
3. Computational Complexity.

(A) Introduction.

As we will see, most cryptographic systems derive their supposed security from the pre-
sumed inability of any adversary to crack certain (number theoretic) problems. In recent
years effort has been put in to formalize the notions of security, and their relation to the
theory of computational complexity. Most results in this area are of the type: there exists
a provably secure cryptosystem (of some kind) if we can prove that a certain number the-
oretic problem is hard to solve. Unfortunately, no such problem has ever been shown to
be ‘hard’ to solve, in a sense described below, but progress has been made in the area of
classification problems of like difficulty – hierarchies of complexity classes.

Complexity theory may be seen as an attempt to formalize the concept of ‘intractable
computational problems’. One is naturally led to fundamental problems about the nature
of algorithms, machine models and information theory. In these notes we will only pick a
few topics that are relevant and more or less mathematical in nature.

The usual dichotomy between ‘easy’ and ‘hard’ problems is that between problems
allowing a solution in ‘polynomial time’ and those that do not allow such a solution (taking
‘exponential time’, which in this context means anything worse than polynomial). Unfor-
tunately, there are not many problems for which it has been proven that no polynomial
time solution exists; the few for which this has been achieved fall into two categories. The
first comprises the problems that are undecidable – that is, those that no algorithm will
be able to solve (examples are Hilbert’s tenth problem, deciding the solvability of polyno-
mial equations in integers, and the problem of deciding whether or not a finitely presented
group is trivial) – and the second consists of problems that cannot even be solved with a
‘non-deterministic’ (see below) computer in polynomial time. Most interesting problems
are solvable non-deterministically in polynomial time, but for those no one has been able
to show that they cannot possibly be solved in polynomial time.

It should be remarked that even with the right definition of ‘polynomial time algo-
rithms’ it is not always the case that in practice polynomial time algorithms are useful and
exponential time algorithms are useless.

We will use the following standard notation: a function f in the real or integer vari-
able x satisfies f = O(g) for a positive function g if there exists an integer C such that
|f(x)| ≤ Cg(x) for all values in the domain of f , and f satisfies (the stronger) f = o(g) if
f(x)/g(x) → 0 for x → ∞. Thus, for example, any polynomial function is O(xn) for some
suitable n ≥ 0, a constant function is O(1), etc.

A problem, generally, consist of a question involving several parameters (free variables),
and can be specified by describing all parameters as well as the the requirements for
a solution. An instance of a problem is obtained by specifying values for each of the
parameters. In the same general way an algorithm is a step-by-step procedure for solving
a problem. Here ‘solving a problem’ means that a solution will be found for every instance
of the problem.

The most important problem for our purposes is the following.

16

Problem: Integer Factorization.
Instance: Positive integer n.
Question: Find an integer d such that 1 < d < n and d | n.

Many cryptographic systems will be rendered ‘unsafe’ if it could be shown that factoring
integers is easy, that is, has a ‘polynomial time solution’. The first obvious remark is that
the time a solution takes will be dependent on the the input, say the integer n. Thus,
trial division, the method of factoring n by searching for divisors among 2, 3, . . . , ⌊√n⌋,
will never take more than

√
n steps, which is sub-polynomial in n. However, it is not n

but the size of n which is of importance; usually we take the number of (binary) digits of
n as a measure of its size, that is, roughly, log(n). Suddenly trial division has become an
‘exponential’ algorithm in the size of the input.

The second important remark is that not all ‘steps ’ in an algorithm are equally
expensive. To underline that we mention the following – at first sight surprising – fact.†

(3.1) Theorem. There exists an algorithm to find a factor of n in O(log n) steps.

Thus in only linear ‘time’ in the size of the input we can find a factor of a number, so it seems
– the problem lies in the definition of ‘steps’. In (3.1) it is meant to be arithmetic steps,
that is, one of the four principal integer operations of addition, subtraction, multiplication,
and division (with remainder). The algorithm indicated by (3.1), however, operates on
integers potentially as large as n!, consisting of order n2 digits. A fair measure for the
complexity of an algorithm is not the number of arithmetic operations, but the number
of bit operations required. Addition and subtraction require O(log n), multiplication and
division O((log n)2) bit operations (or even fewer with fast multiplication techniques).
With these notations of size and primitive operations both trial division and the algorithm
of (3.1) will be exponential time.

(B) Turing Machines.

The standard model for a computer is the Turing machine. A Turing machine consists of a
finite state control, an (infinite) input tape comprising cells, and a tape head reading and
writing a cell at a time. A move is determined by the symbol scanned and the state of the
control head, and consists of changing the control and overwriting the current cell, followed
by a left or right move. Formally, a program for a Turing machine specifies (Q, Σ, Γ, δ, q0):

Q the finite set of states, including halting states qh;

Γ the finite set of tape symbols including the blank,

Σ the set of input symbols (not containing the blank) Σ ⊂ Γ,

δ the (partial) next move function: δ: (Q \ {qh}) × Γ → Q × Γ × {l, r},
q0 the start state q0 ∈ Q,

† A. Shamir, Factoring numbers in O(log n) arithmetic steps, Information Processing
Letters 8 (1979), 28–31.

17

A computation starts with the control in state q0, scanning the first cell, which contains
the first of a finite sequence of input symbols x over Σ (called a word, and denoted x ∈ Σ∗),
and proceeds as prescribed by the transition function δ until a halting state is reached.
The set Σ is the alphabet, and a collection of words in the alphabet (that is, a subset of
Σ∗) forms language.

There are three essentially different ways in which this can now be used:

(i) for the computation of partial functions: the output consists of the (interpretation of)
the contents of the finitely many tape cells that contain symbols once the computation
has halted, that is, the output is a string y ∈ Σ∗. This defines a partial function since
the machine is not required to halt on every possible input;

(ii) for the recognition of languages: the machine is required to reach a halting state on
every possible input, and there will be two halting states, the accepting halting state
qyes and the rejecting halting state qno;

(iii) for accepting languages: not every computation need to reach a halting state, and the
language that is accepted consists of the input words on which the machine reaches a
halting state.

We will be mainly interested in the second and third application. Recursive languages are
those recognized by a computation of the form (ii) above; the language (over Σ) recognized
by Turing machine (program) M is

LM = {x ∈ Σ∗ : M halts on input x in state qyes}.

Recursively enumerable languages are those accepted by a computation of the form (iii).
Since it is easy to change a program in such a way that instead of reaching the state qno

it will continue forever, it is clear that every recursive language is recursively enumerable,
but, as we shall see below, the converse is not true.

There exists a close relationship between recognizing languages and solving decision
problems. A decision problem is a problem allowing only yes/no answers; the set YΠ ⊂ IΠ

is the subset of the set of all instances of problem Π that consists of all yes-instances.

To obtain an algorithm for solving decision problems as above, we need an encoding
function e : I → Σ∗, describing each instance of our problem by an appropriate string of
symbols over the alphabet Σ. A Turing machine program M then solves problem Π if M
halts for all input strings over the alphabet, and LM = {e(i) ∈ Σ∗ : i ∈ YΠ}.

We will usually ignore the dependence on the encoding function, and assume that a
‘reasonable’ encoding exists. The alphabet Σ will usually consist of the binary digits 0, 1.
By way of example we present a solution to the the following problem.

Problem: Divisibility by Four.
Instance: Positive integer n.

Question: Is n = 4m for some integer m?

A Turing machine program for solving this problem is constructed as follows: Q = {q0,
q1, q2, q3, qyes, qno}, where qyes is the accepting state (‘yes, divisible by four’) and qno is
the rejecting state (‘no, not divisible by four’); Σ = {0, 1}, Γ = {0, 1, b} and δ is specified

18

as in the table below. Moreover, the encoding function maps any integer into its binary
expansion (most significant digit first). This Turing machine recognizes

{x ∈ {0, 1}∗ : the two rightmost symbols of x are 0}.

δ 0 1 b

q0 (q0, 0, R) (q0, 1, R) (q1, b, L)
q1 (q2, b, L) (qno, b, L) (qno, b, L)
q2 (qyes, b, L) (qno, b, L) (qno, b, L)

Note that we have not been very precise in distinguishing between a Turing machine and
a program – in fact the two are more or less the same since a Turing machine may be
thought of a a fixed piece of ‘hardware’ together with a program.

Turing observed that the programs are finite, and can be enumerated, that is, we can
encode them and they can serve as input for other Turing machine (programs). In fact,
taking encodings for pairs of programs and their input as input for a new Turing machine,
we arrive at a Turing machine that simulates all others: a universal Turing machine that
recognizes pairs of programs and their recognizable inputs.

(3.2) Theorem. There exists an enumeration of Turing machines M1, M2, . . ., and there
exists a universal Turing machine Mu with the property:

∀x∀Mi (x, Mi) ∈ LMu
⇐⇒ x ∈ Lmi

.

We are now in a position to see that not every recursively enumerable language is recursive.
The halting problem provides a diagonalization argument.

Problem: Halting Problem.
Instance: A Turing machine program M , with input x.
Question: Does the computation of M on x complete in finitely many steps?

(3.3) Theorem. The halting problem is undecidable, that is, there exists no Turing
machines that recognizes the pairs M, x that lead to a halting computation.

Sketch of Proof. Let MD be a Turing machine that decides the halting the problem,
and define M0 to be the Turing machine accepting the integer i if and only if Mi does not
accept it, using MD to decide this. Then M0 must different from all others in Turing’s
list, a contradiction.

The Turing machine we have described so far is deterministic: the next move is
completely determined by the initial state and the transformation function δ. Strictly
speaking, a program for a deterministic Turing machine corresponds to an algorithm only
if it halts on every possible input string (but we will not always strictly adhere to this).

19

A non-deterministic Turing machine has an extra feature, namely a ‘guessing module’,
with a write-only head, that is solely used in a first stage that precedes the second stage
of the computation, which takes place exactly as described above for the deterministic
machine. In the guessing stage the guessing module writes an arbitrary string from Γ∗ to
the left of the beginning of the input string for the second stage. This second, deterministic,
‘checking’ stage progresses as before, and usually involves scanning the ‘guess’ during the
computation. An accepting computation is one that halts, in some halting state qhalt,
the others are rejecting. An input string x is accepted if and only if it is accepted for
at least one of the (infinitely many) possible guesses, and the language recognized by the
non-deterministic machine is that of all inputs that are accepted.

The intuitive idea behind non-deterministic Turing machines is that they provide a
solution-verifier rather than a problem-solver: given a guessed solution to an instance of
the problem, the second stage can deterministically verify that it is a correct solution to
the problem.

A non-deterministic ‘algorithm’ solves a decision problem Π if for every yes-instance
yΠ ∈ YΠ ⊂ IΠ there exists at least one guessed solution leading to an accepting (halting)
computation while for every no-instance nΠ /∈ YΠ no guess will lead to an accepting
computation.

There is one other type of Turing machine that we need to consider, namely a random
(or probabilistic) Turing machine: this is basically a non-deterministic Turing machine
where instead of a guessing module a new operation is built in that can be employed at
each step, namely that of a coin toss. The result of the computation will in general depend
on the tosses made. A language L will be accepted by a random Turing machine if for
every word x in L the probability (taken over all possible outcomes over the coin tosses)
that x is accepted exceeds a fixed number, say 2/3. In the next chapter we will come across
several important random algorithms; the idea behind probabilistic algorithms is that it is
often necessary to find auxiliary elements (integers) satisfying certain properties that are
known to hold for ‘many’ but for which it is difficult to give a deterministic constructive
method.

Turing machines can be generalized and restricted in various ways (more tapes, one-
sided tape, more read-write heads, restricted jumps etc.) without affecting the class of
partial functions that can be computed, or the class of languages that can be recognized or
accepted. It is now generally accepted that the intuitive notion of ‘effectively computable’
is equivalent to ‘computable by a Turing machine’.

(C) Complexity Classes.

The time tM (x) taken by a deterministic Turing machine program M on input x is the
number of steps taken until a halting state is reached. The time complexity function for
an always halting Turing machine program M then is the function TM : Z≥1 → Z≥1 given
by

TM (n) = max{tM (x) : x ∈ Σ∗ such that |x| = n}

(where use the notation |x| for the length of a string).

20

The time t′M (x) taken by a non-deterministic Turing machine program M to accept
x ∈ LM is the minimum number of steps (during guess and check stages) leading to an
accepting computation for x. The time complexity function for M is defined by

T ′
M (n) = max({1} ∪ {t′M (x) : x ∈ LM such that |x| = n}).

In particular, rejecting (non-halting!) computations do not affect T ′
M (n).

A polynomial time deterministic Turing program is one for which there exists a poly-
nomial P (n) such that TM (n) = O(P (n)). The class P of languages recognized in (deter-
ministic) polynomial time consists of the languages L such that there exists a polynomial
time deterministic Turing program M for which L = LM (i.e., recognizing L). A decision
problem Π will belong to the complexity class P if and only if there exists a polynomial
time deterministic Turing machine solving Π (under some ‘reasonable’ encoding scheme).

A polynomial time non-deterministic Turing program is one for which T ′
M (n) =

O(P (n)) for some polynomial P . The class NP of languages recognized in non-deterministic
polynomial time consists of the languages L such that there exists a polynomial time non-
deterministic Turing program for which L = LM . A decision problem Π will belong to
the complexity class NP if and only if there exists a polynomial time non-deterministic
Turing machine solving Π. Note that a polynomial bound on a problem in NP imposes a
polynomial bound on the size of the solution (since it is to be written out in the guessing
stage).

Very briefly, the complexity class BPP of random (probabilistic) polynomial time prob-
lems consists of those decision problems for which there exists a probabilistic algorithm
that solves the problem and for which the running time is bounded by a polynomial in
the length of the input. Sometimes one also considers expected random polynomial time
algorithms, where the expected running time (averaged over all possible coin tosses) is
bound by a polynomial function. A problem in BPP will definitely be in BPP.

(3.4) Theorem. Let Π be a decision problem. Then:

(i) Π ∈ P ⇒ Π ∈ NP.

(ii) Π ∈ NP ⇒ TΠ(n) = O(2P (n)) for some polynomial P .

Proof. (i) Use the polynomial time algorithm for Π as a checking stage and ignore the
guessing stage.

(ii) Let Q be a polynomial bound on TΠ. Then at most |Γ|Q(n) guesses need to be
considered, and each takes O(Q(n)) to verify.

Note one important difference between P and NP: the lack of symmetry between the ‘yes’
and ‘no’ cases for NP. If we let co-P be the class of problems whose complement is in P,
we immediately find co-P=P, because a deterministic algorithm must halt on every input
and the complementary problem is obtained by simply interchanging the output states. It
is not clear at all that co-NP=NP.

The most important open question in complexity theory is whether or not P = NP.
There are lots of problems that are known to be in NP for which no polynomial time
solution is known (see the next section). The most important technique for classifying

21

problems uses polynomial transformations. A polynomial transformation from a language
L1 over Σ1 to a language L2 over Σ2 is a function f : Σ∗

1 → Σ∗
2 satisfying

(i) f can be computed by a polynomial time deterministic Turing machine;

(ii) for all x ∈ Σ∗
1: x ∈ L1 ⇐⇒ f(x) ∈ L2.

If there exists a polynomial transformation from L1 to L2 we say that L1 transforms to
L2. It is easy to see (by composing two polynomial time Turing machines) that if L1

transforms to L2 and L2 is in P, then L1 is in P as well.
It is also not hard to prove (by composing polynomial transformations) transitivity of

polynomial transformations: if L1 transforms to L2 and L2 transforms to L3, then there
is a polynomial transformation from L1 to L3.

For decision problems we define that Π1 transforms to Π2 if there exists a polynomial
time algorithm providing a function from the instances of Π1 to those of Π2 such that the
‘yes’-instances correspond under f . A problem Π1 that transforms to a problem Π2 in P
must be in P as wells; but if Π1 is ‘intractable’ then so must be Π2: Π2 is at least as hard
as Π1.

Two languages or decision problems are polynomially equivalent if each transforms
to the other. The complexity class P is the equivalence class of easiest decision problems,
and the class of NP-complete decision problems is the equivalence class of the hardest
problems in NP: a (language or) decision problem is called NP-complete if it is in NP and
every other (language or) decision problem can be transformed to it. If any NP-complete
problem allows a polynomial time solution, then every NP problem is in P. Thus, if P 6= NP
then NP−P contains the NP-complete problems. The class of NP-hard problems contains
the problems that have the property that any NP problem can be transformed to it (but
which are not necessarily in NP). These cannot be solved in polynomial time, unless P=NP.

The existence of NP-complete problems was proven by Cook’s Theorem which states
that the satisfiability problem is NP-complete.

Problem: Satisfiability
Instance: Finite set U = {u1, u2, . . . , uk} of variables, and a collection C of clauses over
U , where a clause C ∈ C is a set of the form {v1, . . . , vm, w̄1, . . . w̄n} with vi, wj ∈ U .
Question: Is there a truth assignment t : U → {true, false} such that C is satisfied, that
is, such that for each C = {v1, . . . , vm, w̄1, . . . w̄n} ∈ C there exists at least some 1 ≤ i ≤ m
for which t(vi) = true or at least some 1 ≤ j ≤ n such that t(wj) = false?

Once members of the class NP are known, another problem Π may be shown to belong
to the class NP-complete by proving that it belongs to NP and that a known member
transforms to Π. A long list of NP-complete problems is now known, some of them are
listed in the next section.

NP-hard problems are, in the sense of polynomial transformations, at least as hard as
NP-complete problems. They often arise in problems that are more general than decision
problems, namely in search problems. A search problem has the property that for every
instance there exists a (possibly empty) set of solutions of that instance, and a solution
to the problem requires for every input instance either the a no-state is reached (when
there exist no solution to that instance) or a solution for that instance is returned. In
corresponding decision problem only the yes-state needs to be arrived at in the second

22

case. A more general transformation notion (polynomial Turing reduction) is required
to deal with such search problems. In practical situations one is often confronted with
search problems in the guise of optimization problems, in which the requirement for a
solution for an instance is that it minimizes a certain cost function, or maximizes a certain
profit function. If the cost function is easy to evaluate, a decision problem can easily be
associated with the optimization problem that is not harder to solve: the decision problem
‘does there exist a solution for which the cost does not exceed B’ can be solved if we can
solve the optimization problem ‘find a solution with minimal cost’, when we are permitted
to add the calculation of the cost of that solution.

As for the relations between the complexity classes we mention the following. It is
not known whether NP 6= co−NP; in fact

NP 6= co−NP ⇒ P 6= NP.

On the other hand, the existence of any NP-complete problem for which the complement
is also in NP would imply that NP = co−NP. As a consequence any problem Π with both
Π and its complement Πc in NP (so Π ∈ NP ∩ co−NP) cannot be NP-complete, unless
NP=co-NP. If NP and co-NP are different, then so are P and NP, and in that case it is
known that there must be intermediate problems between P and NP. Possible candidates
would be problems for which both Π and Πc are in NP: if NP 6= co−NP such problems
must either be in P or of intermediate difficulty.

Optimization problems are often NP-hard. In particular, it can be shown that if the
associated decision problem is NP-complete then the optimization problem will be hard.
Also, the complements of NP-complete and NP-hard problems will be NP-hard.

(D) Examples.

One of the most studied combinatorial problems (with practical applications) is the trav-
eling salesman problem. The decision version reads as follows.

Problem: Traveling Salesman
Instance: Finite set C = {c1, c2, . . . , cm} of cities, a distance d(ci, cj) ∈ Z≥1 for ci, cj ∈ C
and a bound B ∈ Z≥1.
Question: Is there a tour of all cities having length at most B, that is, a permutation
ci1 , . . . , cim

such that

d(cim
, ci1) +

m
∑

j=1

d(cij
, cij+1

) ≤ B?

Traveling Salesman is known to be NP-complete (see also below). The optimization prob-
lem can be formulated as follows, and is NP-hard. Interestingly enough it can be shown
that in this case the optimization problem is not any harder than the decision problem, in
the sense that the optimization problem is Turing reducible to the decision problem.

23

Problem: Traveling Salesman Optimization
Instance: Finite set C = {c1, c2, . . . , cm} of cities, a distance d(ci, cj) ∈ Z≥1 for ci, cj ∈ C
and a bound B ∈ Z≥1.
Question: Find a tour of all cities having minimal length.

Another collection of combinatorial problems are of the knapsack family. These are of
interest for cryptographic applications too. The following general form is known to be
NP-complete.

Problem: Knapsack.
Instance: Finite set A, size s(a) ∈ Z≥1 and value v(a) ∈ Z≥1 for each a ∈ A, a size
restraint B ∈ Z≥1 and a value goal G ∈ Z≥1.
Question: Does there exist a subset A′ ⊂ A such that

∑

x∈A′ s(x) ≤ B and
∑

x∈A′ v(x) ≥
G?

This problem remains NP-complete if size and value are identical, in which case the problem
is usually formulated as follows.

Problem: Subset Sum.
Instance: Finite set A, size s(a) ∈ Z≥0 for each a ∈ A, and a positive integer B.
Question: Does there exist a subset A′ ⊂ A such that

∑

x∈A′ s(x) = B?

A closely related NP-complete problem asks for the partition of a set in parts of equal size.

Problem: Partition.
Instance: Finite set A, size s(a) ∈ Z≥0 for each a ∈ A.
Question: Does there exist a subset A′ ⊂ A such that

∑

x∈A′ s(x) =
∑

x∈A\A′ s(x)?

Hamiltonian circuit.
Instance: A graph G consisting of vertices V and edges E.
Question: Does G contain a Hamiltonian circuit, that is, does there exist a sequence
s = [v1, v2, . . . , vk] such that s contains all vertices V exactly once, and such that (vi, vi+1)
is an edge in E for i = 1, 2, . . . , k − 1 as well as (vk, v1).

Hamiltonian Circuit is known to be NP-complete. By way of easy example we prove
that the Hamiltonian Circuit can be used to prove Traveling Salesman NP-complete, by
transforming the former to the latter.

First one has to see that Traveling Salesman is in NP: that is not hard, since all that
verifying a proposed solution entails is checking that the tour visits all cities and that the
sum of the distances remains below the given bound.

A transformation f from Hamiltonian Circuit can be constructed as follows. Let
G = (V, E) be an instance of Hamiltonian Circuit, with #V = m, say. The corresponding
instance of Traveling Salesman will consist of a set of cities C = {c1, c2, . . . , cm} and a
distance d defined by

d(ci, cj) =
{

1 if (vi, vj) ∈ E,
2 otherwise.

The bound on the length of the tour is defined to be B = m.

24

This transformation is easily computed polynomially, as only at most m2 pairs of
vertices need be looked up in the list of edges (which may for example be arranged as an
incidence matrix).

Suppose that G has a Hamiltonian circuit, say [vi1 , . . . , vim
]; then the tour [ci1 , . . . , cim

]
has length m, so solves the Traveling Salesman instance. Conversely, any tour [ci1 , . . . , cim

]
in f(G) of length at most m must have length exactly m and consist of intercity distances
all equal to 1, that is, the corresponding sequence [vi1 , . . . , vim

] forms a Hamiltonian circuit
in G.

Anti-Pellian Equation.
Instance: An integer d.
Question: Does there exist a solution x, y ∈ Z for x2 − dy2 = −1?

This problem is interesting in several respects. It is known to be in NP, but in general
writing down integers x, y solving the equation does not provide a solution that can be
verified in polynomial time. For example, the smallest solution for dk = 52k+1 is given

by the integers x, y such that x + y
√

5 = (2 +
√

5)5
k

, and hence the solution x, y cannot
be written down in polynomial time. However, it turns out that there exists a criterion
that is equivalent to the solvability of x2 − dy2 = −1, and a non-deterministic polynomial
algorithm that will answer ‘yes’ or ‘no’ according to whether there exists a solution or
not. Note that both ‘yes’ and ‘no’ can be verified in polynomial time, and therefore the
criterion that is equivalent to the Anti-Pellian Equation problem is one of the few problem
known to be in NP ∩ co−NP.

Exercises.

1. Let n = 2m + 1 with m ≥ 2.

(i) Show that

n is prime ⇐⇒ 3
n−1

2 ≡ −1 mod n.

(ii) Show that the problem of deciding whether or not n (of the above form) is prime is
in P.

(iii) Prove: n prime ⇒ m even.

(iv) Write m = 2kr, with r odd. Find a non-trivial factorization of n if r > 1.

(v) Give an alternative encoding for the problem of deciding whether or not n of the given
form is prime that makes the test in part (i) exponential instead of polynomial.

(vi) Find a close analogue to the test in (i) that works for numbers of the form N =
h · 2m + 1, with h odd and m ≥ 2. Formulate it, and show that for prime N the test
runs in expected random polynomial time.

2. Let it be given that the Partition problem is NP-complete.

(i) Prove that the Knapsack is NP-complete (by showing that Partition can be obtained
from it as a special case).

(ii) Prove (by a polynomial transformation) that Subset Sum is NP-complete.

25

4. Four Number Theoretic Problems.

In this Chapter we will briefly discuss four problems in number theory that have crypto-
graphic significance, together with their complexity status.

Some quotes to indicate how the perception of the status of some of these problems
has changed, partly due to cryptography:

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most im-
portant and useful in arithmetic. It has engaged the industry and wisdom of
ancient and modern geometers to such an extent that it would be superfluous to
discuss the problem at length. [. . .] The dignity of science seems to demand that
every aid to the solution of such an elegant and celebrated problem be zealously
cultivated. (C. F. Gauß, Disquisitiones Arithmeticae, 1801).

[the problem] is almost devoid of application. [. . .] I shall be surprised if anyone
regularly factors numbers of size 1080 without special form during the present
century. (R. K. Guy, ‘How to factor a number’, 1975).

Until recently the factorization of large integers was not considered a decent sub-
ject for mathematicians, but the advent of the RSA-cryptosystem has increased its
interest. (M. Voorhoeve, ‘Factorization algorithms of exponential order’, 1980).

(A) Primality Proving.

The first observation is that primes can be recognized in non-deterministic polynomial
time.

Problem: Prime Numbers.
Instance: Positive integer N .
Question: Do there not exist m, n ∈ Z 1 such that N = mn?

(4.1) Theorem. ‘Prime Numbers’ is in NP.

Proof. Let N be a positive integer, and suppose that

(∗) N − 1 = 2αpα1
1 · · ·pαk

k .

To prove that N is prime, it suffices to write down an integer a < N , and integers p0 = 2,
p1, . . . , pk, to verify that (∗) holds and that the order of a modulo N is N − 1 by showing

a(n−1)/2 ≡ −1 mod N

and
a(n−1)/pi 6≡ 1 mod N for i = 1, . . . , k.

26

Proving recursively that each of the pi is prime, leads to a polynomial bound on the
primality proof of N (a bound O((logn)4) can be achieved).

(4.2) Example The above result, due to Pratt is often stated in the form ‘short certificates
for primes exist’. Here is such a certificate for N = 997.

In this tree, each node consists of a triple (n, p, a), one for each of the prime divisors p of
n − 1, where a is as in the proof above.

�
��

@
@@

�
�

�
�

Q
Q

Q
Q

XXXXXXXXXXX

HHHHH

�
�

�
�

(2, 1, 0)

(2, 1, 0)

(3, 2, 2)

(2, 1, 0)

(2, 1, 0)

(2, 1, 0)

(5, 2, 2)

(41, 2, 3)(41, 5, 2)

(83, 2, 2)(83, 41, 2)

(997, 83, 2) (997, 2, 2)(997, 3, 7)

(997, 1, 0)

The complement of the problem Prime Numbers is called Composite Numbers.

Problem: Composite Numbers.
Instance: Positive integer N .
Question: Are there m, n ∈ Z 1 such that N = mn?

This problem is obviously in NP, since verification of a proof for compositeness may consist
of a single multiplication of two non-trivial divisors and comparison with N . Hence ‘Prime
Numbers’ is one of the few known problems in NP ∩ co − NP.

For the next results it is convenient to introduce the notion of witness. For an odd
integer N > 2, an integer a is witness to the compositeness of N if, with N − 1 = 2sd (and
d odd):

(i) N does not divide a; and

(ii) ad 6≡ 1 mod N ; and

(iii) ad2r 6≡ −1 mod N , for r = 0, 1, . . . , s − 1.

(4.3) Lemma. If a is a witness for N then N is composite.

27

Let a be a witness for N and suppose that N is prime, then aN−1 ≡ 1 mod N , and in the
sequence

ad, ad·2, ad·22

, . . . , ad·2s−1

, aN−1

the last term is 1 mod N , but the first term is not, by (i). There exists some k with

0 ≤ k < s such that b = ad·2k 6≡ 1 mod N but b2 ≡ ad·2k+1 ≡ 1 mod N . By (iii)
b 6≡ −1 mod N so we have found a square root of 1 in the field Z/NZ that is not ±1: a
contradiction.

(4.4) Theorem. ‘Composite Numbers’ is in BPP. That is, there is an algorithm that
recognizes composite numbers in random polynomial time.

Proof. It can be shown that for every odd composite N at least 3 · (N − 1)/4 integers a
with 1 ≤ a < N are witness to the compositeness for N .

(4.5) Theorem. Assuming the generalized Riemann hypothesis, ‘Prime Numbers’ is
in P. That is, under the assumption of GRH, primality can be decided in deterministic
polynomial time.

Proof. Under GRH a witness less than c · (logN)2 exists for every positive odd composite
number N . This is a consequence of the fact that all non-witnesses are contained in the
subgroup

{a ∈ (Z/NZ)∗: am = ±1},

for some m (in fact m = d · 2j with j = max{i : b2i ≡ −1 mod N for some b ∈ Z/NZ}),
and the result that should have been quoted in Chapter 2:

Theorem. Let m be a positive integer. Assuming the generalized Riemann hypothesis, the
smallest positive integer x outside a given subgroup G of (Z/mZ)∗ satisfies x ≤ 2(logm)2.

(4.6) Theorem. ‘Prime Numbers’ is in BPP. That is, there is an algorithm that recognizes
prime numbers in random polynomial time.

(4.7) Theorem. There exists an algorithm that, for some constant c ∈ Z≥0, recognizes
prime numbers in (log N)c log log log N

(4.8) Remarks. Theorem (4.6) is based on Adleman-Huang’s generalization to ‘abelian
varieties’ of Goldwasser-Kilian’s ‘random elliptic curve test’. Neither of these is practical,
and the Theorem is only of theoretical value (it seems that not even the degree of the
polynomial has been estimated).

Theorem (4.7) on the other hand is based on the highly practical ‘Jacobi sum test’
(albeit that the practical version is probabilistic). It can routinely prove primes of hundreds
of decimal digits prime.

There is one other test based on elliptic curves that has similar performance. Although
a rigorous complexity analysis has never been completed, there are heuristics indicating
that it may run in expected polynomial time.

28

In any case, for practical purposes the primality problem is often regarded as ‘easy’.
Some other miscellaneous results. First an analogue to the result mentioned in (3.1):

if n is prime, this can be proved in O(1) arithmetic operations. This is due to the fact that,
as a byproduct of research into Hilbert’s tenth problem it was shown that there exists a
polynomial f ∈ Z[a, b, c, . . . , x, y, z] of degree 25 with the property that the set of prime
numbers coincides with the positive values taken on by the polynomial when evaluated in
non-negative integers. Moreover, the result is constructive in the sense that non-negative
integers A, . . . , Z can be constructed such that n = f(A, . . . , Z), and, in fact, it then takes
at most 87 multiplications and additions to verify this. However, it can also be shown that
the largest of A, . . . , Z exceeds

nnnnn

.

Using elliptic curves (again) it is also possible to give prime certificates, the verification
of which can even shown to be done in O((log n)3) whereas the bound proven for verification
of the above certificates is O((log n)4).

(B) Factorization.

The situation regarding the factorization problem is much less clear.

Problem: Integer Factorization.
Instance: Positive integer N .
Question: Find m, n ∈ Z 1 such that N = mn

Here are some proven results. Whenever in the exponent an ǫ appears, this indicates that
there are logarithmic factors involved as well, but for any positive ǫ these are in O(N ǫ).
The deterministic ‘trial division algorithm’ for example can find the smallest prime factor
of N in O(N

1
2 (log n)2), which is abbreviated to O(N

1
2+ǫ).

(4.9) Theorem. There exists a deterministic algorithm that factors N completely in

O(N
1
4+ǫ).

(4.10) Theorem. There is a deterministic algorithm that, assuming the generalized

Riemann hypothesis, factors N completely in O(N
1
5+ǫ).

Almost all non-exponential results, either heuristic or proven, involve the function

L[u, v](n) = exp(v+o(1))(log n)u(log log n)(1−u)

.

Note that L[0, v](n) = (log n)v and L[1, v](n) = nv (up to the o(1)).

(4.11) Theorem. There exists a probabilistic algorithm that completely factors N in
expected time L[12 , 1](N).

29

(4.12) Remarks. The algorithm that (4.9) refers to is ‘Pollard-Strassen’, and uses in fact
time (log n)O(1)√p to split n where p is the least prime factor of n. (It uses Fourier trans-
forms to evaluate a polynomial through many points, and is only of theoretical interest).

The algorithm in (4.10) is based on class groups, and the bound was proven by Rene
Schoof; it is not faster if small primes occur.

The theorem in (4.11) is the best that has been proven, and refers to a combined
class group / elliptic curve method, or Seyssen’s class group algorithm. Not faster if small
primes are present.

Neither of these are practical.

The rest of this section will be devoted to factorization methods that are practical, and of
interest to us for one reason or other.

We start with Pollard’s ρ method, which of interest because a variant will appear in
the next section.

Pollard’s ρ method is based on the fact that a random sequence of elements from a set
of cardinality t is expected to have a collision (contain two identical elements) among
O(

√
t) entries. If one chooses a random function f : Z/NZ → Z/NZ, and an initial value

x1, the sequence x1, x2 = f(x1), x3 = f(f(x1)) = f(x2), . . . will behave randomly when
taken modulo a (prime) divisor p of N , that is, on Z/pZ. A collision consisting of indices
j > i ≥ 1 for which xi ≡ xj mod p is expected after O(

√
p) steps. Since it will be unlikely

(in particular if p ≪ N) that xi ≡ xj mod N , such a collision will enable us to detect the
factor p by computing gcd(xi − xj , N).

An easy to compute, and apparently sufficiently random function is obtained by taking
f(x) = x2 + c mod N , where c = 1 and x1 = 2 are the standard choices. Instead of
comparing any two entries xi, xj, the same result can be achieved more efficiently by noting
that the sequence will become periodic after say s+ t steps (so that xs+1 ≡ xs+t+1 mod p,
and the ‘ρ’ has a ‘tail’ of length s and a ‘cycle’ of length t); then for some m one gets
x2m ≡ xm mod p, the least such m being the smallest multiple of t exceeding s.

Pollard’s ρ method runs heuristically in expected time essentially
√

p to find the prime

factor p – that is O(n
1
4).

The second practical method, which is also fast, is the so-called ‘elliptic curve method’ of
H. W. Lenstra. We will deal with it later, but it is very similar to Pollard’s p− 1 method,
which we will now describe. Pollard’s p−1 method works well if N contains a prime factor
p for which p− 1 is ‘smooth’, that is, built up entirely from powers of small primes. More
precisely, a number x is y-smooth if all its prime divisors are less than or equal to y.

Here the L function comes in again: a number x ≤ nα is L[1/2, β](n)-smooth with
probability L[1/2,−α/(2β)](n).

If N does contain a y-smooth factor we may detect it (if not all factors are y-smooth) by
choosing a random a ∈ Z/NZ and raising it in the power k(y) modulo N , for k(y) consisting
of powers of the primes up to y; then ak(y) ≡ 1 mod p and so 1 < gcd(ak(y) − 1, N). It
remains to choose k as a function of y; sometimes k = lcmpk≤y(pk) is taken, and y is
determined empirically.

30

Lenstra’s elliptic curve method uses groups of points on elliptic curves that need to
be smooth, and runs in O((logn)2L[

√
2, 1](p)) = O(L[1/2, 1](n) heuristically, where p is

the smallest prime factor of n.

(4.13) Example. As a quick example we show how quickly N = 9495468075263 can be
factored with straightforward implementations of Pollard’s ρ and p − 1 methods in the
Magma language. The ρ method finds the factor 823 after 31 iterations in a fraction of a
second (because it is so small), and the p− 1 method finds 209497 in about the same time
because p−1 it is so smooth: 209497−1 = 23 ·3 ·7 ·29 ·43. In fact N = 823 ·209497 ·55073,
while 823 − 1 = 2 · 3 · 137, and 55073 − 1 = 25 · 1721.

The final two (related) methods concern the best-known practical methods to find factors
of large numbers without small divisors (say products of primes with more than 40 decimal
digits).

Both the quadratic sieve method and the number field sieve are members of a family
of ‘relation method’ algorithms, that have applications in other areas (including discrete
logarithms). In its most general form, an algorithm in this family can be described in three
staps in the following general way.

(i) Generate a large number of random ‘relations’ of some desired form over a certain
‘factor base’;

(ii) Use linear algebra to reduce the large system of relations to a few;

(iii) Try to derive the desired conclusion.
In the case of factorization, one chooses a bound b, attempts to find many relations of the
form

m2 ≡ rm =
∏

pi≤b

p
km,i

i mod N

and combines these to obtain a few relations of the form

x2 =
∏

m∈M

m2 ≡
∏

m∈M

(

∏

p
km,i

i

)2

= y2 mod N,

in the hope that x2 − y2 = (x + y)(x − y) ≡ 0 mod N will give rise to a non-trivial
factorization of N .

More precisely, one generates L[1/2, b] integers m for which the least positive residue
rm of m2 modulo N is L[1/2, b] smooth. (The factor base consists of the primes up to b.)
One expects that there will be a linear dependency among the vectors of zeroes and ones
of km,i mod 2 (telling whether pi occurs an even or odd number of times in rm), and such
a dependency will lead to a product

∏

m∈M rm = y2 that is an even (including 0) power
of all the primes less than b, so the corresponding product x2 of the m2 gives a relation
of the form x2 ≡ y2 mod N . It can in fact be proven that for composite N that is not a
prime power and that is free of factors less than L[1/2, b] with probability at least 1/2 the
gcd(x + y, N) will yield a factor of N .

There are several ways to generate the necessary relations: by choosing m at random
(not very practical, but one can prove something about it), by using the numerator ni and

31

denominator di of the convergents of the continued fraction expansion of
√

N (which have
the advantage that ri = |n2

i −nd2
i | < 2

√
N), or by using certain quadratic polynomials. In

the latter case one uses polynomials like

P (x) = (⌊
√

N⌋ + X)2 − N,

which, evaluated for any integer m, yields a square modulo N , whose residue can be used
as rm above (when it is smooth). Now |rm| is O(L[1/2, α](N)

√
N) if m ≤ L[1/2, α](N),

so if random it should be L[1/2, b] smooth with probability L[1/2,−1/(4b)]. so we should
take α ≥ b + 1/(4b).

One can use the elliptic curve method as smoothness tester! But for quadratic sieve
also ‘sieving’: let p be a prime in the factor base, then, provided

(

N
p

)

= 1, the equation

R(x) ≡ 0 mod p has 2 solutions modulo p (that can be found – see last section of this
chapter!), say m1 and m2, but then R(mi + kp) ≡ 0 mod p for any integer k.

Pomerance’s multiple polynomial variation of the quadratic sieve, runs heuristically
in O(L[1/2, 1](n).

The number field sieve, which uses two factor bases (one as above, and one in a number

field) runs heuristically in O(L[1/3, 3

√

64
9

](n)).

With these methods it is still a major effort to factor arbitrary integers with more
than 100 decimal digits.

(C) Discrete Logarithms.

The third important problem we consider is that of finding discrete logarithms. Let h be
an element of a finite abelian group G, and let H =< h > be the subgroup generated by h.
For an element g ∈ G the discrete logarithm problem with respect to h is to decide whether
or not g ∈ H, and if g ∈ H to compute the discrete logarithm logh g, which is an integer
logh g = m ∈ Z≥0 such that g = hm.

Problem: Discrete Logarithm.
Instance: Finite abelian group G, elements g, h ∈ G.
Question: Decide whether g = hm for some m ∈ Z≥0, and if so, find m = logh g.

A few remarks are in order. In the first place, it will be assumed that the group operations
in G can be performed efficiently; it will, however, not always be the case that group
elements have a unique representation, in which case equality testing and membership
testing may not be possible. When this occurs we will see that un-equality testing will be
easy and, in fact, will be sufficient. Examples of groups in which we can efficiently compute
are: groups (Z/nZ)∗, multiplicative groups F∗

q of finite fields, groups of points on elliptic
curves over finite fields. Note that the representation of group elements is important for
the discrete logarithm problem: in the additive group Z/nZ the problem is trivial, and any
finite cyclic group is isomorphic to some Z/nZ. In other words, an alternative formulation
of the discrete logarithm problem is to find the image of g under the isomorphism between
H and Z/nZ, if n = nH = #H.

32

Secondly, it may not be the case that the order of the group G or of the subgroup H
is known; sometimes we will have to assume that a small multiple of the order is known
though. In fact determining the order of a (sub)group is a closely related problem, as we
will see. The discrete logarithm logh g is only determined modulo the order of H.

Thirdly, an important special case arises when H = G, that is, when G is cyclic and
h is a generator; the decision question will be trivial then.

If #H is not too big and many logarithms will have to be computed, it may be worthwhile
to compute a complete table of logarithms. In general this will of course not be feasible.

The trivial discrete logarithm algorithm proceeds by computing 1 = h0, h = h1, h2, . . .
until either hm = g and m = logh g or hk = 1 for some k ≥ 1, in which case g /∈ H. In any
case the algorithm takes O(nH) operations in G. Note that in the second case the order
nH = #H has been determined. We do need unique representation of group elements.
The following improves significantly on this.

(4.14) Theorem. There exists a deterministic algorithm to find discrete logarithms that
takes O(

√
nH log nH) multiplications and comparisons in G.

Again, we need to be able to test for equality; also, we require considerable storage, namely
for O(

√
nH) elements.

The method, known as Shanks’s baby-step giant-step algorithm, is quite practical, and
proceeds as follows.

First one needs an upper bound B on the logarithm logh g; if nH is known then
B = nH , and if no upper bound is known one may use this method first to determine
nH . Put b = ⌈

√
B⌉. If g ∈ H then logh g < b2, and so there exist 0 ≤ i, j < b such that

g = hib+j , that is, logh g = ib + j. So, one next computes a sorted (or hashed) lookup
table of hj for j = 0, 1, . . . , b − 1 which takes O(b log b) group operations. Next compute
g · h−ib for i = 0, 1, . . . , b − 1 until a match in the lookup table is found, so g · h−ib = hj ,
and therefore g = hib+j . If g /∈ H no match will be found. The order of H can be found
by taking g = 1 (and excluding i = 0 = j); if no upper bound on nH is known, one just
tries B = 21, 22, 23, . . . in succession.

The following variant of Pollard’s ρ method runs heuristically in expected time O(
√

nH).
One partitions G in three (random) subsets G1, G2, G3 of roughly equal size; we need nG

(or a small multiple) and membership testing in Gi, i = 1, 2, 3 for this. Define the recurrent
sequence g0, g1, . . . by g0 = g and

gi+1 =

{

h · gi if gi ∈ G1;
g2

i if gi ∈ G2;
g · gi if gi ∈ G3;

for i ≥ 0. As in the original ρ algorithm, we expect a collision after O(
√

nG) steps if this
sequence is random in G. Again, we also expect g2r = gr for r that is O(

√
nG). Keeping

track of the integers ai and bi, defined modulo nG, such that gi = gaihbi (so a0 = 1,
b0 = 0), we then find

g2r = ga2rhb2r = garhbr = gr,

33

so ge = hf , with e ≡ a2r−ar mod nG and f ≡ br−b2r mod nG. Then e logh g ≡ f mod nG.
If d = gcd(e, nG) = 1 this determines logh g modulo nG; if not, there are d possibilities
left, and it may require it little bit extra work to determine logh g.

Note that the recurrent sequence remains entirely in H if g ∈ H, and if the sequence
behaves randomly in H we expect to find a collision in O(

√
nH) steps.

The next algorithm (often attributed to Pohlig-Hellman and to Silver) works if the order
of H is y-smooth, for some small y ∈ Z≥1. If a bound B on the order is also known,
smoothness can easily be tested, for example (much like in the p− 1 method) by raising h
in the power k = pk1

1 · · · pkt

t which is the product of all prime powers pk < B with p < y.
Suppose that nH =

∏

pα1
1 · · · pαm

m ; then logh g is determined by logh g mod pαi

i , i =
1, . . . , m, so if g ∈ H we need to determine e = logh g mod pα only, for various prime
powers, and use the Chinese remainder Theorem. Let e = e0 + e1p + · · ·+ eα−1p

α−1 with
0 ≤ ei < p. We determine e0 by using

gnH/p = (he)nH/p = (hnH/p)e = (hnH/p)e0 = ke0 ,

that is, by determining logk(gnH/p) in the subgroup K =< k > of H of order p. Then

(g · h−e0)nH/p2

= ke1

so we find e1 again by a discrete logarithm computation in K (using for example the ρ-
method above). If g ∈ H then the discrete logarithm can be found in O(

∑

αi(log nH +√
pi log pi)) group operations.

Finally we come to the subexponential methods, which are of the ‘relation type’ outlined
above, and usually called index calculus methods in this case. These methods work in
groups for which a smoothness concept makes sense, but they are usually confined in
practice to finite fields. In that case one assumes that a primitive element h is given, and
the order #H = #G is known.

(4.15) Theorem. Let Fq be a finite field, then there exist probabilistic algorithms to find
discrete logarithms in Fq that have expected running time

T =

L[1/2,
√

2](q) if q = 2m;
L[1/2,

√
2](q) if q = p;

L[1/2, c(m)](q) if q = pm, for m fixed;

(4.16) Remarks. Heuristically, algorithms running in time L[1/3, c](q) exist in all three
cases – for q = 2m a result due to Coppersmith, for q = p and q = pm with m fixed due to
use of the number field sieve.

An open problem is still to find an algorithm that runs (even heuristically) in subex-
ponential time if both p and m tend to infinity.

34

In the first stage of the index calculus method we find discrete logarithms of all elements
s ∈ S ⊂ G, in the factor base S consisting of y-smooth ‘prime’ elements pi of G. This
is done by generating y-smooth ge at random: ge =

∏

pαi

i ; each e gives rise to a linear

relation e =
∑k

i=1 αi logh pi mod nH . After generating enough relations. one expects a
solution for the unknowns logh pi, one finds that by linear algebra.

To find a specific discrete logarithm, one picks random integers f until ghf is y-smooth,
then

logh g =
∑

(βi logh pi) − f mod nH .

We end this section with some relations between the factorization problem and the discrete
logarithm problem in (Z/NZ)∗.

(4.17) Theorem. If ‘Discrete Logarithm’ for (Z/NZ)∗ is in P then ‘Integer Factorization’
is in BPP; that is, a deterministic polynomial time algorithm for finding discrete logarithms
in (Z/NZ)∗ provides a probabilistic polynomial time method for factoring N .

Proof. We sketch a proof.
First we use the relation between discrete logarithms and orders of elements as follows:

suppose b ∈ (Z/NZ)∗ is given, then we find a small multiple of the order of b ∈ (Z/NZ)∗

using the discrete log algorithm in the following manner. Choose a small prime p and
attempt to compute logh(bp) and logh b. If p is coprime to φ(N) this will produce y such
that bpy ≡ b mod N , if gcd(p, φ(N)) 6= 1 we proceed to the next prime (a suitable prime
less than log N must exist), until y is obtained. Then x = py − 1 = 2st (with t odd) is a
multiple of the order of b.

Secondly, let N = pα1
1 · · · pαk

k be odd and let λ = 2σµ be the exponent gcdpi|N (φ(pαi

i))
of (Z/NZ)∗. Suppose that b is not in the subgroup

A = {x ∈ (Z/NZ)∗: xλ/2 ≡ ±1 mod N}

of (Z/NZ)∗. Then the order of b ∈ (Z/NZ)∗ must be of the form 2σν, for a divisor ν of
µ; also s ≥ σ. In the sequence

bt, bt·2, bt·22

, . . . , bt·2σ

the last term is ≡ 1 mod N but (by choice of b) the next to last term is not ≡ ±1 mod N .

Therefore gcd(N, bt·2σ−1 − 1) is non-trivial.
Finally, if N is not a prime power, the subgroup A of (Z/NZ)∗ is proper, as we can

choose

a ≡
{

gi mod pαi

i for i = 1;
g2

i mod pαi

i for i > 1
.

Prime powers can be recognized in random polynomial time (see Exercise 4).

(4.18) Theorem. If the integer factorization problem and the problem of finding discrete
logarithms in (Z/pZ)∗ are both in P, then so is the problem of finding discrete logarithms
in (Z/pZ)∗.

35

For a sketch of the proof see Exercise 5.

(D) Square Roots.

To conclude this chapter we consider the problem of finding square roots in (Z/mZ)∗.

Problem: Modular Square Roots.
Instance: Positive integer m, integer a.
Question: Find all square roots of a modulo m.

First consider the case where the modulus m = p is prime. The Legendre symbol provides
an efficient means for finding the number of square roots of a modulo p. If

(

a
p

)

= 0 then

0 is the only square root, and if
(

a
p

)

= −1 then square roots do not exist modulo p. If
a is a quadratic residue modulo p, the problem is to find one square root x such that
x2 ≡ a mod p (the other square root is then simply −x).

Obviously, a search will succeed in time O(p). But we can do much better.

(4.19) Theorem. There exists a deterministic algorithm to find square roots modulo p
that runs in O((log p)6).

The algorithm to which this alludes is Schoof’s algorithm, and uses elliptic curves. We
will consider it in a later Chapter. Its practicality is not entirely clear.

We next consider probabilistic methods. If p ≡ 3 mod 4 one can in fact write down the
solution explicitly, namely, let

x = a(p+1)/4 mod p,

then, by Euler’s Criterion (2.13)(i)

x2 ≡ a · a(p−1)/2 ≡ a ·
(

a

p

)

≡ a mod p.

In half the remaining cases (namely if p ≡ 5 mod 8, see Exercise 6) one can still write
down an explicit solution, but to push this further becomes cumbersome. However, there
exists a probabilistic solution in general.

(4.20) Theorem. There exists a probabilistic algorithm to find square roots modulo p
that runs in expected polynomial time.

In fact, as we will see, the only non-deterministic part will consist of finding a quadratic
non-residue modulo p; thus, as an immediate result we find a polynomial time algorithm
under the assumption of GRH (but (4.19) is unconditional).

The algorithm underlying (4.17) is called Tonelli-Shanks, and works as follows. First write
p − 1 = 2s · d, with d odd. Next find a quadratic non-residue c modulo p (in expected

36

polynomial time, the rest of the algorithm will be deterministic). Determine z ≡ cd · p.
Since c was a quadratic non-residue, this z will generate the (2-Sylow) subgroup H of order
2s of (Z/pZ)∗. The element ad will be a square in H, so ad = z2m for some m ≤ 2s−1,
and then a(d+1)/2z−m is the desired root.

We now determine a strictly decreasing sequence of integers r0 = s > r1 > · · · > rk = 0
and the corresponding chain of subgroups H0 = H ⊃ H1 ⊃ · · · ⊃ Hk = 1 of order
2ri , together with generators hi and auxiliary elements xi, bi ∈ Hi, with bi a square in
Hi, in such a way that abi = x2

i . This is done by taking initially r0 = s, H0 = H,
h0 = z−1, x0 = a(d+1)/2 and b0 = ad, and by using the following rules to go from i to

i + 1: let ri+1 be the least positive integer such that b2r

i ≡ 1 mod p, let hi+1 = h2ri−ri+1

i ,

let xi+1 = xi · h2ri−ri+1−1

i = xi

√

hi+1 and bi+1 = bi · hi+1. This will terminate with bk = 1
and then a = x2.

That settles the problem for prime modulus in an entirely satisfactory way. For composite
moduli we have the following.

(4.21) Theorem. ‘Modular Square Roots’ is in P if and only if ‘Integer Factorization’ is
in P.

Proof. Let N be composite, and let a = d2. If x is a square root of a such that x 6≡
±d mod N , then N |x2 − d2 but N 6 |x − d and N 6 |x + d so 1 < gcd(x − d, N) < N .

The converse is an immediate consequence of (4.19) and the fact that a square root
modulo p can easily be lifted to a square root modulo pk, for any k ≥ 1.

To conclude this Chapter we mention some peculiarities that are sometimes used in cryp-
tography.

Let N = p · q, with p, q ≡ 3 mod 4; such N are sometimes called Blum numbers. An
integer a coprime to N will be a square modulo N if and only if it is a square modulo
both p and q, that is, if and only if

(

a
p

)

=
(

a
q

)

= 1. Let x0 be a square root of a modulo

p; note that the other square root is −x0 and that
(

−x0

p

)

=
(

−1
p

)(

x0

p

)

= −
(

x0

p

)

. Therefore,

among the four different square roots of a modulo N there is exactly one (say x) for which
(

x
p

)

=
(

x
q

)

=
(

x
N

)

= 1, that is, which itself is a square modulo N . And, if y is a square root

of a such that y 6≡ ±x mod N then
(

y
N

)

= −
(

x
N

)

.

37

Exercises.

1. Give a prime certificate for 1031.

2. Let N be an odd number, and let p be prime.

(i) Prove that S = {a ∈ (Z/NZ)∗ : a(N−1)/2 ≡
(

a
N

)

} forms a subgroup of (Z/NZ)∗.

(ii) Prove: if pk|N and a(N−1)/2 ≡
(

a
N

)

for every a ∈ (Z/NZ)∗ then k = 1.

(iii) Let N = p · r, with gcd(r, p) = 1 and r ∈ Z≥3. Let
(

b
p

)

= −1 and let c ≡ b mod p and

c ≡ 1 mod r. Prove that c(N−1)/2 6≡
(

c
N

)

.

(iv) Prove #S < #(Z/NZ)∗ for the subgroup S in (i).

(v) Prove that if x /∈ S then x is a witness for the compositeness for N . Conclude that
at least φ(N)/2 elements of (Z/NZ)∗ are witness to the compositeness of N .

3. In the ‘Fermat factorization’ algorithm one attempts to find a factor of N by initially
taking x = ⌈

√
N⌉, and (if N 6= x2) then repeating the two steps of incrementing x by

1 and checking whether z = x2 − N is the square of an integer, until that condition
holds.

(i) Show how to recover a factor of N when z = y2.

(ii) Show that if N is composite, this method will find a non-trivial factor of N .

(iii) How many times does one have to repeat the two steps above?

(iv) Using this method to factor N as in Example (4.13) is thousands times slower than
using Pollard’s methods. However, Fermat’s method finds a factor of 217 · N faster
than Pollard’s methods. Explain this, and find an even better ‘multiplier’ k.

4. Let N be a composite number, and let a ∈ Z/NZ be a witness for its compositeness.
Let c = aN−1.

(i) Show that if c ≡ 1 mod N then there exists some k ≥ 0 such that gcd(ad·2k+1 − 1, N)
yields a non-trivial factor of N (where d is the odd part of N − 1).

(ii) Show that if c ≡ 0 mod N then gcd(a, N) yields a non-trivial factor of N .

(iii) Show that if c 6≡ 0, 1 mod N then either gcd(c − 1, N) is a non-trivial factor of N or
gcd(c − 1, N) = 1 and N is not a prime power.

(iv) Show that prime powers can be recognized in random polynomial time.

5. Let p be prime and p ≡ 5 mod 8, and let a be a quadratic residue modulo p. Prove:

(i) a(p−1)/4 ≡ ±1 mod p.

(ii) If a(p−1)/4 ≡ 1 mod p then x2 ≡ a mod p where x ≡ a(p+3)/8 mod p.

(iii) If a(p−1)/4 ≡ −1 mod p then x2 ≡ a mod p where x ≡ 2 · a · (4 · a)(p−5)/8 mod p.

38

