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Brauer and Kuroda showed in the fifties how in a Galois extension of number fields,

relations between permutation characters of subgroups provide relations between in-
variants, such as the discriminant, class number and regulator, of the corresponding

intermediate fields. In this paper we investigate various computational aspects of these
relations, we present examples, and we give a method to automatically produce class
number formulas.
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1. Introduction

The goal of this paper is to show how the discipline of finding “Brauer relations” and
related formulas for class numbers of number fields can be automated. The two ingredients
of this paper are a general approach to Brauer relations of class numbers (de Smit, 1999),
and the capabilities of the computer algebra system Magma (Bosma et al., 1997) in
the area of group theory, algebraic number theory, matrix and polynomial arithmetic,
and linear algebra. By applying the method one can recover and extend work of Jehne,
Castela, Perlis and others. In particular, we give an algorithm to find bounds on the class
number quotient for arithmetically equivalent number fields with given Galois group.

The use of Magma proved very beneficial for this project on the one hand, while on the
other hand useful experience for the further development and integration of the system
is gained from this type of application. Here is an indication of the range of tools that
was used in our computations:

• permutation groups: the calculation of conjugacy classes, lattices of subgroups, the
action on elements, cosets and double cosets;

• characters of finite groups: the computation of permutation characters;
• linear algebra: finding a basis for the kernel of mappings given by rectangular inte-

gral matrices, using Hermite normal form;
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• polynomial algebra: manipulating matrices over a multivariate polynomial ring and
computing determinants;

• algebraic number theory: computation of class numbers and unit groups for number
fields, Galois groups, and lattices of subfields.

In Section 2 we will describe the number theoretic applications we are aiming for: ob-
taining bounds on class numbers and formulas relating class numbers to a unit index.
In Section 3 we explain how to obtain character relations in the setting of permutation
groups. We will see how to compute general bounds for class number quotients for a
given character relation in Section 4. In Section 5 we show how in certain cases these
bounds can be improved upon, and how optimal bounds are obtained. In Section 6 this
leads to the recovery and extension of some classical class number formulas.

It is straightforward to generalize all results in this paper to S-class numbers.

2. Number Theoretic Results

Let us start with a detailed treatment of a very classical case of Brauer relations. We
consider biquadratic fields, i.e. Galois extensions of the rational field Q with Galois group
V4 = C2 × C2.

One reason for the interest in this case stems from the observation (Dirichlet, 1842)
that the class number of Q(

√
m,
√
−m) is either the product or half the product of the

class numbers of Q(
√
m) and Q(

√
−m). Dirichlet also gave an easy criterion (in terms

of the solvability of a Pell-like equation) to decide which is the case for given m.
More generally, it was proven in various ways (see Walter, 1979; Fröhlich and Taylor,

1991) that for the biquadratic field K = Q(
√
m,
√
n) with quadratic subfields K1 =

Q(
√
m), K2 = Q(

√
n), and K3 = Q(

√
mn), we have

h(K)
h(K1)h(K2)h(K3)

=
[UK : UK1UK2UK3 ]

B
, B =

{
4, if K is real,
2, if K is complex. (2.1)

Here h(F ) and UF denote the class number and the unit group of a number field F . The
formula expresses the class number quotient on the left in terms of a unit index on the
right. It follows at once that we have a lower bound on the class number quotient: it is
an integral multiple of 1/B. In fact we have

h(K)
h(K1)h(K2)h(K3)

= 2−i with
{

0 ≤ i ≤ 2, if K is real,
0 ≤ i ≤ 1, if K is complex. (2.2)

One cannot improve upon (2.2) without specifying the number fields further. To see this,
we found examples using Magma: the following table lists some instances.

m n h(K1) h(K2) h(K3) h(K) i

34 66 2 2 2 8 0
34 42 2 2 2 4 1
34 58 2 2 2 2 2
−6 −10 2 2 2 8 0
−6 −13 2 2 2 4 1

In this paper we describe an automatic procedure to produce formulas like (2.1) for
other small Galois extensions of number fields, and to prove bounds on the class number
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quotients as in (2.2). It was indicated by Brauer (1951) and by Kuroda (1950) what the
group-theoretic setting is for these results.

Let G be a finite group. For a subgroup H of G we let 1GH be the character of G induced
by the trivial character of H. Suppose that for every subgroup H of G an integer aH is
given such that ∑

H<G

aH1GH = 0. (2.3)

Such a relation is called a character relation. In Section 3 we will discuss how to find
such character relations. As K ranges over the Galois extensions of Q with group G, the
class number quotient ∏

H<G

h(KH)aH

assumes only finitely many values (Brauer, 1951). Here KH denotes the subfield of K
that is invariant under H. Our main result will give effective bounds for this finite set of
values. In Section 4 these bounds will be computed explicitly.

For G = V4 with subgroups H1,H2,H3 of order 2, we have the character relation

− 1G{1} + 1GH1
+ 1GH2

+ 1GH3
− 2 · 1G = 0. (2.4)

In this case, (2.2) describes the finite set of class number quotients.
By a G-set we mean a finite set with a left-action of G. Given a character relation as

in (2.3) we let Y be the G-set obtained by taking a disjoint union of aH copies of the
G-set G/H, for the subgroups H of G with aH > 0. Likewise, let X be the union over all
H with aH < 0 of |aH | copies of the G-set G/H. For example, for G = V4, relation (2.4)
gives G-sets X and Y with G-orbit lengths 4, 1, 1 and 2, 2, 2, respectively. The character
relation (2.4) says that each g ∈ G has the same number of fix-points on X and on Y . By
character theory, this implies that the permutation module Q[X] is isomorphic to Q[Y ]
as a Q[G]-module; see Lang (1993, Chapter XVIII, Theorem 2.3). This means that there
is an injective Z[G]-linear homomorphism ϕ: Z[X]→ Z[Y ] with a finite cokernel E. For
any sequence D1, . . . , Dr of subgroups of G we define

B(ϕ;D1, . . . , Dr) =
1

#EG

r∏
i=1

#EDi .

Now suppose that G acts by field automorphisms on a number field K. Let D1, . . . , Dr

be the stabilizers in G of G-orbit representatives of the infinite primes of K. Let w(F )
denote the number of roots of unity in a field F . For x, y ∈ Q∗ we say that x divides y,
and we write x | y when y/x ∈ Z. By de Smit (1999) we have∏

H

(
h(KH)
w(KH)

)aH
| B(ϕ;D1, . . . , Dr). (2.5)

The expression on the left therefore also divides the greatest common divisor B of all
B(ϕ;D1, . . . , Dr) where ϕ ranges over the injective G-linear homomorphisms from Z[X]
to Z[Y ].

We will show in Section 4 how to compute for given G, X, Y , and D1, . . . , Dr a divisor
C of B such that (2.5) also holds with B(ϕ;D1, . . . , Dr) replaced by C. We will give
examples where C is a strict divisor of B.
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The number
∏
H w(KH)aH is a power of 2, and it is equal to 1 when the roots of

unity in K of order a power of 2 generate a cyclic extension of KG; see Brauer (1951).
Applying (2.5) to relation (2.4) and to the same relation with opposite signs, we find that
the integer i in (2.2) satisfies −1 ≤ i ≤ 2 in the real case and 0 ≤ i ≤ 1 in the complex
case.

In Section 5 we will see how to improve the bound C in certain cases by using a
property of functoriality in ϕ. For relation (2.4) this will give (2.2).

In Section 6 we will indicate how to compute unit index formulas like (2.1) for other
Galois groups in a systematic way. We will use a more specific version of (2.5) for this,
which we now formulate. Let U be the group of units of the ring of integers of K. Let
U(X) be the set of G-equivariant maps from X to U . For an abelian group A let Ā be the
quotient of A by its torsion subgroup. Then ϕ induces a homomorphism U(Y )→ U(X)
which in turn induces a homomorphism

∏
H,aH>0

(
UH
)aH

= U(Y )
ϕ∗−→ U(X) =

∏
H,aH<0

(
UH
)−aH

.

Theorem 2.1. (de Smit, 1999) We have∏
H

(
h(KH)
w(KH)

)aH
=
B(ϕ;D1, . . . , Dr)

#Cokϕ∗
.

3. Finding Character Relations

This section is entirely group theoretic: we describe how character relations as in (2.3)
can be found for a given finite group G. The elementary theory of group characters we
will employ can be found for example in Curtis and Reiner (1962) and James and Liebeck
(1993); for computational issues see Dixon (1967) and Schneider (1990).

If H and H ′ are conjugate subgroups of G, then there is a “trivial” character relation
1GH − 1GH′ = 0. Therefore, we may as well consider the subgroups up to conjugation, i.e.
we demand that aH = 0 for all H outside a fixed set of representatives of the conjugacy
classes of the subgroups of G. If there are s conjugacy classes of subgroups of G, then
the character relations thus form a subgroup L of Zs. We will give a method to obtain
a Z-basis for L. By a theorem of Artin (Artin, 1931a,b; Curtis and Reiner, 1962), any
rational character on a finite group G is a unique Q-linear combination of permutation
characters of cyclic subgroups. Thus, the rank of L is the number of conjugacy classes of
non-cyclic subgroups of G. In particular: non-trivial character relations exist when G is
not cyclic.

Let G be a finite group, given as a permutation group by explicit generators. The first
step is to compute the conjugacy classes of G. For a given subgroup H the character 1GH ,
considered as a map from the conjugacy classes of G to Z, is given by

1GH(C) = [G : H]
#(C ∩H)

#C
.

Thus, to find all relations between the permutation characters of a certain collection S
of subgroups of G, one needs to compute a basis for the dependencies between the rows
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of the integer matrix (1GH(C))H,C , where the row-index H runs over S and the column-
index C runs over the conjugacy classes of G. This is a straightforward matrix kernel
computation.

Example 3.1. Let us consider the alternating group A4 on 4 elements. The matrix
12 0 0 0
6 2 0 0
4 0 1 1
3 3 0 0
1 1 1 1


gives each permutation character 1GH as a row vector. The character value on the identity
element of G is listed in the first column, so in the first column one reads off the index of
the five representative subgroups H. Since A4 contains V4, the relation for V4, induced
up to G, gives the biquadratic relation (−1, 3, 0,−2, 0) between the rows of the matrix.
Other relations that one spots immediately are (1,−1,−2, 0, 2) and (0, 1,−1,−1, 1). For
a Galois extension K of Q with Galois group A4 we will denote by Kd a subfield of
degree d, for d = 3, 4, 6. The relations (0, 1,−1,−1, 1) and (1, 0,−3,−1, 3) tell us, after
omitting trivial factors h(Q), that both quantities

h(K6)
h(K3) · h(K4)

and
h(K)

h(K3) · h(K4)3
(3.1)

assume only finitely many values as K ranges over all A4-extensions of Q.

Let us show how to find all character relations of the form 1GH = 1GH′ , when H and
H ′ are non-conjugate subgroups of G of index at most 8, by a brute force method. Such
(G,H,H ′) are called Gassmann triples. We list all transitive subgroups of degree d ≤ 8,
and then look for subgroups H of index d for which H induces the same permutation
character as a point stabilizer.

A simple double loop in Magma over the subgroups of index n of the transitive sub-
groups of Sn, for n ≤ 8 (see Cannon et al., 2000, for the algorithm used), exhibits the pairs
(7, 168), (8, 32), and (8, 48) of degree and group order as the only ones where Gassmann
triples exist. This also gives a computational alternative to the proof of Perlis (1977) of
the fact that there are no Gassmann triples in degree less than 6.

If G is a Galois group of a field extension of Q, then the condition 1GH = 1GH′ is
equivalent to the condition that the fields KH and KH′ have the same zeta function. If
this condition holds, we say that the two fields are arithmetically equivalent. See Klingen
(1998) for more examples and references.

For higher degrees one should use the classification of transitive groups of small de-
gree for efficiency; see Bosma and de Smit (1999) for details. In a fixed group G one
can simply scan for non-conjugate Gassmann equivalent subgroups. For instance, in the
group G = A6 of order 360 one finds that the two conjugacy classes of subgroups of
order 4 give the same permutation character. In S6 two of the seven conjugacy classes
of subgroups of order 4 have identical permutation characters, thus leading to equivalent
fields of degree 180. The latter example is the case Gassmann proposed originally as
the very first instance of this phenomenon (Gassmann, 1926). One also finds arithmeti-
cally equivalent fields of degree 630, 210, 105, 15 for which the normal closure has Galois
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group A7. The cases of degree 210 and of degree 105 are particularly interesting since
there we have three conjugacy classes of subgroups that all give the same permutation
character.

4. Computing Bounds

Suppose we are given a finite group G and two G-sets X and Y . We wish to describe
the G-linear homomorphisms ϕ: Z[X] → Z[Y ]. For x ∈ X we have ϕ(x) =

∑
y∈Y ax,yy

with ax,y ∈ Z. The condition that ϕ be G-equivariant means that agx,gy = ax,y for
all g ∈ G. If we number the G-sets X and Y , and we number the G-orbits of X × Y ,
then we can write down a generic matrix ϕ with entries taken from a set of variables
{a1, . . . , at} with t = #(G\(X × Y )). This matrix, whose entries are in the polynomial
ring Z[a1, . . . , at] is the universal homomorphism from Z[X] to Z[Y ]. Its rows are indexed
by Y and its columns by X. For example, let us take G = V4 again and let X and Y
be the G-sets obtained from (2.4) with G-orbit lengths 4, 1, 1 and 2, 2, 2, respectively.
Then

ϕ =


a1 a1 a2 a2 a7 a10

a2 a2 a1 a1 a7 a10

a3 a4 a3 a4 a8 a11

a4 a3 a4 a3 a8 a11

a5 a6 a6 a5 a9 a12

a6 a5 a5 a6 a9 a12

 (4.1)

is the universal matrix, and for every choice of values in Z for the variables a1, . . . , at,
we obtain a G-linear homomorphism ϕ̃: Z[X]→ Z[Y ].

Let us construct for any subgroup H of G a matrix ϕH which is a generic description
of the map Z[X]H → Z[Y ]H . Note that Z[X]H has a Z-basis consisting of the elements∑
x∈O x where O ranges over the H-orbits of X. Thus, one can construct ϕH out of ϕ

by first replacing H-equivalent columns by their sum, and then selecting rows indexed
by representatives in Y of H\Y . For example, for the V4-example we obtain

ϕG =

( 2a1 + 2a2 a7 a10

2a3 + 2a4 a8 a11

2a5 + 2a6 a9 a12

)
.

We also need a relative version of this construction, i.e. a matrix ϕH/G describing the
induced map Z[X]H/Z[X]G → Z[Y ]H/Z[Y ]G. For every G-orbit of X we select an H-
orbit contained in it, and we do the same for Y . In the matrix for ϕH , whose columns
are indexed by H\X and whose rows are indexed by H\Y , we now subtract from every
row the unique selected row in the same G-orbit. Then we omit all selected rows (which
are now zero) and all selected columns. For instance, to compute ϕ1/G in our V4-example
we subtract every even-numbered row from the one above it and omit the last three
columns:

ϕ1/G =

(
a1 − a2 a1 − a2 a2 − a1

a3 − a4 a4 − a3 a3 − a4

a5 − a6 a6 − a5 a6 − a5

)
.

If the ai are specified to integers for which the integer matrix ϕ̃ that one obtains from
the generic matrix ϕ has finite cokernel E, then we have

#EH = |det(ϕ̃H)|, #EH

#EG
= |det(ϕ̃H/G)|.
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To see the first equality, note that H1(H,Z[X]) = 0 by Shapiro’s lemma and the fact
that H1(J,Z) = 0 for any finite group J acting trivially on Z. To see the second equality
one uses the first equality and the snake lemma. Given subgroups D1, . . . , Dr of G with
r ≥ 1 we now define

Bgen = det(ϕG)r−1
r∏
i=1

det(ϕDi/G) ∈ Z[a1, . . . , at].

Note that Bgen is only defined up to sign since we had to specify an ordering of the rows
and columns of the matrices whose determinant occurs in Bgen. The main property of
this polynomial is that specifying the variables ai to integers ãi, in such a way that the
resulting homomorphism ϕ̃ is injective, will give

B(ϕ̃;D1, . . . , Dr) = |Bgen(ã1, . . . , ãt)|.

Now let G act on a number field K so that D1, . . . , Dr are the stabilizers of G-orbit
representatives of the infinite primes of K.

Theorem 4.1. Let C ∈ Z≥1 be the content of the polynomial Bgen ∈ Z[a1, . . . , at]. Then
we have ∏

H

(
h(KH)
w(KH)

)aH
| C.

Proof. For every prime p we need to show a divisibility relation of p-parts. Let p be
a prime number. Write Bgen = pnF , where F ∈ Z[a1, . . . , at] has non-zero image F̄ in
Fp[a1, . . . , at]. Then pn is the p-part of C. The determinant of the generic matrix ϕ can
be written as paD with D ∈ Z[a1, . . . , at] and D̄ 6= 0 in Fp[a1, . . . , at].

If there are values ā1, . . . , āt ∈ Fp so that F̄ (ā1, . . . , āt) 6= 0, then we can lift the
āi to ãi ∈ Z, and if the resulting matrix ϕ̃ is invertible over Q, then we obtain our
result by (2.5). Of course such āi might not exist in Fp. We therefore consider the
algebraic closure Falg

p of Fp. The polynomial map F̄ D̄ does not vanish as a function
(Falg

p )t → Falg
p . Therefore we can choose an integer d ≥ 1 and elements ā1, . . . , āt ∈ Fpd

so that F̄ (ā1, . . . , āt) 6= 0 and D̄(ā1, . . . , āt) 6= 0.
Now lift the irreducible polynomial of a generating element of Fpd over Fp to a monic

polynomial P ∈ Z[T ] of degree d, and let R be the domain Z[T ]/(P ). Lifting the āi ∈
Fpd = R/pR to elements ãi ∈ R, and substituting the values ãi for the variables ai in
the generic matrix, we obtain an R[G]-linear map ϕ̃: R[X] → R[Y ], and we denote its
cokernel by E. Since detR(ϕ̃) = paD(ã1, . . . , ãn) 6= 0, this map ϕ̃ is injective and E is
finite.

The localization R(p) is a discrete valuation ring. By the theory of elementary divisors,
the cardinality of the cokernel of a square matrix over R(p) is the index in R(p) of the ideal
generated by its determinant. For each subgroupH ofG we apply this to EH = Cok (ϕ̃H),
and we see that

ordp(#EH) = ordp([R : detR(ϕ̃H) ·R]).
It follows that

ordp(B(ϕ̃;D1, . . . , Dr)) = ordp([R : pnF (ã1, . . . , ãn) ·R]) = nd.

By forgetting the R-module structure of R[X] and R[Y ], we can view ϕ̃ as a G-linear
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homomorphism Z[X]d → Z[Y ]d with cokernel E. If we apply (2.5) to this map, and take
the dth roots we obtain our result. This proves the theorem. 2

Example 4.2. Let a be a positive integer that is not a square or twice a square. The
fields K and K ′ generated by 8

√
a and 8

√
16a give rise to two transitive G-sets for the

group G = (Z/8Z) o (Z/8Z)∗, for which the permutation characters are equal. Perlis
(1978) showed that their class numbers differ by a factor of at most 16, essentially by
computing the optimal value of the polynomial Bgen, which is also equal to the number
B in Section 2. However, in this case the content of Bgen is 8, so Theorem 4.1 gives a
stronger result. Proposition 5.1 below gives an even better result.

Example 4.3. The group PSL(2, 11) has two conjugacy classes of subgroups of index 11,
and they are Gassman equivalent. Let G be the permutation group on X = {1, . . . , 11}
generated by the elements c = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), d = (2, 3)(4, 11)(5, 6)(7, 10),
and e = (2, 6, 9)(3, 7, 4)(5, 10, 8). Then G is isomorphic to PSL(2, 11), and H = 〈d, e〉 is
the stabilizer in G of the element 1 of X.

Define Y as the G-set which as a 〈c〉-set coincides with X, but which has d-action
given by (1, 11)(3, 10)(4, 7)(8, 9) and e-action given by (1, 11, 8)(2, 6, 9)(5, 10, 7). Then
H\Y = {{1, 2, 6, 8, 9, 11}, {3, 4, 5, 7, 10}}, so the generic map Z[X] → Z[Y ] is given by
permuting the column vector (a1 a1 a2 a2 a2 a1 a2 a1 a1 a2 a1) cyclically. The group
D = 〈d〉 is the unique subgroup of G of order 2 up to conjugation. Writing t = a1 − a2

we compute ϕ1/D and ϕD/G and verify that their determinants have contents 32 and 33:

ϕ1/D =

 t 0 t t
0 t −t t
−t t t 0
−t −t 0 t

 ϕD/G =


0 t t −t t 0
−t t 0 0 0 t
−t 0 0 t t 0
−t −t t −t t t
0 −t t t 0 t
0 0 −t 0 t t

 .

It follows that two arithmetically equivalent number fields of degree 11 with Galois group
PSL(2, 11) have class numbers which differ by a factor of at most 35 in the totally real
case, and a factor 33 if they are not totally real.

Remark 4.4. When the determinants in the definition of Bgen become awkwardly large,
we should make sure that we use the smallest possible building blocks for the expression,
and keep the expression in factored form. Recall that the content of a product of two
polynomials is the product of their contents, so we can still compute C from this factored
expression. Since we prefer many small factors to one large one, we make a filtration
Di = Di,0 ⊂ Di,1 ⊂ · · · ⊂ Di,k = G, for each i and we write

det(ϕDi/G) =
k∏
j=1

det(ϕDi,j−1/Di,j ).

Remark 4.5. There is one other approach, which avoids polynomial computations in
many variables: one can simply pick random integer values ãi for the ai and do all
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computations with the integer matrix ϕ̃. By Theorem 4.1 we do not even have to check
that ϕ̃ is invertible: if our ϕ̃ gives a non-zero bound B0, then it is a multiple of C, so
Theorem 4.1 holds with C replaced by B0. Taking the greatest common divisor of such
bounds B0 for several choices of the integers ãi will typically reveal the greatest common
divisor B of all of them. However, Example 4.2 shows that B may be a strict multiple of
C, and one will not know whether B = C without doing the formal computations.

In the rest of this section we treat the first example of (3.1): let K/Q be a Galois extension
whose Galois group is the alternating group A4, and for each d ∈ {3, 4, 6} we let Kd be
a subfield of degree d.

Proposition 4.6. We have
h(K6)

h(K3) · h(K4)
= 2i with

{
−3 ≤ i ≤ 2, if K is real
−2 ≤ i ≤ 1, if K is complex.

Proof. Let X = Y = {1, 2, . . . , 7} as sets, let G be the subgroup of the permutation
group on Y generated by e1 = (12)(34), e2 = (13)(24) and c = (234)(567). Then G = A4

and we let G act on X by letting e1, e2, c act as (34)(56), (12)(56) and (135)(246)
respectively. The G-orbits of X and Y have lengths 6, 1 and 4, 3. The generic G-linear
homomorphisms ϕ: Z[X]→ Z[Y ] and ψ: Z[Y ]→ Z[X] are

ϕ =



a1 a2 a1 a2 a1 a2 a6

a1 a2 a2 a1 a2 a1 a6

a2 a1 a1 a2 a2 a1 a6

a2 a1 a2 a1 a1 a2 a6

a3 a3 a5 a5 a4 a4 a7

a4 a4 a3 a3 a5 a5 a7

a5 a5 a4 a4 a3 a3 a7


ψ =



a1 a1 a2 a2 a3 a4 a5

a2 a2 a1 a1 a3 a4 a5

a1 a2 a1 a2 a5 a3 a4

a2 a1 a2 a1 a5 a3 a4

a1 a2 a2 a1 a4 a5 a3

a2 a1 a1 a2 a4 a5 a3

a6 a6 a6 a6 a7 a7 a7


.

Let D = 〈e1〉 and N = 〈e1, e2〉. The building blocks for the bound C in Theorem 4.1
can now easily be computed by hand. We give them in the table below, which for several
superscripts “−” gives the generic matrix ϕ− and ψ− and the contents C(ϕ−) and C(ψ−)
of their determinants:

− matrix ϕ− C(ϕ−) matrix ψ− C(ψ−)

G
( 3a1 + 3a2 a6

2a3 + 2a4 + 2a5 a7

)
1

( 2a1 + 2a2 a3 + a4 + a5

4a6 3a7

)
2

N/G
( 2a3 − 2a5 2a5 − 2a4

2a4 − 2a5 2a3 − 2a4

)
4

( a3 − a4 a4 − a5

a5 − a4 a3 − a5

)
1

D/N (a1 − a2) 1 (2a1 − 2a2) 2

1/D
( a1 − a2 a1 − a2

a1 − a2 a2 − a1

)
2

( a1 − a2 a1 − a2

a1 − a2 a2 − a1

)
2

Since KA4 = Q, the infinite primes of K form a transitive G-set. If K is real then
each element has trivial stabilizer in G, so that we obtain our bound by multiplying the
contents in the last three rows. If K is complex, then D is a decomposition group at
infinity so that we obtain the bound by multiplying the contents of only the middle two
rows. 2
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5. Improved Bounds

In this section we will give a method which for certain character relations will give
better results than in the last Section, even with less computational effort. This method
is based on the fact that the “unit index” #Cokϕ∗ in Theorem 2.1 is in some sense
functorial in ϕ.

Let us assume that N is a normal subgroup of G for which the quotient G-sets N\X
and N\Y are isomorphic. The quotient map X → N\X induces a canonical isomor-
phism from the G-module Z[X]N of N -coinvariants of Z[X] to Z[N\X]. For a given
G-linear homomorphism ϕ: Z[X]→ Z[Y ] we obtain an induced G-linear homomorphism
ϕN : Z[N\X] → Z[N\Y ]. Let E = Cokϕ. Since taking N -coinvariants is a right exact
functor we have CokϕN = EN .

The projection map X → N\X induces an injective map U(N\X) −→ U(X). Note
that U(X) is a product of unit groups U(KH) of subfields of K and that the image in
U(X) of U(N\X) is the product of the subgroups U(KNH). Let us write iX for the
induced map U(N\X) −→ U(X). Then ϕ induces a commutative diagram with exact
rows

0 −→ U(N\Y ) iY−→ U(Y ) −→ Cok iY −→ 0yϕN∗ yϕ∗ yf
0 −→ U(N\X) iX−→ U(X) −→ Cok iX −→ 0.

(5.1)

Since the two leftmost vertical maps are injective, the snake lemma and Theorem 2.1 for
ϕ and for ϕN now imply that∏

H

(
h(KH)
w(KH)

)aH
=

#Kerf
#Cok f

· B(ϕ;D1, . . . , Dr)
B(ϕN ;D1, . . . , Dr)

. (5.2)

In order to analyse the factors on the right we introduce a combinatorial parameter: if
H is a subgroup of G containing N , then we let jH(X) be the product over the H-orbits
O of X of the integers #O/#(O/N). Note that the canonical map Z[X]H → Z[N\X]H

is an injection with a cokernel of order jH(X). By also applying this statement for Y
instead of X, one deduces with the snake lemma that

#(EN )H

#EH
=
jH(Y )
jH(X)

.

Put J(H) = jH(Y )/jH(X) and let

Brel(ϕ;D1, . . . , Dr) =
B(ϕ;D1, . . . , Dr)
B(ϕN ;D1, . . . , Dr)

=
#(EN )G

#EG

r∏
i=1

#EDi

#(EN )Di
.

For each i ∈ {1, . . . , r} we have

#EDi

#(EN )Di
=

#EDi

#ENDi
#ENDi

#(EN )NDi
=
|det(ϕDi/NDi)|

J(NDi)
.

It follows that

±Brel(ϕ;D1, . . . , Dr) = J(G)
∏
i

det(ϕDi/NDi)
J(NDi)

.

The expression on the right, which is only defined up to sign, can be computed for the
generic homomorphism ϕ as in Section 4. This gives a polynomial Bgen

rel ∈ Q[a1, . . . , at].



Class Number Relations from a Computational Point of View 107

Let Crel ∈ Q>0 be the content of this polynomial, i.e. Crel is the positive generator of
the fractional Z-ideal generated by the coefficients of Bgen

rel .

Proposition 5.1. Let t(X) and t(Y ) be the orders of the torsion subgroups of Cok iX
and Cok iY . Then we have divisibility relations∏

H

(
h(KH)
w(KH)

)aH
| Crel ·

t(Y )
t(X)

| Crel · jG(Y ).

Let us sketch the proof. In the setting above we have a commutative diagram with
exact rows

0 → (Cok iY )tors → Cok iY → Cok iY → 0y yf y
0 → (Cok iX)tors → Cok iX → Cok iX → 0.

The rightmost vertical map is injective, so by the snake lemma we have #Kerf
#Cok f |

t(Y )
t(X) .

By (5.2) we now see that∏
H

(
h(KH)
w(KH)

)aH
| Bgen

rel (ã1, . . . , ãt) ·
t(Y )
t(X)

for any ã1, . . . , ãt ∈ Z for which the resulting map ϕ̃: Z[X] → Z[Y ] is injective. Note
that for every positive integer d and every G-set Z, the disjoint union Zd of d copies of Z
satisfies t(Zd) = t(Z)d. With this one extra ingredient the first divisibility in Proposition
5.1 now follows by the argument given in the proof of Theorem 4.1.

For the second divisibility we use a theorem of van Tieghem (1975): for any extension
of number fields F ⊂ E, the torsion subgroup of E∗/(F ∗µ(E)) is a finite group whose
order divides [E : F ]. Here µ(E) denotes the group of roots of unity in E. See May (1980,
Proposition 1) or Stevenhagen (1990, Theorem 4.4) for a short proof. It follows from van
Tieghem’s result that t(Y ) divides jG(Y ). This proves Proposition 5.1.

We refer to de Smit (1999) for a worked-out example of this method which shows that
the class numbers of the fields from Example 4.2 generated by 8

√
a and 8

√
16a can only

differ by a factor of 2. We can now also strengthen Proposition 4.6.

Proposition 5.2. For K/Q Galois with group A4 let Kd be a subfield of degree d for
d ∈ {3, 4, 6}. Then:{

1
8
,

1
4
,

1
2
, 1
}
⊂
{

h(K6)
h(K3) · h(K4)

: Gal(K,Q) = A4, K real
}
⊂
{

1
8
,

1
4
,

1
2
, 1, 2

}
;

{
h(K6)

h(K3) · h(K4)
: Gal(K,Q) = A4, K complex

}
=
{

1
4
,

1
2
, 1
}
.

Proof. Let N be the normal subgroup of order 4 of the group G = A4. We use the
notation from the proof of Proposition 4.6, so X and Y will be G-sets with G-orbits
of lengths 6, 1, and 3, 4, respectively. We will apply Theorem 5.1, so that only the
matrices in the last two rows of the table at the end of Section 4 are relevant. First note
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that jG(X) = 2, jG(Y ) = 4, jN (X) = 8 and jN (Y ) = 4. We have t(Y ) = 1, because
Cok iY = U(K4) is torsion free. By Proposition 5.1 we obtain

h(K3)h(K4)
h(K6)

| jG(Y )jN (X)
jG(X)jN (Y )

c = 4c,

where c = 1 if K is complex and c = 2 if K is real. For an equality the other way around
we note that t(X) | jG(X) = 2, and we obtain a divisibility relation

h(K6)
h(K3)h(K4)

| jG(X)jN (Y )
jG(Y )jN (X)

t(X)c′ =
t(X)c′

4
| c
′

2
, (5.3)

where c′ = 2 if K is complex and c′ = 4 if K is real. Note that equalities in (5.3) can
only hold if t(X) = 2, i.e. if we obtain K6 out of K3 by adjoining the square root of a
fundamental unit of K3.

The proof of Proposition 5.2 is then finished by furnishing examples; see the table
below, and the comments in Example 5.3.

f sig(K4) h(K6) h(K4) h(K3) i

x4 − 2x3 + 2x2 + 2 (0, 2) 1 1 1 0

x4 − x3 − 3x+ 4 (0, 2) 1 2 1 −1

x4 − 16x3 + 72x2 + 81 (0, 2) 12 16 3 −2

x4 − 7x2 − 3x+ 1 (4, 0) 1 1 1 0

x4 − x3 − 7x2 + 2x+ 9 (4, 0) 2 1 4 −1

x4 − 6753x2 − 39936x+ 9110416 (4, 0) 48 4 48 −2

x4 − 579x2 + 426x+ 74440 (4, 0) 648 4 1296 −3
2

Example 5.3. The table lists one example for each of the seven class number quotients
of Proposition 5.2; an irreducible polynomial generating K4 is given, with its signature.
The normal closure K of K4 has Galois group A4, and the class numbers for the fields
Kd are listed.

We consulted several sources for families of polynomials generating number fields for
which the normal closure has Galois group A4. All quartic fields of discriminant up to
106 in absolute value are publicly available, see Buchmann et al. (1995). Both in the real
and in the complex case, examples with class number quotients 1 and 1/2 can be found
among these. Seidelmann (1918) gives a univariate polynomial with three parameters
which by rational specialization of the parameters usually yields a quartic A4-field, and
which produces them all this way. In various places in the literature, polynomials with a
single parameter t can be found that realize A4 as a Galois group over Q(t). For almost
all specializations of t in Q they realize A4 over Q. Explicitly, Matzat (1987) gives the
polynomial

Ft(x) = x4 − 1
1 + 3t2

(4x− 3).

This produces complex fields and for the first 77 integral values of t this alternately yields
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the class number quotients 1 and 1/2. With Hilbert’s polynomial (Hilbert, 1892; Serre,
1992)

Gt = x4 − 16
3
x3 + 8x2 + t2

several complex fields with class number quotient 1/4 were generated.
These polynomials tend to produce very few fields of small discriminant. To produce

more examples of totally real fields, we used the polynomial

Ht(x) = x(x+ 396)2(x+ 11) + (x+ 4)2(x+ 256)t2,

(communicated to us by Jürgen Klüners). It enabled us to find examples with class
number quotients 1/4 and 1/8.

We did not find any examples with class number quotient 2.

6. Unit Index Formulas

In certain cases one can make a more or less canonical choice for the map ϕ. This can
have two advantages. First of all, the computation of the bound becomes much faster
than for generic matrices ϕ. Secondly, the “unit index” #Cokϕ∗ can often be interpreted
in a nice way. This way one recovers “class number formulas” such as (2.1), and one has
an algorithm to produce them for other groups as well.

Let us first describe the building blocks of such “canonical” maps. If H ≤ H ′ ≤ G, then
there is a canonical projection π: Z[G/H]→ Z[G/H ′], and a “norm map” n: Z[G/H ′]→
Z[G/H] sending x ∈ G/H ′ to the formal sum of the y ∈ G/H with π(y) = x. For a Z[G]-
module M , the map HomZ[G](π,M) is the inclusion map MH′ →MH on invariants, and
HomZ[G](n,M) is the map MH →MH′ that sends m ∈MH to

∑
h hm where h runs over

a set of representatives in H ′ of H ′/H. For transitive G-sets X and Y we say that a map
Z[X]→ Z[Y ] is a projection (or a norm map) if there are G-set isomorphisms X ∼= G/H
and Y ∼= G/H ′, with H ⊂ H ′ (or H ′ ⊂ H), so that the induced map Z[G/H]→ Z[G/H ′]
is a projection (or norm map).

Example 6.1. For example, to deduce (2.1) from Theorem 2.1 one takes ϕ in such a
way that the summand Z[G] of Z[X] is mapped to each of the summands Z[G/Hi] by
the projection map. In the notation of (4.1) we take ϕ of the form

ϕ =

(
π n 0
π 0 n
π 0 0

)
=


1 1 0 0 1 0
0 0 1 1 1 0
1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 0 0
0 1 1 0 0 0

 .

One finds that B(ϕ;D) = 4 if #D = 1 (the real case) and B(ϕ;D) = 2 if #D = 2 (the
complex case). By Theorem 2.1 we have

h(K)
h(K1)h(K2)h(K3)

=
[UK : µ(K)UK1UK2UK3 ]

B
W,

where W = w(K)w(Q)2w(K1)−1w(K2)−1w(K3)−1. In Section 2 we addressed roots of
unity after (2.5), and in this case it follows that

W 6= 1 ⇐⇒ #µ(K) = 8 ⇐⇒ µ(K) 6⊂ UK1UK2UK3 ,



110 W. Bosma and B. de Smit

and one checks that we always have

W [UK : µ(K)UK1UK2UK3 ] = [U : UK1UK2UK3 ].

Thus, (2.1) follows from Theorem 2.1.
One obtains a “dual” formula by considering the transpose of ϕ, which is a map

Z[Y ]→ Z[X]. We then obtain

h(K)
h(K1)h(K2)h(K3)

=
B′

Q
W,

where B′ = #D, and Q is the index in UK1 × UK2 × UK3 of the subgroup generated by
µ(K1)× µ(K2)× µ(K3) and the image of the map UK → UK1 ×UK2 ×UK3 which sends
u to (NK/Ki(u))3

i=1.

Example 6.2. Let G be the dihedral group of order 8. Let H and H ′ be non-conjugate
non-normal subgroups of order 2 and let C be the cyclic subgroup of order 4. Then we
have a character relation

1G{1} + 2 · 1G = 1GH + 1GH′ + 1GC .

Let X and Y be corresponding G-sets with G-orbits of lengths 8, 1, 1 and 4, 4, 2, respec-
tively. If we insist that the map ϕ: Z[X] → Z[Y ] is such that the component of rank 8
of Z[X] maps to the components of rank 4, 4 and 2 by projection maps, then ϕ is of the
form

ϕ =

(
π ∗ ∗
π ∗ ∗
π ∗ ∗

)
=



1 0 0 1 0 0 0 0 a1 a4

0 1 0 0 0 0 1 0 a1 a4

0 0 1 0 0 1 0 0 a1 a4

0 0 0 0 1 0 0 1 a1 a4

1 1 0 0 0 0 0 0 a2 a5

0 0 1 1 0 0 0 0 a2 a5

0 0 0 0 1 1 0 0 a2 a5

0 0 0 0 0 0 1 1 a2 a5

1 0 1 0 1 0 1 0 a3 a6

0 1 0 1 0 1 0 1 a3 a6


.

Let D ⊂ G be a subgroup of G of order 1 or 2. It turns out that B(ϕ;D) does not depend
upon the choices of a1, . . . , a6. In fact:

B(ϕ;D) =

 16, if D = {1},
8, if D = Z(G),
4, if D 6�G.

If G is the Galois group of a normal extension K of Q with unit group U , and D is the
decomposition group of an infinite prime, then Theorem 2.1 gives

h(K)
h(KH)h(KH′)h(KC)

=
[U : µ(K)UHUH

′
UC ]

B
W,

where W = w(K)w(Q)2w(KH)−1w(KH′)−1w(KC)−1. By the same argument as in the
previous example one can erase W and µ(K). Thus we recover the formula of Castela
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(1978):

h(K)
h(KH)h(KH′)h(KC)

=
[U : UHUH

′
UC ]

B
with B =

 16, if D = {1},
8, if D = Z(G),
4, if D 6�G.

Example 6.3. Finally, let us look at the second class number quotient in (3.1). Let
G = A4 and for i ∈ {1, 3, 4, 12} let Xi be a transitive G-set of order i. Then the G-set
X = X1 ∪X1 ∪X1 ∪X12 is linearly equivalent to Y = X4 ∪X4 ∪X4 ∪X3. We can select
a homomorphism ϕ: Z[X]→ Z[Y ] so that the component map from Z[X12] to Z[Z] is a
projection for each G-orbit Z of Y . One then finds that

h(K)
h(K3) · h(K4)3

= 2rQ,

where r = −10 if K is real, and r = −6 if K is complex, and Q is the index in UK of the
subgroup generated by all elements of degree at most 4 over Q. The formula for the real
case was already given by Jehne (1977).
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