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ABSTRACT 

A new continued fraction algorithm is given and analyzed. It yields approximations for an 
irrational real number by generating a subsequence of its regular continued fraction convergents 
that is optimal in several respects. 
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0. INTRODUCTION 

This paper is concerned with the approximation of real irrational numbers 
by rational numbers via continued fractions. Every semi-regular continued 
fraction expansion of an irrational number x determines a sequence {pk/qk}kzI 
of increasingly good rational approximations, the convergents. A fastest 
expansion of x is an expansion for which the growth rate of the denominators 
qk is maximal; it turns out that this means that these denominators grow 
asymptotically as fast as the denominators of the nearest integer continued 
fraction (NICF) convergents of that x (see section 3). Closest expansions are 
those for which sup { 0, : 0, = qklqkx-pkj} is minimal; every x admits an ex- 
pansion for which Ok< l/2 (for every kr l), given by Minkowski’s diagonal 
continued fraction (DCF). Since in general the NICF does not provide closest 
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expansions and the DCF does not provide fastest expansions, one wonders 
whether there exist for every irrational number x expansions that give both 
closest and fastest approximation. In [Keller] it was shown that such semi- 
regular expansions do indeed always exist; in [Selenius] it was shown how such 
an expansion can be obtained once the regular continued fraction (RCF) ex- 
pansion is known. In section 4 we present an algorithm to compute the optimal 
continued fraction (OCF) expansion of x, without using its regular expansion, 
and we show that it is guaranteed to be both a fastest and a closest expansion. 
This algorithm arises in a natural way from the geometrical interpretation 
of the RCF-algorithm. Some other interesting properties of OCF-expansions 
are derived in section 4; for instance, the smallest constant c such that 
min (e,, 19,+, } < c for every x is minimal (namely I/ 1/5) for the OCF. 

The definition of the optimal continued fractions given in this article enables 
one to develop a metrical theory for the OCF; it turns out that the distribution 
of the 0, associated to the OCF is also in several respects optimal. The metrical 
properties of the OCF will be given in a subsequent article (see [Bosma, 
Kraaikamp]). 

l.SEMI-REGULARCONTINUED FRACTIONS 

(1.1) DEFINITION. A semi-regular continued fraction (SRCF) is a finite or 
infinite fraction 

b,+ e’ 

b,+ e2 

b2+ ” 

b,+ . 

with E,= + 1, bOEZ and b,EZ,, for n? 1, subject to the condition 

(1.2) En+1 +b,rl for nrl, 

and with the restriction that in the infinite case 

(1.3) E, + i + b, 12 infinitely often; 

moreover we demand (see Remark (1.12)) 

(1.4) .q,+b,r 1 for nil. 

In the sequel we will mainly be interested in infinite expansions of this kind. 
We will recall some basic facts about SRCF’s that can all be found in [Perron] 
Ch. V. 

Every infinite SRCF with bo=O determines a unique irrational real number 
x, - 1 <XC 1, and conversely it can be shown that for every infinite sequence 
&1,&2,&3,... (E, = + 1) there is a unique expansion of the form (1.1) with b0 = 0 
for any irrational x, provided that 0 < E~X< 1. We will denote this expansion 
by x=[O;qb,,e2b2 ,... 1. 
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(1 S) REMARKS. Various of the results on continued fractions for irrationals 
in this paper hold also for the finite expansions of rational numbers; it requires 
disproportionate circumstantiallity however, to formulate the results if one 
allows the expansion to break off, especially since ambiguities arise here. 
Therefore we will usually assume XE Q, denoting the irrational numbers by Q, 
though for sake of simplicity some of the examples will concern rational 
numbers. Often we will implicitly assume bO=O. 

Given cl, s2, e3, . . . the sequence of partial quotients b,, b2, b3, . . . for XE Qfl 
fl [ - 1, l] can be computed as follows. Let for kr 1 the operator Uk: ( - 1, l)-+ 
+( - 1,l) recursively be given by 

(1.6) UkX=(Uk-‘XI-l-[/Uk~‘XI-l]+~(&k+l-l) 

then one finds bk from 

(1.7) bk=[ILlk-‘X(-‘]-3(&k+1-1). 

The convergents (or approximants) of some SRCF-expansion of an irrational 
x are the primitive fractions pn/qn defined for nl 1 as the finite truncations: 

bl + E2 
b,+ E3 

b,+ . 
. +” 

bn 

which can be found recursively from 

i 

P-I=~,Po=O pn=b,pn-,+Enpn-2, 
(1.8) 

q-,=&q,,=1 qn=b,qn-,+&,,a-2. 

The regular continued fraction expansion (denoted RCF) is the SRCF for 
which 1 =sl =c2= . . . . We will denote data for RCF-expansions in the capitals 
P,,, Q, and 4. 

From the regular expansions we will also need the secondary convergents 

z,, (1 lilB,- 1) given by 

(1.9) 
r: 

Pk,i=iPk-, +Pk-2, 

Qk,i’@- I+ Qk-2. 

Notice that Pk=Pk,s,-, + Pk-, etc., and that 

(1.10) Qk-l<Qk,l<...<Qk,Bx-l<Qk for kzl. 

The following lemma shows why these secondary convergents are of 
importance. 
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(1.11) LEMMA. Every semi-regular convergent to any x is either a primary 
or a secondary regular convergent to that x. 

PROOF. See e.g. [Tietze]. 

(1.12) REMARK. In the definition of semi-regular continued fractions, one 
could do without restriction (1.4), which prohibits e,b,, = - 1, as is done in 
[Perron]. But a convenient consequence of our convention is that the denomi- 
nators of the convergents increase monotonically: 

Vn22:q,>q,-, 

as can be seen from (1.8) (compare [Perron] p. 158). That (1.4) can be imposed 
without serious loss of generality can be verified using the equality 

[O;&,h,,E*b2,...,E,-Ib,-1, -l,bn+I ,... 1 
=[O;E,bl,EJl2 ,...) E,-r(b,-r-1),&+1+1,... 1. 

Next we describe a transformation that turns regular expansions into semi- 
regular ones, via what some authors call a singularization process. It is based 
on the equality 

1 1 
A+ =A+l- 

1 
l+- 

B+l+x 
B+x 

which implies that in any SRCF-expansion we may replace 

1 . . ..&k-lbk-I.l,bk+l,... I by [...,&.I-I@-,+I), -(&+~+1),...1, 
obtaining thus another SRCF-expansion for the same x. We say that we have 
singularized some bk equal to 1 if we apply the above operation to it. 

(1.13) EXAMPLE. Take x= 1 l/29; it has the regular expansion 

x= [O; 2,1,1,1,3]. 

Singularizing the “middle 1” we get the semiregular x= [O; 2,2, - 2,3], 
but successively singularizing the other ones yields x= [O; 2,1,2, - 4]= 
= [O; 3, - 3, - 41, or in reversed order of singularization x= [O; 2, - 2,1,3] = 
=[0;3, -3, -41. 

(1.14) REMARKS. (i) We see immediately from the above that never two 
consecutive l’s can be singularized. We also notice that every singularization 
step reduces the “length” of the expansion. See also section 3. 

(ii) Of course one can invert the above transformation to obtain regular 
continued fractions out of semiregular ones; in fact one could prove (1.11) 
directly in this way. 

(iii) Noti. that by using this singularization process only, one always gets 
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semi-regular expansions for which every convergent is a primary regular con- 
vergent (but sometimes one of these is skipped); we will denote this property 
by SRCF(x) c RCF(x). 

So far we have encountered SRCF-expansions either with pregiven sequence 
El,&... or arising from singularization of RCF-expansions. In 1907 in 
[McKinney] an infinitude of SRCF-operators was defined that determine for 
every (irrational) x the infinite sequence cl, c2 . . . as well as 6,, b2, . . . ; more 
recently these were studied in the following form (e.g. in [Nakada], [Nakada, 
Ito, Tanaka] and [Bosma, Jager, Wiedijk]). 

(1.15) DEFINITION 
Let isal 1. 
The operator T, : [a - 1, a)-+ [a - 1, a) is defined by 

T,(x)=Ixl-‘-[[xl-‘+1-a] 

and for kr 1 we put for XE [a- 1,a)nQ: 

b,k(~)= [lT~k-‘(x)l-’ + 1 -al 

and 

.sak = sgn TL”- ‘(x) where we put T:(x) =x. 

As usual the convergents can be found from 

Pa,-1=l, &z,o=“, Pa,k=b,~kPa,k-1+&a,kPa,k-2 

c&r-,=0, qa,o=l, ~a,k=bcz,k%+~ +%,k%,k-2, 

(1.16) REMARKS. (i) Notice that with a= 1 the RCF-algorithm is found 
from (1.15) and that a = l/2 gives the nearest integer continued fraction 
(NICF), cf. [Perron] 0 39, [Hurwitz-11, [Minnigerode]. The nearest integer 
convergents will be denoted from now on by Rk/Sk. 

(ii) It is not very hard to show that (1.15) always defines a semi-regular 
expansion; moreover for these expansions SRCF(x) G RCF(x) for every x, which 
can for instance be seen using the following criterion (cf. [Perron] 0 40). 

(1.17) PROPOSITION. Let xeQ have SRCF-expansion [O;E~~,,E~~~,...]. 
Then: 

SRCF(x)cRCF(x)@ I’%21 :&k+&k+1>2-2bk. 

2,APPROXIMATION 

Every SRCF-expansion of an irrational number x gives an infinite sequence 
of increasingly good approximations to x, determined by the convergents 

Pk/qk: 



In particular the approximation of x by its regular convergents has been studied 
thoroughly; in this case - and a fortiori for every expansion SRCF(x) G RCF(x) 
- (2.1) holds with m = 1. We briefly list the main properties (for proofs see e.g. 
[Perron], [Venkov]). 

(2.2) THEOREM 

(2.3) COROLLARY 

(2.4) DEFINITION. For every XE L2 fl ( - 1,l) and every semi-regular con- 
tinued fEdOn we define the sequence { &}k> t by 

~k=~k(X)=qklqkX-Pki, 

with the pk, qk from (1.8). In particular for the regular continued fraction we 
write 

(2.5) COROLLARY 

1 
ifXEQ,klO:@k< -. 

Bk+l 

pk I I Qk 
PROOF. @k=Q; x-ok <~bby(2.2)andQ,+,=B,+,Q,+Qk-,rBk+,Qk. 

In particular Ok< 1 (k?O), and since for semi-regular expansions with 
SRCF(X) c RCF(X) clearly {ek}kr, c {@k),& t, We also find ok< 1 for these 
expansions. 

Next we mention that every regular convergent is always a best approxi- 
mation to x, that is there do not exist better approximations with smaller 
denominators: 

The converse does not hold: there exist secondary convergents which are also 
best approximations (cf. [Perron] p. 60). 

The primary regular convergents do provide all relative minima to the linear 
form Qx - P, as is expressed by the following lemma, sharpening both (2.6) and 
(2.1) for the RCF (see [Venkov] p. 47). 

(2.7) LEMMA 
(i) vxEQ,kzl: IQkx-PPkI<IQk-,X-Pk-,I. 
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(ii) VxEl&k?l and r,seZ with O<srQ, we have: 

fsx-ri(JQkx-PkI-$ = 2. 

P 
(iii) VXEC&--EUJ: 

Q 

If for every r,seZ with O<srQ:\sx-r(r\Qx-Pi*+=; 

p pk then e = Qk for some kr 1. 

NOW we mention some properties of the sequences {@k)k> 1. 

(2.8) THEOREM. [Vahlen] 

VxEf2,kzl :min {@k(x),@k+l(x))<f. 

This theorem reveals only part of what is known about the two-dimensional 
distribution of the sequence (@k(x), @k+ ,(x)) k = 1,2, . . . ; it was known that the 
sharper @k + @k + , < 1 holds (see [Brauer, Macon]), and more recently for 
almost all x the two-dimensional limiting distribution was given in [Jager-21. 

Furthermore there are several results concerning three or even more conse- 
cutive O’s; for future reference we list three of them in the following theorem. 
The first is a generalization of Borel’s theorem (see [Borel]) and the third is 
known as Fujiwara’s theorem; for a generalization of this see [Kopetzky, 
Schnitzer]. 

(2.9) THEOREM. Vx~f&k21: 

ti) min {@k(x), @k + I (xh Ok +2(x>> < @;f,+4)- 

cii) max {@k(x), @k + I(x), @k + #)} > 
&2+4)* 

(iii) If Bk+2 > 1 then: either ok+, < + 
or both ok<+ and @k+2<+. 

PROOF 
(i) See [Bagemihl, McLaughlin]. 
(ii) See [Tong]. 

(iii) See [Fujiwara], [Koksma] p. 34-35. 

In terms of 0 we have the following “converse” to (2.3). 

(2.10) THEOREM. [Legendre] 
Let XEB and P,QEZ with Q>O such that O=QIQx-PI<+. Then 

p pk -= Q -g for some kll. 
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Irrational numbers do not admit infinitely many arbitrary close rational 
approximations; here we only mention Hurwitz’ theorem (see [Perron] p. 49, 
[Hurwitz-21). 

(2.11) THEOREM. For every 0 < l/1/5 there exist irrational numbers x such 
that only finitely many rational solutions p/q to the equation 

P 0 
I I 
x-- <t 

4 4 

exist. 

For the RCF the upperbound 0,~ 1 of (2.4) is best possible in the sense that 

(2.12) sup &(x)=1, so V@<l gx,k:QkIQk~-l’PkI>O. 
k, x 

However, for other SRCF-expansions the corresponding supremum of the 
O,(x) may be significantly smaller. In [Hurwitz-1] for instance it was shown 
that for the NICF it attains the value g= (1/5 - 1)/2. Since for every x, 
NICF(x)c_RCF(x) we might say that, taking the B’s as yardstick, the NICF 
picks systematically the better approximations out of the sequence of regular 
convergents. 

We can find more generally sup O,,,(x) for the a-expansions of (1.15) using 
the following theorem. It gives the distribution of B,,(x) for almost all x 
and is proved as Theorem 7 in [Bosma, Jager, Wiedijk]. See also [Bosma, 
Kraaikamp] . 

As before g=+(1/5 - 1) and throughout the rest of the paper we denote 
G=g+ 1=+(1/5+ 1). 

(2.13) THEOREM. Let +<a~ 1. 
Define for i= 1, . . . . 5 the functions Zi : [i, l] -+ IR by 

z1(a)= -5 
1-o a 

z2@)=a, z&)=1 -a, z&)=G- 9 z&x)= - 
1 +ga’ l+ga l+a 

and Y’a.i(Z) : [O,l]+lR by 

r 
0 for OIZIZi(a) 

yu,i,i(z)= Z 

I 

--1ogz 
G(a) G(a) 

- 1 for Zi(Cl)SZS 1. 

For OSZS 1 let A&k, x, z) denote the number of integers j with 15 jl k and 
Ba,j(X)Sz. Then for almost all x we have 

lim $a,(k, x, z) = F,(z) 
k-m 



where F, : [0, l] + [0, 1] is given by 

(2.14) F,(z) = 

jf a E k, 11. 

(2.15) COROLLARY. Let +sas 1. Then 

sup 4&)=suP G&&cr,nx-&,A) = 
fl, x n, x 

max ~G,Izz~. 

(2.16) COROLLARY. 

min sup B,.(x)=cw,=+(-2- j/3+ -)=0.5473... 
a fl, * 

and this minimum is attained for a=~. 

For proofs see [Bosma, Jager, Wiedijk]. 
However, still smaller values for the supremum can be achieved. 

(2.17) EXAMPLE. Minkowski’s diagonal continued fraction (DCF) can be 
defined by taking as convergents to any x all (irreducible) rationals p/q 
satisfying: 

P I I 1 
(2.18) x-- <+y. 

4 4 

numbered in order of increasing denominator. 
From (2.10) we see that we take precisely those regular convergents for 

which Ok<+; it can be shown that this does indeed yield a SRCF ([Perron], 
[Minkowski]). Here the supremum clearly cannot exceed l/2 (and in fact it 
equals this). Notice that by Vahlen’s theorem (2.8) the DCF picks at least one 
out of any two consecutive regular convergents to x. 

(2.19) REMARK. It is an immediate consequence of results by Jager that for 
almost all x for every SRCF-expansion sup B,(x)2 l/2 (the supremum being 
taken over kz 1). Namely, it is shown in [Jager-21 that 

sup min {0,(x), ok + i (x)} = l/2 

for almost all x, implying our assertion by Legendre’s theorem (2.10) and the 
fact that at least one of any two regular convergents is contained in a semi- 
regular expansion of x for which SRCF(x) c RCF(x), see (3.2). 

3.FASTEST EXPANSIONS 

In (1.11) we saw that every SRCF of x determines a subsequence of the 
sequence of primary and secondary regular convergents to the same x. In order 
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to obtain quickly very good approximations, one would like this subsequence 
to be as “sparse” as possible; in this section we study the fastest way of running 
through the regular convergents. In doing this we pay special attention to those 
SRCF’s for which SRCF(x) c RCF(x), since only these can have 0,(x) < l/2 for 
every k by (2.10). 

As before, x E Q, RCF(x) = [O; Bt, B,, . . . 1, the sequences of RCF and NICF- 
convergents are respectively denoted by (P,JQn}n~l and {Rk/Sk}k~,, while 
bk/qk)kz 1 denotes the sequence of convergents of some SRCF. 

The next lemma shows that we cannot skip an arbitrary number of regular 
convergents in a semi-regular expansion. 

(3.1) LEMMA. Let n2 1. 

(i) If B,>l then forsome kll: pkE 
P,-l P,, , -A pn,B,-l 

I Qn-l’ Qn,~““’ Q,,B,-1 * 

(ii) Zf B,=l then for some kzl: 

PROOF. This is a direct consequence of [Tietze] Satz 2. 

(3.2) COROLLARY. Zf SRCF(x) C RCF(x) then {pk/qk}kr I contains at least 
one out of every two consecutive regular convergents, it contains every P,,/Q,, 
with B, + , >l (nr0). 

It turns out that in the long run the NICF-expansion skips the maximal 
number of (primary) regular convergents; we first give another result from 
[Tietze]. 

(3.3) THEOREM. For every XE G! and every semi-regular expansion: 

Vkz 1: IqkX-pkl> ISkX-&l. 

Combining this with lemma (2.7)(i) we immediately find the following if 
SRCF(x) L RCF(x). 

(3.4) COROLLARY 
Let pk/qk be the convergents of x for some SRCF-expansion satisfying 

SRCF(x) c RCF(x). Then 

Dropping the condition SRCF(x) G RCF(x) we can still derive a similar, 
slightly weaker result, using the following lemma. 

(3.5) LEMMA 
For the secondary (regular) convergents %, (i = 1, ,.., Bk- 1) to any x we 

have for every k: Qk,i 
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PROOF. By definition IQk,iX-Pk,il= li(Qk-1x-Ppk-I)+(Qk-2x-Pk-2)( and 
now the result is an immediate consequence of lemma (2.7)(i) and the well- 
known fact that two consecutive regular convergents are on opposite sides of 
x on the real line. 

(3.6) PROPOSITION 
Let pk/qk be the convergents of x for some SRCF-expansion. Then: 

P 
i’k21: qk<Qn+l, Rk with n such that -J! = -; 

Q, Sk 

in particular 

PROOF. Suppose that for some SRCF-expansion of x we find for some k: 

(3.7) lx.-~~<~x-~1, withnsuchthatz=$. 

Then by (2.6) we have qk 2 Q, + , . Since every SRCF-convergent is at least a 
secondary RCF-convergent to x, we then have pk = P,,,, i and qk = Q,, i for some 
mzn+2 (by (l.lO)), and we see from (3.5) that 

(qkX-PkI=IQm,iX-PP,,iI<IQ,-2x-P,-2IIIQ,X-PP,I=ISkX-RkI, 
the second inequality by (2.7)(i) since m-2~n. 

But this violates (3.3). 

(3.8) REMARK. The sharper inequality (3.4) does not hold in general for 
SRCF-expansions as the following example shows. 

(3.9) EXAMPLE. Let x = [O; 2,2,2, . . . ] = 1/2 - 1, This is both the regular and 
the NICF-expansion to x, but we also have x= [O; 3, - 2, - 3,2,2,2, . ..I. 

Here 

P, RI -z-z* pk Rk Pk 

QI SI 

and fi =f while - = - =- for kr2. 
41 Qk sk qk 

But Ix-+I>Ix-fi. 

(3.10) DEFINITION. An SRCF-expansion of an irrational number x is called 
a fastest expansion of x if and only if qk I Sk infinitely often. 

(3.11) REMARKS. (i) In particular the NICF-expansion itself is for every x 
a fastest one. 
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(ii) This notion of fastest continued fractions generalizes the obvious one 
for shortest expansions of a rational x (see e.g. [Blumer] or [Tietze]; also 
compare example (1.13)). 

(iii) In connection with the singularization mentioned in section 1 we 
remark the following. If we restrict ourselves to SRCF-expansions for which all 
convergents are regular convergents, we can obtain fastest continued fractions 
only if we singularize the maximal number of partial quotients equal to 1; 
that is, in any sequence of m consecutive ones we have to singularize exactly 

m+l 
- 

[ I 2 
(again compare example (1.13)); here and in the sequel [x] will denote 

the floor function: [x] is the greatest integer not exceeding x. 

(3.12) NOTATION. To every sequence (p,Jqk}kzl of SRCF-convergents of 
an irrational x we associate a non-decreasing arithmetical function n : trJ-+N 
defined by 

Qn(k) 4 q/c < Qnw + I . 

We fix the notation nil2 for the arithmetical function thus associated to the 
NICF-expansion {Rk/Sk}kr i of x. 

(3.13) COROLLARY. A semi-regular expansion of x is a fastest expansion if 
and only if for infinitely many kr 1: n(k) = n,,,(k). 

In particular a semi-regular expansion of x for which SRCF(x) G RCF(x) is 
a f@SteSt expansion if and Only if qk=Sk infinitely Often, and therefore if and 
only if 

Ix- 21 = (x- $1 infinitely often. 

PROOF. BY (3.6) qk < Qn,,,(k) + I for every kr 1 and the result is immediate 
from the definitions. 

(3.14) LEMMA. A sequence {pk/qk}kr, of SRCF-convergents to some x 
forms a fastest expansion if and only if for every SRCF-expansion of x with 
convergents {p~/q~}k2, we have for the associated arithmetical functions n 
respectively n’ infinitely often: n’(k) 5 n(k). 

PROOF. Suppose that qk?sk. Then n’(k)>n(k) would imply by definition: 

Sk 5 Qn(k) 5 qk < Qn(k) + I 5 Qn yk) 5 ‘2; 

and since qi is at least a secondary regular convergent we see from (3.5) that 

Iq;x-P;l<IQn(k)X-~n(k)l~ISkX--k/, 

violating (3.3). Therefore n’(k)sn(k) whenever qklsk and this occurs infi- 
nitely often for fastest expansions. 
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The converse is immediate from the definitions: take n’(k) = n,,,(k). This 
proves (3.14). 

The following theorem is a result from [Bosma, Jager, Wiedijk]. 

(3.15) THEOREM. Let n,(k) denote the arithmetical function from (3.12) for 
the &expansions of (1.15), with l/2 I cy I 1. Then for almost a/l x: 

log 2 

n,(k) log G 
if +larSg 

lim ~ = 
k-m k I log 2 

log (1 + a) 
if glcrll. 

(3.16) REMARKS. (i) In particular we have for almost all x: 

lim n,/,(k) log 2 
= - = 1.44042... , 

k-m k log G 

see also [Adams], [Jager-11. For every irrational x we have by (3.6) for every 
semi-regular expansion that n(k)ln,,,(k), k> 1, while by (3.13) for fastest 
expansions equality holds infinitely often. Therefore 

n(k) log 2 
limsup - = - 

k-m k log G’ 

for fastest expansions for almost all x. 
Notice that thus (3.15) shows immediately that for g< a 5 1 the a-expansions 

are for almost no x fastest expansions. On the other hand, using for instance 
(3.17), one can prove that for l/2 I (Y I g the a-expansions are indeed for every 
x fastest expansions. 

(ii) In fact one can prove that for the arithmetical function n(k) associated 
to a fastest expansion 

n&k)- 1 <n(k)<n,,,(k)+ 1 kr 1. 

Here the upper bound is immediate from (3.6), while the lower bound can be 
found by combining (3. l), (3.1 l)(iii) and (3.13). This implies that for almost all 
x we have for every fastest expansion 

n(k) log 2 lim - = - 
k-m k log G’ 

(3.17) PROPOSITION. With U as in (1.6), we have when SRCF(x) C RCF(x): 

Sl?CF(x) is a fastest expansion e Vk : / Uk(x)I ~g. 

PROOF. See [Tietze]. 
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(3.18) EXAMPLE. Minkowski’s diagonal expansion does not in general give 
fastest expansions; for by Corollary 1 of [Bosma, Jager, Wiedijk] we have (with 
obvious notation) the value 

lim n&J - =2 log 2=1.3862...< 
log 2 
- for almost all x. 

k-a k log G 

Now the question arises whether there exist semi-regular continued fraction 
algorithms which give both fastest expansions for any x and have optimal 
approximation properties in the sense that sup 8,s l/2 for every x. In [Keller] 
this question was raised, and answered in the affirmative: it was shown there 
that in general there are infinitely many ways to get semi-regular expansions 
satisfying both conditions, out of the regular expansion. Selenius gave a 
singularization algorithm to achieve this (cf. [Selenius]). In these results it is 
necessary to compute the RCF-expansion first. In the next section we show how 
in a natural way an algorithm arises which satisfies both conditions and which 
computes a semi-regular expansion of a given x without making use of its 
regular expansion. Moreover, close inspection of this algorithm enables us to 
prove various metrical results for this expansion, such as the distribution of the 
sequence (0kk)k81 for almost all x. 

4.GEOMETRICALINTERPRETATlONANDANEWALGORITHM 

As in [Klein] we will give a geometrical interpretation of the RCF-algorithm 
and we will show how a similar interpretation can be given for the a-expansions. 
Then we present a new SRCF algorithm inspired by this and derive its main 
properties. 

The idea behind the geometrical interpretation is to represent (irreducible) 
rational numbers r/s by integral vectors in the first quadrant of iR*, namely r/s 
(0 I r/s5 1) is represented by (s, r), and to represent irrational numbers x with 
O<xc 1 by lines L with slope x. The approximation of x by its convergents 
comes down to systematically finding integral vectors close to the line L. More 
precisely, starting with V-i = (0, I), I’,, = (1,0) we find Vi, I’,, . . . by taking 
V, =B, V0 + V- I with B, 2 1 in Z maximal with respect to the property that Vi 
is on the same side of L as ‘v-i. Next we find V2 = B2 Vi + Ve with B2r 1 
maximal such that V, and I’, are on the same side of L, etc.. 

For general a-expansions the following modification is made; instead of 
choosing Bk to be the largest integer ,l such that I’, lies on the same side of L 
as Vkp2, one chooses either a, k = Iz or L + 1, depending on (r as follows. 

The line L intersects mk :pVk- i + vk-2 (cl in IR) somewhere, say in point S, 
between the lattice points AVk-, + vkm2 and (A + l)Vk-, + vk-,; now choose 

aa,k= It ti S lies between nvk-i+ vk-2 and (A+(Y)vk-i+ vk-2 

a ,,=A+1 ti Sliesbetween(~+a)vk-~+vk/k_2and(~+l)vk-,+vk/,_2. 
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L’ . . . 
mk 

Figure 1 

In the former case we continue as usual, in the latter u,~+, is found as 
before from vk+ r = a,&+ r vk - vk _ r , that is, we take &k+ r = - 1. Notice that 
vk and - vk- t are again on opposite sides of L. 

Viewed this way (Y gives a criterion whether to take an,k = A or A + 1. 
This suggests the possibility of varying (Y during the expansion process, in 

order to make in every step the optimal choice in the sense that 8=s(sx-rl is 
minimized. 

This leads to the following algorithm, as we will see below. 

(4.1) DEFINITION. The optimal continued fraction expansion of an irra- 
tional number x satisfying - l/2 <x< l/2, denoted by OCF(x), is defined re- 
cursively as follows. 

Put 
cl = 1, r,=O, 

s-, =o, so= 1, 

t,=x, 

cl = sgn (to) = sgn (x), 

and let for krl: 

&=[I&-II-‘], 

Vk=bkS~-I+&ksk-2 and uk=bkrk-I+&krk-2, 

vk+sk-I 
(Yk= 

hk+sk-, * 

Let the partial fractions be given by: 
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and the convergents rk/sk by: 

rk=akrkml +Ekrk-2 

sk=aksk-1+&ksk-2. 

Next put 

tk=Itk-II-l-ak 

and 

&k + 1 = %n @k). 

For arbitrary (irrational) x we define OCF(x) = [ao; cl a,, E2a2, . . . ] where a0 in Z 
is such that - 1/2<x-a,< l/2 and where [O;clal,c2a2, . ..I =OCF(x-ao). 

(4.2) REMARKS. Notice that the auxiliary integers bk are computed in the 
same way as the integers Iz in the introduction of this section. That is, the lattice 
points wk and Wi, resp. given by 

(bksk-l+&ksk-2,bkrk-l+&krk-2) 

and 

((bk+ lh-1 +&kSk-2,(bk+ l)rk-1 +&krk-2h 

are on opposite sides of the line determined by x. The choice between wk and 
Wi then depends on ok. In the algorithm defined by (4.1) the uk are not used 
at all, but we refer to them in the proofs. 

First we show in lemma (4.3) that this algorithm has the announced property, 
namely that in the kth step out of the two possibilities 

and 

rk uk b-k-l +&krk-2 
-=7= 

sk vk bksk-1 +EkSk-2 

rk -= 
uk+rk-1 = (bk+1)rk-l+&krk-2 

sk vk+sk-1 (bk+ l)Sk-]+EkSk-2 

that one is chosen which minimizes SklskX- rkl. 

(4.3) LEMMA 

PROOF. As we can easily see from (4.2), we can choose O< r< 1 such that 

(bk++-l+&krk-2 
x= 

(b,+@,-,+&k&-2’ 



Figure 2 

Then from the definition (and the introduction to this section) we can see that 

rk uk 
-=- H ‘5<a k. 
Sk vk 

But 

T<(rk= 
vk+sk-I (j 

h,+s,-, 

1 
->1+ Ok 

t) 
z Ok+sk-I 

T 
-< 

uk+sk-l 

I-r vk 

On the other hand we have 

bkX- ukf 

vk+sk&1)x-@k+rk-d ’ 

as can be seen by comparing the similar triangles from figure 2. Combining 
these gives the desired result. 

We now give some consequences of definition (4.1). 

(4.4) LEMMA. For every irrational number XE [ - l/2,1/2] and for every 
kzl: 

(Yk- 1 < tk<ak. 

PROOF. By definition we have 

t,=jt&I-’ -ak=Itk-II~‘-[Itk-II-‘+l-ak] 

which implies (4.4) immediately. 
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(4.5) LEMMA. For every x and for every kr 1: 

bk if and only if &k+l=l 
(4.6) ak= 

bk+l if and only if&k+,= -1, 

(4.7) Sk>+], 

(4.8) +<a,< 1. 

PROOF. By induction on k. For k = 1 the restriction - l/2 <XC l/2 gives 
bl 22. From the definitions we see o, = b1 so (r, = (b, + 1)/(2b, + 1) whence 
1/2rorr~3/5. From this we see that alrbl and thus that sI =a1?2>so= 1 
and also that a, = b, or al = bl + 1, the latter being equivalent to a1 < (to\- ‘, 
that is to Q= - 1. 

If (4.6)-(4.8) hold for k- 1 then using (4.4) we see 

- 1/2Iak_1-1<tk_,<ak_I<l 

whence bk r 1, with equality only possible when &k = 1. Now bk 2 1 gives uk> 0, 
which in its turn implies l/2< (xk< 1. But then it iS clear that ak = bk or 
ak = bk + 1, the latter occurring if and only if &k+ t = - 1. Finally Sk > Sk- t . 

This proves (4.5). 

The tk may be regarded as the kth iterate of the operator t, which acts on an 
x with OCF(x) = [O; Elal, e2a2, . ..I by a shift: ?x= [O; e2a2, e3a3, . ..I. That is, 

(4.9) tk(x)=tk([o;&lal,&2a2, . . . I)=[“~Ek+lak+1~~k+2ak+2~~~~l~ 

just as the operator T (which is the Tl from (1.15)) shifts the regular expansion 
of x: 

(4.10) T,&)=Tm([O;B1,B2 ,... ])=[O;B,+,,B,+, ,... I. 

In the following lemma we give the connection between both. Its significance 
will become clear once we have shown that every OCF-convergent is a regular 
convergent. 

(4.11) LEMMA. Let x be an irrational number and let kr 1 be an integer. 
(i) If there exists an n=r 1 such that 

pn-l=rk-, Pn=rk 

Qn-1 =sk-1 Qn=Sk, 

then &k+l = 1 and tk = T,,. 
(ii) If there exists an nz 1 such that 

p,,-2=rk-l Pn=rk 

Qn-z=Sk-l Qn=sk> 

then &k+,= - 1 and tk= - T,-,T,,. 
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PROOF. From (4.9) it is not hard to show inductively that for every k: 

x= 
~k-l(%+M+wk-2 rk+ tkrk-l = 

Sk-I@k+tk)+&kSk-2 Sk+tkSk-l 
> 

in particular that 

(4.12) x= pk-,(Bk+ Tk)+pk-2 pk+Tkpk-l 

Qk-1(Bk+Td+Qk-2 = Qk+TkQk-1’ 

Substituting the hypotheses of (i) yields immediately tk= T,,, and since T,,>O, 
we find also &k+ r = 1. In the second case, combination of the above equalities 
leads to 

= -TAP&-, -Pn-,Qn). 

Now use that Q,,=B,Q,_,+Q,-, and P,,=B,P,-,+P,-,, and the well- 
known (see e.g. [Perron] p. 16) 

P,&-, -Pn-,Qn=(- l)n-’ 

to obtain 

-T 
tk = 2=-T- T- 

B,+Tn 
” I II, 

comparison of the signs completes the proof of (4.11). 

Before we formulate the main theorem of this section we state and prove one 
more fact about regular continued fractions, which turns out to be very useful 
to us. 

(4.13) LEMMA. Let mrl. Then: 

O,_,<O, e+ T,>Q,p,/Q,=[O; B,, B, e,,..., B,]. 

PROOF. Suppose for simplicity (the other case being similar) that P,,,- 
-Q,x>O, then Pm-I-Qm-I~<O. From e.g. (4.12) we then see 

T,,,= Pm-Qmx @n Qm-I =-- 
Qm-~x-pm-~ @,-I Qm 

since 0, = Q,(P, - Qmx) etc.. The assertion easily follows. 

(4.14) PROPOSITION. For every irrational number we have, with the nota- 
tions of (4. l), for every integer k? 1: 

(4.15) there exists an n =n(k)z 1 such that 

rk = pn(k) 

371 



and 

and the thus defined arithmetical function n : tN+N satisfies: 

n(k-l)+l 0 Ek+l= 1 where we set n(0) = 0 when e1 = 1, 
(4.16) n(k) = 

n(k-1)+2 * &k+l= - 1 where we set n(0) = 1 when cl = - 1. 

Moreover we have 

(4.17) &,‘+I= -1 * B,,(k)=1 

and 

(4.18) sklskx-rkl < l/2. 

PROOF. By induction on k. 
First consider the case k= 1. 
If x>O, that is if ei = 1, then 6, = [/t&‘I] = [x-l] =Bi. Therefore if .s2= 1 we 

see by (4.6) that st =B,Q,+ Q-, = Qi so n(1) = 1. If on the other hand s2= - 1 
we get s, = (B, + l)Q,+ Q- i = Q, + QO. If B2= 1 this equals Q2 so we have 
n(1) = 2 while B,> 1 and c2 = - 1 are mutually exclusive: assumption of both 
leads to Qi<si=o,+s,,=Qi+Qo<Q2, and likewise P,<r,=u,+r,= 
=P, + PO< P2. By lemma (4.3) this would imply 

which contradicts (3.5). Moreover, according to (4.3), the choice between 
n(l)=1 and n(l)=2 if B2=l is made in such a way that s,Is,x-r,l is mini- 
mized and this minimal value is smaller than l/2 by Vahlen’s theorem (2.8). If 
B,> 1 we find (4.18) as a consequence of (2.5). If on the other hand x<O, 
ei = - 1 then we must have RCF(x) = [ - 1; B,, B2, . ..I with B, = 1, since 
x> - l/2. Therefore in this case 

b, = [Ix-‘I] = 
[ 

-1 
1 1 =[B,+T,+l]=B,+l. 

-l+ ( 

For s2 = 1, combination with (4.6) gives s1 = B, + 1 = Q2 so n(1) = 2. When 
c2= - 1 again (4.6) gives si = B2 + 2 = Q2 + Qi; just as above, either we get a 
contradiction from B, > 1 and s2 = - 1 or we find that s, = Q3 in which case 
n(l)=3. The same argument as above shows that (4.18) holds here. 

This settles the case k= 1. 
Suppose next that (4.15)-(4.17) hold up to k- 1 (inclusive). 
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Below we will prove that, with m - 1 = n(k- 1): 

This will finish the proof as we will first demonstrate, before proving (4.19). 
To this end we distinguish the cases B, + i = 1 and B, + , > 1. 

If B,,, = 1 then 

pml+pl?-1 =pnl+1 

Qm+Qm-,=Qm+, 
yielding (4.15) and (4.16) using (4.6), while by (4.3) the choice in (4.19) is made 
in such a way that sklskx- r,l is minimized. By Vahlen’s theorem (2.8) we then 
get (4.18). 

If &+, > 1 then 

so the second possibility in (4.19) gives a secondary convergent. By Legendre’s 
theorem (2.10) we have Q,, iIQ,, ,x- Pm, ij > l/2 while (2.5) implies here 
QmlQmx- Pm1 < l/2. This gives (4.18) using (4.3), which now implies n(k) =m 
and thus also (4.15) and (4.17). By (4.6) we get (4.16). 

Remains to prove (4.19); again we distinguish two cases. 
If &k = 1 we have by (4.16) 

rk-2- m-2, -P rk-,=P+, 

Sk-2=%-z, Sk-I=%-,, 

and by lemma (4.11) we find fk-1 = T,-i. Therefore bk = [I;?,] = [T;! ,] = B, 
and we are done bdy the definition of uk and uk: 

Uk=bkrk-,+&krk-2=B,P,_,+P,-2=P, 

Vk=bk.S-,+&kSk-2=&,Q,,-,+Q,-2=Q,,,. 

If &k=-1 we have 

rk-2=pm-39 rk-,=p,+, 

Sk-2=Qm-3, Sk-l=Qm-19 

and by lemma (4.11) we find tk-l= -Tmm2Tm-,. Therefore bk=[Itk-,I-‘]= 
=[T,-!2T,-!1]=[B,-1T,-!l+1]=[T,-!,+1]=B,+1,sinceby(4.17)wehave 
B,,-, = 1. Then 

Uk=(B,+l)P,,,-,-Pm-x=B,P,-,+(P,,-,-P,,-3)= 
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and likewise 

This completes the proof of (4.14). 

(4.20) COROLLARY. Notations as in (4.14). Let m L 1. 
(i) If n(k) # m for every kr 1 then there exists kl 1 such that n(k) = m + 1. 

(ii) If &,+2 > 1 then there exists kz 1 such that n(k) = m + 1. 
(iii) If Bm+2= 1 then there exists kz 1 such that n(k) = m + 1 if and only if 

either 0, > 0, + I and for every k r 1: n(k) # m 
or %d%+2 and for some kz 1: n(k) = m. 

PROOF 
(i) Immediate from (4.16). 
(ii) Either for every kz 1 we have n(k) #m and then we are done dy (i), or 

for some k we have n(k) = m and by (4.16) and (4.17) the assumption that 
n(k+ l)=m+2 implies that Bn(k+t)=&+2= 1, thus contradicting our hypo- 
thesis. 

(iii) If n(k) # m for every kr 1 then by (ii) we must have B,, I = 1, and in 
this case we see as before that by lemma (4.3) necessarily O,,,> O,, , . Next 
suppose that for a certain k we do have n(k) = m. By the same argument, from 
B m+2= 1 we get n(k+ l)=m+ 1 if and only if Om+,<Om+2. 

This proves (4.20). 

We stated corollary (4.20) for easy reference; since it gives a criterion to 
decide whether a given regular convergent is an OCF-convergent, it will turn 
out to be very useful in studying the properties of the subsequence OCF(x) of 
RCF(x) . 

(4.21) PROPOSITION. With notations as before we have 

bkEQ, kz0: -+<tk<g=+(+ 1). 

PROOF. By induction on k; the case k=O is settled by definition. 
Fix x and suppose that the assertion holds up to k- 1 (inclusive); write 

m - 1 = n(k - 1). We distinguish three cases. 
(9 &k+l = -1. 
In this case tk<O and the assertion for k follows from (4.4) and (4.8). 
(ii) &k+l=l, &k=l. 
By (4.15) and (4.16) 

rk-2=P,,-2 rk-, =P,+, rk=p,,, 

Sk-z=%-2 Sk-1=%-l sk=Qm, 

and by (4.11)(i): tk=Tm=[o; B,+,,B,+2, Bm+3...]. If B,+,>l, the latter is 
clearly smaller than g = [O; 1, 1, . . . 1, so suppose that B,,, + , = 1. Now by (4.3) we 
induce from n(k) = m that 0, < 0, + , whence by lemma (4.13) 
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(4.22) T,+,>[0;B,+,,B, ,... B,]=[O;l,B, ,... B,]. 

If we assume B, = 1 then by n(k - 1) = m - 1 we similarly see that O,,- I < 0, 
and hence that T,>[O; &,I$,-t,... II,]; but this would give a contradiction 
with (4.22) since then 

T ,+,=(B,+T,,,-‘<(l+[O;&,B,,~,,...B,])-’= 

=]O;&+,,&,...&l. 

Therefore B,,, > 1 and as we saw before we have bk = B, so 

uk+sk-l bkSk-,+EkSk-2+$-] Q m+l 

ak= h,+s,-, = 2(b,sk-,+&ksk-2)+Sk-, = 2Q,+Q,-, = 

Q m+l =Qm+,+Qm=~O~l~~~+~~B~,~~~~~l=[O~l~l,B,,~~~~~l~g 

since Bmr2; but tk<ak by (4.4) and case (ii) is finished. 
(iii) &k+,=l, &k= -1. 
By (4.15) and (4.16) now 

rk-2=Pm-3 rk-l- m-l -P rk’Pm 

Sk-2=Qm-3 Sk-l=Qm-1 Sk=Qrn. 

By (4.17), B,-,=l and by (4.11) O<tk=Tm=[O;Bm+I,Bm+2,...]. Again, 
either B m+l 12 and hence tk< 1/2<g immediately, or B,, t = 1 in which case 
we proceed as follows. From (4.3) and n(k) = m we see 0, < O,, , and thus by 
lemma (4.13): 

(4.23) T,+~>[~;B~+I,B~,...B,I. 
Now tk=Tm=(Bm+l+Tm+l)~l<[O;l,l,Bm,B,~l,...Bl] and we are done if 
we prove: 

(4.24) 10; B,, B,-,, . ..&I <g. 

We may assume that B,= 1 since else (4.24) holds trivially. Using (4.3) 
and &k = - 1 as before we get em-, > @,,- 1 and so by lemma (4.13): 
Tm-,<[O;Bm-l,Bm-,, . . . B,]. Since (with abuse of notation) T,- 1 = 

= 10; Bm, Bm+ 1, Tm+,] = [O; l,l, T,,,] this yields 

(4.25) [O; 131, Tm+,l<[O; Bm-1, Bm-2, a.09 B,l* 

Combination of (4.23) and (4.25) yields: 

1 

[O; l,lv Bm+l, Bm, *-*, B,l= 
(4.26) 

= [O; l,l, 1, 1, Bm-1, Bm-2, ae.9 Bt]< 10; Bm-1, Bm-2, ***P Btl* 

Let us write for abbreviation 
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Then 

2,u+3 

and (4.26) then implies 

$+p-l>O 

that is 

P>g. 

Therefore 

LO; B,, &-I, h-2, . . . . &I= 10; 1, &-,, h-2, . . . . &I= 
=(1+/U-‘<(l+g)-l=g 

which proves (4.24). 

(4.27) COROLLARY. The partial quotients of an OCF-expansion satisfy: 

for every k? 1: ak22. 

PROOF. By definition ak=[jtk-,I-‘+l --ok] and by (4.8) 1-0~~20. By the 
previous proposition now either - l/2 < tk - , < l/2 and therefore [ 1 tk _, I- t + 
+l-ak]z)tk-II-1>2, or l/2<&t<g.Thelatterimpliesg+l<ti!i<2and 
then necessarily ak=2 by again the previous proposition, since till -ak= tk. 

We have now derived the main properties of the OCF and summarize them 
in the main theorem of this paper. 

(4.28) MAIN THEOREM. For every irrational x the OCF-expansion of x is: 
(i) a semi-regular continued fraction, 

(ii) a fastest expansion, 
which satisfies 
(iii) OCF(x) c RCF(x) 
and for every k L 1: 
(iv) &=sklskx-rkl < l/2. 

PROOF 
(i) The requirements of definition (1.1) for semi-regularity are met ob- 

viously except for (1.3); that is, we have to prove that for every x in the OCF(x) 
infinitely often ak + &k+, _ ‘2. If this were not true, we would have for some 
mrl: a,=a,+,=...=2, E~+~=E,+~=...= -1 since ok>2 by (4.27). Then 
tm=[O;e,+lam+,,~,+Iam+,,...]= -1. This contradicts (4.21). 

(ii) This is an immediate consequence of (4.21), using (3.17). 
(iii) This is (4.15). 
(iv) This is (4.18). 
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We conclude this section by proving two more properties of the OCF- 
convergents. These are respectively the analogues for the OCF of the theorems 
of Vahlen (2.8) and Legendre (2.10). 

(4.29) THEOREM. Let {T~/Q}~> 1 be the sequence of OCF-convergents to 
some XEQ, and let 6$=skJskx-rkl. Then 

IGrl: min {Sk,S,+,}<L. 
1/5 

PROOF. By (4.15) and (4.16) either (0,,0,+,)=(0,,0,+,) or (0,,0,+,)= 
=(Om,0m+2) for some m2 1. 

Suppose that (e,, Bk+ i) = (O,, O,, , ). If &+2= 1 then by (4.2O)(iii) we see 
that Om+1<0,,,+2 and we get the result by Borel’s theorem (2.9)(i): 

min {ekrek+,)=min {@,,@,+,}=min {0,,0,+,,0,+,}<1/1/5. 

If &+2 > 1 we use Fujiwara’s theorem (2.9)(iii): either ok+, = O,, , <2/5 < 
<l/1/5, or e,=o,<2/5< l/1/5. 

Next we consider the case that (e,, t?,+,)=(O,, Om+2); then by (4.16) and 
(4.17) Bm+2= 1 and by (4.20)(Z) O,, i > Om+2. Again 

min {ek,ek+,)=min {@,,@,+,}=min {0,,0,+,,0,+2}<1/1/5 

by Borel’s theorem. 
This proves (4.29). 

(4.30) REMARK. Notice that the constant l/1/5 in (4.29) is best possible for 
any continued fraction expansion: a smaller constant would lead to a contra- 
diction with Hurwitz’ theorem (2.11). 

(4.31) THEOREM. LetxEQandr,sEH withs>Osuch that 8=sjsx-rJ< L 

Then L = rk for some kr 1, i.e. L is an OCF-convergent of x. 
v’s’ 

S sk s 

PROOF. Suppose that 0< l/1/5 but that r/s is not an OCF-convergent. Since 
l/ 1/5 < l/2 we have by Legendre’s theorem (2.10) that r/s is a RCF-convergent : 
r=P,, s= Q, for some ml 1. By (4.15)-(4.17) then for some kz 1: 

rk-l=pm-l, rk=pm+l 

Sk-1 =Qm-19 Sk=%,+1 

and 

B m+1= 1. 

Now (4.2O)(iii) implies that both 0, _ , I 0, and 0, + i I 0, while 0, = 8< 
<l/1/5. So we find max {O,,,-,,Om,Om+I } < l/1/5; this contradicts (2.9)(ii) 
and we have proved (4.31). 
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