
J. Symbolic Computation (1997) 24, 351–369

Lattices of Compatibly Embedded Finite Fields†

WIEB BOSMA‡, JOHN CANNON§ AND ALLAN STEEL¶

Computational Algebra Group, School of Mathematics and Statistics,
The University of Sydney, NSW 2006, Australia

The design of a computational facility for finite fields that allows complete freedom in
the manner in which fields are constructed, is complicated by the fact that a field of
fixed isomorphism type K may be constructed in many different ways. It is desirable
that the user be able to perform simultaneous computations in different versions of K in
such a way that isomorphisms identifying elements in the different versions are applied
automatically whenever necessary. This paper presents a coherent scheme for solving
this problem based on an efficient method for compatibly embedding one field within
another. This scheme forms a central component of the Magma module for finite fields.
The paper also outlines the different representations of finite fields employed in the
package and comments briefly on some of the major algorithms.

c© 1997 Academic Press Limited

1. Introduction

Finite fields play a crucial role in computational algebra even though, from both a math-
ematical and computational point of view, they are rather simple structures. The finite
field module for the computer algebra system Magma (Bosma et al., 1994; Cannon and
Playoust, 1996; Bosma et al., 1997) is designed to provide highly efficient arithmetic
and structural computation across the range of finite fields that occur in practical ap-
plications. This paper identifies some of the key problems that must be addressed when
developing such a facility and presents the solutions adopted in the Magma system.

A fundamental issue concerns the choice of data structures used to represent finite
fields and their elements. This raises mathematical issues (representation of fields and
their elements), algorithmic issues (the choice of data structure may have a major effect
on the performance of an algorithm) and software engineering issues (fast access, memory
management, etc.). For example, in the case of fields of moderate cardinality a choice
has to be made between representing field elements as polynomials over a ground field
or representing them as powers of a primitive element.

A related issue is the design of efficient algorithms for key operations. For finite fields
these include very fast arithmetic, the construction of elements with special properties

† This work was supported by the Australian Research Council.
‡ E-mail: wieb@maths.usyd.edu.au
§ E-mail: john@maths.usyd.edu.au
¶ E-mail: allan@maths.usyd.edu.au

0747–7171/97/030351 + 19 $25.00/0 sy970138 c© 1997 Academic Press Limited

352 W. Bosma et al.

(normal, primitive, etc.), the computation of discrete logarithms and the factorization of
polynomials. Where standard algorithms have been implemented we will usually refer to
original papers for details and omit descriptions of any optimizations we have introduced.

A module in a computer algebra system (CAS) differs from a stand-alone package in
that a well-designed CAS allows the user to have many different structures and rela-
tionships defined simultaneously. Magma, in particular, has been designed to allow a
user to work in many (related) finite fields simultaneously, to create arbitrary extensions
and subfields, to move between them and to use finite fields as building blocks in the
construction of more complicated algebraic structures. A major complication arises from
the fact that a given isomorphism type of finite field may be realized in many different
ways. We require a scheme that allows computation to proceed simultaneously in two dif-
ferent versions of the one field in such a way that an isomorphism is created and applied
automatically as required.

Magma provides an internal mechanism which allows a user to work with distinct
lattices of finite fields of different characteristics at the same time. Beginning with a
single field, such a lattice of fields is constructed by repeatedly applying a sequence of
operations of the following types:

• Explicitly embedding one field in a second field so as to ensure compatibility (pro-
vided that the embedding is allowed) (Subsection 5.1);
• Creating an extension field of a current field (Subsection 5.2);
• Creating a subfield field of a current field (Subsection 5.3).

Complete freedom is given as to the choice of irreducible polynomials for extensions and
generating elements for subfields. The irreducible polynomial used to define a field is not
required to be primitive.

The paper is organized as follows. Section 2 deals with the critical issue of compati-
bility. An axiomatic characterization of lattices of compatibly-embedded finite fields is
used to present an effective method of embedding fields. Section 3 describes the repre-
sentation of individual finite fields in Magma (leaving aside the issue of compatibility).
Of particular note are the optimized representations. Section 4 describes how subfield
lattice information is represented in Magma (the information associated with subfield
relationships). Section 5 describes the implementation of operations which change a lat-
tice, showing how the lattice properties are preserved under each operation. Section 6
contains some brief comments on some of the non-trivial algorithms for field elements
implemented in Magma. Finally, section 7 presents an extended example of a Magma
session which demonstrates many of the features discussed in the paper.

We do not attempt to give a complete description of the finite field facilities in Magma
or provide details of the relevant functions—we refer the reader instead to the Magma
Handbook (Bosma and Cannon, 1996).

The reader is assumed to be familiar with the basic theory of finite fields. An account
of the relevant theory may be found in works such as Jungnickel (1993), Lidl and Nieder-
reiter (1986). The following conventions are used throughout the paper. The symbol p
denotes a rational prime, q denotes a power of p (which may equal p), and Fq denotes a
finite field of q elements. The symbol ∂(F) denotes the absolute degree (over the prime
field) of a field F and ∂(F/E) denotes the relative degree of F over E. The degree of F
refers to its absolute degree. If α is an element of a field F and S is a subfield of F ,
MinS(α) denotes the minimal polynomial of α over S.

Lattices of Compatibly Embedded Finite Fields 353

2. Compatibility

2.1. background

Let E be a finite field of cardinality pe, and F a field of cardinality pf . If e divides f
then E ‘is contained in’ F in the sense that F contains a subfield of cardinality pe which is
isomorphic to E. Since this isomorphism is, in general, not unique, an explicit embedding
of E in F will refer to the choice of one particular (explicit) isomorphism. Suppose that
the field S has been explicitly embedded in both E and F . It is desirable to choose the
explicit embedding of E in F in such a way that the resulting diagram commutes: if an
element of S is expressed as an element of F , it should not matter whether this is done
directly or via E. Informally, a lattice of finite field extensions is termed compatible if all
diagrams representing explicit embeddings commute.

We present an efficient solution to the problem of maintaining the compatibility of a
lattice of finite field extensions as new fields are added.

2.2. explicit embeddings and compatibility

Let L be a set of finite fields of characteristic p and let Φ be a collection of field
monomorphisms φE↪→F between certain elements E and F of L. The field E is said to be
explicitly embedded in F if there exists φE↪→F ∈ Φ. If S is explicitly embedded in both E
and F , with corresponding embeddings φS↪→E and φS↪→F , an explicit embedding φE↪→F
is said to be a compatible embedding of E in F with respect to S if φS↪→F = φE↪→F ◦φS↪→E .
The field E is said to be compatibly embedded in F if the explicit embedding φE↪→F is a
compatible embedding with respect to all common explicitly embedded subfields.

We denote by � the relation of being explicitly embedded, so that E � F if and only if
there exists φE↪→F ∈ Φ. This equips L with a preordering (i.e., a relation that is transitive
and reflexive but not necessarily anti-symmetric).

Theorem 2.1. Let E, F and S be fields such that S � E and S � F and suppose further
that ∂(E) divides ∂(F). Then there exist ∂(E)/∂(S) distinct compatible embeddings of E
in F .

Proof. A single compatible embedding φ may be constructed as follows. An arbitrarily
chosen embedding, ψ = ψE↪→F , is made compatible with existing embeddings of S into E
and F by composing ψ with an element σ ∈ Gal(F) having the property that σ(ψ(S)) =
φS↪→F (S). Hence, φ = φE↪→F = σ ◦ψ. Any compatible embedding may now be obtained
from φ by composing it with an automorphism of φ(E) that leaves φS↪→F (S) invariant.
This yields # Gal(φ(E)/φS↪→F (S)) = # Gal(E/S) = ∂(E)/∂(S) possible embeddings. 2

The next proposition is a constructive version of the theorem.

Proposition 2.2. Let E, F and S be fields such that S � E, S � F and ∂(E) divides
∂(F). Suppose that S is identified with its isomorphic image φS↪→E(S). Suppose further
that α generates E over S, and let fS = MinS(α). Let τ ∈ F be a root of φS↪→F (fS).
Define φ:E → F by

φ

(∂(E/S)−1∑
i=0

siα
i

)
=
∂(E/S)−1∑

i=0

φS↪→F (si)τ i,

354 W. Bosma et al.

using the unique representation
∑
siα

i (with si ∈ S) for an arbitrary element of E.
Then φ is a field monomorphism from E to F such that φ ◦ φS↪→E = φS↪→F .

Proof. The existence of τ is clear, since fS has a root in E and hence also in the
subfield of F isomorphic to E. The uniqueness of the representation of elements of E
over S implies that the map φ is well-defined. Observing that α and τ have the same
minimal polynomial over S, it is straightforward to show that φ is a homomorphism.
Similarly, it can be shown that φ is one-to-one. The compatibility condition holds by
construction. 2

Remark 2.3. We retain the notation of Proposition 2.2. If α generates E over the prime
field P , then α also generates E over φS↪→E(S). A root τ of MinS(α) is, a fortiori, a root
of φP↪→F (fP), where fP is the minimal polynomial of α over the prime field P . The map φ
of Proposition 2.2 may be constructed with respect to P rather than S but using the
root τ of φS↪→F (MinS(α)). The resulting map φ will be the same, since both φP↪→E and
φP↪→F factor over φP↪→S . Thus, the map φ may be implemented using the representation
of elements of E that arises from regarding E as an algebra over P while still maintaining
compatibility with respect to S (this is used in Subsection 4.1 to efficiently represent an
embedding map in Magma).

2.3. compatible polynomials

In theory, it is possible to solve the compatibility problem by working solely with so-
called compatible polynomials, as introduced by Conway and Parker (Scheerhorn, 1992).
A collection of polynomials fd ∈ Fp[x], with degree setD, is said to be (norm-) compatible
if (a), each polynomial is primitive (in the sense that any root βd of fd is a primitive
element for Fp[x]/fd(x)), and (b), for every pair d1, d2 ∈ D such that d1|d2, it is the
case that NFpd2 /Fpd1

(βd2) = βd1 is a root of fd1 . A compatible embedding is obtained

by mapping βd1 to βkd2
, where k = (pd2 − 1)/(pd1 − 1). In this manner compatibility in

lattices of fields is ensured by restricting the choice of polynomial used to define a field.
The main drawback with this scheme is that, in general, the set of finite fields needed in
a computation is not known beforehand, and it is usually difficult to extend a compatible
family of polynomials to larger fields. Therefore, in practice this strategy is useful only
when working in fairly small fields.

In moderate-sized extensions, compatible collections of polynomials provide a means
of constructing standardized finite field extensions. By including the additional condition
that the polynomials be chosen minimal with respect to some ordering, uniqueness can
be achieved. This leads to the following definition (Jansen et al., 1995). The Conway
polynomial of degree d (over Fp) is the first monic primitive polynomial of degree d that
is compatible with all Conway polynomials of smaller degree, where the ordering of monic
polynomials of degree d is defined as follows:

xd + (−1) · ad−1 · xd−1 + · · ·+ (−1)d−1 · a1 · x+ (−1)d · a0

is less than

xd + (−1) · bd−1 · xd−1 + · · ·+ (−1)d−1 · b1 · x+ (−1)d · b0
if and only if

(ad−1, ad−2, . . . , a1, a0) < (bd−1, bd−2, . . . , b1, b0)

Lattices of Compatibly Embedded Finite Fields 355

in the lexicographical ordering of tuples of integers, where the ai, bj are taken to be
representatives in Z for the appropriate residue classes modulo p satisfying 0 ≤ ai, bj < p.
It is not obvious from this definition that Conway polynomials exist for every degree and
characteristic.

Compatibility in Magma is achieved using a different and more general approach,
which is explained in detail in the following sections. The use of arbitrary irreducible
polynomials for the representation of finite fields is allowed, but the explicit embeddings
will always be made in a compatible way. This is achieved by ensuring that each new
explicit embedding is created in such a way that it is compatible with all existing embed-
dings. The implementation involves only elementary linear algebra and the computation
of roots of polynomials.

2.4. lattices of compatibly embedded finite fields

In this subsection a formal model for a lattice of finite fields is presented. A lattice in
this model will consist of a collection of finite fields all having the same characteristic,
with explicit embeddings between certain members of the collection.

The pair L = (L,Φ) consisting of a collection of finite fields of the same characteris-
tic and a collection of explicit embeddings between members of L is called a lattice of
compatibly embedded finite fields if the following conditions are satisfied:

CE1 [Unicity] For each ordered pair (E,F) of elements of L, there exists at most one
φE↪→F ∈ Φ.

CE2 [Reflexivity] For each E ∈ L the identity idE = φE↪→E is in Φ.
CE3 [Prime subfield] There is exactly one P ∈ L with ∂(P) = 1, and for all F ∈ L there

exists φP↪→F ∈ Φ.
CE4 [Invertibility] If E � F and ∂(E) = ∂(F), then F � E and φF↪→E = φE↪→F

−1.
CE5 [Transitivity] For any triple (E,F,G) of elements of L, if E � F and F � G then

E � G and φE↪→G = φF↪→G ◦ φE↪→F .
CE6 [Intersection] For each E,F,G in L such that E � G and F � G, there exists S ∈ L

such that ∂(S) = gcd(∂(E), ∂(F)), S � E and S � F .

It will be helpful to comment on the conditions CE1–CE6.
It is important to note that if the lattice L contains fields E and F such that ∂(E)

divides ∂(F), then although E is isomorphic to a subfield of F an explicit embedding
φE↪→F may not yet exist. Further, while there are ∂(E) ways of embedding E in F (by
Theorem 2.1 with S taken to be the prime field P), only some will be compatible with
other embeddings in the lattice. Consequently, E is not regarded as a subfield of F until
it is explicitly embedded. This is reflected in CE1.

For convenience, CE2 insists that all identity maps be included so that, in combination
with CE1, non-trivial automorphisms are excluded.

Condition CE3 expresses the manner in which the prime field is identified in a finite
field.

Condition CE4 expresses the requirement that if one field is explicitly embedded in
another and the fields are isomorphic then they are related via embeddings that must
compose to the identity map. Note that this is consistent with CE2 and CE3. The fact
that � is not required to be anti-symmetric allows for the possibility of having several
fields of the same cardinality in L. This is useful in various situations. For example, it

356 W. Bosma et al.

allows the lattice to contain images of a field under Galois automorphisms of a larger
field.

Condition CE5 ensures transitivity and compatibility in triangular diagrams.
Finally, condition CE6 is a way of ensuring that implicit compatibility conditions are

made explicit. As an illustration, consider the embedding of the field Fp4 of degree 4 and
the field Fp6 of degree 6 into a field of degree 24. Each of Fp4 and Fp6 contains a quadratic
subfield that has been implicitly embedded and there is now an implicit isomorphism
between the two quadratic subfields. This will impose compatibility conditions on future
embeddings. If Fp4 and Fp6 are now embedded in a field Fp60 of degree 60, the choice
of embeddings must respect the isomorphism of the quadratic subfields. Condition CE6
makes this explicit by ensuring that there is a field S of degree 2 with isomorphisms
from S to each of the quadratic subfields of Fp4 and Fp6 , that, by transitivity, will also
be embedded in the field of degree 24, and later in Fp60 .

Note that if E,F,G ∈ L are such that E � G, F � G and ∂(E) | ∂(F), it follows by
CE6 that there is a field S ∈ L with ∂(S) = ∂(E) such that S � E and S � F . It then
follows from CE4 that E � S and from CE5 that E � F . This shows that embeddings
into larger fields determine the embeddings into their subfields.

In the model, a lattice may be modified by:

• the creation of a new explicit (compatible) embedding of one field into another;
• the creation of a new field.

The manner in which these operations are implemented in Magma will be described in
Section 5. In the remainder of this section, formal aspects of the lattice model will be
developed.

In the sequel, unless otherwise stated, to say that E is a subfield of F will be taken to
mean that E is an embedded subfield of F , so that E � F .

2.5. adding a compatible embedding

Let L be a collection of finite fields of fixed characteristic p and let Φ be a collection
of explicit embeddings between members of L. The set Φ is said to form a compatible
collection for L if for every E,F, S in L such that S � E, S � F , and E � F , E is
compatibly embedded in F .

Suppose that E and F in L are such that E 6� F . Let C := {S ∈ L | S � E and
S � F} and let E′ be the subfield of E generated by {φS↪→E(S) : S ∈ C}. Then E′

may be considered as a new field in the lattice L such that E′ is an embedded subfield
of E (i.e., E′ � E) in the following way: the embedding φE′↪→E is the identity map and
for each subfield S ∈ C the embedding φS↪→E′ is equal to the embedding φS↪→E with
restricted codomain E′. Condition CE6 on the intersection of subfields is automatically
fulfilled, since ∂(E′) = lcm{∂(S) | S ∈ C}. Analogously, let F ′ be the subfield of F
generated by {φS↪→F (S) : S ∈ C} and suppose that the respective associated embedding
maps have been constructed for F ′.

The key observation is that a fully compatible embedding φ of E into F is uniquely
determined when restricted to the domain E′.

Theorem 2.4. There exists a unique field isomorphism χ : E′ → F ′ which is compatible

Lattices of Compatibly Embedded Finite Fields 357

with the set C of common embedded subfields of E′ and F ′, such that χ◦φS↪→E′ = φS↪→F ′
for each S ∈ C.

Proof. It is clear that there can be at most one isomorphism χ:E′ → F ′, because every
element of E′ can be expressed in terms of images of elements in the subfields S. By
construction, E′ and F ′ have the same degree (the least common multiple of the degrees
of the fields S ∈ C), hence there exists an isomorphism χ0 of E′ into F ′. Let P be the
prime field in C, and let S′ = φS↪→F ′(S) for any subfield S ∈ C.

As shown in the proof of Theorem 2.1, the isomorphisms of E′ and F ′ compatible
with a subfield S correspond to a coset of Gal(F ′/S′) in Gal(F ′/P ′). The intersec-
tion of two such cosets σ1(Gal(F ′/S′1)) and σ2(Gal(F ′/S′2)) is a coset σ(Gal(F ′/S′1) ∩
Gal(F ′/S′2)), since the embeddings φS1↪→F ′ and φS2↪→F ′ are compatible on a subfield
of degree gcd(∂(S1), ∂(S2)) by CE6. By induction, there exists an automorphism σ ∈
Gal(F ′/P ′) such that χ = σ ◦ χ0 is compatible with all subfields S ∈ C. Further, since⋂
S∈C Gal(F ′/S′) = {id}, σ (and hence χ) are unique. 2

Corollary 2.5. There exists a field monomorphism φ:E ↪→ F with the property that
Φ ∪ {φ} forms a compatible collection for L. In particular, if L = (L,Φ) forms a lattice
of compatibly embedded fields then there exists a lattice L′ = (L′,Φ′) containing L (in the
sense that L′ ⊃ L and Φ′ ⊃ Φ) such that an embedding of E into F is contained in Φ′.

Proof. Let E′ and F ′ be as above. Using the unique isomorphism χ:E′ → F ′ con-
structed in Theorem 2.4, embed E′ in F ′ so that E′ � F via φF ′↪→F ◦ χ. Applying
Remark 2.3 to E and F with S taken to be E′ and with α taken to be a generator of E
over P yields an embedding φ of E in F which is compatible with all existing embed-
dings for subfields S ∈ C, since φ|E′ = χ. In fact, by Theorem 2.1 there are ∂(E)/∂(E′)
different such field monomorphisms. 2

The implementation in Magma avoids the explicit intersection of cosets in the Galois
group of F ′ through use of a method suggested by the following proposition.

Proposition 2.6. Let E, E′ and C be as above. Suppose that α ∈ E generates E
over P . Then

MinE′(α) = gcd{MinφS↪→E′ (S)(α) | S ∈ C}.

Proof. The minimal polynomial of α over P splits over E as

MinP (α) =
∏

σ∈Gal(E)

(x− ασ).

Hence
MinE′(α) =

∏
σ∈Gal(E/E′)

(x− ασ)

and analogously

MinφS↪→E′ (S)(α) =
∏

σ∈Gal(E/φS↪→E′ (S))

(x− ασ).

Since the embeddings φS↪→E′ coincide on intersections after suitable identifications,

358 W. Bosma et al.

MinE′(α) is the greatest common divisor of the minimal polynomials over the embeddings
φS↪→E′(S). 2

Since the unique isomorphism χ identifies E′ with F ′, we have

MinφS↪→E′ (S)(α) = MinφS↪→F ′ (S)(α) = MinφS↪→F (S)(α),

so that the greatest common divisor need only be computed in F [x]. The compatible
embedding of E in F may now be created as follows: if

f(x) = gcd{φS↪→F (MinφS↪→E′ (S)(α)) | S ∈ C}.
and τ is any root of f(x) in F , then the required monomorphism φ:E → F is defined
by α 7→ τ . The correctness of this procedure follows from Remark 2.3, Theorem 2.4 and
Proposition 2.6.

Note that in order to preserve the compatibility of a lattice after adding an explicit
embedding it may be necessary to add further fields to L so as to ensure that CE6 is
satisfied. It will also be necessary to take the transitive closure.

2.6. adding fields to a lattice

A compatibly embedded lattice L = (L,Φ) may be enlarged either by adding embed-
dings to Φ (as in the previous subsection) or by adding fields to L.

Suppose that F is a finite field having the same characteristic as the fields in L, but F
is not yet included in L. After modifying L to include F and Φ to include the embedding
φP↪→F of the prime field P into F , it is easy to see that each of the conditions CE1–CE6
is satisfied. The field F may now be embedded in other fields of L or vice versa, using
the method of the previous subsection. A lattice of fields may be constructed by applying
this process iteratively. The process always produces a compatible lattice.

3. Representations of Finite Fields

In this section we describe how individual finite fields are represented in Magma. Note
that discussion of the representation of embeddings is deferred until a later section.

3.1. summary of representations

The different internal representations of finite field elements are summarized below. A
more detailed discussion of each representation appears in the following subsections.

• The SmallPrime representation applies to prime fields where the prime p fits
within a machine ‘short’. Elements are represented as integers taken modulo p and
arithmetic is performed by table lookup for very small primes.
• The MediumPrime representation applies to prime fields where the prime p fits

within a machine ‘int’. Elements are represented as integers taken modulo p.
• The BigPrime representation applies to prime fields where the prime p is larger

than a machine ‘int’. Elements are represented as general multiple-precision integers
taken modulo p.
• The PrimePoly representation applies to extensions of prime fields given in the

SmallPrime representation. Elements are represented as specialized polynomials
over a SmallPrime field. Polynomial arithmetic is optimized.

Lattices of Compatibly Embedded Finite Fields 359

• The Zech representation applies to extension fields having cardinality at most 220.
Elements are represented as powers of a primitive element and a table of Zech
logarithms is stored for use in addition.
• The ZechPoly representation applies to extension fields having cardinality greater

than 220, where the field may be viewed as an extension of a Zech field. Elements are
represented as specialized polynomials over a Zech field. The polynomial arithmetic
is optimized for each particular Zech logarithm table.
• Finally, the GeneralPoly representation applies to general extensions. Elements

are represented as general polynomials defined recursively over any finite field (in-
cluding fields given in this representation). The highly optimized generic univariate
polynomial code of Magma is used. The GeneralPoly case is required internally
to create extensions temporarily during the construction of an optimized repre-
sentation. This representation is usually not employed for finite fields seen by the
user.

3.2. prime fields

Computation with finite fields Fp of prime cardinality p is particularly easy, since the
elements of Fp may be identified with the integers modulo p: Fp ∼= Z/pZ. Arithmetic is
simply modular arithmetic.

Magma employs three different representations for prime fields: the SmallPrime
representation where p can be stored in a ‘short’ (p < 216 for most 32-bit machines); the
MediumPrime representation where p does not fit in a short but can be stored in an
‘int’ (p < 232 for most 32-bit machines); and the BigPrime representation for arbitrarily
large p. In the BigPrime case, the Montgomery modular representation (Montgomery,
1985) is employed to achieve faster multiplication in the case of large primes. The case
where the prime p requires exactly two multiprecision digits (i.e., p is less than 264 for
32-bit machines or less than 2128 for 64-bit machines) is also optimized.

3.3. the Zech logarithm representation

The fact that the multiplicative group (Fq)∗ of any finite field Fq is cyclic of order
q − 1 may be exploited to replace multiplication of non-zero field elements by a simple
modular addition of exponents with respect to a primitive element g:

gk · gl = gk+l (1)

where the exponents are taken modulo q − 1. Similarly, exponentiation reduces to mul-
tiplication modulo q − 1. In order to perform addition and subtraction efficiently in this
representation, it is necessary to store the logarithm sr of the successor of gr for each
0 ≤ r ≤ q − 2; that is, the integer sr with 0 ≤ sr ≤ q − 2 such that gsr = gr + 1
(Conway, 1968). The addition of elements gu and gv is accomplished by looking up
s = sv−u, since gv + gu = gu(gv−u + 1) = gu · gs = gu+s. The problem of zero is handled
by introducing the auxiliary logarithm q− 1. An entry with r = q− 1 and sr = 0 is thus
added to cater for the successor of 0. Also, if q is odd, an entry with r = (q − 1)/2 and
sr = q − 1 indicates that 0 is the successor of −1.

In Magma, the Zech representation is used only when the cardinality q is not prime
and q ≤ 220. However, as explained in the next subsection, a Zech representation of a
subfield may form part of an optimized two-step representation for a field having much
larger cardinality.

360 W. Bosma et al.

3.4. optimized representations for field extensions

In this section we describe optimized representations for an arbitrary finite field F of
cardinality pn, for a given prime p and integer n > 1.

If pn is sufficiently small, F is constructed using the Zech representation. As the Zech
logarithms for F are computed, a mapping is simultaneously constructed giving the one-
to-one correspondence between elements of the field F (given as powers of a primitive
element) and the vector space P (n). The embedding of P in F is determined using this
map.

Next, suppose that the cardinality of F is outside the range for the Zech represen-
tation, but pn can be written as qk where q = pd is the largest possible proper power
of p in the Zech range. (Additionally, it is necessary to assume that F is not too large,
depending on the machine and characteristic p.) Then a field S of cardinality q is created
in terms of the Zech representation, and F is constructed as a degree-k extension of S
in terms of the ZechPoly representation. The prime field P is embedded in F by firstly
embedding P into S and then using constant polynomials in F over S. An isomorphism
between F and P (n) is constructed using the isomorphism between S and P (d) and the
fact that elements of F are polynomials over S. This representation is known as the
two-step optimized representation.

Otherwise, the PrimePoly representation is used to construct F as a degree-n ex-
tension of P . The prime field P is embedded in F using constant polynomials. An iso-
morphism between F and P (n) is found using the fact that the elements of F are simply
polynomials over P . This method is used for fields such as F2103 , where the degree is a
prime so the two-step method cannot be used.

The construction of an optimized representation may be quite expensive for large fields
since polynomial factorization is required in order to compute appropriate extension
polynomials for the embeddings (see Subsection 5.2). It is possible to suppress the use of
an optimized representation in which case the construction of the field will be fast but
arithmetic may be much slower. This is useful when it is necessary to perform just a few
elementary calculations in an extension field before discarding it.

The use of optimal normal bases will be available soon in Magma.
The following two examples illustrate the use of the various optimized representations.

• Consider what happens if the user first creates E = F28 and then creates a degree-14
extension F of E, so #F = 216×7. Magma will create E in the Zech represen-
tation, and then create a field S = F216 , again in the Zech representation. Next,
F is created as a degree-7 extension of S (using the ZechPoly representation)
and finally the embedding machinery is applied so that E appears as a subfield
of F (see below for details). Thus, there will be three fields: E (Zech 28), S (in-
ternal Zech 216), and F (ZechPoly of degree 7 over S). The Magma statements
creating E and F are:

> E := FiniteField(2, 8);
> F := ext<E | 14>;

• As a more interesting example, consider what happens if the user creates E = F253

and then builds a degree-10 extension F of E, so that #F = 253×10. Magma
will create E in the PrimePoly representation since E is too large for the Zech

Lattices of Compatibly Embedded Finite Fields 361

representation and the primality of 53 rules out use of the two-step representation.
Next, a field S = F210 is created in the Zech representation and then F is created
as a degree-53 extension of S in the two-step representation. Finally, E is embedded
in F . Consequently, although F will appear as a degree-10 extension of E with its
elements being printed as polynomials over E of degree less than 10, its internal
arithmetic is performed in terms of polynomials over S of degree less than 53. The
field is created in this form since the use of polynomials of degree less than 53 over
a Zech field of degree 10 provides much faster arithmetic than using polynomials
of degree less than 10 over a field represented in terms of polynomials of degree less
than 53 taken over the prime field!

4. Representation of Lattice Information

Let L = (L,Φ) be a compatibly embedded lattice in Magma and suppose that E
and F are fields of L such that E is an embedded subfield of F . Throughout this section
let P denote the prime field of F , e the degree of E, f the degree of F , and d = f/e the
relative degree of F over E.

There are four items associated with the embedding relationship E � F that are stored
by Magma:

(1) The embedding map φE↪→F .
(2) A generator αF/E for F , considered as an algebra over φE↪→F (E), called the gen-

erator of F over E. The generator αF/P of E over the prime field P is called the
prime-field generator of F and is denoted by αF .

(3) A vector space isomorphism ψE(d)↔F :E(d) → F . Let ψF denote ψP (f)↔F .
(4) The defining polynomial fF/E of F over E which is defined to be the minimal

polynomial of αF/E over E.

In this section, the calculation and representation of these items will be outlined.
Note that for each finite field F there is a fixed embedded subfield G of F called the

ground field of F . The field F is created as an extension of G, and F is presented by
default as an algebra over G: elements of F are thought of as polynomials in G[x] where x
corresponds to the generator αF/G of F over G. Often, of course, the ground field is the
prime field P .

4.1. representation of an embedding map

Subsection 2.5 gives a method for computing a compatible embedding map φE↪→F .
Using Remark 2.3, the construction of the embedding map involves only linear algebra
over the prime field P . This is of considerable importance since it may be necessary
to embed one field in another field where the internal representations of the two fields
are quite different. Otherwise, it is difficult to implement a general scheme capable of
transferring elements between different representations.

Remark 2.3 thus provides an explicit representation of the embedding φE↪→F :E → F .
It is stored as an e× f matrix M with entries in P , where the ith row of M (numbered
from 0 to e−1) gives φE↪→F (αiE) as an P -linear combination of the f independent powers

362 W. Bosma et al.

of αF . That is,

φE↪→F (αiE) =
f−1∑
j=0

Mi,jα
j
F .

Once the embedding map φE↪→F has been created and stored, computation with el-
ements of F relative to E is possible and so can be used in the construction of other
information.

4.2. relative generator and vector space isomorphism

The next step involves finding a relative generator αF/E for F over E. Let G be the
current ground field of F (which will already be compatibly embedded in F). If αF/G
generates F over E, then αF/E is taken to be αF/G. This is the most common situation,
occurring, for example, when the ground field G is the prime field, or, more generally,
when G is contained in E. If αF/G does not generate F over E, random elements α ∈ F \E
are chosen until a generator is found. Note that α ∈ F generates F over E if and only if
{αi}0≤i≤d−1 is a set of E-linearly independent elements. This is the case if and only if
{αiτ j}0≤i≤d−1,0≤j≤e−1 is a set of P -linearly independent elements, where τ is φE↪→F (αE).
This follows from the observation that since αE generates E over the prime field, τ will
generate φE↪→F (E) over the prime field. Using the map ψ−1

F to write elements of F as
vectors in P (f), we see that this condition is equivalent to showing that the matrix with
entries v̄ij = ψ−1

F (αiτ j) ∈ P (f) has full P -rank f .
The structure of F as an E-algebra is entirely determined by φ = φE↪→F and αF/E :

F ∼= φ(E)⊕ αF/E · φ(E)⊕ · · · ⊕ αd−1
F/E · φ(E) (4.1)

where d is the degree of F over E.
Ignoring multiplicative structure, the right-hand side of equation (4.1) gives an E-

vector space structure F ∼= E(d) ∼= φ(E)(d) for F . The map ψE(d)↔F is constructed as a
composite of three vector space isomorphisms:

ψE(d)↔F :E(d) (ψ−1
E)d−→ (P (e))d

η−→ P (f) ψF−→ F (4.2)

where (ψ−1
E)d acts on E(d) in the obvious way through concatenation of the images of ψ−1

E

on each of the d components. Furthermore, η is the linear transformation from P (f) to
itself obtained by mapping the jth basis vector to v̄rs, where j = re + s, 0 ≤ s < e,
and where (P (e))d is identified with P (f) = P (ed) in the obvious way. The matrix N
representing the linear transformation η has the following structure: the first e rows
contain the P -coefficients for each of ψ−1

F (α0
F/Eτ

j), for j = 0, 1, . . . , e−1, the next e rows
contain those for ψ−1

F (α1
F/Eτ

j), etc., so that generally the (i× e+ j)th row corresponds
to ψ−1

F (αiF/Eτ
j).

Proposition 4.1. The map ψEd↔F defined by equation (4.2) defines an E-vector space
isomorphism, where F is regarded as a vector space over E through application of the
mapping φE↪→F .

Proof. The proof reduces to a series of verifications:

(i) Since each of the maps in (4.2) is clearly P -linear, so is ψ = ψE(d)↔F .

Lattices of Compatibly Embedded Finite Fields 363

(ii) Consider the image of eij = (0, . . . , 0, αjE , 0, . . . , 0) ∈ E(d) under ψ, where only the
ith component is non-zero. Under ψ−1

E , the image of αjE is
fj = (0, . . . , 0, 1, 0, . . . , 0) ∈ P (e), with 1 in the jth position. Under η, the vector
(0̄, . . . , 0̄, fj , 0̄, . . . , 0̄) ∈ (P (e))d maps to ψ−1

F (αiF/Eτ
j) by the definition of η. Hence

ψ(eij) = αiF/Eτ
j .

(iii) Since αE generates E over P , it follows from (i) and (ii) that

ψ((ε0, . . . , εd−1)) =
d−1∑
i=0

φE↪→F (εi)αiF/E

for any (ε0, . . . , εd−1) ∈ E(d). Since φE↪→F is injective and αF/E is a generator of
degree d for F over E, this shows that ψ is bijective.

(iv) If e = (ε0, . . . , εd−1) ∈ E(d) and δ ∈ E, then

ψ(δ · e) = ψ((δε0, . . . , δεd−1)) =
d−1∑
i=0

φE↪→F (δεi)αiF/E

= φE↪→F (δ)
d−1∑
i=0

φE↪→F (εi)αiF/E = φE↪→F (δ)ψ(e).

Thus, ψ is E-linear.

This proves the proposition. 2

4.3. minimal polynomials and defining polynomial

The minimal polynomial of an element β ∈ F over E is found by computing the powers
1, β, β2, . . . and then applying the isomorphism ψE(d)↔F

−1 to each of these elements until
an E-linear relation is obtained. The fact that E and F may have different representations
for their elements does not present any difficulties since application of the isomorphism
involves only linear algebra over the prime field P .

The defining polynomial fF/E of F over E is calculated as the minimal polynomial
of αF/E over E. Often this polynomial will be known at the outset. This is true, for
example, if an extension F is defined in terms of a particular polynomial g, in which case
the field F has to be constructed so that its defining polynomial is g (see Subsection 5.2).

5. Modifying a Lattice

In this section we describe our implementation of the operations that modify a lattice L,
observing that the lattice conditions are preserved in each case. Note that, since the
formal lattice model (and consequently the code) is mutually recursive, it is necessary to
employ an inductive form of exposition whereby each of the following subsections may
require application of operations described in other subsections (but applied to fields of
smaller degree).

A final subsection discusses the construction of default finite fields in Magma.

364 W. Bosma et al.

5.1. construction of an explicit embedding

Suppose that E and F are fields such that the degree of E divides the degree of F .
Assume that E and F are currently stored in a Magma lattice L, but that E is not yet
explicitly embedded in F . The subfield E is embedded in F by the following procedure:

(i) Create the map φE↪→F using the method outlined at the end of Subsection 2.5,
where it is shown to yield a compatible embedding of E in F .

(ii) Construct additional information associated with the relationship E � F , as de-
scribed in Section 4.

(iii) For each subfield S of F for which there does not yet exist a common subfield G
of E and S with ∂(G) = g = gcd(∂(E), ∂(S)), construct a subfield G of E of
degree g using the method outlined in Subsection 5.3 and explicitly embed G in S
by recursively applying this procedure.

(iv) For each field S ∈ L such that S � E, use the mapping φS↪→F = φE↪→F ◦ φS↪→E to
embed S in F . (This corresponds to forming the transitive closure.)

It is easily seen by induction that the compatibility of L is preserved, using the in-
ductive assumption that any embeddings arising through application of Subsection 5.3
preserve compatibility.

The Magma procedure

> Embed(E, F);

performs the explicit embedding of E in F . Note that E may already be explicitly
embedded in F , in which case no action is necessary. It is also possible to indicate a
preference among the possible compatible embeddings by supplying an image for the
generator of E.

5.2. creation of an extension field

Let E be a field currently stored in a Magma lattice L of finite fields and suppose
that f(x) ∈ E[x] is a polynomial of degree d irreducible over E. The extension field F
of E by the polynomial f(x) as created in Magma appears to the user as the quotient
ring E[x]/(f), i.e., as polynomials over E reduced modulo f(x).

If E is the prime field P , then F is constructed as an arbitrary field of cardinality pd

in the appropriate representation as outlined in Subsection 3.4. The prime field P is
automatically embedded in F , and the generator αF/P is taken to be some root of f(x)
in F [x] so F appears as an extension of E = P by f(x). Since F has no other relationships
to other fields in L as yet, the compatibility of L is preserved.

Assume then that E has cardinality pe, where e > 1. The following procedure uses the
method of Proposition 2.2 and Remark 2.3 to create the extension F of E.

(i) Create an arbitrary field F of cardinality ped in the appropriate representation.
(ii) Compute the minimal polynomial t(x) ∈ P [x] of αE/P over P using the vector

space isomorphism ψP (e)↔E .
(iii) Lift t(x) into F [x] and find a root τ of t(x) in F (possible since P is automatically

embedded in F at construction). This gives the embedding map φE↪→F . Using
φE↪→F , embed E in F .

Lattices of Compatibly Embedded Finite Fields 365

(iv) Lift f(x) into F [x] (now possible since E is embedded in F) and set αF/E to a root
of this polynomial in F . Thus the defining polynomial of F over E will be f(x) as
desired.

(v) For each field S ∈ L such that S � E use the mapping φS↪→F = φE↪→F ◦ φS↪→E to
embed S in F . (This corresponds to forming the transitive closure.)

Observing that condition CE6 is preserved since the only embedded subfields of F
are E and its subfields and these satisfy condition CE6 by hypothesis, it is easily seen
that the compatibility of L is preserved.

The following Magma statement will construct the extension field F of E generated
by the irreducible polynomial f ∈ E[x]:

> F<t> := ext<E | f>;

The element t of F will be set to be the generator αF/E of F over E; the defining
polynomial fF/E of F over E will be set to f ; and the ground field of F will be set to E.
Alternatively, rather than specifying the polynomial f , an integer d > 1 may be specified;
Magma will then set F to an arbitrary but fixed extension of E of degree d.

5.3. creation of a subfield

Let F be a field currently stored in a lattice L of finite fields and suppose that β is
a non-zero element of F . Magma allows the creation of the subfield E of F generated
by the element β. Specifying the element β, rather than an integer dividing the degree
of F , means that the prime-field generator αE of E maps to β in F . Note that, as β may
generate the whole of F , the user may use this mechanism to construct an alternative
presentation of F . The subfield E is constructed by the following procedure:

(i) Compute the minimal polynomial f(x) ∈ P [x] of β over P .
(ii) Create E in the lattice as an extension of P by the polynomial f(x) as explained

in Subsection 5.2.
(iii) Embed E in F so that αE is mapped to β ∈ F . Since the minimal polynomial of αE

over P is f(x) by construction, Remark 2.3 shows that this is a correct embedding.
(iv) For each subfield S of F where there does not yet exist a common subfield G of E

and S with ∂(G) = g = gcd(∂(E), ∂(S)), recursively construct a subfield G of E of
degree g and explicitly embed G in S.

(v) For each field G ∈ L such that F � G, embed E in G using the composition
φE↪→G = φF↪→G ◦ φE↪→F .

Again it is easily seen that the compatibility of the lattice L is thereby preserved.
The Magma code for constructing the subfield E of F generated by b ∈ F is:

> E<a> := sub<F | b>;

Here the element a of E will equal the element b of F when (automatic) coercion is
performed. Instead of the element b ∈ F , an integer d which is a divisor of the degree
of F may be specified; Magma will then set E to any subfield of F of degree d.

366 W. Bosma et al.

5.4. default finite fields

For each prime p and degree n ≥ 1, there is a fixed default finite field in Magma of car-
dinality pn. Default fields are created automatically whenever the function FiniteField
(taking the characteristic and degree as arguments) is invoked, or when an extension field
or subfield construction is applied to an existing default field with specification of the
degree only. For example,

> F := FiniteField(3, 4);
> E := ext<F | 3>;
> S := sub<E | 2>;

constructs default fields of cardinalities 34, 312 and 36, respectively.
Contrary to the situation with fields created using the general extension field and

subfield constructions described in preceding subsections, Magma creates embedding
maps automatically between default finite fields (when cardinalities are appropriate).
Thus it is never necessary to apply the Embed procedure to default fields.

Default finite fields are frequently the only ones needed in an application since the
precise choice of a generating polynomial is often irrelevant.

6. Algorithms for Finite Field Elements

In this section we briefly mention some of the non-trivial algorithms installed in
Magma for finite field elements.

A basic operation is the determination of the multiplicative order of a non-zero element.
The order of an element in a cyclic group Cm can be determined efficiently provided that
the prime factorization of the order m of the group is known. For, if m =

∏
pkii , an

element c ∈ Cm will have order
∏
pdii , where 0 ≤ di ≤ ki is the least integer such that

cm/p
ki−di = 1 ∈ Cm.

This result is employed in Magma to find multiplicative orders of an element in a finite
field; it requires the factorization of q − 1, where q is the cardinality of the field. Since q
may be very large, the direct factorization of q − 1 may be very expensive. To avoid
this cost whenever possible, Magma includes a large database containing information
about the factorization of integers of the form bn±1 (Brent and te Riele, 1992). During a
Magma session, moreover, any factorization of an integer of the form q−1 is remembered,
so that the cardinality of the multiplicative group of a finite field will never have to be
factored twice.

In general, the generator of a finite field need not be primitive; the user may have
indicated a preference for a non-primitive generator, and even in the default case the
cost of factoring q − 1 prohibits the search for primitive polynomials in larger fields.
For a non-prime field, Magma computes a primitive element by simply searching for a
random element of maximal order. In the case of a prime field of cardinality p, Magma
searches for one of the φ(p−1) elements of order p−1. In principle, a random search could
be performed, but for compatibility reasons, the elements x = 2, 3, 4, . . . are examined
sequentially so as to find the smallest primitive element a (where the ordering is that of
the positive integers). Consequently, the minimal polynomial x − a of a is the Conway

Lattices of Compatibly Embedded Finite Fields 367

polynomial of degree 1 over Fp as defined in Section 2. Once found, a primitive element
is stored with the field.

Interestingly enough, one of the few problems that can be solved in Fp without a
knowledge of the factorization of p− 1 is that of finding square roots. Magma contains
an implementation of the Shanks–Tonelli algorithm (Cohen, 1993) and usually finds
square roots of squares modulo p very quickly. For higher order roots for prime fields and
for all roots in non-prime fields, an nth root of an element a ∈ F is found by computing
a linear factor of xn − a in F [x] (if it exists) using a variant of the Cantor–Zassenhaus
algorithm (Cantor and Zassenhaus, 1981; Knuth, 1969) to do this.

An element x ∈ F is said to be normal over a subfield S of F if the elements
x, xq, xq

2
, . . . , xq

d−1
form a basis for F over S, where d is the degree of the extension

F/S and q is the cardinality of S. Magma locates normal elements by generating ele-
ments x at random and testing the first q powers of x for linear independence.

The computation of discrete logarithms, along with the factorization of polynomials,
plays an important role in many applications of finite fields, including, for example,
cryptography (see Menezes (1993)). There are many similarities between integer fac-
torization algorithms and discrete logarithm algorithms in finite fields, and a serious
implementation of one of the subexponential algorithms is a major undertaking. Cur-
rently, Magma includes certain ‘square root’ methods, where the complexity is domi-
nated by a term of the order of

√
p, for the largest prime p dividing the order q − 1

of the multiplicative group of Fq. The most important algorithm in this class is the
Pohlig–Hellman algorithm (Pohlig and Hellman, 1978). This algorithm proceeds by find-
ing logarithms in cyclic groups of prime order, building up to p-Sylow subgroups of the
multiplicative group and combining the results using the Chinese Remainder Theorem.
Logarithms in cyclic groups of prime order are found using either Pollard’s ρ-method
(Knuth, 1969; Pollard, 1978) or Shanks’ baby-step-giant-step method (Knuth, 1969).
Neither will perform satisfactorily if the prime is large (in Shanks’ method a table of
size
√
p is needed).

7. An Example

The use of the finite field machinery in Magma is illustrated in the context of the
subfield-lattice of a finite field of cardinality 536.

We first assign F36 with generator w36 to be the default finite field of cardinality 536

and print the defining polynomial of F36 (the minimal polynomial of w36 over the prime
field).

> F36<w36> := FiniteField(5, 36);
> d<x> := DefiningPolynomial(F36); d;
x^36 + 4*x^33 + x^32 + 3*x^31 + 2*x^29 + 2*x^28 + x^27 + 2*x^26 +

4*x^25 + x^24 + x^23 + 4*x^20 + x^18 + 4*x^15 + 4*x^13 + 3*x^12 +
2*x^11 + 3*x^10 + 2*x^9 + 2*x^8 + 2*x^7 + x^6 + x^5 + 3*x^4 +
4*x^3 + 3*x + 2

We next create some subfields of F36:

> F18<w18> := sub<F36 | 18>;
> F12<w12> := sub<F36 | 12>;

368 W. Bosma et al.

> F6<w6> := sub<F36 | 6>;
> F1 := sub<F36 | 1>;

Note that so far only default finite fields have been created.
The defining polynomial chosen for F12 (over the prime field) is not the same as the

Conway polynomial for F512 . So we assign G with generator g to be the finite field whose
defining polynomial is the Conway polynomial.

> ConwayPolynomial(5, 12) eq DefiningPolynomial(F12);
false
> G<g> := ext<F1 | ConwayPolynomial(5, 12)>;
> DefiningPolynomial(G);
x^12 + x^7 + x^6 + 4*x^4 + 4*x^3 + 3*x^2 + 2*x + 2

We instruct Magma to (compatibly) embed F12 in G and then print g as an element of
F12.

> Embed(F12, G);
> F12 ! g;
4*w12^11 + w12^10 + 2*w12^7 + 2*w12^6 + 3*w12^5 + 3*w12^4 +

3*w12^3 + 3*w12^2 + 4*w12 + 1

We check that the minimal polynomial of g over F6 is quadratic. Note that F6 is now
automatically a subfield of G by transitivity (condition CE5). Since g is primitive (being
the root of a Conway polynomial), raising it to the power (512− 1)/(56− 1) will produce
an element h whose minimal polynomial over the prime field F1 has degree 6.

> m<x6> := MinimalPolynomial(g, F6); m;
x6^2 + w6^7484*x6 + w6^3281
> h := g^((5^12 - 1) div (5^6 - 1)); h;
g^11 + 2*g^10 + g^9 + 2*g^8 + g^7 + 2*g^5 + 4*g^3 + 4*g^2 + 4*g + 3
> n<x1> := MinimalPolynomial(h, F1); n;
x1^6 + x1^4 + 4*x1^3 + x1^2 + 2

Since all (embedded) fields of the same degree are isomorphic, h must lie in F6. So we
define h6 to be the element in F6 equal to h.

> h in F6;
true
> h6 := F6 ! h; h6;
w6^3281

Now we lift h into F36 in two different ways and check that the “diagram” commutes.
Lifting h6 via F18 should give the same answer as lifting h directly into F36.

> a := F18 ! h6;
> b := F36 ! a;
> c := F36 ! h;

Lattices of Compatibly Embedded Finite Fields 369

> b eq c;
true

Note that elements in two different fields (w18 in F18 and g in G) may be compared,
combined, etc. since they have a common overfield in the lattice. We calculate the order
of z = w18 + g (an element of F36) in factored form:

> FactoredOrder(w18 + g);
[

<2, 1>, <3, 3>, <7, 1>, <13, 1>, <19, 1>, <31, 1>, <37, 1>,
<601, 1>, <829, 1>, <5167, 1>, <6597973, 1>

]

Acknowledgement

The authors would like to thank Bernd Souvignier for critically reading drafts of this
paper and making helpful suggestions which resulted in clarification and simplification
of the material in Section 2.

References

——Bosma, W., Cannon, J. (1996). Handbook of MAGMA functions. School of Mathematics and Statistics,
Sydney University.

——Bosma, W., Cannon, J., Matthews, G. (1994). Programming with algebraic structures: design of the
Magma language. In Giesbrecht, M. (ed.), Proceedings of the 1994 International Symposium on
Symbolic and Algebraic Computation, pp. 52–57, New York, Oxford: ACM Press.

——Bosma, W., Cannon, J., Playoust, C. (1997). The Magma algebra system I: the user language. J. Symbolic
Comput. 24, 235–265.

——Brent, R., te Riele, H. (1992). Factorizations of an ± 1, 13 ≤ a < 100. Technical report NM-R9212,
Centrum voor Wiskunde en Informatica, Amsterdam.

——Cannon, J., Playoust, C. (1996). Magma: A new computer algebra system. Euromath Bulletin 2(1),
113–144.

——Cantor, D., Zassenhaus, H. (1981). A new algorithm for factoring polynomials over finite fields. Math.
Comp. 36, 587–592.

——Cohen, H. (1993). A Course in Computational Algebraic Number Theory. Berlin: Springer.
——Conway, J. (1968). A tabulation of some information concerning finite fields. In Churchhouse, R., Herz,

J. (eds.), Computers in Mathematical Research. Amsterdam: North-Holland.
——Jansen, C., Lux, K., Parker, R., Wilson, R. (1995). An Atlas of Brauer Characters. Oxford: Oxford

Science Publishers.
——Jungnickel, D. (1993). Finite Fields. Mannheim: BI-Wissenschafts.
——Knuth, D. E. (1969). The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Reading,

MA: Addison-Wesley.
——Lidl, R., Niederreiter, H. (1986). Finite Fields. Cambridge: Cambridge University Press.
——Menezes, A. (1993). Applications of Finite Fields. Boston: Kluwer.
——Montgomery, P. L. (1985). Modular multiplication without trial division. Math. Comp. 44, 519–521.
——Pohlig, S., Hellman, M. (1978). An improved algorithm for computing logarithms over GF(p) and its

cryptographic significance. IEEE Trans. Info. Th. 24, 106–110.
——Pollard, J. (1978). Monte carlo methods for index computation mod p. Math. Comp. 32, 918–924.
——Scheerhorn, A. (1992). Trace- and norm-compatible extensions of finite fields. Applicable Algebra in

Engineering, Communication and Computing 3, 199–209.

Originally received 28 July 1995
Accepted 17 March 1997

