
Programming with Algebraic Structures:

Design of the Magma Language

Wieb Bosma

John Cannon

Graham Matthews

School of Mathematics and Statistics, University of Sydney

Sydney, iVSW 2006, Australia

Abstract

MAGMA is a new software system for computational

algebra, number theory and geometry whose design is

centred on the concept of algebraic structure (magma).

The use of algebraic structure as a design paradigm

provides a natural strong typing mechanism. Further,

structures and their morphisms appear in the language

as first class objects. Standard mathematical notions

are used for the basic data types. The result is a power-

ful, clean language which deals with objects in a math-

ematically rigorous manner. The conceptual and im-

plementation ideas behind MAGMA will be examined in

this paper. This conceptual base differs significantly

from those underlying other computer algebra systems.

1 Introduction

1.1 Structural Computation

It is instructive to classify algebraic computations

roughly according to the degree of abstraction involved.

Thus, a first order computation consists entirely of cal-

culations with elements of some algebraic structure; the

structure itself can be essentially ignored. A second or-

der computation involves explicit calculation with struc-

tures and substructures. Finally, a third order compu-

tation is one in which the operations involve entire cat-

egories of algebraic structures. Although a structural

computation will ultimately reduce to a series of ele-

ment calculations, it will usually involve a great deal of

effort unless support is provided by the programming

language.
The paradigm that has driven most research in alge-

bra over the past century has been the idea of precisely

Permission to copy w“thout fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
iSAAC 94- 7/94 Oxford England UK
@ 1994 ACM 0-89791 -636-7/94/0007.. $3.50

classifying all structures that satisfy some (interesting)

set of axioms. Notable successes of this approach have

been the classification of all simple Lie algebras over the

field of complex numbers, the Wedderburn classification

of associative algebras, and the very recent classification

of finite simple groups. Classification problems t ypically

concern themselves with categories of algebraic struc-

tures, and their solution usually requires detailed anal-

ysis of entire structures, rather then just consideration

of their elements, that is, second order computation.

Examination of the major computer algebra systems

reveals that most of them were designed around the no-

tion of jirst order computation. Further, systems such

as Macsyma, Reduce, Maple [6] and Mathematical [13]

assume that all algebraic objects are elements of one

of a small number of elementary structures. Indeed,

most objects are assumed to live in a fixed differential

ring. Calculation in a non-elementary structure is of-

ten fudged by setting a flag. For example, the global

MOD flag in Macsyma is used to simulate arithmetic in

Z/mZ (often with strange results since the current value

of MOD affects every integer calculation). In Maple,

calculation in a residue class ring is achieved by set-

ting a parameter on each function invocation. For the

purpose of doing calculus in a fixed structure this may

be a valid approach. However, the power of modern

algebra comes from the interaction between (elements

of) several algebraic structures together with the pre-

cise identification of the axiom system to which each

object belongs. A major advance was the int reduction

of domains and categories in Axiom [9], which provided

the basis for a strongly typed system. (See also San-

tas [11]). However, Axiom does not support algebraic
structures as first class objects.

Two fundamental prerequisites for serious computa-

tion in the more advanced parts of algebra are:

1. A strong notion of type.

2. First class status for algebraic structures and their

homomorphisms.

52

1.2 Cayley and Magma

Cayley [4] was the first widely used Computer Alge-

bra language to provide an environment for computing

with certain structures (primarily groups) and their ho-

momorphisms. The success of Cayley stemmed, in large

part, from its exploitation of (1) and (2) above, albeit

for a limited class of structures.

Many of the ideas, initially developed in Cayley for

computation with groups, were seen to be generally

applicable to algebraic and geometric structures. We

therefore undertook the design of a general language for

algebraic computation based on a ‘theory of structural

computation’ which, in contrast to t ra,ditional systems,

emphasised computation with algebraic structures. Be-

cause of limitations in the original design of Cayley, the

new language was conceived not as an extension of Cay-

ley, but rather as a new language ([2], [3]).

The use of algebraic structure as an organizing princi-

ple for algebraic computation led us to develop the out-

lines of what might be called ‘algebraic programming’,

whereby the algebraic structure plays a role analogous

to, say, the role of the function in functional program-

ming. These ideaa also provided a model for the imple-

mentation of MAGMA, just as the theory of categorical

combinators provides both a semantics for the CAML

system and a basis for the CAM implementation of the

system [7].

1.3 Summary of Objectives

●

●

b

●

The system would be designed for those areas of

mathematics that are algebraic in nature. Since a

given mathematical object is often viewed quite

differently by workers from distinct branches of

mat hematics, there is no reason to expect that the

view of, say polynomials, presented in a successful

system for calculus is likely to prove satisfactory for

algebraists. We proposed to take an explicit view of

algebra, and develop a system in accordance with

it. Our view asserts the primacy of the structure

and structure-preserving mappings – we shall refer

to this as the structural view.

A high-level programming language (the MAGMA

language), designed both as an implementation lan-

guage for large programs and as the interactive in-

terface for the system, would be provided. The sys-

tem would be implemented partby in C and partly

in the MAGMA language.

The MAGMA language would adopt a strong notion

of type and would provide user-defined types.

Algebraic structures and their morphisms would be

first-class objects in the language.

●

●

●

●

2

2.1

The MAGMA language would be based on funda-

mental concepts from algebra, using notation as

close as possible to standard mathematical prac-

tice. For example, we chose to support ‘mathemat-

ical’ data structures such as sets, sequences and

mappings, rather than adopting more typical com-

puter science data structures such as lists, trees, or

even pointers. Our view is that the most natural

way of specifying an algebraic algorithm is in terms

of these mathematical notions.

The system would allow complete integration of

three key types of knowledge, namely, algorith-

mic knowledge (the library of algorithms), static

knowledge (data bases of useful knowledge), and

dynamic knowledge (properties and relationships

remembered in the course of computation).

Efficiency was to be a paramount concern since

the system was intended to be capable of tackling

hard problems. The basic machinery for compu-

tationally important classes of algebraic structures

(mainly particular families of groups, rings, fields,

modules and algebras) would be hand-coded in the

C kernel.

The system kernel would be constructed on top of a

low-level ‘standardized platform’ thereby allowing

us to ‘plug in’ C code written by people outside the

Magma group. By importing code written by the

experts in a particular field, we could include within

the system optimal implementations of many im-

portant algorithms at the cost of a small amount

of effort on our part.

Algebra of Structures

Magmas

As the design of MAGMA is intended to reflect the struc-

tural view of algebra, we take as fundamental the notion

of an algebraic structure. For brevity, we use the term

magma when referring to an algebraic structure. The

name magma was introduced by Bourbakil to denote a

set with a law of composition.

How does one represent a magma? A concrete magma

is one defined over an explicit carrier set, whereas an

abstract magma is one in which the carrier set is not

specified. It is clear that actual computation must take

place in a concrete magma. We now assume that our

(concrete) magmas are finitely generated. Since most

interesting infinite algebraic structures having a devel-

oped theory are finitely generated, this restriction is not

1~, BOurb&i, Alg&bre ~, P. 1: “Un ensemble muni d’ une loi
de composition est appel~ un magma.”

53

particularly onerous. A concrete magma will be repre-

sented by a finite set of generators.

The following organizational principles underlie the de-

sign of MAGMA:

●

●

●

●

Every object x that may be defined in MAGMA be-

longs to a unique magma (called the parent of x).

A magma will be represented in terms of a finite

set of generating elements.

Magmas are organized into categories where a cat-

egory corresponds to a family of magmas sharing

a common representation (such as the class of all

polynomial rings).

A collection of categories of magmas whose laws of

composition all satisfy a common set of identical

relations form a variety.

Every object definable in MAGMA, is either a magma or

is defined in terms of a magma. Thus, objects such as

matrices, vectors and polynomials may only exist (in-

deed are only definable) in the context of a magma of

which they are considered elements. For example, a

polynomial in the indeterminate x with integer coeffi-

cients, is regarded as an element of Z [x].

2.2 Categories

A collection of magmaa belonging to the same variety

and which share a common representation, form a ‘cat-

egory’. While MAGMA categories usually correspond

either to categories or indexed families of categories in

the sense of Category Theory, it will sometimes be con-

venient to apply the term to a family of magmas which

do not form a category in the strict sense. The cate-

gory to which a magma belongs determines each of the

following:

●

●

●

●

The representation of the elements of the magma.

The representation of the carrier set of the magma.

The operations which

ments of the magma.

The operations which

magma.

may be performed on ele-

may be performed on the

Every object has associated with it a pointer to its par-

ent. Thus, an element refers to its parent magma, while

a magma refers to its parent category. The data struc-

ture representing a magma A contains the information

needed to completely specify A, and possibly a represen-

tation of its carrier set. The data structure representing

a category C contains all of the functions and operators

(i.e., functions written in infix format) that maybe ap-

plied to magmas belonging to C.

The notion of a variety provides us with a framework

for designing a generic method for defining a magma.

Because of space limitations, we can only present a very

simplified version here. Consider a class of algebras

forming a variety. Now these algebras are closed under

the formation of subalgebras, homomorphic images and

Cartesian products. The class of magmas that consti-

tute a particular category will be parameterized in some

way. For example, a polynomial ring is parameterized

by its coefficient ring and number of indeterminates.

For a given choice of parameters, there always exists a

unique ‘free’ algebra having those parameters. When

a category is installed, a function is provided to crest e

this free algebra, given particular values for the param-

eters. Now theory tells us that any algebra belonging

to the category and having the given parameters can

be obtained from the free algebra by application of one

or more of the three variety operations. In the case of

categories of magmaa which do not form a variety, some

minor variation of the above ideas will usually work.

Magma provides both generic and category-specific

constructors for creating magmas. The generic con-

structions include the following:

A free magma constructor.

A submagma constructor that takes an existing

magma M together with a set X of elements of

M and creates the submagma generated by X.

A quotient magma constructor that takes an exist-

ing magma M together with a set X of elements

of M and creates the quotient of M by the ideal

generated by X.

A constructor that forms an extension of a magma

by some other magma (the form of this is rather

dependent upon the variety to which the magmaa

belong).

2.3 Mappings

Of equal importance to the concept of a magma, is

the concept of a mapping between magmas, especially

structure-preserving mappings (morphisms). Mappings

are used to represent the following types of associations:

●

●

●

●

A natural relationship holding between two mag-

maa (e.g. inclusion).

A general homomorphism between two magmas.

An endomorphism of a magma.

An action of magma A on magma B.

54

● An association between two sets.

How do we represent mappings? A th~eorem from Uni-

versal Algebra states that in the case of a class of

magmas forming a variety V, a homomorphism of any

magma A belonging to V is uniquely determined by the

images of a generating set for A.

During the execution of a MAGMA program, the run-

time system automatically creates and stores most nat-

ural homomorphisms that arise. For example, when a

submagma is created, the inclusion mapping is stored.

Similarly, when a quotient magma is created, the nat-

ural epimorphism is stored. When operations are at-

tempted on objects belonging to different magmas re-

lated by such natural homomorphisms, the evaluation

mechanism will automatically apply these homomor-

phisms iteratively so as to coerce the operands into a

common magma.

3 The Language

The MAGMA language is an imperative programming

language with standard imperative-style statements and

procedures. In addition, it supports both the set-

theoretic [12] and functional programming paradigms.

In particular, the language has a functional subset pro-

viding functions as first class objects, higher order func-

tions, partial evaluation, etc.

A novel and central aspect of the MAGMA language is

the provision of general constructors. These are used to

define magmas and mappings as well as instances of the

basic data types: set, sequence, and tuple. IVe give the

reader a brief introduction to some of these constructors

by means of simple examples.

Magmas are typically created by applying a varietal

operation to some existing magma. The process be-

gins with the creation of a ‘free’ magma. Consider the

following MAGMA statements where MAGMA input is

preceded by a > prompt sign.

>Q:= RationalFieldo;

> P<x> : = PolynomialRing (Q);

>1 := ideal< P I X-2+1 >;

> F<i> := quo< P I X-2+1 >;

The function Rat ionalField returns the rational field

Q (a magma). The function PolynomialRing creates

a free magma, the ‘free’ (commutative) ring in one in-

determinate over Q. The <x> construction assigns the

generator of the ring P to the variable z. In addition,

x will be used as the name of the indeterminate when

elements of P are printed. The third statement uses

the sub-constructor to create the ideal of P generated

by X2 + 1. Finally, using the quo-constructor} the field

F = Q(=) 1sConstructed w the quotient of P by the
ideal generated by Z2 + 1.

Homomorphisms are defined either by giving the im-

age of a general element of the domain magma or by

specifying the images for the defining generators of the

domain magma.

> P<x, y> := PolynomialRing (Integers () , 2);

>K := FiniteField(lOl) ;
> T<u> : = PolynomialRing (K) ;

> tau := hom<P -> T I x -> K ! 23, y -> u>;

> print tau(x-4*y-5 - 24*x-2*y + X-2 - y + 7) ;
71*u”5 + 29*u + 31

We create a polynomial ring P in two indeterminates x

and y over the ring of integers Z. We next create the

finite field F1O1 and a polynomial ring T in one inde-

terminate u over K. The mapping p is the natural em-

bedding of Z in K. Finally, we define a homomorphism

r from P to T which evaluates x at 23. The notation

K ! 23 indicates that the integer is to be coerced into the

corresponding finite field element.

A MAGMA set consists of a collection of elements be-

longing to a single magma. A similar convention holds

for sequences. A tuple is an element of a general Carte-

sian product. A set is specified either by explicitly list-

ing its elements or by using a predicate to define the

set aa a subset of a larger set. Sets and sequences are

defined by similar syntax and are distinguished through

the use of different delimiters: braces for sets and square

brackets for sequences. The following statement creates

the set of primes less than or equal to 100:

>p:= {x : x in [1. .1001 I IsPrime(x) };

The constructor uses the Boolean-valued intrinsic func-

tion IsPrime to select the subset of the integers in the

range [1, 100] that are prime. Note the use of a spe-

cial construction for arithmetic progressions to desig-

nate the set of integers lying between 1 and 100. The

notation mimics the mathematical notation {z : 1 <

z <100 I z is prime }.

The next example creates the set of integers up to

100 that are sum of two squares; for this we use the

existential quantifier predicate to answer the question:

3(y,.z) :1 ~ y,z ~ 10 such that z = y2 + Z2?

>Q:= {x: x in [1. . 100] I exists{ <y, z> :

y, z in [1..10] I x eq y-2+2-2 } 1;

Note that a tuple <x, y> appears in the existential

quantifier.

We conclude this section by giving a MAGMA lan-

guage implementation of the modular algorithm for

computing the greatest common divisor (GCD) of two

monic polynomials with integer coefficients. A descrip-

tion of the algorithm may be found in [8]. The GCD

function, ModGcd, calls the function Chinese to perform

55

the Chinese Remainder Algorithm on the polynomials

a mod m and b mod p. The function Chinese, in turn,

calls the Magma intrinsic Solution (u, v, m), where

u, v and m are pairs of integers, to solve the congru-

ences UIX = VI mod ml, U2X = vz mod mz, where ml
and m2 are coprime. The function Parent, applied to

any object returns its parent magma.

Chinese := function(a, m, b, p)
C : = f unc<p, i I i gt Degree (p)

select O else Coefficient (p, i)>;

M : = Max(Degree (a) , Degree(b)) ;

x := [Solution([l, 11, [c(a, 1), C(b, 1)1,

[m, p]) : i in [0. .M] 1;

return Parent(a) ! [x gt (p*m) div 2

select x-p*m else x : x in X 1 ;
end function;

For each successive prime, the function ModGcd cre-

ates FP[u] together with the natural homomorphisms

@: Z[z]+FP[u] andp:FP[u] +Z[z]. The GCDof

the images of polynomials ~ and g in FP [u] is found by

calling the intrinsic function Gtd.

ModGcd : = function(f, g)
It<x> := Parent(f) ;

P 2;
:=

d :=R!l;

m ;= 1;

repeat

P := NextPrime(p);

S<u> := PolynomialRing(FiniteField(p));

phi :=hom<R->Slx-> u>;

rho :=hom<S->Rlu-> x>;

e := Gcd(phi(f), phi(g));

if Degree(e) lt Degree(d) then

d := Chinese(R!l, 1, rho(e), p);

m := p;
else

d := Chinese(d, m, rho(e), p);
m *:= p;

end i,f;

until (f mod d eq O) and (g mod d eq O);

return d;

end function;

We apply our program to polynomials fand g:

> R<x> := PolynomialRing(Integerso);
>f:= (X-3 - 1)*(X-2 - 4*x + 4)-3*(x-2 + 1);

‘g:= (X-2+X+ 1)*(x- 2)-3*(x- 7);

> print ModGcd(f, g);

X-5 - 5*x”4 + 7*x-3 - 2*x-2 + 4*x - 8

Afulldescription of thelanguage may be found in [1]

and [5].

4 Implementation Issues

4.1 Signatures and Coercion

While magmas and maps have an obvious expressive

and organizational power, they are also very useful

mechanisms internally in MAGMA. The use of parent

structures in combination with the availability of rela-

tionships enables us to rapidly answer questions such

as: Is it legal to apply operation .f to objects z and y,

and, ifso, where is the algorithm for~?

The machineryto answer such questions is provided

by MAGMA’S signature matching mechanism which is

a generic method for locating a function with a given

name, and having a given argument specification. For

those readers familiar with object oriented program-

ming, MAGMA’S signature mechanism is akin to multi-

method dispatch inCLOS [10]. For example, the multi-

placation operator will have a signature entry indicating

that two finite field elements are proper arguments for

the operation. But this is only part of the story: in gen-

eral, we do not want to multiply elements from different

finite fields. So first wecheck equality of the parents of

z and g. Even this is not the full story: we do want to

permit multiplication of two elements belonging to sub-

fields ofacommon finite field. Insuch a case, MAGMA

uses its relationship machinery to determine whether

there exists a common over-magmaiV for the parents

of x and y. If so, x and y are each lifted into N using

the transition maps stored with the relations, and the

operation is performed in N.

Note that while this may seem complex, it is in fact

just a series of simple decisions. It is also efficient since

a match is usually found on the first attempt and the

overhead of lifting using the relationship machinery is

avoided. Observe also that the two problems of type

checking (including type casting) and method selection

are both handled by the one general mechanism, a mech-

anism which starts from the parent magma, and which

uses remembered maps as required. Here then we see

the practical benefits of using the magma and the map

as the central objects in MAGMA.

4.2 A Software Architecture

An important objective has been the development of a

kernel design which allows the integration of C programs

written independently of the Magma project into the
system kernel. To this end we devised a software system

architecture, later dubbed the ‘the software bus’, which

isolated the language part of MAGMA from the part that

implements the mathematical algorithms. This isola-

tion takes several

1. The memory

pointer and

forms:

management software provides both

handle based memory allocation.

56

2.

3.

5

Thus, code written using the C library malloc

and free interface can be added to MAGMA as

MAGMA’S memory manager provides equivalent

services.

The relationship machinery provides a set of

generic services for registering a relationship be-

tween two objects, for tracing relationship chains,

for accessing a relationship and so on.

The run-time system assumes as little as possi-

ble about the objects it manipulates. All interac-

tion with the mathematical part of the system is

through six system functions and a set of mathe-

matical functions. The system functions define low

level facilities such as print, copy and delete. They

are obligatory for any code module that implements

a magma. A set of fundamental mathematical func-

tions implement such tasks as the creation of a free

magma and evaluation of the standard construc-

tors. All modules added through this mechanism

have the same status as code written especially for

the system, and, in particular, they are accessible

both to code written in the MAGMA language, and

to kernel C code. Most importantly, all kernel mod-

ules adhere to the interface protocols. The latter

point is critical since when an implementor installs

a new ring type by defining its interface, all recur-

sively defined rings, such as matrix and polynomial

rings, will work immediately if defined over a mem-

ber of the new ring type.

Current Status

With the exception of user defined categories, the com-

plete language haa been implemented. The kernel con-

tains very efficient machinery for groups, rings, fields,

modules, graphs and linear codes. MAGMA VI was re-

leased for general distribution in December 1993 and by

April 1994 was installed at 100 sites. In 1994, mecha-

nisms will be implemented to enable users to create their

own categories of magmas in the MAGMA language.

6 Acknowledgements

A preliminary design for MAGMA (then known as Cayley

V4) was developed by John Brownie, Greg Butler, John

Cannon, Robin Deed and Jim Richardson in 1987. Jim

Richardson implemented a prototype lparser for the lan-

guage in 1987, while Robin Deed implemented a small

prototype of the run-time system in 1988. The final

design and implementation was carried out with the

participation of Mark Bofinger, John Brownie, Steve

Collins, Bruce Cox, Andrew Solomon, and Allan Steel,

in addition to the authors. The development of MAGMA

was funded in part by the Australian Research Council.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Bosma W. and Cannon J. J., Handbook of Magma

Fhnctions, First Edition, 1993, 690 pages.

Butler G. and Cannon J. J., Cayley version 4: The

user language, in: P. Gianni (cd), Proceedings

of the 1988 International Symposium on Sym-

bolic and Algebraic Computation, Rome, July 4-

8, 1988, LNCS 358, Springer, New York, 1989,

456466.

Butler G. and Cannon J. J., The design of Cayle~

a language for modern algebra, in: A. Miola (cd),

Design and Implementation of Symbolic Compu-

tation Systems, LNCS 429, 1990, 10-19.

Cannon J. J., An introduction to the group theory

language Cayley, in: M.D. Atkinson (cd), Com-

putational Group Theory, Academic Press, Lon-

don, 1984, 145-183.

Cannon J.J. and Playoust C. A., An Introduction

to Magma, First Edition, 1993, 240 pages.

Char B.W. et al, Maple V Language Reference

Manual, Springer-Verlag, New York, 1991.

G. Cousineau, The categorical abstract machine,

in Logical Foundations of Functional Program-

ming, Addison-Wesley, 1990.

J.H. Davenport, Y. Siret and E. Tournier, Com-

puter Algebra, Academic Press, London, 1988.

Jenks R.D. and Sutor R.S. AXIOM - The Scien-

tific Computation System, Springer-Verlag, New

York, 1992.

Paepcke A., Object-Oriented Programming: The

CLOS Perspective, MIT Press, 1993.

Santaa. P. S., A type system for computer algebra,

in: Alfonso Miola (cd), Design and Implemen-

tation of Symbolic Computation Systems. LNCS

722, Springer-Verlag, Berlin, 1993, 177-191.

Schwartz J. T., Dewar R.B.K., Dubinsky E., and

Schonberg E. Programming with Sets - An In-

troduction to SETL, Springer-Verlag, New York,

1986.

Wolfram S., Mathematical - A System for Do-

ing Mathematics by Computer, Addison-Wesley

Publishing Company, Second edition, 1991.

57

