
Computer Algebra 2010 Exercises II February 11, 2010

II-1. Let n = 2m + 1 with m ≥ 2.
(i) Show that

n is prime ⇐⇒ 3
n−1

2 ≡ −1 mod n.

(ii) Show that the problem of deciding whether or not n (of the above form) is prime
is in P.

(iii) Prove: n prime ⇒ m even.
(iv) Write m = 2kr, with r odd. Find a non-trivial factorization of n if r > 1.
(v) Give an alternative encoding for the problem of deciding whether or not n of

the given form is prime that makes the test in part (i) exponential instead of
polynomial.

II-2. [compositeness test] Implement the Miller-Rabin probabilistic compositeness test,
as describes on pages 27–28 of the Chapter on ‘Four Number Theoretic Problems’.
Your functions should take as input a positive odd integer n to be tested, as well
as a positive integer k that signifies the number of attempts to find a witness for the
compositeness test before n is declared ‘probably prime’. The output should consist of
either a witness and the declaration ‘n is composite’ or the declaration ‘n is probably
prime since it passed k compositeness tests’.

II-3. [prime certificate] Implement an algorithm that generates a certificate for the

primality of an odd prime number n, by finding an integer a for which a
n−1

2

i
≡

−1 mod n, and for every odd prime divisor pi of n − 1 an integer ai satisfying

a
n−1

pi

i
6≡ 1 mod n, and then recursively applying this to the odd primes pi.

II-4. [Pollard-ρ] Implement Pollard’s ρ algorithm, for integer factorization. Try to speed
it up as much as you can. As an indication of its performance, if m is a product of
two primes of k and 2k decimal digits, describe approximately how the running time
varies as a function of k.

II-5 Combine the previous algorithms into one function that, on input a positive integer
n, returns the complete factorization of n together with primality certificates for each
of the odd prime factors.


