every Euclidean domain is a prin-

cipal ideal domain

Given an ideal I, choose an element x in it

minimizing φ(x). Then 〈x〉 ⊂ I. But if a ∈ I

then a = q · x + r with r = 0 by minimality of

φ(x), since r = a − q · x ∈ I. Hence a ∈ 〈x〉.

Converse not true (Z[1+
√
−19

2 ]).
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Examples

(i) Z, with φ(n) = |n|;
(ii) F [x] for any field F , with φ(f) = deg f .

(iii) Z[
√
−1], with φ(u + v

√
−1) = u2 + v2.
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Euclidean algorithm

An efficient procedure for finding greatest com-

mon divisors is Euclid’s famous algorithm.

Input: a, b 6= 0

Output: d = gcd(a, b)

while b 6= 0:

r := a − q · b;
a := b; b := r;

return a;

Correctness: if a = q · b + r, then gcd(a, b) =

gcd(b, r).

Termination: 0 ≤ φ(r) = φ(a − q · b) < φ(b), so

φ(b) decreases.
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Extended Euclidean algorithm

With a little more bookkeeping it is possible to

obtain multipliers.

Input: a, b 6= 0

Output: d = gcd(a, b), and multipliers s, t such

that d = s · a + t · b

s1 := 1; t1 := 0;

s2 := 0; t2 := 1;

while b 6= 0:

s0 := s1; t0 := t1;

s1 := s2; t1 := t2;

r := a − q · b;
a := b; b := r;

s2 := s0 − q · s1; t2 := t0 − q · t1;
return a, s1, t1;

Termination and correctness as before.

At the beginning of the while loop: s1a+ t1b =

a.
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Application: modular inverses

Proposition Let R be a Euclidean domain,

S = R/mR. Then ā ∈ S is a unit if and only

if gcd(a, m) = 1, and extended Euclidean algo-

rithm produces ā−1.

ā is unit ⇐⇒
there exists s ∈ R with a · s ≡ 1 mod m ⇐⇒
there exist s, t ∈ R with a · s + m · t = 1 ⇐⇒
gcd(a, m) = 1 and s̄ = ā−1.

Hence inverses in

(i) Z/mZ

(ii) finite fields Fp
∼= Z/pZ

(iii) finite fields Fpk
∼= Fp[x]/fFp[x]

(iv) number fields Q[x]/gQ[x].
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Continued fractions

The Euclidean algorithm is closely related to

the continued fraction expansion of rational

numbers. If we let a and b be positive integers

with a > b, the Euclidean algorithm determines

positive integers qi, ri with a = q0b + r0,

b = q1r0 + r1,

r0 = q2r1 + r2,
...

rk−2 = qkrk−1, so rk = 0. But then

a

b
= q0 +

r0
b

= q0 +
1

b

r0

= q0 +
1

q1 +
r1
r0

=

= q0 +
1

q1 +
1

q2 +
1

... +
1

qk

.
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An expansion of the kind on the right is called a

(finite) regular continued fraction, and is usu-

ally denoted by [q0; q1, . . . qk].

The positive integers qi are called partial quo-

tients; note that qk > 1. Conversely, it is clear

that every such continued fraction determines

a rational number. The main importance of fi-

nite continued fractions lies in the possibility to

generalize to expansions of arbitrary real num-

bers, by allowing infinite expansions [q0; q1, . . .].

Such an infinite expansion can be obtained

from a positive real x by setting x0 = x and

qi = ⌊xi⌋, where xi+1 = 1/(xi − qi), for i ≥ 1.

It can be shown that the rational numbers

ck = [q0; q1, . . . , qk] form a sequence of increas-

ingly good rational approximations to x, con-

verging to x; the ck are called the convergents

to x. Right now we will only use infinite contin-

ued fraction in a worst case analysis of Euclid’s

algorithm, for which purpose it suffices to look

at one special case.
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Lemma Let φ be the positive real root of f =

x2 − x − 1, so φ =
√

5+1
2 . Then φ = [1; 1,1, . . .]

and the convergents to φ are the rational num-

bers ck = Fk+1/Fk, where Fk is the k-th Fi-

bonacci number, given by F0 = F1 = 1, and

Fj = Fj−1 + Fj−2 for j ≥ 2. Moreover

Fk =
1√
5
(φk+1 − φ̄k+1),

where φ̄ = −
√

5+1
2 is the conjugate of φ.

Proof Since φ is a root of x2 − x − 1, we have

φ · (φ− 1) = 1, hence (φ− 1)−1 = φ. But since

f(1) = −1 < 0 < 1 = f(2) we see that 1 < φ <
2, so for the continued fraction development

we find x0 = φ, q0 = 1 and x1 = 1/(x0 − 1) =

x0. That proves the first part. For the second

assertion one proceeds by induction: clearly

c0 = 1, c1 = 2 and

ci+1 = 1+
1

ci
= 1+

Fk−1

Fk
=

Fk + Fk−1

Fk
=

Fk+1

Fk
.

The final statement follows easily by induction,

using that φ and φ̄ satisfy xn = xn−1 + xn−2.
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Theorem The Euclidean algorithm on input

a, b less than N takes at most ⌈logφ(
√

5N)⌉−2

division steps.

Proof The maximum number of division steps

occurs when a = Fn and b = Fn+1 with n max-

imal such that Fn+1 < N . The result follows

from the expression for Fk in the Lemma, using

that φ̄ < 1.
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